1/*	$NetBSD: mdreloc.c,v 1.52 2011/03/30 08:37:52 martin Exp $	*/
2
3/*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34#ifndef lint
35__RCSID("$NetBSD: mdreloc.c,v 1.52 2011/03/30 08:37:52 martin Exp $");
36#endif /* not lint */
37
38#include <errno.h>
39#include <stdio.h>
40#include <stdlib.h>
41#include <string.h>
42#include <unistd.h>
43
44#include "rtldenv.h"
45#include "debug.h"
46#include "rtld.h"
47
48/*
49 * The following table holds for each relocation type:
50 *	- the width in bits of the memory location the relocation
51 *	  applies to (not currently used)
52 *	- the number of bits the relocation value must be shifted to the
53 *	  right (i.e. discard least significant bits) to fit into
54 *	  the appropriate field in the instruction word.
55 *	- flags indicating whether
56 *		* the relocation involves a symbol
57 *		* the relocation is relative to the current position
58 *		* the relocation is for a GOT entry
59 *		* the relocation is relative to the load address
60 *
61 */
62#define _RF_S		0x80000000		/* Resolve symbol */
63#define _RF_A		0x40000000		/* Use addend */
64#define _RF_P		0x20000000		/* Location relative */
65#define _RF_G		0x10000000		/* GOT offset */
66#define _RF_B		0x08000000		/* Load address relative */
67#define _RF_U		0x04000000		/* Unaligned */
68#define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
69#define _RF_RS(s)	( (s) & 0xff)		/* right shift */
70static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
71	0,							/* NONE */
72	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
73	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
74	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
75	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
76	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
77	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
78	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
79	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
80	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
81	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
82	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
83	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
84	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
85	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
86	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
87	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
88	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
89	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
90				_RF_SZ(32) | _RF_RS(0),		/* COPY */
91	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
92				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
93	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
94	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
95
96	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
97	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
98	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
99	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
100	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
101	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
102	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
103	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
104	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
105	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
106	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
107	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
108	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
109	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
110	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
111	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
112	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
113	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
114	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
115	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
116	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
117	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
118	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
119	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
120	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
121	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
122	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
123	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
124	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
125	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
126	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
127	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
128/* TLS relocs not represented here! */
129};
130
131#ifdef RTLD_DEBUG_RELOC
132static const char *reloc_names[] = {
133	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135	"22", "13", "LO10", "GOT10", "GOT13",
136	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
137	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139	"10", "11", "64", "OLO10", "HH22",
140	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143	"L44", "REGISTER", "UA64", "UA16",
144	"TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145	"TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146	"TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147	"TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148	"TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149	"TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
150};
151#endif
152
153#define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
154#define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
155#define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
156#define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
157#define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
158#define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
159#define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
160#define RELOC_TLS(t)			(t >= R_TYPE(TLS_GD_HI22))
161
162static const long reloc_target_bitmask[] = {
163#define _BM(x)	(~(-(1ULL << (x))))
164	0,				/* NONE */
165	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
166	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
167	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
168	_BM(22), _BM(22),		/* HI22, _22 */
169	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
170	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
171	_BM(10), _BM(22),		/* _PC10, _PC22 */
172	_BM(30), 0,			/* _WPLT30, _COPY */
173	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174	_BM(32), _BM(32),		/* _UA32, PLT32 */
175	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
176	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
177	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
178	_BM(10), _BM(22),		/* _OLO10, _HH22 */
179	_BM(10), _BM(22),		/* _HM10, _LM22 */
180	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
181	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
182	-1,				/* GLOB_JMP */
183	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
184	-1, -1,				/* DISP64, PLT64 */
185	_BM(22), _BM(13),		/* HIX22, LOX10 */
186	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
187	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
188#undef _BM
189};
190#define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
191
192/*
193 * Instruction templates:
194 */
195#define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
196#define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
197#define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
198#define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
199#define	OR	0x82806000	/*	or	%g1, 0, %g1 */
200#define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
201#define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
202#define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
203#define	CALL	0x40000000	/*	call	0 */
204#define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
205#define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
206#define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
207
208
209/* %hi(v)/%lo(v) with variable shift */
210#define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
211#define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
212
213void _rtld_bind_start_0(long, long);
214void _rtld_bind_start_1(long, long);
215void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
216caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
217
218/*
219 * Install rtld function call into this PLT slot.
