1/*	$NetBSD$	*/
2/*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38
39__KERNEL_RCSID(0, "$NetSBD$");
40
41#include "opt_altivec.h"
42#include "opt_ddb.h"
43#include "opt_mpc85xx.h"
44#include "opt_pci.h"
45#include "gpio.h"
46#include "pci.h"
47
48#define	DDRC_PRIVATE
49#define	GLOBAL_PRIVATE
50#define	L2CACHE_PRIVATE
51#define _POWERPC_BUS_DMA_PRIVATE
52
53#include <sys/param.h>
54#include <sys/cpu.h>
55#include <sys/intr.h>
56#include <sys/msgbuf.h>
57#include <sys/tty.h>
58#include <sys/kcore.h>
59#include <sys/bitops.h>
60#include <sys/bus.h>
61#include <sys/extent.h>
62#include <sys/malloc.h>
63#include <sys/module.h>
64
65#include <uvm/uvm_extern.h>
66
67#include <prop/proplib.h>
68
69#include <dev/cons.h>
70
71#include <dev/ic/comreg.h>
72#include <dev/ic/comvar.h>
73
74#include <net/if.h>
75#include <net/if_media.h>
76#include <dev/mii/miivar.h>
77
78#include <powerpc/cpuset.h>
79#include <powerpc/pcb.h>
80#include <powerpc/spr.h>
81#include <powerpc/booke/spr.h>
82
83#include <powerpc/booke/cpuvar.h>
84#include <powerpc/booke/e500reg.h>
85#include <powerpc/booke/e500var.h>
86#include <powerpc/booke/etsecreg.h>
87#include <powerpc/booke/openpicreg.h>
88#ifdef CADMUS
89#include <evbppc/mpc85xx/cadmusreg.h>
90#endif
91#ifdef PIXIS
92#include <evbppc/mpc85xx/pixisreg.h>
93#endif
94
95struct uboot_bdinfo {
96	uint32_t bd_memstart;
97	uint32_t bd_memsize;
98	uint32_t bd_flashstart;
99	uint32_t bd_flashsize;
100/*10*/	uint32_t bd_flashoffset;
101	uint32_t bd_sramstart;
102	uint32_t bd_sramsize;
103	uint32_t bd_immrbase;
104/*20*/	uint32_t bd_bootflags;
105	uint32_t bd_ipaddr;
106	uint8_t bd_etheraddr[6];
107	uint16_t bd_ethspeed;
108/*30*/	uint32_t bd_intfreq;
109	uint32_t bd_cpufreq;
110	uint32_t bd_baudrate;
111/*3c*/	uint8_t bd_etheraddr1[6];
112/*42*/	uint8_t bd_etheraddr2[6];
113/*48*/	uint8_t bd_etheraddr3[6];
114/*4e*/	uint16_t bd_pad;
115};
116
117/*
118 * booke kernels need to set module_machine to this for modules to work.
119 */
120char module_machine_booke[] = "powerpc-booke";
121
122void	initppc(vaddr_t, vaddr_t, void *, void *, void *, void *);
123
124#define	MEMREGIONS	4
125phys_ram_seg_t physmemr[MEMREGIONS];		/* All memory */
126phys_ram_seg_t availmemr[2*MEMREGIONS];		/* Available memory */
127static u_int nmemr;
128
129#ifndef CONSFREQ
130# define CONSFREQ	-1            /* inherit from firmware */
131#endif
132#ifndef CONSPEED
133# define CONSPEED	115200
134#endif
135#ifndef CONMODE
136# define CONMODE	((TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8)
137#endif
138#ifndef CONSADDR
139# define CONSADDR	DUART2_BASE
140#endif
141
142int		comcnfreq  = CONSFREQ;
143int		comcnspeed = CONSPEED;
144tcflag_t	comcnmode  = CONMODE;
145bus_addr_t	comcnaddr  = (bus_addr_t)CONSADDR;
146
147#if NPCI > 0
148struct extent *pcimem_ex;
149struct extent *pciio_ex;
150#endif
151
152struct powerpc_bus_space gur_bst = {
153	.pbs_flags = _BUS_SPACE_BIG_ENDIAN|_BUS_SPACE_MEM_TYPE,
154	.pbs_offset = GUR_BASE,
155	.pbs_limit = GUR_SIZE,
156};
157
158struct powerpc_bus_space gur_le_bst = {
159	.pbs_flags = _BUS_SPACE_LITTLE_ENDIAN|_BUS_SPACE_MEM_TYPE,
160	.pbs_offset = GUR_BASE,
161	.pbs_limit = GUR_SIZE,
162};
163
164const bus_space_handle_t gur_bsh = (bus_space_handle_t)(uintptr_t)(GUR_BASE);
165
166#if defined(SYS_CLK)
167static uint64_t e500_sys_clk = SYS_CLK;
168#endif
169#ifdef CADMUS
170static uint8_t cadmus_pci;
171static uint8_t cadmus_csr;
172#ifndef SYS_CLK
173static uint64_t e500_sys_clk = 33333333; /* 33.333333Mhz */
174#endif
175#elif defined(PIXIS)
176static const uint32_t pixis_spd_map[8] = {
177    [PX_SPD_33MHZ] = 33333333,
178    [PX_SPD_40MHZ] = 40000000,
179    [PX_SPD_50MHZ] = 50000000,
180    [PX_SPD_66MHZ] = 66666666,
181    [PX_SPD_83MHZ] = 83333333,
182    [PX_SPD_100MHZ] = 100000000,
183    [PX_SPD_133MHZ] = 133333333,
184    [PX_SPD_166MHZ] = 166666667,
185};
186static uint8_t pixis_spd;
187#ifndef SYS_CLK
188static uint64_t e500_sys_clk;
189#endif
190#elif !defined(SYS_CLK)
191static uint64_t e500_sys_clk = 66666667; /* 66.666667Mhz */
192#endif
193
194static int e500_cngetc(dev_t);
195static void e500_cnputc(dev_t, int);
196
197static struct consdev e500_earlycons = {
198	.cn_getc = e500_cngetc,
199	.cn_putc = e500_cnputc,
200	.cn_pollc = nullcnpollc,
201};
202
203/*
204 * List of port-specific devices to attach to the processor local bus.
