1/*	$NetBSD: crypt.c,v 1.32 2011/12/27 23:34:13 christos Exp $	*/
2
3/*
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Tom Truscott.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36#if !defined(lint)
37#if 0
38static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
39#else
40__RCSID("$NetBSD: crypt.c,v 1.32 2011/12/27 23:34:13 christos Exp $");
41#endif
42#endif /* not lint */
43
44#include <limits.h>
45#include <pwd.h>
46#include <stdlib.h>
47#include <unistd.h>
48#if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49#include <stdio.h>
50#endif
51
52#include "crypt.h"
53
54/*
55 * UNIX password, and DES, encryption.
56 * By Tom Truscott, trt@rti.rti.org,
57 * from algorithms by Robert W. Baldwin and James Gillogly.
58 *
59 * References:
60 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 *
63 * "Password Security: A Case History," R. Morris and Ken Thompson,
64 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 *
66 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 */
69
70/* =====  Configuration ==================== */
71
72/*
73 * define "MUST_ALIGN" if your compiler cannot load/store
74 * long integers at arbitrary (e.g. odd) memory locations.
75 * (Either that or never pass unaligned addresses to des_cipher!)
76 */
77#if !defined(__vax__) && !defined(__i386__)
78#define	MUST_ALIGN
79#endif
80
81#ifdef CHAR_BITS
82#if CHAR_BITS != 8
83	#error C_block structure assumes 8 bit characters
84#endif
85#endif
86
87/*
88 * define "B64" to be the declaration for a 64 bit integer.
89 * XXX this feature is currently unused, see "endian" comment below.
90 */
91#if defined(cray)
92#define	B64	long
93#endif
94#if defined(convex)
95#define	B64	long long
96#endif
97
98/*
99 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
101 * little effect on crypt().
102 */
103#if defined(notdef)
104#define	LARGEDATA
105#endif
106
107/* compile with "-DSTATIC=void" when profiling */
108#ifndef STATIC
109#define	STATIC	static void
110#endif
111
112/* ==================================== */
113
114/*
115 * Cipher-block representation (Bob Baldwin):
116 *
117 * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
118 * representation is to store one bit per byte in an array of bytes.  Bit N of
119 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 * first byte, 9..16 in the second, and so on.  The DES spec apparently has
122 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 * the MSB of the first byte.  Specifically, the 64-bit input data and key are
125 * converted to LSB format, and the output 64-bit block is converted back into
126 * MSB format.
127 *
128 * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
130 * the computation, the expansion is applied only once, the expanded
131 * representation is maintained during the encryption, and a compression
132 * permutation is applied only at the end.  To speed up the S-box lookups,
133 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
135 * most significant ones.  The low two bits of each byte are zero.  (Thus,
136 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
139 * used, in which the output is the 64 bit result of an S-box lookup which
140 * has been permuted by P and expanded by E, and is ready for use in the next
141 * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
143 * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
144 * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
145 * 8*64*8 = 4K bytes.
146 *
147 * To speed up bit-parallel operations (such as XOR), the 8 byte
148 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 * machines which support it, a 64 bit value "b64".  This data structure,
150 * "C_block", has two problems.  First, alignment restrictions must be
151 * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
152 * the architecture becomes visible.
153 *
154 * The byte-order problem is unfortunate, since on the one hand it is good
155 * to have a machine-independent C_block representation (bits 1..8 in the
156 * first byte, etc.), and on the other hand it is good for the LSB of the
157 * first byte to be the LSB of i0.  We cannot have both these things, so we
158 * currently use the "little-endian" representation and avoid any multi-byte
159 * operations that depend on byte order.  This largely precludes use of the
160 * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
161 * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
162 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
164 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 *
167 * Permutation representation (Jim Gillogly):
168 *
169 * A transformation is defined by its effect on each of the 8 bytes of the
170 * 64-bit input.  For each byte we give a 64-bit output that has the bits in
171 * the input distributed appropriately.  The transformation is then the OR
172 * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
173 * each transformation.  Unless LARGEDATA is defined, however, a more compact
174 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
176 * is slower but tolerable, particularly for password encryption in which
177 * the SPE transformation is iterated many times.  The small tables total 9K
178 * bytes, the large tables total 72K bytes.
