1/*	$NetBSD$	*/
2
3/* Extended regular expression matching and search library,
4   version 0.12.
5   (Implements POSIX draft P1003.2/D11.2, except for some of the
6   internationalization features.)
7   Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
8
9   The GNU C Library is free software; you can redistribute it and/or
10   modify it under the terms of the GNU Library General Public License as
11   published by the Free Software Foundation; either version 2 of the
12   License, or (at your option) any later version.
13
14   The GNU C Library is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17   Library General Public License for more details.
18
19   You should have received a copy of the GNU Library General Public
20   License along with the GNU C Library; see the file COPYING.LIB.  If not,
21   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24/* AIX requires this to be the first thing in the file. */
25#if defined _AIX && !defined REGEX_MALLOC
26  #pragma alloca
27#endif
28
29#undef	_GNU_SOURCE
30#define _GNU_SOURCE
31
32#ifdef HAVE_CONFIG_H
33# include <config.h>
34#endif
35
36#ifndef PARAMS
37# if defined __GNUC__ || (defined __STDC__ && __STDC__)
38#  define PARAMS(args) args
39# else
40#  define PARAMS(args) ()
41# endif  /* GCC.  */
42#endif  /* Not PARAMS.  */
43
44#if defined STDC_HEADERS && !defined emacs
45# include <stddef.h>
46#else
47/* We need this for `regex.h', and perhaps for the Emacs include files.  */
48# include <sys/types.h>
49#endif
50
51#define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
52
53/* For platform which support the ISO C amendement 1 functionality we
54   support user defined character classes.  */
55#if defined _LIBC || WIDE_CHAR_SUPPORT
56/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
57# include <wchar.h>
58# include <wctype.h>
59#endif
60
61/* This is for multi byte string support.  */
62#ifdef MBS_SUPPORT
63# define CHAR_TYPE wchar_t
64# define US_CHAR_TYPE wchar_t/* unsigned character type */
65# define COMPILED_BUFFER_VAR wc_buffer
66# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
67# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_TYPE)+1)
68# define PUT_CHAR(c) \
69  do {									      \
70    if (MB_CUR_MAX == 1)						      \
71      putchar (c);							      \
72    else								      \
73      printf ("%C", (wint_t) c); /* Should we use wide stream??  */	      \
74  } while (0)
75# define TRUE 1
76# define FALSE 0
77#else
78# define CHAR_TYPE char
79# define US_CHAR_TYPE unsigned char /* unsigned character type */
80# define COMPILED_BUFFER_VAR bufp->buffer
81# define OFFSET_ADDRESS_SIZE 2
82# define PUT_CHAR(c) putchar (c)
83#endif /* MBS_SUPPORT */
84
85#ifdef _LIBC
86/* We have to keep the namespace clean.  */
87# define regfree(preg) __regfree (preg)
88# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
89# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
90# define regerror(errcode, preg, errbuf, errbuf_size) \
91	__regerror(errcode, preg, errbuf, errbuf_size)
92# define re_set_registers(bu, re, nu, st, en) \
93	__re_set_registers (bu, re, nu, st, en)
94# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
95	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
96# define re_match(bufp, string, size, pos, regs) \
97	__re_match (bufp, string, size, pos, regs)
98# define re_search(bufp, string, size, startpos, range, regs) \
99	__re_search (bufp, string, size, startpos, range, regs)
100# define re_compile_pattern(pattern, length, bufp) \
101	__re_compile_pattern (pattern, length, bufp)
102# define re_set_syntax(syntax) __re_set_syntax (syntax)
103# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
104	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
105# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
106
107# define btowc __btowc
108
109/* We are also using some library internals.  */
110# include <locale/localeinfo.h>
111# include <locale/elem-hash.h>
112# include <langinfo.h>
113# include <locale/coll-lookup.h>
114#endif
115
116/* This is for other GNU distributions with internationalized messages.  */
117#if HAVE_LIBINTL_H || defined _LIBC
118# include <libintl.h>
119# ifdef _LIBC
120#  undef gettext
121#  define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
122# endif
123#else
124# define gettext(msgid) (msgid)
125#endif
126
127#ifndef gettext_noop
128/* This define is so xgettext can find the internationalizable
129   strings.  */
130# define gettext_noop(String) String
131#endif
132
133/* The `emacs' switch turns on certain matching commands
134   that make sense only in Emacs. */
135#ifdef emacs
136
137# include "lisp.h"
138# include "buffer.h"
139# include "syntax.h"
140
141#else  /* not emacs */
142
143/* If we are not linking with Emacs proper,
144   we can't use the relocating allocator
145   even if config.h says that we can.  */
146# undef REL_ALLOC
147
148# if defined STDC_HEADERS || defined _LIBC
149#  include <stdlib.h>
150# else
151char *malloc ();
152char *realloc ();
153# endif
154
155/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
156   If nothing else has been done, use the method below.  */
157# ifdef INHIBIT_STRING_HEADER
158#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
159#   if !defined bzero && !defined bcopy
160#    undef INHIBIT_STRING_HEADER
161#   endif
162#  endif
163# endif
164
165/* This is the normal way of making sure we have a bcopy and a bzero.