205 */
206static const struct cpunode_locators mpc8548_cpunode_locs[] = {
207	{ "cpu", 0, 0, 0, 0, { 0 }, 0,	/* not a real device */
208		{ 0xffff, SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
209#if defined(MPC8572) || defined(P2020)
210	{ "cpu", 0, 0, 1, 0, { 0 }, 0,	/* not a real device */
211		{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
212	{ "cpu", 0, 0, 2, 0, { 0 }, 0,	/* not a real device */
213		{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
214#endif
215	{ "wdog" },	/* not a real device */
216	{ "duart", DUART1_BASE, 2*DUART_SIZE, 0,
217		1, { ISOURCE_DUART },
218		1 + ilog2(DEVDISR_DUART) },
219	{ "tsec", ETSEC1_BASE, ETSEC_SIZE, 1,
220		3, { ISOURCE_ETSEC1_TX, ISOURCE_ETSEC1_RX, ISOURCE_ETSEC1_ERR },
221		1 + ilog2(DEVDISR_TSEC1) },
222#if defined(MPC8548) || defined(MPC8555) || defined(MPC8572) || defined(P2020)
223	{ "tsec", ETSEC2_BASE, ETSEC_SIZE, 2,
224		3, { ISOURCE_ETSEC2_TX, ISOURCE_ETSEC2_RX, ISOURCE_ETSEC2_ERR },
225		1 + ilog2(DEVDISR_TSEC2),
226		{ SVR_MPC8548v1 >> 16, SVR_MPC8555v1 >> 16,
227		  SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
228#endif
229#if defined(MPC8544) || defined(MPC8536)
230	{ "tsec", ETSEC3_BASE, ETSEC_SIZE, 2,
231		3, { ISOURCE_ETSEC3_TX, ISOURCE_ETSEC3_RX, ISOURCE_ETSEC3_ERR },
232		1 + ilog2(DEVDISR_TSEC3),
233		{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
234#endif
235#if defined(MPC8548) || defined(MPC8572) || defined(P2020)
236	{ "tsec", ETSEC3_BASE, ETSEC_SIZE, 3,
237		3, { ISOURCE_ETSEC3_TX, ISOURCE_ETSEC3_RX, ISOURCE_ETSEC3_ERR },
238		1 + ilog2(DEVDISR_TSEC3),
239		{ SVR_MPC8548v1 >> 16, SVR_MPC8572v1 >> 16,
240		  SVR_P2020v2 >> 16 } },
241#endif
242#if defined(MPC8548) || defined(MPC8572)
243	{ "tsec", ETSEC4_BASE, ETSEC_SIZE, 4,
244		3, { ISOURCE_ETSEC4_TX, ISOURCE_ETSEC4_RX, ISOURCE_ETSEC4_ERR },
245		1 + ilog2(DEVDISR_TSEC4),
246		{ SVR_MPC8548v1 >> 16, SVR_MPC8572v1 >> 16 } },
247#endif
248	{ "diic", I2C1_BASE, 2*I2C_SIZE, 0,
249		1, { ISOURCE_I2C },
250		1 + ilog2(DEVDISR_I2C) },
251	/* MPC8572 doesn't have any GPIO */
252	{ "gpio", GLOBAL_BASE, GLOBAL_SIZE, 0,
253		1, { ISOURCE_GPIO },
254		0,
255		{ 0xffff, SVR_MPC8572v1 >> 16 } },
256	{ "ddrc", DDRC1_BASE, DDRC_SIZE, 0,
257		1, { ISOURCE_DDR },
258		1 + ilog2(DEVDISR_DDR_15),
259		{ 0xffff, SVR_MPC8572v1 >> 16, SVR_MPC8536v1 >> 16 } },
260#if defined(MPC8536)
261	{ "ddrc", DDRC1_BASE, DDRC_SIZE, 0,
262		1, { ISOURCE_DDR },
263		1 + ilog2(DEVDISR_DDR_16),
264		{ SVR_MPC8536v1 >> 16 } },
265#endif
266#if defined(MPC8572)
267	{ "ddrc", DDRC1_BASE, DDRC_SIZE, 1,
268		1, { ISOURCE_DDR },
269		1 + ilog2(DEVDISR_DDR_15),
270		{ SVR_MPC8572v1 >> 16 } },
271	{ "ddrc", DDRC2_BASE, DDRC_SIZE, 2,
272		1, { ISOURCE_DDR },
273		1 + ilog2(DEVDISR_DDR2_14),
274		{ SVR_MPC8572v1 >> 16 } },
275#endif
276	{ "lbc", LBC_BASE, LBC_SIZE, 0,
277		1, { ISOURCE_LBC },
278		1 + ilog2(DEVDISR_LBC) },
279#if defined(MPC8544) || defined(MPC8536)
280	{ "pcie", PCIE1_BASE, PCI_SIZE, 1,
281		1, { ISOURCE_PCIEX },
282		1 + ilog2(DEVDISR_PCIE),
283		{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
284	{ "pcie", PCIE2_MPC8544_BASE, PCI_SIZE, 2,
285		1, { ISOURCE_PCIEX2 },
286		1 + ilog2(DEVDISR_PCIE2),
287		{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
288	{ "pcie", PCIE3_MPC8544_BASE, PCI_SIZE, 3,
289		1, { ISOURCE_PCIEX3 },
290		1 + ilog2(DEVDISR_PCIE3),
291		{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
292	{ "pci", PCIX1_MPC8544_BASE, PCI_SIZE, 0,
293		1, { ISOURCE_PCI1 },
294		1 + ilog2(DEVDISR_PCI1),
295		{ SVR_MPC8536v1 >> 16, SVR_MPC8544v1 >> 16 } },
296#endif
297#ifdef MPC8548
298	{ "pcie", PCIE1_BASE, PCI_SIZE, 0,
299		1, { ISOURCE_PCIEX },
300		1 + ilog2(DEVDISR_PCIE),
301		{ SVR_MPC8548v1 >> 16 }, },
302	{ "pci", PCIX1_MPC8548_BASE, PCI_SIZE, 1,
303		1, { ISOURCE_PCI1 },
304		1 + ilog2(DEVDISR_PCI1),
305		{ SVR_MPC8548v1 >> 16 }, },
306	{ "pci", PCIX2_MPC8548_BASE, PCI_SIZE, 2,
307		1, { ISOURCE_PCI2 },
308		1 + ilog2(DEVDISR_PCI2),
309		{ SVR_MPC8548v1 >> 16 }, },
310#endif
311#if defined(MPC8572) || defined(P2020)
312	{ "pcie", PCIE1_BASE, PCI_SIZE, 1,
313		1, { ISOURCE_PCIEX },
314		1 + ilog2(DEVDISR_PCIE),
315		{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
316	{ "pcie", PCIE2_MPC8572_BASE, PCI_SIZE, 2,
317		1, { ISOURCE_PCIEX2 },
318		1 + ilog2(DEVDISR_PCIE2),
319		{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
320	{ "pcie", PCIE3_MPC8572_BASE, PCI_SIZE, 3,
321		1, { ISOURCE_PCIEX3_MPC8572 },
322		1 + ilog2(DEVDISR_PCIE3),
323		{ SVR_MPC8572v1 >> 16, SVR_P2020v2 >> 16 } },
324#endif
325#if defined(MPC8536) || defined(P2020)
326	{ "ehci", USB1_BASE, USB_SIZE, 1,
327		1, { ISOURCE_USB1 },
328		1 + ilog2(DEVDISR_USB1),
329		{ SVR_MPC8536v1 >> 16, SVR_P2020v2 >> 16 } },
330#endif
331#ifdef MPC8536
332	{ "ehci", USB2_BASE, USB_SIZE, 2,
333		1, { ISOURCE_USB2 },
334		1 + ilog2(DEVDISR_USB2),
335		{ SVR_MPC8536v1 >> 16 }, },
336	{ "ehci", USB3_BASE, USB_SIZE, 3,
337		1, { ISOURCE_USB3 },
338		1 + ilog2(DEVDISR_USB3),
339		{ SVR_MPC8536v1 >> 16 }, },
340	{ "sata", SATA1_BASE, SATA_SIZE, 1,
341		1, { ISOURCE_SATA1 },
342		1 + ilog2(DEVDISR_SATA1),
343		{ SVR_MPC8536v1 >> 16 }, },
344	{ "sata", SATA2_BASE, SATA_SIZE, 2,
345		1, { ISOURCE_SATA2 },
346		1 + ilog2(DEVDISR_SATA2),
