1/* $NetBSD: gdtoaimp.h,v 1.11 2011/03/21 22:33:29 christos Exp $ */
2
3/****************************************************************
4
5The author of this software is David M. Gay.
6
7Copyright (C) 1998-2000 by Lucent Technologies
8All Rights Reserved
9
10Permission to use, copy, modify, and distribute this software and
11its documentation for any purpose and without fee is hereby
12granted, provided that the above copyright notice appear in all
13copies and that both that the copyright notice and this
14permission notice and warranty disclaimer appear in supporting
15documentation, and that the name of Lucent or any of its entities
16not be used in advertising or publicity pertaining to
17distribution of the software without specific, written prior
18permission.
19
20LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27THIS SOFTWARE.
28
29****************************************************************/
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to David M. Gay (dmg at acm dot org,
39   with " at " changed at "@" and " dot " changed to ".").
40 */
41
42/* On a machine with IEEE extended-precision registers, it is
43 * necessary to specify double-precision (53-bit) rounding precision
44 * before invoking strtod or dtoa.  If the machine uses (the equivalent
45 * of) Intel 80x87 arithmetic, the call
46 *	_control87(PC_53, MCW_PC);
47 * does this with many compilers.  Whether this or another call is
48 * appropriate depends on the compiler; for this to work, it may be
49 * necessary to #include "float.h" or another system-dependent header
50 * file.
51 */
52
53/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 *
55 * This strtod returns a nearest machine number to the input decimal
56 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57 * broken by the IEEE round-even rule.  Otherwise ties are broken by
58 * biased rounding (add half and chop).
59 *
60 * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 *
63 * Modifications:
64 *
65 *	1. We only require IEEE, IBM, or VAX double-precision
66 *		arithmetic (not IEEE double-extended).
67 *	2. We get by with floating-point arithmetic in a case that
68 *		Clinger missed -- when we're computing d * 10^n
69 *		for a small integer d and the integer n is not too
70 *		much larger than 22 (the maximum integer k for which
71 *		we can represent 10^k exactly), we may be able to
72 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73 *	3. Rather than a bit-at-a-time adjustment of the binary
74 *		result in the hard case, we use floating-point
75 *		arithmetic to determine the adjustment to within
76 *		one bit; only in really hard cases do we need to
77 *		compute a second residual.
78 *	4. Because of 3., we don't need a large table of powers of 10
79 *		for ten-to-e (just some small tables, e.g. of 10^k
80 *		for 0 <= k <= 22).
81 */
82
83/*
84 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
85 *	significant byte has the lowest address.
86 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
87 *	significant byte has the lowest address.
88 * #define Long int on machines with 32-bit ints and 64-bit longs.
89 * #define Sudden_Underflow for IEEE-format machines without gradual
90 *	underflow (i.e., that flush to zero on underflow).
91 * #define IBM for IBM mainframe-style floating-point arithmetic.
92 * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 * #define No_leftright to omit left-right logic in fast floating-point
94 *	computation of dtoa.
95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 *	that use extended-precision instructions to compute rounded
98 *	products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100 *	that rounds toward +Infinity.
101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102 *	rounding when the underlying floating-point arithmetic uses
103 *	unbiased rounding.  This prevent using ordinary floating-point
104 *	arithmetic when the result could be computed with one rounding error.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.  Similarly, if you
124 *	want something other than the system's free() to be called to
125 *	recycle memory acquired from MALLOC, #define FREE to be the
126 *	name of the alternate routine.  (FREE or free is only called in
127 *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
128 *	mode 3 with thousands of digits requested.)
129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130 *	memory allocations from a private pool of memory when possible.
131 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
132 *	unless #defined to be a different length.  This default length
133 *	suffices to get rid of MALLOC calls except for unusual cases,
134 *	such as decimal-to-binary conversion of a very long string of
135 *	digits.  When converting IEEE double precision values, the
136 *	longest string gdtoa can return is about 751 bytes long.  For
137 *	conversions by strtod of strings of 800 digits and all gdtoa
138 *	conversions of IEEE doubles in single-threaded executions with
139 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142 *	#defined automatically on IEEE systems.  On such systems,
143 *	when INFNAN_CHECK is #defined, strtod checks
144 *	for Infinity and NaN (case insensitively).