166   This is used in most programs--a few other programs avoid this
167   by defining INHIBIT_STRING_HEADER.  */
168# ifndef INHIBIT_STRING_HEADER
169#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
170#   include <string.h>
171#   ifndef bzero
172#    ifndef _LIBC
173#     define bzero(s, n)	(memset (s, '\0', n), (s))
174#    else
175#     define bzero(s, n)	__bzero (s, n)
176#    endif
177#   endif
178#  else
179#   include <strings.h>
180#   ifndef memcmp
181#    define memcmp(s1, s2, n)	bcmp (s1, s2, n)
182#   endif
183#   ifndef memcpy
184#    define memcpy(d, s, n)	(bcopy (s, d, n), (d))
185#   endif
186#  endif
187# endif
188
189/* Define the syntax stuff for \<, \>, etc.  */
190
191/* This must be nonzero for the wordchar and notwordchar pattern
192   commands in re_match_2.  */
193# ifndef Sword
194#  define Sword 1
195# endif
196
197# ifdef SWITCH_ENUM_BUG
198#  define SWITCH_ENUM_CAST(x) ((int)(x))
199# else
200#  define SWITCH_ENUM_CAST(x) (x)
201# endif
202
203#endif /* not emacs */
204
205#if defined _LIBC || HAVE_LIMITS_H
206# include <limits.h>
207#endif
208
209#ifndef MB_LEN_MAX
210# define MB_LEN_MAX 1
211#endif
212
213/* Get the interface, including the syntax bits.  */
214#include <regex.h>
215
216/* isalpha etc. are used for the character classes.  */
217#include <ctype.h>
218
219/* Jim Meyering writes:
220
221   "... Some ctype macros are valid only for character codes that
222   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
223   using /bin/cc or gcc but without giving an ansi option).  So, all
224   ctype uses should be through macros like ISPRINT...  If
225   STDC_HEADERS is defined, then autoconf has verified that the ctype
226   macros don't need to be guarded with references to isascii. ...
227   Defining isascii to 1 should let any compiler worth its salt
228   eliminate the && through constant folding."
229   Solaris defines some of these symbols so we must undefine them first.  */
230
231#undef ISASCII
232#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
233# define ISASCII(c) 1
234#else
235# define ISASCII(c) isascii(c)
236#endif
237
238#ifdef isblank
239# define ISBLANK(c) (ISASCII (c) && isblank (c))
240#else
241# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
242#endif
243#ifdef isgraph
244# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
245#else
246# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
247#endif
248
249#undef ISPRINT
250#define ISPRINT(c) (ISASCII (c) && isprint (c))
251#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
252#define ISALNUM(c) (ISASCII (c) && isalnum (c))
253#define ISALPHA(c) (ISASCII (c) && isalpha (c))
254#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
255#define ISLOWER(c) (ISASCII (c) && islower (c))
256#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
257#define ISSPACE(c) (ISASCII (c) && isspace (c))
258#define ISUPPER(c) (ISASCII (c) && isupper (c))
259#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
260
261#ifdef _tolower
262# define TOLOWER(c) _tolower(c)
263#else
264# define TOLOWER(c) tolower(c)
265#endif
266
267#ifndef NULL
268# define NULL (void *)0
269#endif
270
271/* We remove any previous definition of `SIGN_EXTEND_CHAR',
272   since ours (we hope) works properly with all combinations of
273   machines, compilers, `char' and `unsigned char' argument types.