347		{ SVR_MPC8536v1 >> 16 }, },
348	{ "spi", SPI_BASE, SPI_SIZE, 0,
349		1, { ISOURCE_SPI },
350		1 + ilog2(DEVDISR_SPI_15),
351		{ SVR_MPC8536v1 >> 16 }, },
352	{ "sdhc", ESDHC_BASE, ESDHC_SIZE, 0,
353		1, { ISOURCE_ESDHC },
354		1 + ilog2(DEVDISR_ESDHC_12),
355		{ SVR_MPC8536v1 >> 16 }, },
356#endif
357#if defined(P2020)
358	{ "spi", SPI_BASE, SPI_SIZE, 0,
359		1, { ISOURCE_SPI },
360		1 + ilog2(DEVDISR_SPI_28),
361		{ SVR_P2020v2 >> 16 }, },
362	{ "sdhc", ESDHC_BASE, ESDHC_SIZE, 0,
363		1, { ISOURCE_ESDHC },
364		1 + ilog2(DEVDISR_ESDHC_10),
365		{ SVR_P2020v2 >> 16 }, },
366#endif
367	//{ "sec", RNG_BASE, RNG_SIZE, 0, 0, },
368	{ NULL }
369};
370
371static int
372e500_cngetc(dev_t dv)
373{
374	volatile uint8_t * const com0addr = (void *)(GUR_BASE+CONSADDR);
375
376        if ((com0addr[com_lsr] & LSR_RXRDY) == 0)
377		return -1;
378
379	return com0addr[com_data] & 0xff;
380}
381
382static void
383e500_cnputc(dev_t dv, int c)
384{
385	volatile uint8_t * const com0addr = (void *)(GUR_BASE+CONSADDR);
386	int timo = 150000;
387
388	while ((com0addr[com_lsr] & LSR_TXRDY) == 0 && --timo > 0)
389		;
390
391	com0addr[com_data] = c;
392	__asm("mbar");
393
394	while ((com0addr[com_lsr] & LSR_TSRE) == 0 && --timo > 0)
395		;
396}
397
398static void *
399gur_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
400{
401	if (prefetchable)
402		return NULL;
403	if (pa < gur_bst.pbs_offset)
404		return NULL;
405	if (pa + len > gur_bst.pbs_offset + gur_bst.pbs_limit)
406		return NULL;
407	return (void *)pa;
408}
409
410static void *(* const early_tlb_mapiodev)(paddr_t, psize_t, bool) = gur_tlb_mapiodev;
411
412static void
413e500_cpu_reset(void)
414{
415	__asm volatile("sync");
416	cpu_write_4(GLOBAL_BASE + RSTCR, HRESET_REQ);
417	__asm volatile("msync;isync");
418}
419
420static psize_t
421memprobe(vaddr_t endkernel)
422{
423	phys_ram_seg_t *mr;
424	paddr_t boot_page = cpu_read_4(GUR_BPTR);
425	printf(" bptr=%"PRIxPADDR, boot_page);
426	if (boot_page & BPTR_EN) {
427		/*
428		 * shift it to an address
429		 */
430		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
431	} else {
432		boot_page = ~(paddr_t)0;
433	}
434
435	/*
436	 * First we need to find out how much physical memory we have.
437	 * We could let our bootloader tell us, but it's almost as easy
438	 * to ask the DDR memory controller.
439	 */
440	mr = physmemr;
441	for (u_int i = 0; i < 4; i++) {
442		uint32_t v = cpu_read_4(DDRC1_BASE + CS_CONFIG(i));
443		if (v & CS_CONFIG_EN) {
444			v = cpu_read_4(DDRC1_BASE + CS_BNDS(i));
445			if (v == 0)
446				continue;
447			mr->start = BNDS_SA_GET(v);
448			mr->size  = BNDS_SIZE_GET(v);
449#ifdef MEMSIZE
450			if (mr->start >= MEMSIZE)
451				continue;
452			if (mr->start + mr->size > MEMSIZE)
453				mr->size = MEMSIZE - mr->start;
454#endif
455#if 0
456			printf(" [%zd]={%#"PRIx64"@%#"PRIx64"}",
457			    mr - physmemr, mr->size, mr->start);
458#endif
459			mr++;
460		}
461	}
462
463	if (mr == physmemr)
464		panic("no memory configured!");
465
466	/*
467	 * Sort memory regions from low to high and coalesce adjacent regions
468	 */
469	u_int cnt = mr - physmemr;
470	if (cnt > 1) {
471		for (u_int i = 0; i < cnt - 1; i++) {
472			for (u_int j = i + 1; j < cnt; j++) {
473				if (physmemr[j].start < physmemr[i].start) {
474					phys_ram_seg_t tmp = physmemr[i];
475					physmemr[i] = physmemr[j];
476					physmemr[j] = tmp;
477				}
478			}
479		}
480		mr = physmemr;
481		for (u_int i = 0; i + 1 < cnt; i++, mr++) {
482			if (mr->start + mr->size == mr[1].start) {
483				mr->size += mr[1].size;
484				for (u_int j = 1; i + j + 1 < cnt; j++)
485					mr[j] = mr[j+1];
486				cnt--;
487			}
488		}
489	} else if (cnt == 0) {
490		panic("%s: no memory found", __func__);
491	}
492
493	/*
494	 * Copy physical memory to available memory.
495	 */
496	memcpy(availmemr, physmemr, cnt * sizeof(physmemr[0]));
497
498	/*
499	 * Adjust available memory to skip kernel at start of memory.
500	 */
501	availmemr[0].size -= endkernel - availmemr[0].start;
502	availmemr[0].start = endkernel;
503
504	mr = availmemr;
505	for (u_int i = 0; i < cnt; i++, mr++) {
506		/*
507		 * U-boot reserves a boot-page on multi-core chips.
508		 * We need to make sure that we never disturb it.
509		 */
510		const paddr_t mr_end = mr->start + mr->size;
511		if (mr_end > boot_page && boot_page >= mr->start) {
512			/*
513			 * Normally u-boot will put in at the end
514			 * of memory.  But in case it doesn't, deal
515			 * with all possibilities.
516			 */
517			if (boot_page + PAGE_SIZE == mr_end) {
518				mr->size -= PAGE_SIZE;
519			} else if (boot_page == mr->start) {
520				mr->start += PAGE_SIZE;
521				mr->size -= PAGE_SIZE;
522			} else {
523				mr->size = boot_page - mr->start;
524				mr++;
525				for (u_int j = cnt; j > i + 1; j--) {
526					availmemr[j] = availmemr[j-1];
527				}
528				cnt++;
529				mr->start = boot_page + PAGE_SIZE;
530				mr->size = mr_end - mr->start;
531			}
532			break;
533		}
534	}
535
536	/*
537	 * Steal pages at the end of memory for the kernel message buffer.
538	 */
539	mr = availmemr + cnt - 1;
540	KASSERT(mr->size >= round_page(MSGBUFSIZE));
541	mr->size -= round_page(MSGBUFSIZE);
542	msgbuf_paddr = (uintptr_t)(mr->start + mr->size);
543
544	/*
545	 * Calculate physmem.