179 *
180 * The transformations used are:
181 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 *	This is done by collecting the 32 even-numbered bits and applying
183 *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 *	bits and applying the same transformation.  Since there are only
185 *	32 input bits, the IE3264 transformation table is half the size of
186 *	the usual table.
187 * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 *	This is done by two trivial 48->32 bit compressions to obtain
189 *	a 64-bit block (the bit numbering is given in the "CIFP" table)
190 *	followed by a 64->64 bit "cleanup" transformation.  (It would
191 *	be possible to group the bits in the 64-bit block so that 2
192 *	identical 32->32 bit transformations could be used instead,
193 *	saving a factor of 4 in space and possibly 2 in time, but
194 *	byte-ordering and other complications rear their ugly head.
195 *	Similar opportunities/problems arise in the key schedule
196 *	transforms.)
197 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 *	This admittedly baroque 64->64 bit transformation is used to
199 *	produce the first code (in 8*(6+2) format) of the key schedule.
200 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 *	It would be possible to define 15 more transformations, each
202 *	with a different rotation, to generate the entire key schedule.
203 *	To save space, however, we instead permute each code into the
204 *	next by using a transformation that "undoes" the PC2 permutation,
205 *	rotates the code, and then applies PC2.  Unfortunately, PC2
206 *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 *	invertible.  We get around that problem by using a modified PC2
208 *	which retains the 8 otherwise-lost bits in the unused low-order
209 *	bits of each byte.  The low-order bits are cleared when the
210 *	codes are stored into the key schedule.
211 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 *	This is faster than applying PC2ROT[0] twice,
213 *
214 * The Bell Labs "salt" (Bob Baldwin):
215 *
216 * The salting is a simple permutation applied to the 48-bit result of E.
217 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
219 * 16777216 possible values.  (The original salt was 12 bits and could not
220 * swap bits 13..24 with 36..48.)
221 *
222 * It is possible, but ugly, to warp the SPE table to account for the salt
223 * permutation.  Fortunately, the conditional bit swapping requires only
224 * about four machine instructions and can be done on-the-fly with about an
225 * 8% performance penalty.
226 */
227
228typedef union {
229	unsigned char b[8];
230	struct {
231		int32_t	i0;
232		int32_t	i1;
233	} b32;
234#if defined(B64)
235	B64	b64;
236#endif
237} C_block;
238
239/*
240 * Convert twenty-four-bit long in host-order
241 * to six bits (and 2 low-order zeroes) per char little-endian format.
242 */
243#define	TO_SIX_BIT(rslt, src) {				\
244		C_block cvt;				\
245		cvt.b[0] = src; src >>= 6;		\
246		cvt.b[1] = src; src >>= 6;		\
247		cvt.b[2] = src; src >>= 6;		\
248		cvt.b[3] = src;				\
249		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
250	}
251
252/*
253 * These macros may someday permit efficient use of 64-bit integers.