274   (Per Bothner suggested the basic approach.)  */
275#undef SIGN_EXTEND_CHAR
276#if __STDC__
277# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
278#else  /* not __STDC__ */
279/* As in Harbison and Steele.  */
280# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
281#endif
282
283#ifndef emacs
284/* How many characters in the character set.  */
285# define CHAR_SET_SIZE 256
286
287# ifdef SYNTAX_TABLE
288
289extern char *re_syntax_table;
290
291# else /* not SYNTAX_TABLE */
292
293static char re_syntax_table[CHAR_SET_SIZE];
294
295static void init_syntax_once PARAMS ((void));
296
297static void
298init_syntax_once ()
299{
300   register int c;
301   static int done = 0;
302
303   if (done)
304     return;
305   bzero (re_syntax_table, sizeof re_syntax_table);
306
307   for (c = 0; c < CHAR_SET_SIZE; ++c)
308     if (ISALNUM (c))
309	re_syntax_table[c] = Sword;
310
311   re_syntax_table['_'] = Sword;
312
313   done = 1;
314}
315
316# endif /* not SYNTAX_TABLE */
317
318# define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
319
320#endif /* emacs */
321
322/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
323   use `alloca' instead of `malloc'.  This is because using malloc in
324   re_search* or re_match* could cause memory leaks when C-g is used in
325   Emacs; also, malloc is slower and causes storage fragmentation.  On
326   the other hand, malloc is more portable, and easier to debug.
327
328   Because we sometimes use alloca, some routines have to be macros,
329   not functions -- `alloca'-allocated space disappears at the end of the
330   function it is called in.  */
331
332#ifdef REGEX_MALLOC
333
334# define REGEX_ALLOCATE malloc
335# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
336# define REGEX_FREE free
337
338#else /* not REGEX_MALLOC  */
339
340/* Emacs already defines alloca, sometimes.  */
341# ifndef alloca
342
343/* Make alloca work the best possible way.  */
344#  ifdef __GNUC__
345#   define alloca __builtin_alloca
346#  else /* not __GNUC__ */
347#   if HAVE_ALLOCA_H
348#    include <alloca.h>
349#   endif /* HAVE_ALLOCA_H */
350#  endif /* not __GNUC__ */
351
352# endif /* not alloca */
353
354# define REGEX_ALLOCATE alloca
355
356/* Assumes a `char *destination' variable.  */
357# define REGEX_REALLOCATE(source, osize, nsize)				\
358  (destination = (char *) alloca (nsize),				\
359   memcpy (destination, source, osize))
360
361/* No need to do anything to free, after alloca.  */
362# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
363
364#endif /* not REGEX_MALLOC */
365
366/* Define how to allocate the failure stack.  */
367
368#if defined REL_ALLOC && defined REGEX_MALLOC
369
370# define REGEX_ALLOCATE_STACK(size)				\
371  r_alloc (&failure_stack_ptr, (size))
372# define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
373  r_re_alloc (&failure_stack_ptr, (nsize))
374# define REGEX_FREE_STACK(ptr)					\
375  r_alloc_free (&failure_stack_ptr)
376
377#else /* not using relocating allocator */
378
379# ifdef REGEX_MALLOC
380
381#  define REGEX_ALLOCATE_STACK malloc
382#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
383#  define REGEX_FREE_STACK free
384
385# else /* not REGEX_MALLOC */
386
387#  define REGEX_ALLOCATE_STACK alloca
388
389#  define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
390   REGEX_REALLOCATE (source, osize, nsize)
391/* No need to explicitly free anything.  */
392#  define REGEX_FREE_STACK(arg)
393
394# endif /* not REGEX_MALLOC */
395#endif /* not using relocating allocator */
396
397
398/* True if `size1' is non-NULL and PTR is pointing anywhere inside
399   `string1' or just past its end.  This works if PTR is NULL, which is
400   a good thing.  */
401#define FIRST_STRING_P(ptr) 					\
402  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
403
404/* (Re)Allocate N items of type T using malloc, or fail.  */
405#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
406#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
407#define RETALLOC_IF(addr, n, t) \
408  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
409#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
410
411#define BYTEWIDTH 8 /* In bits.  */
412
413#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
414
415#undef MAX
416#undef MIN
417#define MAX(a, b) ((a) > (b) ? (a) : (b))
418#define MIN(a, b) ((a) < (b) ? (a) : (b))
419
420typedef char boolean;
421#define false 0
422#define true 1
423
424static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
