1/* $NetBSD: segwrite.c,v 1.19 2008/05/16 09:21:59 hannken Exp $ */
2/*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant@hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30/*
31 * Copyright (c) 1991, 1993
32 *	The Regents of the University of California.  All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. Neither the name of the University nor the names of its contributors
43 *    may be used to endorse or promote products derived from this software
44 *    without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
59 */
60
61/*
62 * Partial segment writer, taken from the kernel and adapted for userland.
63 */
64#include <sys/types.h>
65#include <sys/param.h>
66#include <sys/time.h>
67#include <sys/buf.h>
68#include <sys/mount.h>
69
70#include <ufs/ufs/inode.h>
71#include <ufs/ufs/ufsmount.h>
72
73/* Override certain things to make <ufs/lfs/lfs.h> work */
74#define vnode uvnode
75#define buf ubuf
76#define panic call_panic
77
78#include <ufs/lfs/lfs.h>
79
80#include <assert.h>
81#include <stdio.h>
82#include <stdlib.h>
83#include <string.h>
84#include <err.h>
85#include <errno.h>
86#include <util.h>
87
88#include "bufcache.h"
89#include "vnode.h"
90#include "lfs_user.h"
91#include "segwrite.h"
92
93/* Compatibility definitions */
94extern off_t locked_queue_bytes;
95int locked_queue_count;
96off_t written_bytes = 0;
97off_t written_data = 0;
98off_t written_indir = 0;
99off_t written_dev = 0;
100int written_inodes = 0;
101
102/* Global variables */
103time_t write_time;
104
105extern u_int32_t cksum(void *, size_t);
106extern u_int32_t lfs_sb_cksum(struct dlfs *);
107extern int preen;
108
109/*
110 * Logical block number match routines used when traversing the dirty block
111 * chain.
112 */
113int
114lfs_match_data(struct lfs * fs, struct ubuf * bp)
115{
116	return (bp->b_lblkno >= 0);
117}
118
119int
120lfs_match_indir(struct lfs * fs, struct ubuf * bp)
121{
122	daddr_t lbn;
123
124	lbn = bp->b_lblkno;
125	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
126}
127
128int
129lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
130{
131	daddr_t lbn;
132
133	lbn = bp->b_lblkno;
134	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
135}
136
137int
138lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
139{
140	daddr_t lbn;
141
142	lbn = bp->b_lblkno;
143	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
144}
145
146/*
147 * Do a checkpoint.
148 */
149int
150lfs_segwrite(struct lfs * fs, int flags)
151{
152	struct inode *ip;
153	struct segment *sp;
154	struct uvnode *vp;
155	int redo;
156
157	lfs_seglock(fs, flags | SEGM_CKP);
158	sp = fs->lfs_sp;
159
160	lfs_writevnodes(fs, sp, VN_REG);
161	lfs_writevnodes(fs, sp, VN_DIROP);
162	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
163
164	do {
165		vp = fs->lfs_ivnode;
166		fs->lfs_flags &= ~LFS_IFDIRTY;
167		ip = VTOI(vp);
168		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
169			lfs_writefile(fs, sp, vp);
170
171		redo = lfs_writeinode(fs, sp, ip);
172		redo += lfs_writeseg(fs, sp);
173		redo += (fs->lfs_flags & LFS_IFDIRTY);
174	} while (redo);
175
176	lfs_segunlock(fs);
177#if 0
178	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
179		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
180	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
181		written_data, (ufs_daddr_t)btofsb(fs, written_data));
182	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
183		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
184	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
185		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
186	printf("wrote %d inodes (%" PRId32 " fsb)\n",
187		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
188#endif
189	return 0;
190}
191
192/*
193 * Write the dirty blocks associated with a vnode.
