1/*	$NetBSD: copyout.c,v 1.2 2011/01/18 01:02:52 matt Exp $	*/
2
3/*-
4 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
9 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
10 *
11 * This material is based upon work supported by the Defense Advanced Research
12 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
13 * Contract No. N66001-09-C-2073.
14 * Approved for Public Release, Distribution Unlimited
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.2 2011/01/18 01:02:52 matt Exp $");
40
41#include <sys/param.h>
42#include <sys/lwp.h>
43
44#include <powerpc/pcb.h>
45
46#include <powerpc/booke/cpuvar.h>
47
48static inline void
49copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr)
50{
51	register_t msr;
52	__asm volatile(
53		"mfmsr	%[msr]"				/* Save MSR */
54	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
55	"\n\t"	"stb	%[data],0(%[udaddr])"		/* store user byte */
56	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
57	    : [msr] "=&r" (msr)
58	    : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
59}
60
61static inline void
62copyout_uint16(uint8_t *udaddr, uint8_t data, register_t ds_msr)
63{
64	register_t msr;
65	__asm volatile(
66		"mfmsr	%[msr]"				/* Save MSR */
67	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
68	"\n\t"	"stb	%[data],0(%[udaddr])"		/* store user byte */
69	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
70	    : [msr] "=&r" (msr)
71	    : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
72}
73
74static inline void
75copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
76{
77	register_t msr;
78	__asm volatile(
79		"mfmsr	%[msr]"				/* Save MSR */
80	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
81	"\n\t"	"stw	%[data],0(%[udaddr])"		/* store user data */
82	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
83	    : [msr] "=&r" (msr)
84	    : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
85}
86
87static inline void
88copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
89{
90	register_t msr;
91	__asm volatile(
92		"mfmsr	%[msr]"				/* Save MSR */
93	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
94	"\n\t"	"stwbrx	%[data],0,%[udaddr]"		/* store user data */
95	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
96	    : [msr] "=&r" (msr)
97	    : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
98}
99
100static inline void
101copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data,
102	uint32_t mask, register_t ds_msr)
103{
104	register_t msr;
105	uint32_t tmp;
106	KASSERT((data & ~mask) == 0);
107	__asm volatile(
108		"mfmsr	%[msr]"				/* Save MSR */
109	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
110	"\n\t"	"lwbrx	%[tmp],0,%[udaddr]"		/* fetch user data */
111	"\n\t"	"andc	%[tmp],%[tmp],%[mask]"		/* mask out new data */
112	"\n\t"	"or	%[tmp],%[tmp],%[data]"		/* merge new data */
113	"\n\t"	"stwbrx	%[tmp],0,%[udaddr]"		/* store user data */
114	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
115	    : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
116	    : [ds_msr] "r" (ds_msr), [data] "r" (data),
117	      [mask] "r" (mask), [udaddr] "b" (udaddr));
118}
119
120static inline void
121copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr)
122{
123	register_t msr;
124	__asm volatile(
125		"mfmsr	%[msr]"				/* Save MSR */
126	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
127	"\n\t"	"stb	%[data0],0(%[udaddr8])"		/* store user data */
128	"\n\t"	"stb	%[data1],1(%[udaddr8])"		/* store user data */
129	"\n\t"	"stb	%[data2],2(%[udaddr8])"		/* store user data */
130	"\n\t"	"stb	%[data3],3(%[udaddr8])"		/* store user data */
131	"\n\t"	"stb	%[data4],4(%[udaddr8])"		/* store user data */
132	"\n\t"	"stb	%[data5],5(%[udaddr8])"		/* store user data */
133	"\n\t"	"stb	%[data6],6(%[udaddr8])"		/* store user data */
134	"\n\t"	"stb	%[data7],7(%[udaddr8])"		/* store user data */
135	"\n\t"	"stb	%[data8],8(%[udaddr8])"		/* store user data */
136	"\n\t"	"stb	%[data9],9(%[udaddr8])"		/* store user data */
137	"\n\t"	"stb	%[data10],10(%[udaddr8])"	/* store user data */
138	"\n\t"	"stb	%[data11],11(%[udaddr8])"	/* store user data */
139	"\n\t"	"stb	%[data12],12(%[udaddr8])"	/* store user data */
140	"\n\t"	"stb	%[data13],13(%[udaddr8])"	/* store user data */
141	"\n\t"	"stb	%[data14],14(%[udaddr8])"	/* store user data */
142	"\n\t"	"stb	%[data15],15(%[udaddr8])"	/* store user data */