254 */
255#define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
256#define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
257#define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
258#define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259#define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
260#define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
261
262#if defined(LARGEDATA)
263	/* Waste memory like crazy.  Also, do permutations in line */
264#define	LGCHUNKBITS	3
265#define	CHUNKBITS	(1<<LGCHUNKBITS)
266#define	PERM6464(d,d0,d1,cpp,p)				\
267	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
268	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
269	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
270	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
271	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
272	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
273	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
274	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275#define	PERM3264(d,d0,d1,cpp,p)				\
276	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
277	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
278	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
279	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280#else
281	/* "small data" */
282#define	LGCHUNKBITS	2
283#define	CHUNKBITS	(1<<LGCHUNKBITS)
284#define	PERM6464(d,d0,d1,cpp,p)				\
285	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286#define	PERM3264(d,d0,d1,cpp,p)				\
287	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288#endif /* LARGEDATA */
289
290STATIC	init_des(void);
291STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292		       const unsigned char [64], int, int);
293#ifndef LARGEDATA
294STATIC	permute(const unsigned char *, C_block *, C_block *, int);
295#endif
296#ifdef DEBUG
297STATIC	prtab(const char *, unsigned char *, int);
298#endif
299
300
301#ifndef LARGEDATA
302STATIC
303permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
304{
305	DCL_BLOCK(D,D0,D1);
306	C_block *tp;
307	int t;
308
309	ZERO(D,D0,D1);
310	do {
311		t = *cp++;
312		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314	} while (--chars_in > 0);
315	STORE(D,D0,D1,*out);
316}
317#endif /* LARGEDATA */
318
319
320/* =====  (mostly) Standard DES Tables ==================== */
321
322static const unsigned char IP[] = {	/* initial permutation */
323	58, 50, 42, 34, 26, 18, 10,  2,
324	60, 52, 44, 36, 28, 20, 12,  4,
325	62, 54, 46, 38, 30, 22, 14,  6,
326	64, 56, 48, 40, 32, 24, 16,  8,
327	57, 49, 41, 33, 25, 17,  9,  1,
328	59, 51, 43, 35, 27, 19, 11,  3,
329	61, 53, 45, 37, 29, 21, 13,  5,
330	63, 55, 47, 39, 31, 23, 15,  7,
331};
332
333/* The final permutation is the inverse of IP - no table is necessary */
334
335static const unsigned char ExpandTr[] = {	/* expansion operation */
336	32,  1,  2,  3,  4,  5,
337	 4,  5,  6,  7,  8,  9,
338	 8,  9, 10, 11, 12, 13,
339	12, 13, 14, 15, 16, 17,
340	16, 17, 18, 19, 20, 21,
341	20, 21, 22, 23, 24, 25,
342	24, 25, 26, 27, 28, 29,
343	28, 29, 30, 31, 32,  1,
344};
345
346static const unsigned char PC1[] = {	/* permuted choice table 1 */
347	57, 49, 41, 33, 25, 17,  9,
348	 1, 58, 50, 42, 34, 26, 18,
349	10,  2, 59, 51, 43, 35, 27,
350	19, 11,  3, 60, 52, 44, 36,
351
352	63, 55, 47, 39, 31, 23, 15,
353	 7, 62, 54, 46, 38, 30, 22,
354	14,  6, 61, 53, 45, 37, 29,
355	21, 13,  5, 28, 20, 12,  4,
356};
357
358static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360};
361
362/* note: each "row" of PC2 is left-padded with bits that make it invertible */
363static const unsigned char PC2[] = {	/* permuted choice table 2 */
364	 9, 18,    14, 17, 11, 24,  1,  5,
365	22, 25,     3, 28, 15,  6, 21, 10,
366	35, 38,    23, 19, 12,  4, 26,  8,
367	43, 54,    16,  7, 27, 20, 13,  2,
368
369	 0,  0,    41, 52, 31, 37, 47, 55,
370	 0,  0,    30, 40, 51, 45, 33, 48,
371	 0,  0,    44, 49, 39, 56, 34, 53,
372	 0,  0,    46, 42, 50, 36, 29, 32,
373};
374
375static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
376					/* S[1]			*/
377	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
378	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
379	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
380	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
381					/* S[2]			*/
382	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
383	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
384	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
385	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
386					/* S[3]			*/
387	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
388	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
389	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
390	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
391					/* S[4]			*/
392	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
393	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
394	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
395	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
396					/* S[5]			*/
397	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
398	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
399	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
400	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
401					/* S[6]			*/
402	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
403	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
404	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
405	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
406					/* S[7]			*/
407	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
408	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
409	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
410	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
411					/* S[8]			*/
412	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
413	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
414	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
415	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
416};
417
418static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
419	16,  7, 20, 21,
420	29, 12, 28, 17,
421	 1, 15, 23, 26,
422	 5, 18, 31, 10,
423	 2,  8, 24, 14,
424	32, 27,  3,  9,
425	19, 13, 30,  6,
426	22, 11,  4, 25,
427};
428
429static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
430	 1,  2,  3,  4,   17, 18, 19, 20,
431	 5,  6,  7,  8,   21, 22, 23, 24,
432	 9, 10, 11, 12,   25, 26, 27, 28,
433	13, 14, 15, 16,   29, 30, 31, 32,
434
435	33, 34, 35, 36,   49, 50, 51, 52,
436	37, 38, 39, 40,   53, 54, 55, 56,
437	41, 42, 43, 44,   57, 58, 59, 60,
438	45, 46, 47, 48,   61, 62, 63, 64,
439};
440
441static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
442	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443
444
445/* =====  Tables that are initialized at run time  ==================== */
446
447
448/* Initial key schedule permutation */
449static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
450
451/* Subsequent key schedule rotation permutations */
452static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
453
454/* Initial permutation/expansion table */
455static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
456
457/* Table that combines the S, P, and E operations.  */
458static int32_t SPE[2][8][64];
459
460/* compressed/interleaved => final permutation table */
461static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
462
463
464/* ==================================== */
465
466
467static C_block	constdatablock;			/* encryption constant */
468static char	cryptresult[1+4+4+11+1];	/* encrypted result */
469
470/*
471 * We match the behavior of UFC-crypt on systems where "char" is signed by
472 * default (the majority), regardless of char's signedness on our system.