194 */
195void
196lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
197{
198	struct ubuf *bp;
199	struct finfo *fip;
200	struct inode *ip;
201	IFILE *ifp;
202
203	ip = VTOI(vp);
204
205	if (sp->seg_bytes_left < fs->lfs_bsize ||
206	    sp->sum_bytes_left < sizeof(struct finfo))
207		(void) lfs_writeseg(fs, sp);
208
209	sp->sum_bytes_left -= FINFOSIZE;
210	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
211
212	if (vp->v_uflag & VU_DIROP)
213		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
214
215	fip = sp->fip;
216	fip->fi_nblocks = 0;
217	fip->fi_ino = ip->i_number;
218	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
219	fip->fi_version = ifp->if_version;
220	brelse(bp, 0);
221
222	lfs_gather(fs, sp, vp, lfs_match_data);
223	lfs_gather(fs, sp, vp, lfs_match_indir);
224	lfs_gather(fs, sp, vp, lfs_match_dindir);
225	lfs_gather(fs, sp, vp, lfs_match_tindir);
226
227	fip = sp->fip;
228	if (fip->fi_nblocks != 0) {
229		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
230		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
231		sp->start_lbp = &sp->fip->fi_blocks[0];
232	} else {
233		sp->sum_bytes_left += FINFOSIZE;
234		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
235	}
236}
237
238int
239lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
240{
241	struct ubuf *bp, *ibp;
242	struct ufs1_dinode *cdp;
243	IFILE *ifp;
244	SEGUSE *sup;
245	daddr_t daddr;
246	ino_t ino;
247	int error, i, ndx, fsb = 0;
248	int redo_ifile = 0;
249	struct timespec ts;
250	int gotblk = 0;
251
252	/* Allocate a new inode block if necessary. */
253	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
254	    sp->ibp == NULL) {
255		/* Allocate a new segment if necessary. */
256		if (sp->seg_bytes_left < fs->lfs_ibsize ||
257		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
258			(void) lfs_writeseg(fs, sp);
259
260		/* Get next inode block. */
261		daddr = fs->lfs_offset;
262		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
263		sp->ibp = *sp->cbpp++ =
264		    getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
265		    fs->lfs_ibsize);
266		sp->ibp->b_flags |= B_GATHERED;
267		gotblk++;
268
269		/* Zero out inode numbers */
270		for (i = 0; i < INOPB(fs); ++i)
271			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
272
273		++sp->start_bpp;
274		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
275		/* Set remaining space counters. */
276		sp->seg_bytes_left -= fs->lfs_ibsize;
277		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
278		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
279		    sp->ninodes / INOPB(fs) - 1;
280		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
281	}
282	/* Update the inode times and copy the inode onto the inode page. */
283	ts.tv_nsec = 0;
284	ts.tv_sec = write_time;
285	/* XXX kludge --- don't redirty the ifile just to put times on it */
286	if (ip->i_number != LFS_IFILE_INUM)
287		LFS_ITIMES(ip, &ts, &ts, &ts);
288
289	/*
290	 * If this is the Ifile, and we've already written the Ifile in this
291	 * partial segment, just overwrite it (it's not on disk yet) and
292	 * continue.
293	 *
294	 * XXX we know that the bp that we get the second time around has
295	 * already been gathered.
296	 */
297	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
298		*(sp->idp) = *ip->i_din.ffs1_din;
299		ip->i_lfs_osize = ip->i_ffs1_size;
300		return 0;
301	}
302	bp = sp->ibp;
303	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
304	*cdp = *ip->i_din.ffs1_din;
305
306	/* If all blocks are goig to disk, update the "size on disk" */
307	ip->i_lfs_osize = ip->i_ffs1_size;
308
309	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
310		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
311		    (sp->ninodes % INOPB(fs));
312	if (gotblk) {
313		LFS_LOCK_BUF(bp);
314		assert(!(bp->b_flags & B_INVAL));
315		brelse(bp, 0);
316	}
317	/* Increment inode count in segment summary block. */
318	++((SEGSUM *) (sp->segsum))->ss_ninos;
319
320	/* If this page is full, set flag to allocate a new page. */
321	if (++sp->ninodes % INOPB(fs) == 0)
322		sp->ibp = NULL;
323
324	/*
325	 * If updating the ifile, update the super-block.  Update the disk
326	 * address and access times for this inode in the ifile.