143	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
144	    : [msr] "=&r" (msr)
145	    : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8),
146	      [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]),
147	      [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]),
148	      [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]),
149	      [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]),
150	      [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]),
151	      [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]),
152	      [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]),
153	      [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15]));
154}
155
156static inline void
157copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
158	const register_t ds_msr, const size_t line_mask)
159{
160	register_t msr;
161	register_t tmp;
162	__asm volatile(
163		"and.	%[tmp],%[line_mask],%[udaddr32]"
164	"\n\t"	"mfmsr	%[msr]"				/* Save MSR */
165	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
166	"\n\t"	"bne	0,1f"
167	"\n\t"	"dcba	0,%[udaddr32]"
168	"\n"	"1:"
169	"\n\t"	"stw	%[data0],0(%[udaddr32])"	/* store user data */
170	"\n\t"	"stw	%[data1],4(%[udaddr32])"	/* store user data */
171	"\n\t"	"stw	%[data2],8(%[udaddr32])"	/* store user data */
172	"\n\t"	"stw	%[data3],12(%[udaddr32])"	/* store user data */
173	"\n\t"	"stw	%[data4],16(%[udaddr32])"	/* store user data */
174	"\n\t"	"stw	%[data5],20(%[udaddr32])"	/* store user data */
175	"\n\t"	"stw	%[data6],24(%[udaddr32])"	/* store user data */
176	"\n\t"	"stw	%[data7],28(%[udaddr32])"	/* store user data */
177	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
178	    : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
179	    : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
180	      [line_mask] "r" (line_mask),
181	      [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
182	      [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
183	      [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
184	      [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7])
185	    : "cr0");
186}
187
188static inline void
189copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
190	const register_t ds_msr, const size_t line_mask)
191{
192	KASSERT(((uintptr_t)udaddr32 & line_mask) == 0);
193	register_t msr;
194	register_t tmp;
195	__asm volatile(
196		"and.	%[tmp],%[line_mask],%[udaddr32]"
197	"\n\t"	"cmplwi	2,%[line_size],32"
198	"\n\t"	"mfmsr	%[msr]"				/* Save MSR */
199	"\n\t"	"mtmsr	%[ds_msr]; sync; isync"		/* DS on */
200	"\n\t"	"bne	0,1f"
201	"\n\t"	"dcba	0,%[udaddr32]"
202	"\n\t"	"bne	2,1f"
203	"\n\t"	"dcba	%[line_size],%[udaddr32]"
204	"\n"	"1:"
205	"\n\t"	"stw	%[data0],0(%[udaddr32])"	/* store user data */
206	"\n\t"	"stw	%[data1],4(%[udaddr32])"	/* store user data */
207	"\n\t"	"stw	%[data2],8(%[udaddr32])"	/* store user data */
208	"\n\t"	"stw	%[data3],12(%[udaddr32])"	/* store user data */
209	"\n\t"	"stw	%[data4],16(%[udaddr32])"	/* store user data */
210	"\n\t"	"stw	%[data5],20(%[udaddr32])"	/* store user data */
211	"\n\t"	"stw	%[data6],24(%[udaddr32])"	/* store user data */
212	"\n\t"	"stw	%[data7],28(%[udaddr32])"	/* store user data */
213	"\n\t"	"stw	%[data8],32(%[udaddr32])"	/* store user data */
214	"\n\t"	"stw	%[data9],36(%[udaddr32])"	/* store user data */
215	"\n\t"	"stw	%[data10],40(%[udaddr32])"	/* store user data */
216	"\n\t"	"stw	%[data11],44(%[udaddr32])"	/* store user data */
217	"\n\t"	"stw	%[data12],48(%[udaddr32])"	/* store user data */
218	"\n\t"	"stw	%[data13],52(%[udaddr32])"	/* store user data */
219	"\n\t"	"stw	%[data14],56(%[udaddr32])"	/* store user data */
220	"\n\t"	"stw	%[data15],60(%[udaddr32])"	/* store user data */
221	"\n\t"	"mtmsr	%[msr]; sync; isync"		/* DS off */
222	    : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
223	    : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
224	      [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask),
225	      [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
226	      [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
227	      [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
228	      [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]),
229	      [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]),
