1/*	$NetBSD: fpu_emulate.h,v 1.18 2011/10/15 15:14:30 tsutsui Exp $	*/
2
3/*
4 * Copyright (c) 1995 Gordon Ross
5 * Copyright (c) 1995 Ken Nakata
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#ifndef _FPU_EMULATE_H_
35#define _FPU_EMULATE_H_
36
37#include <sys/types.h>
38#include <sys/signal.h>
39#include <sys/time.h>
40#include <sys/signalvar.h>
41#include <sys/siginfo.h>
42#include <m68k/fpreg.h>
43
44/*
45 * Floating point emulator (tailored for SPARC/modified for m68k, but
46 * structurally machine-independent).
47 *
48 * Floating point numbers are carried around internally in an `expanded'
49 * or `unpacked' form consisting of:
50 *	- sign
51 *	- unbiased exponent
52 *	- mantissa (`1.' + 80-bit fraction + guard + round)
53 *	- sticky bit
54 * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
55 * always nonzero.  Additional low-order `guard' and `round' bits are
56 * scrunched in, making the entire mantissa 83 bits long.  This is divided
57 * into three 32-bit words, with `spare' bits left over in the upper part
58 * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
59 * number is thus kept within the half-open interval [1.0,2.0) (but see
60 * the `number classes' below).  This holds even for denormalized numbers:
61 * when we explode an external denorm, we normalize it, introducing low-order
62 * zero bits, so that the rest of the code always sees normalized values.
63 *
64 * Note that a number of our algorithms use the `spare' bits at the top.
65 * The most demanding algorithm---the one for sqrt---depends on two such
66 * bits, so that it can represent values up to (but not including) 8.0,
67 * and then it needs a carry on top of that, so that we need three `spares'.
68 *
69 * The sticky-word is 32 bits so that we can use `OR' operators to goosh
70 * whole words from the mantissa into it.
71 *
72 * All operations are done in this internal extended precision.  According
73 * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
74 * it is OK to do a+b in extended precision and then round the result to
75 * single precision---provided single, double, and extended precisions are
76 * `far enough apart' (they always are), but we will try to avoid any such
77 * extra work where possible.
78 */
79struct fpn {
80	int	fp_class;		/* see below */
81	int	fp_sign;		/* 0 => positive, 1 => negative */
82	int	fp_exp;			/* exponent (unbiased) */
83	int	fp_sticky;		/* nonzero bits lost at right end */
84	u_int	fp_mant[3];		/* 83-bit mantissa */
85};
86
87#define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
88#define	FP_NG		2		/* number of low-order guard bits */
89#define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
90#define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
91#define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
92#define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
93
94static inline void CPYFPN(struct fpn *, const struct fpn *);
95
96static inline void
97CPYFPN(struct fpn *dst, const struct fpn *src)
98{
99
100	if (dst != src) {
101		*dst = *src;
102	}
103}
104
105/*
106 * Number classes.  Since zero, Inf, and NaN cannot be represented using
107 * the above layout, we distinguish these from other numbers via a class.
108 */
109#define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
110#define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
111#define	FPC_ZERO	0		/* zero (sign matters) */
112#define	FPC_NUM		1		/* number (sign matters) */
113#define	FPC_INF		2		/* infinity (sign matters) */
114
115#define	ISNAN(fp)	((fp)->fp_class < 0)
116#define	ISZERO(fp)	((fp)->fp_class == 0)
117#define	ISINF(fp)	((fp)->fp_class == FPC_INF)
118
119/*
120 * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
121 * to the `more significant' operand for our purposes.  Appendix N says that
122 * the result of a computation involving two numbers are:
123 *
124 *	If both are SNaN: operand 2, converted to Quiet
125 *	If only one is SNaN: the SNaN operand, converted to Quiet
126 *	If both are QNaN: operand 2
127 *	If only one is QNaN: the QNaN operand
128 *
129 * In addition, in operations with an Inf operand, the result is usually
130 * Inf.  The class numbers are carefully arranged so that if
131 *	(unsigned)class(op1) > (unsigned)class(op2)
132 * then op1 is the one we want; otherwise op2 is the one we want.
133 */
134#define	ORDER(x, y) { \
135	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
136		SWAP(x, y); \
137}
138#define	SWAP(x, y) {				\
139	register struct fpn *swap;		\
140	swap = (x), (x) = (y), (y) = swap;	\
141}
142
143/*
144 * Emulator state.