327	 */
328	ino = ip->i_number;
329	if (ino == LFS_IFILE_INUM) {
330		daddr = fs->lfs_idaddr;
331		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
332		sbdirty();
333	} else {
334		LFS_IENTRY(ifp, fs, ino, ibp);
335		daddr = ifp->if_daddr;
336		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
337		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
338	}
339
340	/*
341	 * Account the inode: it no longer belongs to its former segment,
342	 * though it will not belong to the new segment until that segment
343	 * is actually written.
344	 */
345	if (daddr != LFS_UNUSED_DADDR) {
346		u_int32_t oldsn = dtosn(fs, daddr);
347		LFS_SEGENTRY(sup, fs, oldsn, bp);
348		sup->su_nbytes -= DINODE1_SIZE;
349		redo_ifile =
350		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
351		if (redo_ifile)
352			fs->lfs_flags |= LFS_IFDIRTY;
353		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
354	}
355	return redo_ifile;
356}
357
358int
359lfs_gatherblock(struct segment * sp, struct ubuf * bp)
360{
361	struct lfs *fs;
362	int version;
363	int j, blksinblk;
364
365	/*
366	 * If full, finish this segment.  We may be doing I/O, so
367	 * release and reacquire the splbio().
368	 */
369	fs = sp->fs;
370	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
371	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
372	    sp->seg_bytes_left < bp->b_bcount) {
373		lfs_updatemeta(sp);
374
375		version = sp->fip->fi_version;
376		(void) lfs_writeseg(fs, sp);
377
378		sp->fip->fi_version = version;
379		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
380		/* Add the current file to the segment summary. */
381		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
382		sp->sum_bytes_left -= FINFOSIZE;
383
384		return 1;
385	}
386	/* Insert into the buffer list, update the FINFO block. */
387	bp->b_flags |= B_GATHERED;
388	/* bp->b_flags &= ~B_DONE; */
389
390	*sp->cbpp++ = bp;
391	for (j = 0; j < blksinblk; j++)
392		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
393
394	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
395	sp->seg_bytes_left -= bp->b_bcount;
396	return 0;
397}
398
399int
400lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
401{
402	struct ubuf *bp, *nbp;
403	int count = 0;
404
405	sp->vp = vp;
406loop:
407	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
408		nbp = LIST_NEXT(bp, b_vnbufs);
409
410		assert(bp->b_flags & B_DELWRI);
411		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
412			continue;
413		}
414		if (lfs_gatherblock(sp, bp)) {
415			goto loop;
416		}
417		count++;
418	}
419
420	lfs_updatemeta(sp);
421	sp->vp = NULL;
422	return count;
423}
424
425
426/*
427 * Change the given block's address to ndaddr, finding its previous
428 * location using ufs_bmaparray().
429 *
430 * Account for this change in the segment table.
431 */
432void
433lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
434    ufs_daddr_t ndaddr, int size)
435{
436	SEGUSE *sup;
437	struct ubuf *bp;
438	struct indir a[NIADDR + 2], *ap;
439	struct inode *ip;
440	struct uvnode *vp;
441	daddr_t daddr, ooff;
442	int num, error;
443	int osize;
444	int frags, ofrags;
445
446	vp = sp->vp;
447	ip = VTOI(vp);
448
449	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
450	if (error)
451		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
452	if (daddr > 0)
453		daddr = dbtofsb(fs, daddr);
454
455	frags = numfrags(fs, size);
456	switch (num) {
457	case 0:
458		ooff = ip->i_ffs1_db[lbn];
459		if (ooff == UNWRITTEN)
460			ip->i_ffs1_blocks += frags;
461		else {
462			/* possible fragment truncation or extension */
463			ofrags = btofsb(fs, ip->i_lfs_fragsize[lbn]);
464			ip->i_ffs1_blocks += (frags - ofrags);
465		}
466		ip->i_ffs1_db[lbn] = ndaddr;
467		break;
468	case 1:
469		ooff = ip->i_ffs1_ib[a[0].in_off];
470		if (ooff == UNWRITTEN)
471			ip->i_ffs1_blocks += frags;
472		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
473		break;
474	default:
475		ap = &a[num - 1];
476		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, 0, &bp))
477			errx(1, "lfs_updatemeta: bread bno %" PRId64,
478			    ap->in_lbn);
479
480		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
481		if (ooff == UNWRITTEN)
482			ip->i_ffs1_blocks += frags;
483		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
484		(void) VOP_BWRITE(bp);
485	}
486
487	/*
488	 * Update segment usage information, based on old size
489	 * and location.