230	      [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]),
231	      [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]),
232	      [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15])
233	    : "cr0", "cr2");
234}
235
236static inline void
237copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
238{
239	const uint8_t *ksaddr8 = (void *)ksaddr;
240	uint8_t *udaddr8 = (void *)udaddr;
241
242	__builtin_prefetch(ksaddr8, 0, 1);
243
244	for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) {
245		__builtin_prefetch(ksaddr8 + 16, 0, 1);
246		copyout_16uint8s(ksaddr8, udaddr8, ds_msr);
247	}
248
249	while (len-- > 0) {
250		copyout_uint8(udaddr8++, *ksaddr8++, ds_msr);
251	}
252}
253
254static inline void
255copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
256{
257	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
258	const size_t line_mask = line_size - 1;
259	const size_t udalignment = udaddr & line_mask;
260	KASSERT((ksaddr & 3) == 0);
261	KASSERT((udaddr & 3) == 0);
262	const uint32_t *ksaddr32 = (void *)ksaddr;
263	uint32_t *udaddr32 = (void *)udaddr;
264	len >>= 2;
265	__builtin_prefetch(ksaddr32, 0, 1);
266	if (udalignment != 0 && udalignment + 4*len > line_size) {
267		size_t slen = (line_size - udalignment) >> 2;
268		len -= slen;
269		for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) {
270			copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
271		}
272		while (slen-- > 0) {
273			copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
274		}
275		if (len == 0)
276			return;
277	}
278	__builtin_prefetch(ksaddr32, 0, 1);
279	while (len >= 16) {
280		__builtin_prefetch(ksaddr32 + 8, 0, 1);
281		__builtin_prefetch(ksaddr32 + 16, 0, 1);
282		copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
283		ksaddr32 += 16, udaddr32 += 16, len -= 16;
284	}
285	KASSERT(len <= 16);
286	if (len >= 8) {
287		__builtin_prefetch(ksaddr32 + 8, 0, 1);
288		copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
289		ksaddr32 += 8, udaddr32 += 8, len -= 8;
290	}
291	while (len-- > 0) {
292		copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
293	}
294}
295
296int
297copyout(const void *vksaddr, void *vudaddr, size_t len)
298{
299	struct pcb * const pcb = lwp_getpcb(curlwp);
300	struct faultbuf env;
301	vaddr_t udaddr = (vaddr_t) vudaddr;
302	vaddr_t ksaddr = (vaddr_t) vksaddr;
303
304	if (__predict_false(len == 0)) {
305		return 0;
306	}
307
308	const register_t ds_msr = mfmsr() | PSL_DS;
309
310	int rv = setfault(&env);
311	if (rv != 0) {
312		pcb->pcb_onfault = NULL;
313		return rv;
314	}
315
316	if (__predict_false(len < 4)) {
317		copyout_uint8s(ksaddr, udaddr, len, ds_msr);
318		pcb->pcb_onfault = NULL;
319		return 0;
320	}
321
322	const size_t alignment = (udaddr ^ ksaddr) & 3;
323	if (__predict_true(alignment == 0)) {
324		size_t slen;
325		if (__predict_false(ksaddr & 3)) {
326			slen = 4 - (ksaddr & 3);
327			copyout_uint8s(ksaddr, udaddr, slen, ds_msr);
328			udaddr += slen, ksaddr += slen, len -= slen;
329		}
330		slen = len & ~3;
331		if (__predict_true(slen >= 4)) {
332			copyout_uint32s(ksaddr, udaddr, slen, ds_msr);
333			udaddr += slen, ksaddr += slen, len -= slen;
334		}
335	}
336
337	if (len > 0) {
338		copyout_uint8s(ksaddr, udaddr, len, ds_msr);
339	}
340	pcb->pcb_onfault = NULL;
341	return 0;
342}
343
344int
345copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp)
346{
347	struct pcb * const pcb = lwp_getpcb(curlwp);
348	struct faultbuf env;
349
350	if (__predict_false(len == 0)) {
351		if (lenp)
352			*lenp = 0;
353		return 0;
354	}
355
356	if (setfault(&env)) {
357		pcb->pcb_onfault = NULL;
358		if (lenp)
359			*lenp = 0;
360		return EFAULT;
361	}
362
363	const register_t ds_msr = mfmsr() | PSL_DS;
364	const uint8_t *ksaddr8 = ksaddr;
365	size_t copylen = 0;
366
367#if 1
368	uint8_t *udaddr8 = (void *)udaddr;
369
370	while (copylen++ < len) {
371		const uint8_t data = *ksaddr8++;
372		copyout_uint8(udaddr8++, data, ds_msr);
373		if (data == 0)
374			break;
375	}
376#else
377	uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3);
378
379	size_t boff = (uintptr_t)udaddr & 3;
380	bool done = false;
381	size_t wlen = 0;
382	size_t data = 0;
383
384	/*
385	 * If the destination buffer doesn't start on a 32-bit boundary
386	 * try to partially fill in the first word.  If we succeed we can
387	 * finish writing it while preserving the bytes on front.