546	 */
547	for (u_int i = 0; i < cnt; i++)
548		physmem += atop(physmemr[i].size);
549
550	nmemr = cnt;
551	return physmemr[cnt-1].start + physmemr[cnt-1].size;
552}
553
554void
555consinit(void)
556{
557	static bool attached = false;
558
559	if (attached)
560		return;
561	attached = true;
562
563	if (comcnfreq == -1) {
564		const uint32_t porpplsr = cpu_read_4(GLOBAL_BASE + PORPLLSR);
565		const uint32_t plat_ratio = PLAT_RATIO_GET(porpplsr);
566		comcnfreq = e500_sys_clk * plat_ratio;
567		printf(" comcnfreq=%u", comcnfreq);
568	}
569
570	comcnattach(&gur_bst, comcnaddr, comcnspeed, comcnfreq,
571	    COM_TYPE_NORMAL, comcnmode);
572}
573
574void
575cpu_probe_cache(void)
576{
577	struct cpu_info * const ci = curcpu();
578	const uint32_t l1cfg0 = mfspr(SPR_L1CFG0);
579
580	ci->ci_ci.dcache_size = L1CFG_CSIZE_GET(l1cfg0);
581	ci->ci_ci.dcache_line_size = 32 << L1CFG_CBSIZE_GET(l1cfg0);
582
583	if (L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD) {
584		const uint32_t l1cfg1 = mfspr(SPR_L1CFG1);
585
586		ci->ci_ci.icache_size = L1CFG_CSIZE_GET(l1cfg1);
587		ci->ci_ci.icache_line_size = 32 << L1CFG_CBSIZE_GET(l1cfg1);
588	} else {
589		ci->ci_ci.icache_size = ci->ci_ci.dcache_size;
590		ci->ci_ci.icache_line_size = ci->ci_ci.dcache_line_size;
591	}
592
593#ifdef DEBUG
594	uint32_t l1csr0 = mfspr(SPR_L1CSR0);
595	if ((L1CSR_CE & l1csr0) == 0)
596		printf(" DC=off");
597
598	uint32_t l1csr1 = mfspr(SPR_L1CSR1);
599	if ((L1CSR_CE & l1csr1) == 0)
600		printf(" IC=off");
601#endif
602}
603
604static uint16_t
605getsvr(void)
606{
607	uint16_t svr = mfspr(SPR_SVR) >> 16;
608
609	svr &= ~0x8;		/* clear security bit */
610	switch (svr) {
611	case SVR_MPC8543v1 >> 16:	return SVR_MPC8548v1 >> 16;
612	case SVR_MPC8541v1 >> 16:	return SVR_MPC8555v1 >> 16;
613	case SVR_P2010v2 >> 16:		return SVR_P2020v2 >> 16;
614	default:			return svr;
615	}
616}
617
618static const char *
619socname(uint32_t svr)
620{
621	svr &= ~0x80000;	/* clear security bit */
622	switch (svr >> 8) {
623	case SVR_MPC8533 >> 8: return "MPC8533";
624	case SVR_MPC8536v1 >> 8: return "MPC8536";
625	case SVR_MPC8541v1 >> 8: return "MPC8541";
626	case SVR_MPC8543v2 >> 8: return "MPC8543";
627	case SVR_MPC8544v1 >> 8: return "MPC8544";
628	case SVR_MPC8545v2 >> 8: return "MPC8545";
629	case SVR_MPC8547v2 >> 8: return "MPC8547";
630	case SVR_MPC8548v2 >> 8: return "MPC8548";
631	case SVR_MPC8555v1 >> 8: return "MPC8555";
632	case SVR_MPC8568v1 >> 8: return "MPC8568";
633	case SVR_MPC8567v1 >> 8: return "MPC8567";
634	case SVR_MPC8572v1 >> 8: return "MPC8572";
635	case SVR_P2020v2 >> 8: return "P2020";
636	case SVR_P2010v2 >> 8: return "P2010";
637	default:
638		panic("%s: unknown SVR %#x", __func__, svr);
639	}
640}
641
642static void
643e500_tlb_print(device_t self, const char *name, uint32_t tlbcfg)
644{
645	static const char units[16] = "KKKKKMMMMMGGGGGT";
646
647	const uint32_t minsize = 1U << (2 * TLBCFG_MINSIZE(tlbcfg));
648	const uint32_t assoc = TLBCFG_ASSOC(tlbcfg);
649	const u_int maxsize_log4k = TLBCFG_MAXSIZE(tlbcfg);
650	const uint64_t maxsize = 1ULL << (2 * maxsize_log4k % 10);
651	const uint32_t nentries = TLBCFG_NENTRY(tlbcfg);
652
653	aprint_normal_dev(self, "%s:", name);
654
655	aprint_normal(" %u", nentries);
656	if (TLBCFG_AVAIL_P(tlbcfg)) {
657		aprint_normal(" variable-size (%uKB..%"PRIu64"%cB)",
658		    minsize, maxsize, units[maxsize_log4k]);
659	} else {
660		aprint_normal(" fixed-size (%uKB)", minsize);
661	}
662	if (assoc == 0 || assoc == nentries)
663		aprint_normal(" fully");
664	else
665		aprint_normal(" %u-way set", assoc);
666	aprint_normal(" associative entries\n");
667}
668
669static void
670cpu_print_info(struct cpu_info *ci)
671{
672	uint64_t freq = board_info_get_number("processor-frequency");
673	device_t self = ci->ci_dev;
674
675	char freqbuf[10];
676	if (freq >= 999500000) {
677		const uint32_t freq32 = (freq + 500000) / 10000000;
678		snprintf(freqbuf, sizeof(freqbuf), "%u.%02u GHz",
679		    freq32 / 100, freq32 % 100);
680	} else {
681		const uint32_t freq32 = (freq + 500000) / 1000000;
682		snprintf(freqbuf, sizeof(freqbuf), "%u MHz", freq32);
683	}
684
685	const uint32_t pvr = mfpvr();
686	const uint32_t svr = mfspr(SPR_SVR);
687	const uint32_t pir = mfspr(SPR_PIR);
688
689	aprint_normal_dev(self, "%s %s%s %u.%u with an e500%s %u.%u core, "
690	   "ID %u%s\n",
691	   freqbuf, socname(svr), (SVR_SECURITY_P(svr) ? "E" : ""),
692	   (svr >> 4) & 15, svr & 15,
693	   (pvr >> 16) == PVR_MPCe500v2 ? "v2" : "",
694	   (pvr >> 4) & 15, pvr & 15,
695	   pir, (pir == 0 ? " (Primary)" : ""));
696
697	const uint32_t l1cfg0 = mfspr(SPR_L1CFG0);
698	aprint_normal_dev(self,
699	    "%uKB/%uB %u-way L1 %s cache\n",
700	    L1CFG_CSIZE_GET(l1cfg0) >> 10,
701	    32 << L1CFG_CBSIZE_GET(l1cfg0),
702	    L1CFG_CNWAY_GET(l1cfg0),
703	    L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD
704		? "data" : "unified");
705
706	if (L1CFG_CARCH_GET(l1cfg0) == L1CFG_CARCH_HARVARD) {
707		const uint32_t l1cfg1 = mfspr(SPR_L1CFG1);
708		aprint_normal_dev(self,
709		    "%uKB/%uB %u-way L1 %s cache\n",
710		    L1CFG_CSIZE_GET(l1cfg1) >> 10,
711		    32 << L1CFG_CBSIZE_GET(l1cfg1),
712		    L1CFG_CNWAY_GET(l1cfg1),
713		    "instruction");
714	}
715
716	const uint32_t mmucfg = mfspr(SPR_MMUCFG);
717	aprint_normal_dev(self,
718	    "%u TLBs, %u concurrent %u-bit PIDs (%u total)\n",
719	    MMUCFG_NTLBS_GET(mmucfg) + 1,
720	    MMUCFG_NPIDS_GET(mmucfg),