220 */
221#define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
222#define	SETHI_l0	0x21000000
223#define	SETHI_l1	0x23000000
224#define	OR_l0_l0	0xa0142000
225#define	SLLX_l0_32_l0	0xa12c3020
226#define	OR_l0_l1_l0	0xa0140011
227#define	JMPL_l0_o0	0x91c42000
228#define	MOV_g1_o1	0x92100001
229
230void _rtld_install_plt(Elf_Word *, Elf_Addr);
231static inline int _rtld_relocate_plt_object(const Obj_Entry *,
232    const Elf_Rela *, Elf_Addr *);
233
234void
235_rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
236{
237	pltgot[0] = SAVE;
238	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
239	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
240	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
241	pltgot[4] = SLLX_l0_32_l0;
242	pltgot[5] = OR_l0_l1_l0;
243	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
244	pltgot[7] = MOV_g1_o1;
245}
246
247void
248_rtld_setup_pltgot(const Obj_Entry *obj)
249{
250	/*
251	 * On sparc64 we got troubles.
252	 *
253	 * Instructions are 4 bytes long.
254	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
255	 * array entries.
256	 * Each PLT entry jumps to PLT0 to enter the dynamic
257	 * linker.
258	 * Loading an arbitrary 64-bit pointer takes 6
259	 * instructions and 2 registers.
260	 *
261	 * Somehow we need to issue a save to get a new stack
262	 * frame, load the address of the dynamic linker, and
263	 * jump there, in 8 instructions or less.
264	 *
265	 * Oh, we need to fill out both PLT0 and PLT1.
266	 */
267	{
268		Elf_Word *entry = (Elf_Word *)obj->pltgot;
269
270		/* Install in entries 0 and 1 */
271		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
272		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
273
274		/*
275		 * Install the object reference in first slot
276		 * of entry 2.
277		 */
278		obj->pltgot[8] = (Elf_Addr) obj;
279	}
280}
281
282void
283_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
284{
285	const Elf_Rela *rela = 0, *relalim;
286	Elf_Addr relasz = 0;
287	Elf_Addr *where;
288
289	for (; dynp->d_tag != DT_NULL; dynp++) {
290		switch (dynp->d_tag) {
291		case DT_RELA:
292			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
293			break;
294		case DT_RELASZ:
295			relasz = dynp->d_un.d_val;
296			break;
297		}
298	}
299	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
300	for (; rela < relalim; rela++) {
301		where = (Elf_Addr *)(relocbase + rela->r_offset);
302		*where = (Elf_Addr)(relocbase + rela->r_addend);
303	}
304}
305
306int
307_rtld_relocate_nonplt_objects(Obj_Entry *obj)
308{
309	const Elf_Rela *rela;
310	const Elf_Sym *def = NULL;
311	const Obj_Entry *defobj = NULL;
312
313	for (rela = obj->rela; rela < obj->relalim; rela++) {
314		Elf_Addr *where;
315		Elf_Word type;
316		Elf_Addr value = 0, mask;
317		unsigned long	 symnum;
318
319		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
320		symnum = ELF_R_SYM(rela->r_info);
321
322		type = ELF_R_TYPE(rela->r_info);
323		if (type == R_TYPE(NONE))
324			continue;
325
326		/* OLO10 relocations have extra info */
327		if ((type & 0x00ff) == R_SPARC_OLO10)
328			type = R_SPARC_OLO10;
329
330		/* We do JMP_SLOTs in _rtld_bind() below */
331		if (type == R_TYPE(JMP_SLOT))
332			continue;
333
334		/* COPY relocs are also handled elsewhere */
335		if (type == R_TYPE(COPY))
336			continue;
337
338		/*
339		 * We use the fact that relocation types are an `enum'
340		 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
341		 */
342		if (type > R_TYPE(TLS_TPOFF64)) {
343			dbg(("unknown relocation type %x at %p", type, rela));
344			return -1;
345		}
346
347		value = rela->r_addend;
348
349		/*
350		 * Handle TLS relocations here, they are different.