145 */
146struct fpemu {
147	struct frame *fe_frame; /* integer regs, etc */
148	struct fpframe *fe_fpframe; /* FP registers, etc */
149	u_int fe_fpsr;		/* fpsr copy (modified during op) */
150	u_int fe_fpcr;		/* fpcr copy */
151	struct fpn fe_f1;	/* operand 1 */
152	struct fpn fe_f2;	/* operand 2, if required */
153	struct fpn fe_f3;	/* available storage for result */
154};
155
156/*****************************************************************************
157 * End of definitions derived from Sparc FPE
158 *****************************************************************************/
159
160/*
161 * Internal info about a decoded effective address.
162 */
163struct insn_ea {
164	int	ea_regnum;
165	int	ea_ext[3];	/* extension words if any */
166	int	ea_flags;	/* flags == 0 means mode 2: An@ */
167#define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
168#define EA_PREDECR	0x002	/* mode 4: An@- */
169#define	EA_POSTINCR	0x004	/* mode 3: An@+ */
170#define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
171#define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
172#define EA_ABS  	0x020	/* mode (7,[01]): abs */
173#define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
174#define	EA_IMMED	0x080	/* mode (7,4): #immed */
175#define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
176#define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
177#define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
178				   format 4 stack frame */
179	int	ea_moffs;	/* offset used for fmoveMulti */
180};
181
182#define ea_offset	ea_ext[0]	/* mode 5: offset word */
183#define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
184#define ea_immed	ea_ext		/* mode (7,4): immediate value */
185#define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
186#define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
187#define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
188#define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
189
190struct instruction {
191	u_int	is_pc;		/* insn's address */
192	u_int	is_nextpc;	/* next PC */
193	int	is_advance;	/* length of instruction */
194	int	is_datasize;	/* size of memory operand */
195	int	is_opcode;	/* opcode word */
196	int	is_word1;	/* second word */
197	struct insn_ea	is_ea;	/* decoded effective address mode */
198};
199
200/*
201 * FP data types
202 */
203#define FTYPE_LNG 0 /* Long Word Integer */
204#define FTYPE_SNG 1 /* Single Prec */
205#define FTYPE_EXT 2 /* Extended Prec */
206#define FTYPE_BCD 3 /* Packed BCD */
207#define FTYPE_WRD 4 /* Word Integer */
208#define FTYPE_DBL 5 /* Double Prec */
209#define FTYPE_BYT 6 /* Byte Integer */
210
211/*
212 * Other functions.
213 */
214
215/* Build a new Quiet NaN (sign=0, frac=all 1's). */
216struct	fpn *fpu_newnan(struct fpemu *);
217
218/*
219 * Shift a number right some number of bits, taking care of round/sticky.
220 * Note that the result is probably not a well-formed number (it will lack
221 * the normal 1-bit mant[0]&FP_1).
222 */
223int	fpu_shr(struct fpn *, int);
224/*
225 * Round a number according to the round mode in FPCR
226 */
227int	fpu_round(register struct fpemu *, register struct fpn *);
228
229/* type conversion */
230void	fpu_explode(struct fpemu *, struct fpn *, int t, u_int *);
231void	fpu_implode(struct fpemu *, struct fpn *, int t, u_int *);
232
233/*
234 * non-static emulation functions
235 */
236/* type 0 */
237int fpu_emul_fmovecr(struct fpemu *, struct instruction *);
238int fpu_emul_fstore(struct fpemu *, struct instruction *);
239int fpu_emul_fscale(struct fpemu *, struct instruction *);
240
241/*
242 * include function declarations of those which are called by fpu_emul_arith()
243 */
244#include "fpu_arith_proto.h"
245
246int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *);
247struct fpn *fpu_cmp(struct fpemu *);
248
249struct fpn *fpu_sincos_taylor(struct fpemu *, struct fpn *, u_int, int);
250
251/*
252 * "helper" functions
253 */
254/* return values from constant rom */
255struct fpn *fpu_const(struct fpn *, u_int);
256/* update exceptions and FPSR */
257int fpu_upd_excp(struct fpemu *);
258u_int fpu_upd_fpsr(struct fpemu *, struct fpn *);
259
260/* address mode decoder, and load/store */
261int fpu_decode_ea(struct frame *, struct instruction *,
262		   struct insn_ea *, int);
263int fpu_load_ea(struct frame *, struct instruction *,
264		 struct insn_ea *, char *);
265int fpu_store_ea(struct frame *, struct instruction *,
266		  struct insn_ea *, char *);
267
268/* fpu_subr.c */
269void fpu_norm(register struct fpn *);
270
271#if !defined(FPE_DEBUG)
272#  define FPE_DEBUG 0
273#endif
274
275#endif /* _FPU_EMULATE_H_ */
276