145 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146 *	strtodg also accepts (case insensitively) strings of the form
147 *	NaN(x), where x is a string of hexadecimal digits (optionally
148 *	preceded by 0x or 0X) and spaces; if there is only one string
149 *	of hexadecimal digits, it is taken for the fraction bits of the
150 *	resulting NaN; if there are two or more strings of hexadecimal
151 *	digits, each string is assigned to the next available sequence
152 *	of 32-bit words of fractions bits (starting with the most
153 *	significant), right-aligned in each sequence.
154 *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155 *	is consumed even when ... has the wrong form (in which case the
156 *	"(...)" is consumed but ignored).
157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158 *	multiple threads.  In this case, you must provide (or suitably
159 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
161 *	in pow5mult, ensures lazy evaluation of only one copy of high
162 *	powers of 5; omitting this lock would introduce a small
163 *	probability of wasting memory, but would otherwise be harmless.)
164 *	You must also invoke freedtoa(s) to free the value s returned by
165 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
166 * #define IMPRECISE_INEXACT if you do not care about the setting of
167 *	the STRTOG_Inexact bits in the special case of doing IEEE double
168 *	precision conversions (which could also be done by the strtod in
169 *	dtoa.c).
170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171 *	floating-point constants.
172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173 *	strtodg.c).
174 * #define NO_STRING_H to use private versions of memcpy.
175 *	On some K&R systems, it may also be necessary to
176 *	#define DECLARE_SIZE_T in this case.
177 * #define USE_LOCALE to use the current locale's decimal_point value.
178 */
179
180/* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
181
182#include <stdint.h>
183#define Short   int16_t
184#define UShort uint16_t
185#define Long    int32_t
186#define ULong  uint32_t
187#define LLong   int64_t
188#define ULLong uint64_t
189
190#define INFNAN_CHECK
191#ifdef _REENTRANT
192#define MULTIPLE_THREADS
193#endif
194#define USE_LOCALE
195
196#ifndef GDTOAIMP_H_INCLUDED
197#define GDTOAIMP_H_INCLUDED
198#include "gdtoa.h"
199#include "gd_qnan.h"
200#ifdef Honor_FLT_ROUNDS
201#include <fenv.h>
202#endif
203
204#ifdef DEBUG
205#include "stdio.h"
206#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
207#endif
208
209#include "stdlib.h"
210#include "string.h"
211
212#ifdef KR_headers
213#define Char char
214#else
215#define Char void
216#endif
217
218#ifdef MALLOC
219extern Char *MALLOC ANSI((size_t));
220#else
221#define MALLOC malloc
222#endif
223
224#undef IEEE_Arith
225#undef Avoid_Underflow
226#ifdef IEEE_BIG_ENDIAN
227#define IEEE_Arith
228#endif
229#ifdef IEEE_LITTLE_ENDIAN
230#define IEEE_Arith
231#endif
232
233#include "errno.h"
234#ifdef Bad_float_h
235
236#ifdef IEEE_Arith
237#define DBL_DIG 15
238#define DBL_MAX_10_EXP 308
239#define DBL_MAX_EXP 1024
240#define FLT_RADIX 2
241#define DBL_MAX 1.7976931348623157e+308
242#endif
243
244#ifdef IBM
245#define DBL_DIG 16
246#define DBL_MAX_10_EXP 75
247#define DBL_MAX_EXP 63
248#define FLT_RADIX 16
249#define DBL_MAX 7.2370055773322621e+75
250#endif
251
252#ifdef VAX
253#define DBL_DIG 16
254#define DBL_MAX_10_EXP 38
255#define DBL_MAX_EXP 127
256#define FLT_RADIX 2
257#define DBL_MAX 1.7014118346046923e+38
258#define n_bigtens 2
259#endif
260
261#ifndef LONG_MAX
262#define LONG_MAX 2147483647
263#endif
264
265#else /* ifndef Bad_float_h */
266#include "float.h"
267#endif /* Bad_float_h */
268
269#ifdef IEEE_Arith
270#define Scale_Bit 0x10
271#define n_bigtens 5
272#endif
273
274#ifdef IBM
275#define n_bigtens 3
276#endif
277
278#ifdef VAX
279#define n_bigtens 2
280#endif
281
282#include "math.h"
283
284#ifdef __cplusplus
285extern "C" {
286#endif
287
288#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
289Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
290#endif
291
292typedef union { double d; ULong L[2]; } __attribute__((__may_alias__)) U;
293
294#ifdef YES_ALIAS
295#define dval(x) x
296#ifdef IEEE_LITTLE_ENDIAN
297#define word0(x) ((ULong *)x)[1]
298#define word1(x) ((ULong *)x)[0]
299#else
300#define word0(x) ((ULong *)x)[0]
301#define word1(x) ((ULong *)x)[1]
302#endif
303#else /* !YES_ALIAS */
304#ifdef IEEE_LITTLE_ENDIAN
305#define word0(x) ( /* LINTED */ (U*)x)->L[1]
306#define word1(x) ( /* LINTED */ (U*)x)->L[0]
307#else
308#define word0(x) ( /* LINTED */ (U*)x)->L[0]
309#define word1(x) ( /* LINTED */ (U*)x)->L[1]
310#endif
311#define dval(x) ( /* LINTED */ (U*)x)->d
312#endif /* YES_ALIAS */
313
314/* The following definition of Storeinc is appropriate for MIPS processors.