721	    MMUCFG_PIDSIZE_GET(mmucfg) + 1,
722	    1 << (MMUCFG_PIDSIZE_GET(mmucfg) + 1));
723
724	e500_tlb_print(self, "tlb0", mfspr(SPR_TLB0CFG));
725	e500_tlb_print(self, "tlb1", mfspr(SPR_TLB1CFG));
726}
727
728#ifdef MULTIPROCESSOR
729static void
730e500_cpu_spinup(device_t self, struct cpu_info *ci)
731{
732	uintptr_t spinup_table_addr = board_info_get_number("mp-spin-up-table");
733	struct pglist splist;
734
735	if (spinup_table_addr == 0) {
736		aprint_error_dev(self, "hatch failed (no spin-up table)");
737		return;
738	}
739
740	struct uboot_spinup_entry * const e = (void *)spinup_table_addr;
741	volatile struct cpu_hatch_data * const h = &cpu_hatch_data;
742	const size_t id = cpu_index(ci);
743	volatile __cpuset_t * const hatchlings = &cpuset_info.cpus_hatched;
744
745	if (h->hatch_sp == 0) {
746		int error = uvm_pglistalloc(PAGE_SIZE, PAGE_SIZE,
747		    64*1024*1024, PAGE_SIZE, 0, &splist, 1, 1);
748		if (error) {
749			aprint_error_dev(self,
750			    "unable to allocate hatch stack\n");
751			return;
752		}
753		h->hatch_sp = VM_PAGE_TO_PHYS(TAILQ_FIRST(&splist))
754		    + PAGE_SIZE - CALLFRAMELEN;
755        }
756
757
758	for (size_t i = 1; e[i].entry_pir != 0; i++) {
759		printf("%s: cpu%u: entry#%zu(%p): pir=%u\n",
760		    __func__, ci->ci_cpuid, i, &e[i], e[i].entry_pir);
761		if (e[i].entry_pir == ci->ci_cpuid) {
762
763			ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
764			ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
765			ci->ci_curpm = pmap_kernel();
766			ci->ci_lasttb = cpu_info[0].ci_lasttb;
767			ci->ci_data.cpu_cc_freq =
768			    cpu_info[0].ci_data.cpu_cc_freq;
769
770			h->hatch_self = self;
771			h->hatch_ci = ci;
772			h->hatch_running = -1;
773			h->hatch_pir = e[i].entry_pir;
774			h->hatch_hid0 = mfspr(SPR_HID0);
775			KASSERT(h->hatch_sp != 0);
776			/*
777			 * Get new timebase.  We don't want to deal with
778			 * timebase crossing a 32-bit boundary so make sure
779			 * that we have enough headroom to do the timebase
780			 * synchronization.
781			 */
782#define	TBSYNC_SLOP	2000
783			uint32_t tbl;
784			uint32_t tbu;
785			do {
786				tbu = mfspr(SPR_RTBU);
787				tbl = mfspr(SPR_RTBL) + TBSYNC_SLOP;
788			} while (tbl < TBSYNC_SLOP);
789
790			h->hatch_tbu = tbu;
791			h->hatch_tbl = tbl;
792			__asm("sync;isync");
793			dcache_wbinv((vaddr_t)h, sizeof(*h));
794
795#if 1
796			/*
797			 * And here we go...
798			 */
799			e[i].entry_addr_lower =
800			    (uint32_t)e500_spinup_trampoline;
801			dcache_wbinv((vaddr_t)&e[i], sizeof(e[i]));
802			__asm __volatile("sync;isync");
803			__insn_barrier();
804
805			for (u_int timo = 0; timo++ < 10000; ) {
806				dcache_inv((vaddr_t)&e[i], sizeof(e[i]));
807				if (e[i].entry_addr_lower == 3) {
808					printf(
809					    "%s: cpu%u started in %u spins\n",
810					    __func__, cpu_index(ci), timo);
811					break;
812				}
813			}
814			for (u_int timo = 0; timo++ < 10000; ) {
815				dcache_inv((vaddr_t)h, sizeof(*h));
816				if (h->hatch_running == 0) {
817					printf(
818					    "%s: cpu%u cracked in %u spins: (running=%d)\n",
819					    __func__, cpu_index(ci),
820					    timo, h->hatch_running);
821					break;
822				}
823			}
824			if (h->hatch_running == -1) {
825				aprint_error_dev(self,
826				    "hatch failed (timeout): running=%d"
827				    ", entry=%#x\n",
828				    h->hatch_running, e[i].entry_addr_lower);
829				goto out;
830			}
831#endif
832
833			/*
834			 * First then we do is to synchronize timebases.
835			 * TBSYNC_SLOP*16 should be more than enough
836			 * instructions.
837			 */
838			while (tbl != mftbl())
839				continue;
840			h->hatch_running = 1;
841			dcache_wbinv((vaddr_t)h, sizeof(*h));
842			__asm("sync;isync");
843			__insn_barrier();
844
845			for (u_int timo = 10000; timo-- > 0; ) {
846				dcache_inv((vaddr_t)h, sizeof(*h));
847				if (h->hatch_running > 1)
848					break;
849			}
850			if (h->hatch_running == 1) {
851				printf(
852				    "%s: tb sync failed: offset from %"PRId64"=%"PRId64" (running=%d)\n",
853				    __func__,
854				    ((int64_t)tbu << 32) + tbl,
855				    (int64_t)
856					(((uint64_t)h->hatch_tbu << 32)
857					+ (uint64_t)h->hatch_tbl),
858				    h->hatch_running);
859				goto out;
860			}
861			printf(
862			    "%s: tb synced: offset=%"PRId64" (running=%d)\n",
863			    __func__,
864			    (int64_t)
865				(((uint64_t)h->hatch_tbu << 32)
866				+ (uint64_t)h->hatch_tbl),
867			    h->hatch_running);
868			/*
869			 * Now we wait for the hatching to complete.  10ms
870			 * should be long enough.
871			 */
872			for (u_int timo = 10000; timo-- > 0; ) {
873				if (CPUSET_HAS_P(*hatchlings, id)) {
874					aprint_normal_dev(self,
875					    "hatch successful (%u spins, "
876					    "timebase adjusted by %"PRId64")\n",
877					    10000 - timo,
878					    (int64_t)
879						(((uint64_t)h->hatch_tbu << 32)
880						+ (uint64_t)h->hatch_tbl));
881					goto out;
882				}
883				DELAY(1);
884			}
885
886			aprint_error_dev(self,
887			    "hatch failed (timeout): running=%u\n",
888			    h->hatch_running);
889			goto out;
890		}
891	}
892
893	aprint_error_dev(self, "hatch failed (no spin-up entry for PIR %u)",
894	    ci->ci_cpuid);
895out:
896	if (h->hatch_sp == 0)
897		uvm_pglistfree(&splist);
898}
899#endif
900
901void
902e500_cpu_hatch(struct cpu_info *ci)
903{
904	mtmsr(mfmsr() | PSL_CE | PSL_ME | PSL_DE);
905
906	/*
907	 * Make sure interrupts are blocked.