473 */
474static inline int
475ascii_to_bin(char ch)
476{
477	signed char sch = ch;
478	int retval;
479
480	if (sch >= 'a')
481		retval = sch - ('a' - 38);
482	else if (sch >= 'A')
483		retval = sch - ('A' - 12);
484	else
485		retval = sch - '.';
486
487	return retval & 0x3f;
488}
489
490/*
491 * When we choose to "support" invalid salts, nevertheless disallow those
492 * containing characters that would violate the passwd file format.
493 */
494static inline int
495ascii_is_unsafe(char ch)
496{
497	return !ch || ch == '\n' || ch == ':';
498}
499
500/*
501 * Return a pointer to static data consisting of the "setting"
502 * followed by an encryption produced by the "key" and "setting".
503 */
504static char *
505__crypt(const char *key, const char *setting)
506{
507	char *encp;
508	int32_t i;
509	int t;
510	int32_t salt;
511	int num_iter, salt_size;
512	C_block keyblock, rsltblock;
513
514	/* Non-DES encryption schemes hook in here. */
515	if (setting[0] == _PASSWORD_NONDES) {
516		switch (setting[1]) {
517		case '2':
518			return (__bcrypt(key, setting));
519		case 's':
520			return (__crypt_sha1(key, setting));
521		case '1':
522		default:
523			return (__md5crypt(key, setting));
524		}
525	}
526
527	for (i = 0; i < 8; i++) {
528		if ((t = 2*(unsigned char)(*key)) != 0)
529			key++;
530		keyblock.b[i] = t;
531	}
532	if (des_setkey((char *)keyblock.b))
533		return (NULL);
534
535	encp = &cryptresult[0];
536	switch (*setting) {
537	case _PASSWORD_EFMT1:
538		/*
539		 * Involve the rest of the password 8 characters at a time.
540		 */
541		while (*key) {
542			if (des_cipher((char *)(void *)&keyblock,
543			    (char *)(void *)&keyblock, 0L, 1))
544				return (NULL);
545			for (i = 0; i < 8; i++) {
546				if ((t = 2*(unsigned char)(*key)) != 0)
547					key++;
548				keyblock.b[i] ^= t;
549			}
550			if (des_setkey((char *)keyblock.b))
551				return (NULL);
552		}
553
554		*encp++ = *setting++;
555
556		/* get iteration count */
557		num_iter = 0;
558		for (i = 4; --i >= 0; ) {
559			int value = ascii_to_bin(setting[i]);
560			if (itoa64[value] != setting[i])
561				return NULL;
562			encp[i] = setting[i];
563			num_iter = (num_iter << 6) | value;
564		}
565		if (num_iter == 0)
566			return NULL;
567		setting += 4;
568		encp += 4;
569		salt_size = 4;
570		break;
571	default:
572		num_iter = 25;
573		salt_size = 2;
574		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
575			return NULL;
576	}
577
578	salt = 0;
579	for (i = salt_size; --i >= 0; ) {
580		int value = ascii_to_bin(setting[i]);
581		if (salt_size > 2 && itoa64[value] != setting[i])
582			return NULL;
583		encp[i] = setting[i];
584		salt = (salt << 6) | value;
585	}
586	encp += salt_size;
587	if (des_cipher((char *)(void *)&constdatablock,
588	    (char *)(void *)&rsltblock, salt, num_iter))
589		return (NULL);
590
591	/*
592	 * Encode the 64 cipher bits as 11 ascii characters.