351		 */
352		if (RELOC_TLS(type)) {
353			switch (type) {
354				case R_TYPE(TLS_DTPMOD64):
355					def = _rtld_find_symdef(symnum, obj,
356					    &defobj, false);
357					if (def == NULL)
358						return -1;
359
360					*where = (Elf64_Addr)defobj->tlsindex;
361
362					rdbg(("TLS_DTPMOD64 %s in %s --> %p",
363					    obj->strtab +
364					    obj->symtab[symnum].st_name,
365					    obj->path, (void *)*where));
366
367					break;
368
369				case R_TYPE(TLS_DTPOFF64):
370					def = _rtld_find_symdef(symnum, obj,
371					    &defobj, false);
372					if (def == NULL)
373						return -1;
374
375					*where = (Elf64_Addr)(def->st_value
376					    + rela->r_addend);
377
378					rdbg(("DTPOFF64 %s in %s --> %p",
379					    obj->strtab +
380					        obj->symtab[symnum].st_name,
381					    obj->path, (void *)*where));
382
383					break;
384
385				case R_TYPE(TLS_TPOFF64):
386					def = _rtld_find_symdef(symnum, obj,
387					    &defobj, false);
388					if (def == NULL)
389						return -1;
390
391					if (!defobj->tls_done &&
392						_rtld_tls_offset_allocate(obj))
393						     return -1;
394
395					*where = (Elf64_Addr)(def->st_value -
396			                            defobj->tlsoffset +
397						    rela->r_addend);
398
399		                        rdbg(("TLS_TPOFF64 %s in %s --> %p",
400		                            obj->strtab +
401					    obj->symtab[symnum].st_name,
402		                            obj->path, (void *)*where));
403
404	                		break;
405			}
406			continue;
407		}
408
409		/*
410		 * Handle relative relocs here, as an optimization.
411		 */
412		if (type == R_TYPE(RELATIVE)) {
413			*where = (Elf_Addr)(obj->relocbase + value);
414			rdbg(("RELATIVE in %s --> %p", obj->path,
415			    (void *)*where));
416			continue;
417		}
418
419		if (RELOC_RESOLVE_SYMBOL(type)) {
420
421			/* Find the symbol */
422			def = _rtld_find_symdef(symnum, obj, &defobj,
423			    false);
424			if (def == NULL)
425				return -1;
426
427			/* Add in the symbol's absolute address */
428			value += (Elf_Addr)(defobj->relocbase + def->st_value);
429		}
430
431		if (type == R_SPARC_OLO10) {
432			value = (value & 0x3ff)
433			    + (((Elf64_Xword)rela->r_info<<32)>>40);
434		}
435
436		if (RELOC_PC_RELATIVE(type)) {
437			value -= (Elf_Addr)where;
438		}
439
440		if (RELOC_BASE_RELATIVE(type)) {
441			/*
442			 * Note that even though sparcs use `Elf_rela'
443			 * exclusively we still need the implicit memory addend
444			 * in relocations referring to GOT entries.
445			 * Undoubtedly, someone f*cked this up in the distant
446			 * past, and now we're stuck with it in the name of
447			 * compatibility for all eternity..
448			 *
449			 * In any case, the implicit and explicit should be
450			 * mutually exclusive. We provide a check for that
451			 * here.