908	 */
909	cpu_write_4(OPENPIC_BASE + OPENPIC_CTPR, 15);	/* IPL_HIGH */
910
911	intr_cpu_hatch(ci);
912
913	cpu_print_info(ci);
914
915/*
916 */
917}
918
919static void
920e500_cpu_attach(device_t self, u_int instance)
921{
922	struct cpu_info * const ci = &cpu_info[instance - (instance > 0)];
923
924	if (instance > 1) {
925#if defined(MULTIPROCESSOR)
926		ci->ci_idepth = -1;
927		self->dv_private = ci;
928
929		ci->ci_cpuid = instance - (instance > 0);
930		ci->ci_dev = self;
931		ci->ci_tlb_info = cpu_info[0].ci_tlb_info;
932
933		mi_cpu_attach(ci);
934
935		intr_cpu_attach(ci);
936		cpu_evcnt_attach(ci);
937
938		e500_cpu_spinup(self, ci);
939		return;
940#else
941		aprint_error_dev(self, "disabled (uniprocessor kernel)\n");
942		return;
943#endif
944	}
945
946	self->dv_private = ci;
947
948	ci->ci_cpuid = instance - (instance > 0);
949	ci->ci_dev = self;
950
951	intr_cpu_attach(ci);
952	cpu_evcnt_attach(ci);
953
954	KASSERT(ci == curcpu());
955	intr_cpu_hatch(ci);
956
957	cpu_print_info(ci);
958}
959
960void
961e500_ipi_halt(void)
962{
963	register_t msr, hid0;
964
965	msr = wrtee(0);
966
967	hid0 = mfspr(SPR_HID0);
968	hid0 = (hid0 & ~(HID0_TBEN|HID0_NAP|HID0_SLEEP)) | HID0_DOZE;
969	mtspr(SPR_HID0, hid0);
970
971	msr = (msr & ~(PSL_EE|PSL_CE|PSL_ME)) | PSL_WE;
972	mtmsr(msr);
973	for (;;);	/* loop forever */
974}
975
976
977static void
978calltozero(void)
979{
980	panic("call to 0 from %p", __builtin_return_address(0));
981}
982
983void
984initppc(vaddr_t startkernel, vaddr_t endkernel,
985	void *a0, void *a1, void *a2, void *a3)
986{
987	struct cpu_info * const ci = curcpu();
988	struct cpu_softc * const cpu = ci->ci_softc;
989
990	cn_tab = &e500_earlycons;
991	printf(" initppc(%#"PRIxVADDR", %#"PRIxVADDR", %p, %p, %p, %p)<enter>",
992	    startkernel, endkernel, a0, a1, a2, a3);
993
994	/*
995	 * Make sure we don't enter NAP or SLEEP if PSL_POW (MSR[WE]) is set.
996	 * DOZE is ok.
997	 */
998	const register_t hid0 = mfspr(SPR_HID0);
999	mtspr(SPR_HID0,
1000	    (hid0 & ~(HID0_NAP | HID0_SLEEP)) | HID0_TBEN | HID0_EMCP | HID0_DOZE);
1001#ifdef CADMUS
1002	/*
1003	 * Need to cache this from cadmus since we need to unmap cadmus since
1004	 * it falls in the middle of kernel address space.
1005	 */
1006	cadmus_pci = ((uint8_t *)0xf8004000)[CM_PCI];
1007	cadmus_csr = ((uint8_t *)0xf8004000)[CM_CSR];
1008	((uint8_t *)0xf8004000)[CM_CSR] |= CM_RST_PHYRST;
1009	printf(" cadmus_pci=%#x", cadmus_pci);
1010	printf(" cadmus_csr=%#x", cadmus_csr);
1011	((uint8_t *)0xf8004000)[CM_CSR] = 0;
1012	if ((cadmus_pci & CM_PCI_PSPEED) == CM_PCI_PSPEED_66) {
1013		e500_sys_clk *= 2;
1014	}
1015#endif
1016#ifdef PIXIS
1017	pixis_spd = ((uint8_t *)PX_BASE)[PX_SPD];
1018	printf(" pixis_spd=%#x sysclk=%"PRIuMAX,
1019	    pixis_spd, PX_SPD_SYSCLK_GET(pixis_spd));
1020#ifndef SYS_CLK
1021	e500_sys_clk = pixis_spd_map[PX_SPD_SYSCLK_GET(pixis_spd)];
1022#else
1023	printf(" pixis_sysclk=%u", pixis_spd_map[PX_SPD_SYSCLK_GET(pixis_spd)]);
1024#endif
1025#endif
1026	printf(" porpllsr=0x%08x",
1027	    *(uint32_t *)(GUR_BASE + GLOBAL_BASE + PORPLLSR));
1028	printf(" sys_clk=%"PRIu64, e500_sys_clk);
1029
1030	/*
1031	 * Make sure arguments are page aligned.
1032	 */
1033	startkernel = trunc_page(startkernel);
1034	endkernel = round_page(endkernel);
1035
1036	/*
1037	 * Initialize the bus space tag used to access the 85xx general
1038	 * utility registers.  It doesn't need to be extent protected.
1039	 * We know the GUR is mapped via a TLB1 entry so we add a limited
1040	 * mapiodev which allows mappings in GUR space.
1041	 */
1042	CTASSERT(offsetof(struct tlb_md_io_ops, md_tlb_mapiodev) == 0);
1043	cpu_md_ops.md_tlb_io_ops = (const void *)&early_tlb_mapiodev;
1044	bus_space_init(&gur_bst, NULL, NULL, 0);
1045	bus_space_init(&gur_le_bst, NULL, NULL, 0);
1046	cpu->cpu_bst = &gur_bst;
1047	cpu->cpu_le_bst = &gur_le_bst;
1048	cpu->cpu_bsh = gur_bsh;
1049
1050	/*
1051	 * Attach the console early, really early.
1052	 */
1053	consinit();
1054
1055	/*
1056	 * Reset the PIC to a known state.
1057	 */
1058	cpu_write_4(OPENPIC_BASE + OPENPIC_GCR, GCR_RST);
1059	while (cpu_read_4(OPENPIC_BASE + OPENPIC_GCR) & GCR_RST)
1060		;
1061#if 0
1062	cpu_write_4(OPENPIC_BASE + OPENPIC_CTPR, 15);	/* IPL_HIGH */
1063#endif
1064	printf(" openpic-reset(ctpr=%u)",
1065	    cpu_read_4(OPENPIC_BASE + OPENPIC_CTPR));
1066
1067	/*
1068	 * fill in with an absolute branch to a routine that will panic.
1069	 */
1070	*(int *)0 = 0x48000002 | (int) calltozero;
1071
1072	/*
1073	 * Get the cache sizes.