593	 */
594	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
595	    rsltblock.b[2];
596	encp[3] = itoa64[i&0x3f];	i >>= 6;
597	encp[2] = itoa64[i&0x3f];	i >>= 6;
598	encp[1] = itoa64[i&0x3f];	i >>= 6;
599	encp[0] = itoa64[i];		encp += 4;
600	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
601	    rsltblock.b[5];
602	encp[3] = itoa64[i&0x3f];	i >>= 6;
603	encp[2] = itoa64[i&0x3f];	i >>= 6;
604	encp[1] = itoa64[i&0x3f];	i >>= 6;
605	encp[0] = itoa64[i];		encp += 4;
606	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
607	encp[2] = itoa64[i&0x3f];	i >>= 6;
608	encp[1] = itoa64[i&0x3f];	i >>= 6;
609	encp[0] = itoa64[i];
610
611	encp[3] = 0;
612
613	return (cryptresult);
614}
615
616char *
617crypt(const char *key, const char *salt)
618{
619	char *res = __crypt(key, salt);
620	if (res)
621		return res;
622	/* How do I handle errors ? Return "*0" or "*1" */
623	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
624}
625
626/*
627 * The Key Schedule, filled in by des_setkey() or setkey().
628 */
629#define	KS_SIZE	16
630static C_block	KS[KS_SIZE];
631
632/*
633 * Set up the key schedule from the key.
634 */
635int
636des_setkey(const char *key)
637{
638	DCL_BLOCK(K, K0, K1);
639	C_block *help, *ptabp;
640	int i;
641	static int des_ready = 0;
642
643	if (!des_ready) {
644		init_des();
645		des_ready = 1;
646	}
647
648	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
649	help = &KS[0];
650	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
651	for (i = 1; i < 16; i++) {
652		help++;
653		STORE(K,K0,K1,*help);
654		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
655		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
656		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
657	}
658	return (0);
659}
660
661/*
662 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
663 * iterations of DES, using the given 24-bit salt and the pre-computed key
664 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
665 *
666 * NOTE: the performance of this routine is critically dependent on your
667 * compiler and machine architecture.
668 */
669int
670des_cipher(const char *in, char *out, long salt, int num_iter)
671{
672	/* variables that we want in registers, most important first */
673#if defined(pdp11)
674	int j;
675#endif
676	int32_t L0, L1, R0, R1, k;
677	C_block *kp;
678	int ks_inc, loop_count;
679	C_block B;
680
681	L0 = salt;
682	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
683
684#if defined(__vax__) || defined(pdp11)
685	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
686#define	SALT (~salt)
687#else
688#define	SALT salt
689#endif
690
691#if defined(MUST_ALIGN)
692	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
693	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
694	LOAD(L,L0,L1,B);
695#else
696	LOAD(L,L0,L1,*(const C_block *)in);
697#endif
698	LOADREG(R,R0,R1,L,L0,L1);
699	L0 &= 0x55555555L;
700	L1 &= 0x55555555L;
701	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
702	R0 &= 0xaaaaaaaaL;
703	R1 = (R1 >> 1) & 0x55555555L;
704	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
705	STORE(L,L0,L1,B);
706	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
707	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
708
709	if (num_iter >= 0)
710	{		/* encryption */
711		kp = &KS[0];
712		ks_inc  = sizeof(*kp);
713	}
714	else
715	{		/* decryption */
716		num_iter = -num_iter;
717		kp = &KS[KS_SIZE-1];
718		ks_inc  = -(long)sizeof(*kp);
719	}
720
721	while (--num_iter >= 0) {
722		loop_count = 8;
723		do {
724
725#define	SPTAB(t, i) \
726	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