490	 */
491	if (daddr > 0) {
492		u_int32_t oldsn = dtosn(fs, daddr);
493		if (lbn >= 0 && lbn < NDADDR)
494			osize = ip->i_lfs_fragsize[lbn];
495		else
496			osize = fs->lfs_bsize;
497		LFS_SEGENTRY(sup, fs, oldsn, bp);
498		sup->su_nbytes -= osize;
499		if (!(bp->b_flags & B_GATHERED))
500			fs->lfs_flags |= LFS_IFDIRTY;
501		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
502	}
503	/*
504	 * Now that this block has a new address, and its old
505	 * segment no longer owns it, we can forget about its
506	 * old size.
507	 */
508	if (lbn >= 0 && lbn < NDADDR)
509		ip->i_lfs_fragsize[lbn] = size;
510}
511
512/*
513 * Update the metadata that points to the blocks listed in the FINFO
514 * array.
515 */
516void
517lfs_updatemeta(struct segment * sp)
518{
519	struct ubuf *sbp;
520	struct lfs *fs;
521	struct uvnode *vp;
522	daddr_t lbn;
523	int i, nblocks, num;
524	int frags;
525	int bytesleft, size;
526
527	vp = sp->vp;
528	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
529
530	if (vp == NULL || nblocks == 0)
531		return;
532
533	/*
534	 * This count may be high due to oversize blocks from lfs_gop_write.
535	 * Correct for this. (XXX we should be able to keep track of these.)
536	 */
537	fs = sp->fs;
538	for (i = 0; i < nblocks; i++) {
539		if (sp->start_bpp[i] == NULL) {
540			printf("nblocks = %d, not %d\n", i, nblocks);
541			nblocks = i;
542			break;
543		}
544		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
545		nblocks -= num - 1;
546	}
547
548	/*
549	 * Sort the blocks.
550	 */
551	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
552
553	/*
554	 * Record the length of the last block in case it's a fragment.
555	 * If there are indirect blocks present, they sort last.  An
556	 * indirect block will be lfs_bsize and its presence indicates
557	 * that you cannot have fragments.
558	 */
559	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
560	    fs->lfs_bmask) + 1;
561
562	/*
563	 * Assign disk addresses, and update references to the logical
564	 * block and the segment usage information.
565	 */
566	for (i = nblocks; i--; ++sp->start_bpp) {
567		sbp = *sp->start_bpp;
568		lbn = *sp->start_lbp;
569
570		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
571
572		/*
573		 * If we write a frag in the wrong place, the cleaner won't
574		 * be able to correctly identify its size later, and the
575		 * segment will be uncleanable.	 (Even worse, it will assume
576		 * that the indirect block that actually ends the list
577		 * is of a smaller size!)
578		 */
579		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
580			errx(1, "lfs_updatemeta: fragment is not last block");
581
582		/*
583		 * For each subblock in this possibly oversized block,
584		 * update its address on disk.
585		 */
586		for (bytesleft = sbp->b_bcount; bytesleft > 0;
587		    bytesleft -= fs->lfs_bsize) {
588			size = MIN(bytesleft, fs->lfs_bsize);
589			frags = numfrags(fs, size);
590			lbn = *sp->start_lbp++;
591			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
592			fs->lfs_offset += frags;
593		}
594
595	}
596}
597
598/*
599 * Start a new segment.