1074	 */
1075	cpu_probe_cache();
1076		printf(" cache(DC=%uKB/%u,IC=%uKB/%u)",
1077		    ci->ci_ci.dcache_size >> 10,
1078		    ci->ci_ci.dcache_line_size,
1079		    ci->ci_ci.icache_size >> 10,
1080		    ci->ci_ci.icache_line_size);
1081
1082	/*
1083	 * Now find out how much memory is attached
1084	 */
1085	pmemsize = memprobe(endkernel);
1086	cpu->cpu_highmem = pmemsize;
1087		printf(" memprobe=%zuMB", (size_t) (pmemsize >> 20));
1088
1089	/*
1090	 * Now we need cleanout the TLB of stuff that we don't need.
1091	 */
1092	e500_tlb_init(endkernel, pmemsize);
1093		printf(" e500_tlbinit(%#lx,%zuMB)",
1094		    endkernel, (size_t) (pmemsize >> 20));
1095
1096	/*
1097	 *
1098	 */
1099	printf(" hid0=%#lx/%#lx", hid0, mfspr(SPR_HID0));
1100	printf(" hid1=%#lx", mfspr(SPR_HID1));
1101	printf(" pordevsr=%#x", cpu_read_4(GLOBAL_BASE + PORDEVSR));
1102	printf(" devdisr=%#x", cpu_read_4(GLOBAL_BASE + DEVDISR));
1103
1104	mtmsr(mfmsr() | PSL_CE | PSL_ME | PSL_DE);
1105
1106	/*
1107	 * Initialize the message buffer.
1108	 */
1109	initmsgbuf((void *)msgbuf_paddr, round_page(MSGBUFSIZE));
1110	printf(" msgbuf=%p", (void *)msgbuf_paddr);
1111
1112	/*
1113	 * Initialize exception vectors and interrupts
1114	 */
1115	exception_init(&e500_intrsw);
1116
1117	printf(" exception_init=%p", &e500_intrsw);
1118
1119	mtspr(SPR_TCR, TCR_WIE | mfspr(SPR_TCR));
1120
1121	/*
1122	 * Set the page size.
1123	 */
1124	uvm_setpagesize();
1125
1126	/*
1127	 * Initialize the pmap.
1128	 */
1129	endkernel = pmap_bootstrap(startkernel, endkernel, availmemr, nmemr);
1130
1131	/*
1132	 * Let's take all the indirect calls via our stubs and patch
1133	 * them to be direct calls.
1134	 */
1135	cpu_fixup_stubs();
1136
1137	/*
1138	 * As a debug measure we can change the TLB entry that maps all of
1139	 * memory to one that encompasses the 64KB with the kernel vectors.
1140	 * All other pages will be soft faulted into the TLB as needed.
1141	 */
1142	e500_tlb_minimize(endkernel);
1143
1144	/*
1145	 * Set some more MD helpers
1146	 */
1147	cpu_md_ops.md_cpunode_locs = mpc8548_cpunode_locs;
1148	cpu_md_ops.md_device_register = e500_device_register;
1149	cpu_md_ops.md_cpu_attach = e500_cpu_attach;
1150	cpu_md_ops.md_cpu_reset = e500_cpu_reset;
1151#if NGPIO > 0
1152	cpu_md_ops.md_cpunode_attach = pq3gpio_attach;
1153#endif
1154
1155		printf(" initppc done!\n");
1156
1157	/*
1158	 * Look for the Book-E modules in the right place.
1159	 */
1160	module_machine = module_machine_booke;
1161}
1162
1163#ifdef MPC8548
1164static const char * const mpc8548cds_extirq_names[] = {
1165	[0] = "pci inta",
1166	[1] = "pci intb",
1167	[2] = "pci intc",
1168	[3] = "pci intd",
1169	[4] = "irq4",
1170	[5] = "gige phy",
1171	[6] = "atm phy",
1172	[7] = "cpld",
1173	[8] = "irq8",
1174	[9] = "nvram",
1175	[10] = "debug",
1176	[11] = "pci2 inta",
1177};
1178#endif
1179
1180static const char * const mpc85xx_extirq_names[] = {
1181	[0] = "extirq 0",
1182	[1] = "extirq 1",
1183	[2] = "extirq 2",
1184	[3] = "extirq 3",
1185	[4] = "extirq 4",
1186	[5] = "extirq 5",
1187	[6] = "extirq 6",
1188	[7] = "extirq 7",
1189	[8] = "extirq 8",
1190	[9] = "extirq 9",
1191	[10] = "extirq 10",
1192	[11] = "extirq 11",
1193};
1194
1195static void
1196mpc85xx_extirq_setup(void)
1197{
1198#ifdef MPC8548
1199	const char * const * names = mpc8548cds_extirq_names;
1200	const size_t n = __arraycount(mpc8548cds_extirq_names);
1201#else
1202	const char * const * names = mpc85xx_extirq_names;
1203	const size_t n = __arraycount(mpc85xx_extirq_names);
1204#endif
1205	prop_array_t extirqs = prop_array_create_with_capacity(n);
1206	for (u_int i = 0; i < n; i++) {
1207		prop_string_t ps = prop_string_create_cstring_nocopy(names[i]);
1208		prop_array_set(extirqs, i, ps);
1209		prop_object_release(ps);
1210	}
1211	board_info_add_object("external-irqs", extirqs);
1212	prop_object_release(extirqs);
1213}
1214
1215static void
1216mpc85xx_pci_setup(const char *name, uint32_t intmask, int ist, int inta, ...)