425					const char *string1, int size1,
426					const char *string2, int size2,
427					int pos,
428					struct re_registers *regs,
429					int stop));
430
431/* These are the command codes that appear in compiled regular
432   expressions.  Some opcodes are followed by argument bytes.  A
433   command code can specify any interpretation whatsoever for its
434   arguments.  Zero bytes may appear in the compiled regular expression.  */
435
436typedef enum
437{
438  no_op = 0,
439
440  /* Succeed right away--no more backtracking.  */
441  succeed,
442
443        /* Followed by one byte giving n, then by n literal bytes.  */
444  exactn,
445
446#ifdef MBS_SUPPORT
447	/* Same as exactn, but contains binary data.  */
448  exactn_bin,
449#endif
450
451        /* Matches any (more or less) character.  */
452  anychar,
453
454        /* Matches any one char belonging to specified set.  First
455           following byte is number of bitmap bytes.  Then come bytes
456           for a bitmap saying which chars are in.  Bits in each byte
457           are ordered low-bit-first.  A character is in the set if its
458           bit is 1.  A character too large to have a bit in the map is
459           automatically not in the set.  */
460        /* ifdef MBS_SUPPORT, following element is length of character
461	   classes, length of collating symbols, length of equivalence
462	   classes, length of character ranges, and length of characters.
463	   Next, character class element, collating symbols elements,
464	   equivalence class elements, range elements, and character
465	   elements follow.
466	   See regex_compile function.  */
467  charset,
468
469        /* Same parameters as charset, but match any character that is
470           not one of those specified.  */
471  charset_not,
472
473        /* Start remembering the text that is matched, for storing in a
474           register.  Followed by one byte with the register number, in
475           the range 0 to one less than the pattern buffer's re_nsub
476           field.  Then followed by one byte with the number of groups
477           inner to this one.  (This last has to be part of the
478           start_memory only because we need it in the on_failure_jump
479           of re_match_2.)  */
480  start_memory,
481
482        /* Stop remembering the text that is matched and store it in a
483           memory register.  Followed by one byte with the register
484           number, in the range 0 to one less than `re_nsub' in the
485           pattern buffer, and one byte with the number of inner groups,
486           just like `start_memory'.  (We need the number of inner
487           groups here because we don't have any easy way of finding the
488           corresponding start_memory when we're at a stop_memory.)  */
489  stop_memory,
490
491        /* Match a duplicate of something remembered. Followed by one
492           byte containing the register number.  */
493  duplicate,
494
495        /* Fail unless at beginning of line.  */
496  begline,
497
498        /* Fail unless at end of line.  */
499  endline,
500
501        /* Succeeds if at beginning of buffer (if emacs) or at beginning
502           of string to be matched (if not).  */
503  begbuf,
504
505        /* Analogously, for end of buffer/string.  */
506  endbuf,
507
508        /* Followed by two byte relative address to which to jump.  */
509  jump,
510
511	/* Same as jump, but marks the end of an alternative.  */
512  jump_past_alt,
513
514        /* Followed by two-byte relative address of place to resume at
515           in case of failure.  */
516        /* ifdef MBS_SUPPORT, the size of address is 1.  */
517  on_failure_jump,
518
519        /* Like on_failure_jump, but pushes a placeholder instead of the
520           current string position when executed.  */
521  on_failure_keep_string_jump,
522
523        /* Throw away latest failure point and then jump to following
524           two-byte relative address.  */
525        /* ifdef MBS_SUPPORT, the size of address is 1.  */
526  pop_failure_jump,
527
528        /* Change to pop_failure_jump if know won't have to backtrack to
529           match; otherwise change to jump.  This is used to jump
530           back to the beginning of a repeat.  If what follows this jump
531           clearly won't match what the repeat does, such that we can be
532           sure that there is no use backtracking out of repetitions
533           already matched, then we change it to a pop_failure_jump.