452			 */
453#ifdef DIAGNOSTIC
454			if (value != 0 && *where != 0) {
455				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
456					"addend=0x%lx, base %p\n",
457					obj->path, where, *where,
458					rela->r_addend, obj->relocbase);
459			}
460#endif
461			/* XXXX -- apparently we ignore the preexisting value */
462			value += (Elf_Addr)(obj->relocbase);
463		}
464
465		mask = RELOC_VALUE_BITMASK(type);
466		value >>= RELOC_VALUE_RIGHTSHIFT(type);
467		value &= mask;
468
469		if (RELOC_UNALIGNED(type)) {
470			/* Handle unaligned relocations. */
471			Elf_Addr tmp = 0;
472			char *ptr = (char *)where;
473			int i, size = RELOC_TARGET_SIZE(type)/8;
474
475			/* Read it in one byte at a time. */
476			for (i=0; i<size; i++)
477				tmp = (tmp << 8) | ptr[i];
478
479			tmp &= ~mask;
480			tmp |= value;
481
482			/* Write it back out. */
483			for (i=0; i<size; i++)
484				ptr[i] = ((tmp >> (8*i)) & 0xff);
485#ifdef RTLD_DEBUG_RELOC
486			value = (Elf_Addr)tmp;
487#endif
488
489		} else if (RELOC_TARGET_SIZE(type) > 32) {
490			*where &= ~mask;
491			*where |= value;
492#ifdef RTLD_DEBUG_RELOC
493			value = (Elf_Addr)*where;
494#endif
495		} else {
496			Elf32_Addr *where32 = (Elf32_Addr *)where;
497
498			*where32 &= ~mask;
499			*where32 |= value;
500#ifdef RTLD_DEBUG_RELOC
501			value = (Elf_Addr)*where32;
502#endif
503		}
504
505#ifdef RTLD_DEBUG_RELOC
506		if (RELOC_RESOLVE_SYMBOL(type)) {
507			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
508			    obj->strtab + obj->symtab[symnum].st_name,
509			    obj->path, (void *)value, defobj->path));
510		} else {
511			rdbg(("%s in %s --> %p", reloc_names[type],
512			    obj->path, (void *)value));
513		}
514#endif
515	}
516	return (0);
517}
518
519int
520_rtld_relocate_plt_lazy(const Obj_Entry *obj)
521{
522	return (0);
523}
524
525caddr_t
526_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
527{
528	const Elf_Rela *rela = obj->pltrela + reloff;
529	Elf_Addr result;
530	int err;
531
532	result = 0;	/* XXX gcc */
533
534	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
535		/*
536		 * XXXX
537		 *
538		 * The first four PLT entries are reserved.  There is some
539		 * disagreement whether they should have associated relocation
540		 * entries.  Both the SPARC 32-bit and 64-bit ELF
541		 * specifications say that they should have relocation entries,
542		 * but the 32-bit SPARC binutils do not generate them, and now
543		 * the 64-bit SPARC binutils have stopped generating them too.
544		 *
545		 * So, to provide binary compatibility, we will check the first
546		 * entry, if it is reserved it should not be of the type
547		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
548		 * were not generated and our index is 4 entries too far.
549		 */
550		rela -= 4;
551	}
552
553	_rtld_shared_enter();
554	err = _rtld_relocate_plt_object(obj, rela, &result);
555	if (err)
556		_rtld_die();
557	_rtld_shared_exit();
558
559	return (caddr_t)result;
560}
561
562int
563_rtld_relocate_plt_objects(const Obj_Entry *obj)
564{
565	const Elf_Rela *rela;
566
567	rela = obj->pltrela;
568
569	/*
570	 * Check for first four reserved entries - and skip them.
571	 * See above for details.
572	 */
573	if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
574		rela += 4;
575
576	for (; rela < obj->pltrelalim; rela++)
577		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
578			return -1;
579
580	return 0;
581}
582
583/*
584 * New inline function that is called by _rtld_relocate_plt_object and
585 * _rtld_bind
586 */
587static inline int
588_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
589    Elf_Addr *tp)
590{
591	Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
592	const Elf_Sym *def;
593	const Obj_Entry *defobj;
594	Elf_Addr value, offset;
595	unsigned long info = rela->r_info;
596
597	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
598
599	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
600	if (__predict_false(def == NULL))
601		return -1;
602	if (__predict_false(def == &_rtld_sym_zero))
603		return 0;
604
605	value = (Elf_Addr)(defobj->relocbase + def->st_value);
606	rdbg(("bind now/fixup in %s --> new=%p",
607	    defobj->strtab + def->st_name, (void *)value));
608
609	/*
610	 * At the PLT entry pointed at by `where', we now construct a direct
611	 * transfer to the now fully resolved function address.