600 */
601int
602lfs_initseg(struct lfs * fs)
603{
604	struct segment *sp;
605	SEGUSE *sup;
606	SEGSUM *ssp;
607	struct ubuf *bp, *sbp;
608	int repeat;
609
610	sp = fs->lfs_sp;
611
612	repeat = 0;
613
614	/* Advance to the next segment. */
615	if (!LFS_PARTIAL_FITS(fs)) {
616		/* lfs_avail eats the remaining space */
617		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
618		    fs->lfs_curseg);
619		lfs_newseg(fs);
620		repeat = 1;
621		fs->lfs_offset = fs->lfs_curseg;
622
623		sp->seg_number = dtosn(fs, fs->lfs_curseg);
624		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
625
626		/*
627		 * If the segment contains a superblock, update the offset
628		 * and summary address to skip over it.
629		 */
630		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
631		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
632			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
633			sp->seg_bytes_left -= LFS_SBPAD;
634		}
635		brelse(bp, 0);
636		/* Segment zero could also contain the labelpad */
637		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
638		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
639			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
640			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
641		}
642	} else {
643		sp->seg_number = dtosn(fs, fs->lfs_curseg);
644		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
645		    (fs->lfs_offset - fs->lfs_curseg));
646	}
647	fs->lfs_lastpseg = fs->lfs_offset;
648
649	sp->fs = fs;
650	sp->ibp = NULL;
651	sp->idp = NULL;
652	sp->ninodes = 0;
653	sp->ndupino = 0;
654
655	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
656	sp->cbpp = sp->bpp;
657	sbp = *sp->cbpp = getblk(fs->lfs_devvp,
658	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
659	sp->segsum = sbp->b_data;
660	memset(sp->segsum, 0, fs->lfs_sumsize);
661	sp->start_bpp = ++sp->cbpp;
662	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
663
664	/* Set point to SEGSUM, initialize it. */
665	ssp = sp->segsum;
666	ssp->ss_next = fs->lfs_nextseg;
667	ssp->ss_nfinfo = ssp->ss_ninos = 0;
668	ssp->ss_magic = SS_MAGIC;
669
670	/* Set pointer to first FINFO, initialize it. */
671	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
672	sp->fip->fi_nblocks = 0;
673	sp->start_lbp = &sp->fip->fi_blocks[0];
674	sp->fip->fi_lastlength = 0;
675
676	sp->seg_bytes_left -= fs->lfs_sumsize;
677	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
678
679	LFS_LOCK_BUF(sbp);
680	brelse(sbp, 0);
681	return repeat;
682}
683
684/*
685 * Return the next segment to write.
686 */
687void
688lfs_newseg(struct lfs * fs)
689{
690	CLEANERINFO *cip;
691	SEGUSE *sup;
692	struct ubuf *bp;
693	int curseg, isdirty, sn;
694
695	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
696	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
697	sup->su_nbytes = 0;
698	sup->su_nsums = 0;
699	sup->su_ninos = 0;
700	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
701
702	LFS_CLEANERINFO(cip, fs, bp);
703	--cip->clean;
704	++cip->dirty;
705	fs->lfs_nclean = cip->clean;
706	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
707
708	fs->lfs_lastseg = fs->lfs_curseg;
709	fs->lfs_curseg = fs->lfs_nextseg;
710	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
711		sn = (sn + 1) % fs->lfs_nseg;
712		if (sn == curseg)
713			errx(1, "lfs_nextseg: no clean segments");
714		LFS_SEGENTRY(sup, fs, sn, bp);
715		isdirty = sup->su_flags & SEGUSE_DIRTY;
716		brelse(bp, 0);
717
718		if (!isdirty)
719			break;
720	}
721
722	++fs->lfs_nactive;
723	fs->lfs_nextseg = sntod(fs, sn);
724}
725
726
727int
728lfs_writeseg(struct lfs * fs, struct segment * sp)
729{
730	struct ubuf **bpp, *bp;
731	SEGUSE *sup;
732	SEGSUM *ssp;
733	char *datap, *dp;
734	int i;
735	int do_again, nblocks, byteoffset;
736	size_t el_size;
737	u_short ninos;
738	struct uvnode *devvp;
739
740	/*
741	 * If there are no buffers other than the segment summary to write
742	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
743	 * even if there aren't any buffers, you need to write the superblock.