534           Followed by two-byte address.  */
535        /* ifdef MBS_SUPPORT, the size of address is 1.  */
536  maybe_pop_jump,
537
538        /* Jump to following two-byte address, and push a dummy failure
539           point. This failure point will be thrown away if an attempt
540           is made to use it for a failure.  A `+' construct makes this
541           before the first repeat.  Also used as an intermediary kind
542           of jump when compiling an alternative.  */
543        /* ifdef MBS_SUPPORT, the size of address is 1.  */
544  dummy_failure_jump,
545
546	/* Push a dummy failure point and continue.  Used at the end of
547	   alternatives.  */
548  push_dummy_failure,
549
550        /* Followed by two-byte relative address and two-byte number n.
551           After matching N times, jump to the address upon failure.  */
552        /* ifdef MBS_SUPPORT, the size of address is 1.  */
553  succeed_n,
554
555        /* Followed by two-byte relative address, and two-byte number n.
556           Jump to the address N times, then fail.  */
557        /* ifdef MBS_SUPPORT, the size of address is 1.  */
558  jump_n,
559
560        /* Set the following two-byte relative address to the
561           subsequent two-byte number.  The address *includes* the two
562           bytes of number.  */
563        /* ifdef MBS_SUPPORT, the size of address is 1.  */
564  set_number_at,
565
566  wordchar,	/* Matches any word-constituent character.  */
567  notwordchar,	/* Matches any char that is not a word-constituent.  */
568
569  wordbeg,	/* Succeeds if at word beginning.  */
570  wordend,	/* Succeeds if at word end.  */
571
572  wordbound,	/* Succeeds if at a word boundary.  */
573  notwordbound	/* Succeeds if not at a word boundary.  */
574
575#ifdef emacs
576  ,before_dot,	/* Succeeds if before point.  */
577  at_dot,	/* Succeeds if at point.  */
578  after_dot,	/* Succeeds if after point.  */
579
580	/* Matches any character whose syntax is specified.  Followed by
581           a byte which contains a syntax code, e.g., Sword.  */
582  syntaxspec,
583
584	/* Matches any character whose syntax is not that specified.  */
585  notsyntaxspec
586#endif /* emacs */
587} re_opcode_t;
588
589/* Common operations on the compiled pattern.  */
590
591/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
592/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
593
594#ifdef MBS_SUPPORT
595# define STORE_NUMBER(destination, number)				\
596  do {									\
597    *(destination) = (US_CHAR_TYPE)(number);				\
598  } while (0)
599#else
600# define STORE_NUMBER(destination, number)				\
601  do {									\
602    (destination)[0] = (number) & 0377;					\
603    (destination)[1] = (number) >> 8;					\
604  } while (0)
605#endif /* MBS_SUPPORT */
606
607/* Same as STORE_NUMBER, except increment DESTINATION to
608   the byte after where the number is stored.  Therefore, DESTINATION
609   must be an lvalue.  */
610/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
611
612#define STORE_NUMBER_AND_INCR(destination, number)			\
613  do {									\
614    STORE_NUMBER (destination, number);					\
615    (destination) += OFFSET_ADDRESS_SIZE;				\
616  } while (0)
617
618/* Put into DESTINATION a number stored in two contiguous bytes starting
619   at SOURCE.  */
620/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
621
622#ifdef MBS_SUPPORT
623# define EXTRACT_NUMBER(destination, source)				\
624  do {									\
625    (destination) = *(source);						\
626  } while (0)
627#else
628# define EXTRACT_NUMBER(destination, source)				\
629  do {									\
630    (destination) = *(source) & 0377;					\
631    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
632  } while (0)
633#endif
634
635#ifdef DEBUG
636static void extract_number _RE_ARGS ((int *dest, US_CHAR_TYPE *source));
637static void
638extract_number (dest, source)