612	 *
613	 * A PLT entry is supposed to start by looking like this:
614	 *
615	 *	sethi	%hi(. - .PLT0), %g1
616	 *	ba,a	%xcc, .PLT1
617	 *	nop
618	 *	nop
619	 *	nop
620	 *	nop
621	 *	nop
622	 *	nop
623	 *
624	 * When we replace these entries we start from the last instruction
625	 * and do it in reverse order so the last thing we do is replace the
626	 * branch.  That allows us to change this atomically.
627	 *
628	 * We now need to find out how far we need to jump.  We have a choice
629	 * of several different relocation techniques which are increasingly
630	 * expensive.
631	 */
632
633	offset = ((Elf_Addr)where) - value;
634	if (rela->r_addend) {
635		Elf_Addr *ptr = (Elf_Addr *)where;
636		/*
637		 * This entry is >= 32768.  The relocations points to a
638		 * PC-relative pointer to the bind_0 stub at the top of the
639		 * PLT section.  Update it to point to the target function.
640		 */
641		ptr[0] += value - (Elf_Addr)obj->pltgot;
642
643	} else if (offset <= (1L<<20) && (Elf_SOff)offset >= -(1L<<20)) {
644		/*
645		 * We're within 1MB -- we can use a direct branch insn.
646		 *
647		 * We can generate this pattern:
648		 *
649		 *	sethi	%hi(. - .PLT0), %g1
650		 *	ba,a	%xcc, addr
651		 *	nop
652		 *	nop
653		 *	nop
654		 *	nop
655		 *	nop
656		 *	nop
657		 *
658		 */
659		where[1] = BAA | ((offset >> 2) & 0x3fffff);
660		__asm volatile("iflush %0+4" : : "r" (where));
661	} else if (value < (1L<<32)) {
662		/*
663		 * We're within 32-bits of address zero.
664		 *
665		 * The resulting code in the jump slot is:
666		 *
667		 *	sethi	%hi(. - .PLT0), %g1
668		 *	sethi	%hi(addr), %g1
669		 *	jmp	%g1+%lo(addr)
670		 *	nop
671		 *	nop
672		 *	nop
673		 *	nop
674		 *	nop
675		 *
676		 */
677		where[2] = JMP   | LOVAL(value, 0);
678		where[1] = SETHI | HIVAL(value, 10);
679		__asm volatile("iflush %0+8" : : "r" (where));
680		__asm volatile("iflush %0+4" : : "r" (where));
681
682	} else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
683		/*
684		 * We're within 32-bits of address -1.