315 * An alternative that might be better on some machines is
316 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
317 */
318#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
319#define Storeinc(a,b,c) \
320 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
321  ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
322  a++)
323#else
324#define Storeinc(a,b,c) \
325 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
326  ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
327  a++)
328#endif
329
330/* #define P DBL_MANT_DIG */
331/* Ten_pmax = floor(P*log(2)/log(5)) */
332/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
333/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
334/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
335
336#ifdef IEEE_Arith
337#define Exp_shift  20
338#define Exp_shift1 20
339#define Exp_msk1    0x100000
340#define Exp_msk11   0x100000
341#define Exp_mask  0x7ff00000
342#define P 53
343#define Bias 1023
344#define Emin (-1022)
345#define Exp_1  0x3ff00000
346#define Exp_11 0x3ff00000
347#define Ebits 11
348#define Frac_mask  0xfffff
349#define Frac_mask1 0xfffff
350#define Ten_pmax 22
351#define Bletch 0x10
352#define Bndry_mask  0xfffff
353#define Bndry_mask1 0xfffff
354#define LSB 1
355#define Sign_bit 0x80000000
356#define Log2P 1
357#define Tiny0 0
358#define Tiny1 1
359#define Quick_max 14
360#define Int_max 14
361
362#ifndef Flt_Rounds
363#ifdef FLT_ROUNDS
364#define Flt_Rounds FLT_ROUNDS
365#else
366#define Flt_Rounds 1
367#endif
368#endif /*Flt_Rounds*/
369
370#else /* ifndef IEEE_Arith */
371#undef  Sudden_Underflow
372#define Sudden_Underflow
373#ifdef IBM
374#undef Flt_Rounds
375#define Flt_Rounds 0
376#define Exp_shift  24
377#define Exp_shift1 24
378#define Exp_msk1   0x1000000
379#define Exp_msk11  0x1000000
380#define Exp_mask  0x7f000000
381#define P 14
382#define Bias 65
383#define Exp_1  0x41000000
384#define Exp_11 0x41000000
385#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
386#define Frac_mask  0xffffff
387#define Frac_mask1 0xffffff
388#define Bletch 4
389#define Ten_pmax 22
390#define Bndry_mask  0xefffff
391#define Bndry_mask1 0xffffff
392#define LSB 1
393#define Sign_bit 0x80000000
394#define Log2P 4
395#define Tiny0 0x100000
396#define Tiny1 0
397#define Quick_max 14
398#define Int_max 15
399#else /* VAX */
400#undef Flt_Rounds
401#define Flt_Rounds 1
402#define Exp_shift  23
403#define Exp_shift1 7
404#define Exp_msk1    0x80
405#define Exp_msk11   0x800000
406#define Exp_mask  0x7f80
407#define P 56
408#define Bias 129
409#define Emin (-127)	/* XXX: Check this */
410#define Exp_1  0x40800000
411#define Exp_11 0x4080
412#define Ebits 8
413#define Frac_mask  0x7fffff
414#define Frac_mask1 0xffff007f
415#define Ten_pmax 24
416#define Bletch 2
417#define Bndry_mask  0xffff007f
418#define Bndry_mask1 0xffff007f
419#define LSB 0x10000
420#define Sign_bit 0x8000
421#define Log2P 1
422#define Tiny0 0x80
423#define Tiny1 0
424#define Quick_max 15
425#define Int_max 15
426#endif /* IBM, VAX */
427#endif /* IEEE_Arith */
428
429#ifndef IEEE_Arith
430#define ROUND_BIASED
431#else
432#ifdef ROUND_BIASED_without_Round_Up
433#undef  ROUND_BIASED
434#define ROUND_BIASED
435#endif
436#endif
437
438#ifdef RND_PRODQUOT
439#define rounded_product(a,b) a = rnd_prod(a, b)
440#define rounded_quotient(a,b) a = rnd_quot(a, b)
441#ifdef KR_headers
442extern double rnd_prod(), rnd_quot();
443#else
444extern double rnd_prod(double, double), rnd_quot(double, double);
445#endif
446#else
447#define rounded_product(a,b) a *= b
448#define rounded_quotient(a,b) a /= b
449#endif
450
451#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
452#define Big1 0xffffffff
453
454#undef  Pack_16
455#ifndef Pack_32
456#define Pack_32
457#endif
458
459#ifdef NO_LONG_LONG
460#undef ULLong
461#ifdef Just_16
462#undef Pack_32
463#define Pack_16
464/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
465 * This makes some inner loops simpler and sometimes saves work
466 * during multiplications, but it often seems to make things slightly
467 * slower.  Hence the default is now to store 32 bits per Long.