388	 */
389	if (boff > 0) {
390		KASSERT(len > 0);
391		do {
392			data = (data << 8) | *ksaddr8++;
393			wlen++;
394			done = ((uint8_t)data == 0 || len == wlen);
395		} while (!done && boff + wlen < 4);
396		KASSERT(wlen > 0);
397		data <<= 8 * boff;
398		if (!done || boff + wlen == 4) {
399			uint32_t mask = 0xffffffff << (8 * boff);
400			copyout_le32_with_mask(udaddr32++, data, mask, ds_msr);
401			boff = 0;
402			copylen = wlen;
403			wlen = 0;
404			data = 0;
405		}
406	}
407
408	/*
409	 * Now we get to the heart of the routine.  Build up complete words
410	 * if possible.  When we have one, write it to the user's address
411	 * space and go for the next.  If we ran out of space or we found the
412	 * end of the string, stop building.  If we managed to build a complete
413	 * word, just write it and be happy.  Otherwise we have to deal with
414	 * the trailing bytes.
415	 */
416	KASSERT(done || boff == 0);
417	KASSERT(done || copylen < len);
418	while (!done) {
419		KASSERT(wlen == 0);
420		KASSERT(copylen < len);
421		do {
422			data = (data << 8) | *ksaddr8++;
423			wlen++;
424			done = ((uint8_t)data == 0 || copylen + wlen == len);
425		} while (!done && wlen < 4);
426		KASSERT(done || wlen == 4);
427		if (__predict_true(wlen == 4)) {
428			copyout_le32(udaddr32++, data, ds_msr);
429			data = 0;
430			copylen += wlen;
431			wlen = 0;
432			KASSERT(copylen < len || done);
433		}
434	}
435	KASSERT(wlen < 3);
436	if (wlen) {
437		/*
438		 * Remember even though we are running big-endian we are using
439		 * byte reversed load/stores so we need to deal with things as
440		 * little endian.
441		 *
442		 * wlen=1 boff=0:
443		 * (~(~0 <<  8) <<  0) -> (~(0xffffff00) <<  0) -> 0x000000ff
444		 * wlen=1 boff=1:
445		 * (~(~0 <<  8) <<  8) -> (~(0xffffff00) <<  8) -> 0x0000ff00
446		 * wlen=1 boff=2:
447		 * (~(~0 <<  8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000
448		 * wlen=1 boff=3:
449		 * (~(~0 <<  8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000
450		 * wlen=2 boff=0:
451		 * (~(~0 << 16) <<  0) -> (~(0xffff0000) <<  0) -> 0x0000ffff
452		 * wlen=2 boff=1:
453		 * (~(~0 << 16) <<  8) -> (~(0xffff0000) <<  8) -> 0x00ffff00
454		 * wlen=2 boff=2:
455		 * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000
456		 * wlen=3 boff=0:
457		 * (~(~0 << 24) <<  0) -> (~(0xff000000) <<  0) -> 0x00ffffff
458		 * wlen=3 boff=1:
459		 * (~(~0 << 24) <<  8) -> (~(0xff000000) <<  8) -> 0xffffff00
460		 */
461		KASSERT(boff + wlen <= 4);
462		uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff);
463		KASSERT(mask != 0xffffffff);
464		copyout_le32_with_mask(udaddr32, data, mask, ds_msr);
465		copylen += wlen;
466	}
467#endif
468
469	pcb->pcb_onfault = NULL;
470	if (lenp)
471		*lenp = copylen;
472	return 0;
473}
474