727#if defined(gould)
728			/* use this if B.b[i] is evaluated just once ... */
729#define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
730#else
731#if defined(pdp11)
732			/* use this if your "long" int indexing is slow */
733#define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
734#else
735			/* use this if "k" is allocated to a register ... */
736#define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
737#endif
738#endif
739
740#define	CRUNCH(p0, p1, q0, q1)	\
741			k = (q0 ^ q1) & SALT;	\
742			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
743			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
744			kp = (C_block *)((char *)kp+ks_inc);	\
745							\
746			DOXOR(p0, p1, 0);		\
747			DOXOR(p0, p1, 1);		\
748			DOXOR(p0, p1, 2);		\
749			DOXOR(p0, p1, 3);		\
750			DOXOR(p0, p1, 4);		\
751			DOXOR(p0, p1, 5);		\
752			DOXOR(p0, p1, 6);		\
753			DOXOR(p0, p1, 7);
754
755			CRUNCH(L0, L1, R0, R1);
756			CRUNCH(R0, R1, L0, L1);
757		} while (--loop_count != 0);
758		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
759
760
761		/* swap L and R */
762		L0 ^= R0;  L1 ^= R1;
763		R0 ^= L0;  R1 ^= L1;
764		L0 ^= R0;  L1 ^= R1;
765	}
766
767	/* store the encrypted (or decrypted) result */
768	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
769	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
770	STORE(L,L0,L1,B);
771	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
772#if defined(MUST_ALIGN)
773	STORE(L,L0,L1,B);
774	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
775	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
776#else
777	STORE(L,L0,L1,*(C_block *)out);
778#endif
779	return (0);
780}
781
782
783/*
784 * Initialize various tables.  This need only be done once.  It could even be
785 * done at compile time, if the compiler were capable of that sort of thing.
786 */
787STATIC
788init_des(void)
789{
790	int i, j;
791	int32_t k;
792	int tableno;
793	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
794
795	/*
796	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
797	 */
798	for (i = 0; i < 64; i++)
799		perm[i] = 0;
800	for (i = 0; i < 64; i++) {
801		if ((k = PC2[i]) == 0)
802			continue;
803		k += Rotates[0]-1;
804		if ((k%28) < Rotates[0]) k -= 28;
805		k = PC1[k];
806		if (k > 0) {
807			k--;
808			k = (k|07) - (k&07);
809			k++;
810		}
811		perm[i] = k;
812	}
813#ifdef DEBUG
814	prtab("pc1tab", perm, 8);
815#endif
816	init_perm(PC1ROT, perm, 8, 8);
817
818	/*
819	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
820	 */
821	for (j = 0; j < 2; j++) {
822		unsigned char pc2inv[64];
823		for (i = 0; i < 64; i++)
824			perm[i] = pc2inv[i] = 0;
825		for (i = 0; i < 64; i++) {
826			if ((k = PC2[i]) == 0)
827				continue;
828			pc2inv[k-1] = i+1;
829		}
830		for (i = 0; i < 64; i++) {
831			if ((k = PC2[i]) == 0)
832				continue;
833			k += j;
834			if ((k%28) <= j) k -= 28;
835			perm[i] = pc2inv[k];
836		}
837#ifdef DEBUG
838		prtab("pc2tab", perm, 8);
839#endif
840		init_perm(PC2ROT[j], perm, 8, 8);
841	}
842
843	/*
844	 * Bit reverse, then initial permutation, then expansion.
845	 */
846	for (i = 0; i < 8; i++) {
847		for (j = 0; j < 8; j++) {
848			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
849			if (k > 32)
850				k -= 32;
851			else if (k > 0)
852				k--;
853			if (k > 0) {
854				k--;
855				k = (k|07) - (k&07);
856				k++;
857			}
858			perm[i*8+j] = k;
859		}
860	}
861#ifdef DEBUG
862	prtab("ietab", perm, 8);
863#endif
864	init_perm(IE3264, perm, 4, 8);
865
866	/*
867	 * Compression, then final permutation, then bit reverse.