468 */
469#endif
470#else	/* long long available */
471#ifndef Llong
472#define Llong long long
473#endif
474#ifndef ULLong
475#define ULLong unsigned Llong
476#endif
477#endif /* NO_LONG_LONG */
478
479#ifdef Pack_32
480#define ULbits 32
481#define kshift 5
482#define kmask 31
483#define ALL_ON 0xffffffff
484#else
485#define ULbits 16
486#define kshift 4
487#define kmask 15
488#define ALL_ON 0xffff
489#endif
490
491#ifndef MULTIPLE_THREADS
492#define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
493#define FREE_DTOA_LOCK(n)	/*nothing*/
494#else
495#include "reentrant.h"
496
497extern mutex_t __gdtoa_locks[2];
498
499#define ACQUIRE_DTOA_LOCK(n)	\
500	do {							\
501		if (__isthreaded)				\
502			mutex_lock(&__gdtoa_locks[n]);		\
503	} while (/* CONSTCOND */ 0)
504#define FREE_DTOA_LOCK(n)	\
505	do {							\
506		if (__isthreaded)				\
507			mutex_unlock(&__gdtoa_locks[n]);	\
508	} while (/* CONSTCOND */ 0)
509#endif
510
511#define Kmax (sizeof(size_t) << 3)
512
513 struct
514Bigint {
515	struct Bigint *next;
516	int k, maxwds, sign, wds;
517	ULong x[1];
518	};
519
520 typedef struct Bigint Bigint;
521
522#ifdef NO_STRING_H
523#ifdef DECLARE_SIZE_T
524typedef unsigned int size_t;
525#endif
526extern void memcpy_D2A ANSI((void*, const void*, size_t));
527#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
528#else /* !NO_STRING_H */
529#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
530#endif /* NO_STRING_H */
531
532#define Balloc		__Balloc_D2A
533#define Bfree		__Bfree_D2A
534#define ULtoQ		__ULtoQ_D2A
535#define ULtof		__ULtof_D2A
536#define ULtod		__ULtod_D2A
537#define ULtodd		__ULtodd_D2A
538#define ULtox		__ULtox_D2A
539#define ULtoxL		__ULtoxL_D2A
540#define any_on 		__any_on_D2A
541#define b2d 		__b2d_D2A
542#define bigtens 	__bigtens_D2A
543#define cmp 		__cmp_D2A
544#define copybits 	__copybits_D2A
545#define d2b 		__d2b_D2A
546#define decrement 	__decrement_D2A
547#define diff 		__diff_D2A
548#define dtoa_result 	__dtoa_result_D2A
549#define g__fmt 		__g__fmt_D2A
550#define gethex 		__gethex_D2A
551#define hexdig 		__hexdig_D2A
552#define hexdig_init_D2A	__hexdig_init_D2A
553#define hexnan		__hexnan_D2A
554#define hi0bits		__hi0bits_D2A
555#define hi0bits_D2A	__hi0bits_D2A
556#define i2b		__i2b_D2A
557#define increment	__increment_D2A
558#define lo0bits		__lo0bits_D2A
559#define lshift		__lshift_D2A
560#define match		__match_D2A
561#define mult		__mult_D2A
562#define multadd		__multadd_D2A
563#define nrv_alloc	__nrv_alloc_D2A
564#define pow5mult	__pow5mult_D2A
565#define quorem		__quorem_D2A
566#define ratio		__ratio_D2A
567#define rshift		__rshift_D2A
568#define rv_alloc	__rv_alloc_D2A
569#define s2b		__s2b_D2A
570#define set_ones	__set_ones_D2A
571#define strcp		__strcp_D2A
572#define strcp_D2A	__strcp_D2A
573#define strtoIg		__strtoIg_D2A
574#define sum		__sum_D2A
575#define tens		__tens_D2A
576#define tinytens	__tinytens_D2A
577#define tinytens	__tinytens_D2A
578#define trailz		__trailz_D2A
579#define ulp		__ulp_D2A
580
581 extern char *dtoa_result;
582 extern CONST double bigtens[], tens[], tinytens[];
583 extern unsigned char hexdig[];
584
585 extern Bigint *Balloc ANSI((int));
586 extern void Bfree ANSI((Bigint*));