1217{
1218	prop_dictionary_t pci_intmap = prop_dictionary_create();
1219	KASSERT(pci_intmap != NULL);
1220	prop_number_t mask = prop_number_create_unsigned_integer(intmask);
1221	KASSERT(mask != NULL);
1222	prop_dictionary_set(pci_intmap, "interrupt-mask", mask);
1223	prop_object_release(mask);
1224	prop_number_t pn_ist = prop_number_create_unsigned_integer(ist);
1225	KASSERT(pn_ist != NULL);
1226	prop_number_t pn_intr = prop_number_create_unsigned_integer(inta);
1227	KASSERT(pn_intr != NULL);
1228	prop_dictionary_t entry = prop_dictionary_create();
1229	KASSERT(entry != NULL);
1230	prop_dictionary_set(entry, "interrupt", pn_intr);
1231	prop_dictionary_set(entry, "type", pn_ist);
1232	prop_dictionary_set(pci_intmap, "000000", entry);
1233	prop_object_release(pn_intr);
1234	prop_object_release(entry);
1235	va_list ap;
1236	va_start(ap, inta);
1237	u_int intrinc = __LOWEST_SET_BIT(intmask);
1238	for (u_int i = 0; i < intmask; i += intrinc) {
1239		char prop_name[12];
1240		snprintf(prop_name, sizeof(prop_name), "%06x", i + intrinc);
1241		entry = prop_dictionary_create();
1242		KASSERT(entry != NULL);
1243		pn_intr = prop_number_create_unsigned_integer(va_arg(ap, u_int));
1244		KASSERT(pn_intr != NULL);
1245		prop_dictionary_set(entry, "interrupt", pn_intr);
1246		prop_dictionary_set(entry, "type", pn_ist);
1247		prop_dictionary_set(pci_intmap, prop_name, entry);
1248		prop_object_release(pn_intr);
1249		prop_object_release(entry);
1250	}
1251	va_end(ap);
1252	prop_object_release(pn_ist);
1253	board_info_add_object(name, pci_intmap);
1254	prop_object_release(pci_intmap);
1255}
1256
1257void
1258cpu_startup(void)
1259{
1260	struct cpu_info * const ci = curcpu();
1261	const uint16_t svr = getsvr();
1262
1263	powersave = 0;	/* we can do it but turn it on by default */
1264
1265	booke_cpu_startup(socname(mfspr(SPR_SVR)));
1266
1267	uint32_t v = cpu_read_4(GLOBAL_BASE + PORPLLSR);
1268	uint32_t plat_ratio = PLAT_RATIO_GET(v);
1269	uint32_t e500_ratio = E500_RATIO_GET(v);
1270
1271	uint64_t ccb_freq = e500_sys_clk * plat_ratio;
1272	uint64_t cpu_freq = ccb_freq * e500_ratio / 2;
1273
1274	ci->ci_khz = (cpu_freq + 500) / 1000;
1275	cpu_timebase = ci->ci_data.cpu_cc_freq = ccb_freq / 8;
1276
1277	board_info_add_number("my-id", svr);
1278	board_info_add_bool("pq3");
1279	board_info_add_number("mem-size", pmemsize);
1280	const uint32_t l2ctl = cpu_read_4(L2CACHE_BASE + L2CTL);
1281	uint32_t l2siz = L2CTL_L2SIZ_GET(l2ctl);
1282	uint32_t l2banks = l2siz >> 16;
1283#ifdef MPC85555
1284	if (svr == (MPC8555v1 >> 16)) {
1285		l2siz >>= 1;
1286		l2banks >>= 1;
1287	}
1288#endif
1289	paddr_t boot_page = cpu_read_4(GUR_BPTR);
1290	if (boot_page & BPTR_EN) {
1291		bool found = false;
1292		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1293		for (const uint32_t *dp = (void *)(boot_page + PAGE_SIZE - 4),
1294		     * const bp = (void *)boot_page;
1295		     bp <= dp; dp--) {
1296			if (*dp == boot_page) {
1297				uintptr_t spinup_table_addr = (uintptr_t)++dp;
1298				spinup_table_addr =
1299				    roundup2(spinup_table_addr, 32);
1300				board_info_add_number("mp-boot-page",
1301				    boot_page);
1302				board_info_add_number("mp-spin-up-table",
1303				    spinup_table_addr);
1304				printf("Found MP boot page @ %#"PRIxPADDR". "
1305				    "Spin-up table @ %#"PRIxPTR"\n",
1306				    boot_page, spinup_table_addr);
1307				found = true;
1308				break;
1309			}
1310		}
1311		if (!found) {
1312			printf("Found MP boot page @ %#"PRIxPADDR
1313			    " with missing U-boot signature!\n", boot_page);
1314			board_info_add_number("mp-spin-up-table", 0);
1315		}
1316	}
1317	board_info_add_number("l2-cache-size", l2siz);
1318	board_info_add_number("l2-cache-line-size", 32);
1319	board_info_add_number("l2-cache-banks", l2banks);
1320	board_info_add_number("l2-cache-ways", 8);
1321
1322	board_info_add_number("processor-frequency", cpu_freq);
1323	board_info_add_number("bus-frequency", ccb_freq);
1324	board_info_add_number("pci-frequency", e500_sys_clk);
1325	board_info_add_number("timebase-frequency", ccb_freq / 8);
1326
1327#ifdef CADMUS
1328	const uint8_t phy_base = CM_CSR_EPHY_GET(cadmus_csr) << 2;
1329	board_info_add_number("tsec1-phy-addr", phy_base + 0);
1330	board_info_add_number("tsec2-phy-addr", phy_base + 1);
1331	board_info_add_number("tsec3-phy-addr", phy_base + 2);
1332	board_info_add_number("tsec4-phy-addr", phy_base + 3);
1333#else
1334	board_info_add_number("tsec1-phy-addr", MII_PHY_ANY);
1335	board_info_add_number("tsec2-phy-addr", MII_PHY_ANY);
1336	board_info_add_number("tsec3-phy-addr", MII_PHY_ANY);
1337	board_info_add_number("tsec4-phy-addr", MII_PHY_ANY);
1338#endif
1339
1340	uint64_t macstnaddr =
1341	    ((uint64_t)le32toh(cpu_read_4(ETSEC1_BASE + MACSTNADDR1)) << 16)
1342	    | ((uint64_t)le32toh(cpu_read_4(ETSEC1_BASE + MACSTNADDR2)) << 48);
1343	board_info_add_data("tsec-mac-addr-base", &macstnaddr, 6);
1344
1345#if NPCI > 0 && defined(PCI_MEMBASE)
1346	pcimem_ex = extent_create("pcimem",
1347	    PCI_MEMBASE, PCI_MEMBASE + 4*PCI_MEMSIZE,
1348	    NULL, 0, EX_WAITOK);
1349#endif
1350#if NPCI > 0 && defined(PCI_IOBASE)
1351	pciio_ex = extent_create("pciio",
1352	    PCI_IOBASE, PCI_IOBASE + 4*PCI_IOSIZE,
1353	    NULL, 0, EX_WAITOK);
1354#endif
1355	mpc85xx_extirq_setup();
1356	/*
1357	 * PCI-Express virtual wire interrupts on combined with
1358	 * External IRQ0/1/2/3.
1359	 */
1360	switch (svr) {
1361#if defined(MPC8548)
1362	case SVR_MPC8548v1 >> 16:
1363		mpc85xx_pci_setup("pcie0-interrupt-map", 0x001800,
1364		    IST_LEVEL, 0, 1, 2, 3);
1365		break;
1366#endif
1367#if defined(MPC8544) || defined(MPC8572) || defined(MPC8536) || defined(P2020)
1368	case SVR_MPC8536v1 >> 16:
1369	case SVR_MPC8544v1 >> 16:
1370	case SVR_MPC8572v1 >> 16:
1371	case SVR_P2010v2 >> 16:
1372	case SVR_P2020v2 >> 16:
1373		mpc85xx_pci_setup("pcie1-interrupt-map", 0x001800, IST_LEVEL,
1374		    0, 1, 2, 3);
1375		mpc85xx_pci_setup("pcie2-interrupt-map", 0x001800, IST_LEVEL,
1376		    4, 5, 6, 7);
1377		mpc85xx_pci_setup("pcie3-interrupt-map", 0x001800, IST_LEVEL,
1378		    8, 9, 10, 11);
1379		break;
1380#endif
1381	}
1382	switch (svr) {
1383#if defined(MPC8536)
1384	case SVR_MPC8536v1 >> 16:
1385		mpc85xx_pci_setup("pci0-interrupt-map", 0x001800, IST_LEVEL,
1386		    1, 2, 3, 4);
1387		break;
1388#endif
1389#if defined(MPC8544)
1390	case SVR_MPC8544v1 >> 16:
1391		mpc85xx_pci_setup("pci0-interrupt-map", 0x001800, IST_LEVEL,
1392		    0, 1, 2, 3);
1393		break;
1394#endif
1395#if defined(MPC8548)
1396	case SVR_MPC8548v1 >> 16:
1397		mpc85xx_pci_setup("pci1-interrupt-map", 0x001800, IST_LEVEL,
1398		    0, 1, 2, 3);
1399		mpc85xx_pci_setup("pci2-interrupt-map", 0x001800, IST_LEVEL,
1400		    11, 1, 2, 3);
1401		break;
1402#endif
1403	}
1404}
1405