868	 */
869	for (i = 0; i < 64; i++) {
870		k = IP[CIFP[i]-1];
871		if (k > 0) {
872			k--;
873			k = (k|07) - (k&07);
874			k++;
875		}
876		perm[k-1] = i+1;
877	}
878#ifdef DEBUG
879	prtab("cftab", perm, 8);
880#endif
881	init_perm(CF6464, perm, 8, 8);
882
883	/*
884	 * SPE table
885	 */
886	for (i = 0; i < 48; i++)
887		perm[i] = P32Tr[ExpandTr[i]-1];
888	for (tableno = 0; tableno < 8; tableno++) {
889		for (j = 0; j < 64; j++)  {
890			k = (((j >> 0) &01) << 5)|
891			    (((j >> 1) &01) << 3)|
892			    (((j >> 2) &01) << 2)|
893			    (((j >> 3) &01) << 1)|
894			    (((j >> 4) &01) << 0)|
895			    (((j >> 5) &01) << 4);
896			k = S[tableno][k];
897			k = (((k >> 3)&01) << 0)|
898			    (((k >> 2)&01) << 1)|
899			    (((k >> 1)&01) << 2)|
900			    (((k >> 0)&01) << 3);
901			for (i = 0; i < 32; i++)
902				tmp32[i] = 0;
903			for (i = 0; i < 4; i++)
904				tmp32[4 * tableno + i] = (k >> i) & 01;
905			k = 0;
906			for (i = 24; --i >= 0; )
907				k = (k<<1) | tmp32[perm[i]-1];
908			TO_SIX_BIT(SPE[0][tableno][j], k);
909			k = 0;
910			for (i = 24; --i >= 0; )
911				k = (k<<1) | tmp32[perm[i+24]-1];
912			TO_SIX_BIT(SPE[1][tableno][j], k);
913		}
914	}
915}
916
917/*
918 * Initialize "perm" to represent transformation "p", which rearranges
919 * (perhaps with expansion and/or contraction) one packed array of bits
920 * (of size "chars_in" characters) into another array (of size "chars_out"
921 * characters).
922 *
923 * "perm" must be all-zeroes on entry to this routine.
924 */
925STATIC
926init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
927    int chars_in, int chars_out)
928{
929	int i, j, k, l;
930
931	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
932		l = p[k] - 1;		/* where this bit comes from */
933		if (l < 0)
934			continue;	/* output bit is always 0 */
935		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
936		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
937		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
938			if ((j & l) != 0)
939				perm[i][j].b[k>>3] |= 1<<(k&07);
940		}
941	}
942}
943
944/*
945 * "setkey" routine (for backwards compatibility)
946 */
947int
948setkey(const char *key)
949{
950	int i, j, k;
951	C_block keyblock;
952
953	for (i = 0; i < 8; i++) {
954		k = 0;
955		for (j = 0; j < 8; j++) {
956			k <<= 1;
957			k |= (unsigned char)*key++;
958		}
959		keyblock.b[i] = k;
960	}
961	return (des_setkey((char *)keyblock.b));
962}
963
964/*
965 * "encrypt" routine (for backwards compatibility)
966 */
967int
968encrypt(char *block, int flag)
969{
970	int i, j, k;
971	C_block cblock;
972
973	for (i = 0; i < 8; i++) {
974		k = 0;
975		for (j = 0; j < 8; j++) {
976			k <<= 1;
977			k |= (unsigned char)*block++;
978		}
979		cblock.b[i] = k;
980	}
981	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
982		return (1);
983	for (i = 7; i >= 0; i--) {
984		k = cblock.b[i];
985		for (j = 7; j >= 0; j--) {
986			*--block = k&01;
987			k >>= 1;
988		}
989	}
990	return (0);
991}
992
993#ifdef DEBUG
994STATIC
995prtab(const char *s, unsigned char *t, int num_rows)
996{
997	int i, j;
998
999	(void)printf("%s:\n", s);
1000	for (i = 0; i < num_rows; i++) {
1001		for (j = 0; j < 8; j++) {
1002			 (void)printf("%3d", t[i*8+j]);
1003		}
1004		(void)printf("\n");
1005	}
1006	(void)printf("\n");
1007}
1008#endif
1009
1010#if defined(MAIN) || defined(UNIT_TEST)
1011#include <err.h>
1012
1013int
1014main(int argc, char *argv[])
1015{
1016    if (argc < 2)
1017	errx(1, "Usage: %s password [salt]\n", argv[0]);
1018
1019    printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1020    exit(0);
1021}
1022#endif
1023