744	 */
745	nblocks = sp->cbpp - sp->bpp;
746#if 0
747	printf("write %d blocks at 0x%x\n",
748		nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
749#endif
750	if (nblocks == 1)
751		return 0;
752
753	devvp = fs->lfs_devvp;
754
755	/* Update the segment usage information. */
756	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
757	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
758
759	/* Loop through all blocks, except the segment summary. */
760	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
761		if ((*bpp)->b_vp != devvp) {
762			sup->su_nbytes += (*bpp)->b_bcount;
763		}
764		assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
765	}
766
767	ssp = (SEGSUM *) sp->segsum;
768	ssp->ss_flags |= SS_RFW;
769
770	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
771	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
772
773	if (fs->lfs_version == 1)
774		sup->su_olastmod = write_time;
775	else
776		sup->su_lastmod = write_time;
777	sup->su_ninos += ninos;
778	++sup->su_nsums;
779	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
780		fs->lfs_ibsize));
781	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
782
783	do_again = !(bp->b_flags & B_GATHERED);
784	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
785
786	/*
787	 * Compute checksum across data and then across summary; the first
788	 * block (the summary block) is skipped.  Set the create time here
789	 * so that it's guaranteed to be later than the inode mod times.
790	 */
791	if (fs->lfs_version == 1)
792		el_size = sizeof(u_long);
793	else
794		el_size = sizeof(u_int32_t);
795	datap = dp = emalloc(nblocks * el_size);
796	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
797		++bpp;
798		/* Loop through gop_write cluster blocks */
799		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
800		    byteoffset += fs->lfs_bsize) {
801			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
802			dp += el_size;
803		}
804		bremfree(*bpp);
805		(*bpp)->b_flags |= B_BUSY;
806	}
807	if (fs->lfs_version == 1)
808		ssp->ss_ocreate = write_time;
809	else {
810		ssp->ss_create = write_time;
811		ssp->ss_serial = ++fs->lfs_serial;
812		ssp->ss_ident = fs->lfs_ident;
813	}
814	/* Set the summary block busy too */
815	bremfree(*(sp->bpp));
816	(*(sp->bpp))->b_flags |= B_BUSY;
817
818	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
819	ssp->ss_sumsum =
820	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
821	free(datap);
822	datap = dp = NULL;
823	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
824	    btofsb(fs, fs->lfs_sumsize));
825
826	if (devvp == NULL)
827		errx(1, "devvp is NULL");
828	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
829		bp = *bpp;
830#if 0
831		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
832		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
833		printf("  vp = %p\n", bp->b_vp);
834		if (bp->b_vp != fs->lfs_devvp)
835			printf("  ino = %d lbn = %" PRId64 "\n",
836			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
837#endif
838		if (bp->b_vp == fs->lfs_devvp)
839			written_dev += bp->b_bcount;
840		else {
841			if (bp->b_lblkno >= 0)
842				written_data += bp->b_bcount;
843			else
844				written_indir += bp->b_bcount;
845		}
846		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
847				 B_LOCKED);
848		bwrite(bp);
849		written_bytes += bp->b_bcount;
850	}
851	written_inodes += ninos;
852
853	return (lfs_initseg(fs) || do_again);
854}
855
856/*
857 * Our own copy of shellsort.  XXX use qsort or heapsort.
858 */
859void
860lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
861{
862	static int __rsshell_increments[] = {4, 1, 0};
863	int incr, *incrp, t1, t2;
864	struct ubuf *bp_temp;
865
866	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
867		for (t1 = incr; t1 < nmemb; ++t1)
868			for (t2 = t1 - incr; t2 >= 0;)
869				if ((u_int32_t) bp_array[t2]->b_lblkno >
870				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
871					bp_temp = bp_array[t2];
872					bp_array[t2] = bp_array[t2 + incr];
873					bp_array[t2 + incr] = bp_temp;
874					t2 -= incr;
875				} else
876					break;
877
878	/* Reform the list of logical blocks */
879	incr = 0;
880	for (t1 = 0; t1 < nmemb; t1++) {
881		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
882			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
883		}
884	}
885}
886
887
888/*
889 * lfs_seglock --
890 *	Single thread the segment writer.