685		 *
686		 * The resulting code in the jump slot is:
687		 *
688		 *	sethi	%hi(. - .PLT0), %g1
689		 *	sethi	%hix(addr), %g1
690		 *	xor	%g1, %lox(addr), %g1
691		 *	jmp	%g1
692		 *	nop
693		 *	nop
694		 *	nop
695		 *	nop
696		 *
697		 */
698		where[3] = JMP;
699		where[2] = XOR | ((~value) & 0x00001fff);
700		where[1] = SETHI | HIVAL(~value, 10);
701		__asm volatile("iflush %0+12" : : "r" (where));
702		__asm volatile("iflush %0+8" : : "r" (where));
703		__asm volatile("iflush %0+4" : : "r" (where));
704
705	} else if (offset <= (1L<<32) && (Elf_SOff)offset >= -((1L<<32) - 4)) {
706		/*
707		 * We're within 32-bits -- we can use a direct call insn
708		 *
709		 * The resulting code in the jump slot is:
710		 *
711		 *	sethi	%hi(. - .PLT0), %g1
712		 *	mov	%o7, %g1
713		 *	call	(.+offset)
714		 *	 mov	%g1, %o7
715		 *	nop
716		 *	nop
717		 *	nop
718		 *	nop
719		 *
720		 */
721		where[3] = MOV17;
722		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
723		where[1] = MOV71;
724		__asm volatile("iflush %0+12" : : "r" (where));
725		__asm volatile("iflush %0+8" : : "r" (where));
726		__asm volatile("iflush %0+4" : : "r" (where));
727
728	} else if (offset < (1L<<44)) {
729		/*
730		 * We're within 44 bits.  We can generate this pattern:
731		 *
732		 * The resulting code in the jump slot is:
733		 *
734		 *	sethi	%hi(. - .PLT0), %g1
735		 *	sethi	%h44(addr), %g1
736		 *	or	%g1, %m44(addr), %g1
737		 *	sllx	%g1, 12, %g1
738		 *	jmp	%g1+%l44(addr)
739		 *	nop
740		 *	nop
741		 *	nop
742		 *
743		 */
744		where[4] = JMP   | LOVAL(offset, 0);
745		where[3] = SLLX  | 12;
746		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
747		where[1] = SETHI | HIVAL(offset, 22);
748		__asm volatile("iflush %0+16" : : "r" (where));
749		__asm volatile("iflush %0+12" : : "r" (where));
750		__asm volatile("iflush %0+8" : : "r" (where));
751		__asm volatile("iflush %0+4" : : "r" (where));
752
753	} else if ((Elf_SOff)offset < 0 && (Elf_SOff)offset > -(1L<<44)) {
754		/*
755		 * We're within 44 bits.  We can generate this pattern:
756		 *
757		 * The resulting code in the jump slot is:
758		 *
759		 *	sethi	%hi(. - .PLT0), %g1
760		 *	sethi	%h44(-addr), %g1
761		 *	xor	%g1, %m44(-addr), %g1
762		 *	sllx	%g1, 12, %g1
763		 *	jmp	%g1+%l44(addr)
764		 *	nop
765		 *	nop
766		 *	nop
767		 *
768		 */
769		where[4] = JMP   | LOVAL(offset, 0);
770		where[3] = SLLX  | 12;
771		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
772		where[1] = SETHI | HIVAL(~offset, 22);
773		__asm volatile("iflush %0+16" : : "r" (where));
774		__asm volatile("iflush %0+12" : : "r" (where));
775		__asm volatile("iflush %0+8" : : "r" (where));
776		__asm volatile("iflush %0+4" : : "r" (where));
777
778	} else {
779		/*
780		 * We need to load all 64-bits
781		 *
782		 * The resulting code in the jump slot is:
783		 *
784		 *	sethi	%hi(. - .PLT0), %g1
785		 *	sethi	%hh(addr), %g1
786		 *	sethi	%lm(addr), %g5
787		 *	or	%g1, %hm(addr), %g1
788		 *	sllx	%g1, 32, %g1
789		 *	or	%g1, %g5, %g1
790		 *	jmp	%g1+%lo(addr)
791		 *	nop
792		 *
793		 */
794		where[6] = JMP     | LOVAL(value, 0);
795		where[5] = ORG5;
796		where[4] = SLLX    | 32;
797		where[3] = OR      | LOVAL(value, 32);
798		where[2] = SETHIG5 | HIVAL(value, 10);
799		where[1] = SETHI   | HIVAL(value, 42);
800		__asm volatile("iflush %0+24" : : "r" (where));
801		__asm volatile("iflush %0+20" : : "r" (where));
802		__asm volatile("iflush %0+16" : : "r" (where));
803		__asm volatile("iflush %0+12" : : "r" (where));
804		__asm volatile("iflush %0+8" : : "r" (where));
805		__asm volatile("iflush %0+4" : : "r" (where));
806
807	}
808
809	if (tp)
810		*tp = value;
811
812	return 0;
813}
814