587 extern void ULtof ANSI((ULong*, ULong*, Long, int));
588 extern void ULtod ANSI((ULong*, ULong*, Long, int));
589 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
590 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
591 extern void ULtox ANSI((UShort*, ULong*, Long, int));
592 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
593 extern ULong any_on ANSI((Bigint*, int));
594 extern double b2d ANSI((Bigint*, int*));
595 extern int cmp ANSI((Bigint*, Bigint*));
596 extern void copybits ANSI((ULong*, int, Bigint*));
597 extern Bigint *d2b ANSI((double, int*, int*));
598 extern void decrement ANSI((Bigint*));
599 extern Bigint *diff ANSI((Bigint*, Bigint*));
600 extern char *dtoa ANSI((double d, int mode, int ndigits,
601			int *decpt, int *sign, char **rve));
602 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
603 extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int));
604 extern void hexdig_init_D2A(Void);
605 extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
606 extern int hi0bits_D2A ANSI((ULong));
607 extern Bigint *i2b ANSI((int));
608 extern Bigint *increment ANSI((Bigint*));
609 extern int lo0bits ANSI((ULong*));
610 extern Bigint *lshift ANSI((Bigint*, int));
611 extern int match ANSI((CONST char**, CONST char*));
612 extern Bigint *mult ANSI((Bigint*, Bigint*));
613 extern Bigint *multadd ANSI((Bigint*, int, int));
614 extern char *nrv_alloc ANSI((CONST char*, char **, size_t));
615 extern Bigint *pow5mult ANSI((Bigint*, int));
616 extern int quorem ANSI((Bigint*, Bigint*));
617 extern double ratio ANSI((Bigint*, Bigint*));
618 extern void rshift ANSI((Bigint*, int));
619 extern char *rv_alloc ANSI((size_t));
620 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
621 extern Bigint *set_ones ANSI((Bigint*, int));
622 extern char *strcp ANSI((char*, const char*));
623 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
624 extern double strtod ANSI((const char *s00, char **se));
625 extern Bigint *sum ANSI((Bigint*, Bigint*));
626 extern int trailz ANSI((CONST Bigint*));
627 extern double ulp ANSI((U*));
628
629#ifdef __cplusplus
630}
631#endif
632/*
633 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
634 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
635 * respectively), but now are determined by compiling and running
636 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
637 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
638 * and -DNAN_WORD1=...  values if necessary.  This should still work.
639 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
640 */
641#ifdef IEEE_Arith
642#ifndef NO_INFNAN_CHECK
643#undef INFNAN_CHECK
644#define INFNAN_CHECK
645#endif
646#ifdef IEEE_BIG_ENDIAN
647#define _0 0
648#define _1 1
649#ifndef NAN_WORD0
650#define NAN_WORD0 d_QNAN0
651#endif
652#ifndef NAN_WORD1
653#define NAN_WORD1 d_QNAN1
654#endif
655#else
656#define _0 1
657#define _1 0
658#ifndef NAN_WORD0
659#define NAN_WORD0 d_QNAN1
660#endif
661#ifndef NAN_WORD1
662#define NAN_WORD1 d_QNAN0
663#endif
664#endif
665#else
666#undef INFNAN_CHECK
667#endif
668
669#undef SI
670#ifdef Sudden_Underflow
671#define SI 1
672#else
673#define SI 0
674#endif
675
676#endif /* GDTOAIMP_H_INCLUDED */
677