891 */
892int
893lfs_seglock(struct lfs * fs, unsigned long flags)
894{
895	struct segment *sp;
896
897	if (fs->lfs_seglock) {
898		++fs->lfs_seglock;
899		fs->lfs_sp->seg_flags |= flags;
900		return 0;
901	}
902	fs->lfs_seglock = 1;
903
904	sp = fs->lfs_sp = emalloc(sizeof(*sp));
905	sp->bpp = emalloc(fs->lfs_ssize * sizeof(struct ubuf *));
906	if (!sp->bpp)
907		errx(!preen, "Could not allocate %zu bytes: %s",
908			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
909			strerror(errno));
910	sp->seg_flags = flags;
911	sp->vp = NULL;
912	sp->seg_iocount = 0;
913	(void) lfs_initseg(fs);
914
915	return 0;
916}
917
918/*
919 * lfs_segunlock --
920 *	Single thread the segment writer.
921 */
922void
923lfs_segunlock(struct lfs * fs)
924{
925	struct segment *sp;
926	struct ubuf *bp;
927
928	sp = fs->lfs_sp;
929
930	if (fs->lfs_seglock == 1) {
931		if (sp->bpp != sp->cbpp) {
932			/* Free allocated segment summary */
933			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
934			bp = *sp->bpp;
935			bremfree(bp);
936			bp->b_flags |= B_DONE | B_INVAL;
937			bp->b_flags &= ~B_DELWRI;
938			reassignbuf(bp, bp->b_vp);
939			bp->b_flags |= B_BUSY; /* XXX */
940			brelse(bp, 0);
941		} else
942			printf("unlock to 0 with no summary");
943
944		free(sp->bpp);
945		sp->bpp = NULL;
946		free(sp);
947		fs->lfs_sp = NULL;
948
949		fs->lfs_nactive = 0;
950
951		/* Since we *know* everything's on disk, write both sbs */
952		lfs_writesuper(fs, fs->lfs_sboffs[0]);
953		lfs_writesuper(fs, fs->lfs_sboffs[1]);
954
955		--fs->lfs_seglock;
956		fs->lfs_lockpid = 0;
957	} else if (fs->lfs_seglock == 0) {
958		errx(1, "Seglock not held");
959	} else {
960		--fs->lfs_seglock;
961	}
962}
963
964int
965lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
966{
967	struct inode *ip;
968	struct uvnode *vp;
969	int inodes_written = 0;
970
971	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
972		if (vp->v_bmap_op != lfs_vop_bmap)
973			continue;
974
975		ip = VTOI(vp);
976
977		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
978		    (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
979			continue;
980		}
981		/*
982		 * Write the inode/file if dirty and it's not the IFILE.
983		 */
984		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
985			if (ip->i_number != LFS_IFILE_INUM)
986				lfs_writefile(fs, sp, vp);
987			(void) lfs_writeinode(fs, sp, ip);
988			inodes_written++;
989		}
990	}
991	return inodes_written;
992}
993
994void
995lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
996{
997	struct ubuf *bp;
998
999	/* Set timestamp of this version of the superblock */
1000	if (fs->lfs_version == 1)
1001		fs->lfs_otstamp = write_time;
1002	fs->lfs_tstamp = write_time;
1003
1004	/* Checksum the superblock and copy it into a buffer. */
1005	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1006	assert(daddr > 0);
1007	bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
1008	memset(bp->b_data + sizeof(struct dlfs), 0,
1009	    LFS_SBPAD - sizeof(struct dlfs));
1010	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1011
1012	bwrite(bp);
1013}
1014