639    int *dest;
640    US_CHAR_TYPE *source;
641{
642#ifdef MBS_SUPPORT
643  *dest = *source;
644#else
645  int temp = SIGN_EXTEND_CHAR (*(source + 1));
646  *dest = *source & 0377;
647  *dest += temp << 8;
648#endif
649}
650
651# ifndef EXTRACT_MACROS /* To debug the macros.  */
652#  undef EXTRACT_NUMBER
653#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
654# endif /* not EXTRACT_MACROS */
655
656#endif /* DEBUG */
657
658/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
659   SOURCE must be an lvalue.  */
660
661#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
662  do {									\
663    EXTRACT_NUMBER (destination, source);				\
664    (source) += OFFSET_ADDRESS_SIZE; 					\
665  } while (0)
666
667#ifdef DEBUG
668static void extract_number_and_incr _RE_ARGS ((int *destination,
669					       US_CHAR_TYPE **source));
670static void
671extract_number_and_incr (destination, source)
672    int *destination;
673    US_CHAR_TYPE **source;
674{
675  extract_number (destination, *source);
676  *source += OFFSET_ADDRESS_SIZE;
677}
678
679# ifndef EXTRACT_MACROS
680#  undef EXTRACT_NUMBER_AND_INCR
681#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
682  extract_number_and_incr (&dest, &src)
683# endif /* not EXTRACT_MACROS */
684
685#endif /* DEBUG */
686
687/* If DEBUG is defined, Regex prints many voluminous messages about what
688   it is doing (if the variable `debug' is nonzero).  If linked with the
689   main program in `iregex.c', you can enter patterns and strings
690   interactively.  And if linked with the main program in `main.c' and
691   the other test files, you can run the already-written tests.  */
692
693#ifdef DEBUG
694
695/* We use standard I/O for debugging.  */
696# include <stdio.h>
697
698/* It is useful to test things that ``must'' be true when debugging.  */
699# include <assert.h>
700
701static int debug;
702
703# define DEBUG_STATEMENT(e) e
704# define DEBUG_PRINT1(x) if (debug) printf (x)
705# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
706# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
707# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
708# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
709  if (debug) print_partial_compiled_pattern (s, e)
710# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
711  if (debug) print_double_string (w, s1, sz1, s2, sz2)
712
713
714/* Print the fastmap in human-readable form.  */
715
716void
717print_fastmap (fastmap)
718    char *fastmap;
719{
720  unsigned was_a_range = 0;
721  unsigned i = 0;
722
723  while (i < (1 << BYTEWIDTH))
724    {
725      if (fastmap[i++])
726	{
727	  was_a_range = 0;
728          putchar (i - 1);
729          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
730            {
731              was_a_range = 1;
732              i++;
733            }
734	  if (was_a_range)
735            {
736              printf ("-");
737              putchar (i - 1);
738            }
739        }
740    }
741  putchar ('\n');
742}
743
744
745/* Print a compiled pattern string in human-readable form, starting at
746   the START pointer into it and ending just before the pointer END.  */
747
748void
749print_partial_compiled_pattern (start, end)
750    US_CHAR_TYPE *start;
751    US_CHAR_TYPE *end;
752{
753  int mcnt, mcnt2;
754  US_CHAR_TYPE *p1;
755  US_CHAR_TYPE *p = start;
756  US_CHAR_TYPE *pend = end;
757
758  if (start == NULL)
759    {
760      printf ("(null)\n");
761      return;
762    }
763
764  /* Loop over pattern commands.  */
765  while (p < pend)
766    {
767#ifdef _LIBC
768      printf ("%td:\t", p - start);
769#else
770      printf ("%ld:\t", (long int) (p - start));
771#endif
772
773      switch ((re_opcode_t) *p++)
774	{
775        case no_op:
776          printf ("/no_op");
777          break;
778
779	case exactn:
780	  mcnt = *p++;
781          printf ("/exactn/%d", mcnt);
782          do
783	    {
784              putchar ('/');
785	      PUT_CHAR (*p++);
786            }
787          while (--mcnt);
788          break;
789
790#ifdef MBS_SUPPORT
791	case exactn_bin:
792	  mcnt = *p++;
793	  printf ("/exactn_bin/%d", mcnt);
794          do
795	    {
796	      printf("/%lx", (long int) *p++);
797            }
798          while (--mcnt);
799          break;
800#endif /* MBS_SUPPORT */
801
802	case start_memory:
803          mcnt = *p++;
804          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
805          break;
806
807	case stop_memory:
808          mcnt = *p++;
809	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
810          break;
811
812	case duplicate:
813	  printf ("/duplicate/%ld", (long int) *p++);
814	  break;
815
816	case anychar:
817	  printf ("/anychar");
818	  break;
819
820	case charset:
821        case charset_not:
822          {
823#ifdef MBS_SUPPORT
824	    int i, length;
825	    wchar_t *workp = p;
826	    printf ("/charset [%s",
827	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
828	    p += 5;
829	    length = *workp++; /* the length of char_classes */
830	    for (i=0 ; i<length ; i++)
831	      printf("[:%lx:]", (long int) *p++);
832	    length = *workp++; /* the length of collating_symbol */
833	    for (i=0 ; i<length ;)
834	      {
835		printf("[.");
836		while(*p != 0)
837		  PUT_CHAR((i++,*p++));
838		i++,p++;
839		printf(".]");
840	      }
841	    length = *workp++; /* the length of equivalence_class */
842	    for (i=0 ; i<length ;)
843	      {
844		printf("[=");
845		while(*p != 0)
846		  PUT_CHAR((i++,*p++));
847		i++,p++;
848		printf("=]");
849	      }
850	    length = *workp++; /* the length of char_range */
851	    for (i=0 ; i<length ; i++)
852	      {
853		wchar_t range_start = *p++;
854		wchar_t range_end = *p++;
855		if (MB_CUR_MAX == 1)
856		  printf("%c-%c", (char) range_start, (char) range_end);
857		else
858		  printf("%C-%C", (wint_t) range_start, (wint_t) range_end);
859	      }
860	    length = *workp++; /* the length of char */
861	    for (i=0 ; i<length ; i++)
862	      if (MB_CUR_MAX == 1)
863		putchar (*p++);
864	      else
865		printf("%C", (wint_t) *p++);
866	    putchar (']');
867#else
868            register int c, last = -100;
869	    register int in_range = 0;
870
871	    printf ("/charset [%s",
872	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
873
874            assert (p + *p < pend);
875
876            for (c = 0; c < 256; c++)
877	      if (c / 8 < *p
878		  && (p[1 + (c/8)] & (1 << (c % 8))))
879		{
880		  /* Are we starting a range?  */
881		  if (last + 1 == c && ! in_range)
882		    {
883		      putchar ('-');
884		      in_range = 1;
885		    }
886		  /* Have we broken a range?  */
887		  else if (last + 1 != c && in_range)
888              {
889		      putchar (last);
890		      in_range = 0;
891		    }
892
893		  if (! in_range)
894		    putchar (c);
895
896		  last = c;
897              }
898
899	    if (in_range)
900	      putchar (last);
901
902	    putchar (']');
903
904	    p += 1 + *p;
905#endif /* MBS_SUPPORT */
906	  }
907	  break;
908
909	case begline:
910	  printf ("/begline");
911          break;
912
913	case endline:
914          printf ("/endline");
915          break;
916
917	case on_failure_jump:
918          extract_number_and_incr (&mcnt, &p);
919#ifdef _LIBC
920  	  printf ("/on_failure_jump to %td", p + mcnt - start);
921#else
922  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
923#endif
924          break;
925
926	case on_failure_keep_string_jump:
927          extract_number_and_incr (&mcnt, &p);
928#ifdef _LIBC
929  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
930#else
931  	  printf ("/on_failure_keep_string_jump to %ld",
932		  (long int) (p + mcnt - start));
933#endif
934          break;
935
936	case dummy_failure_jump:
937          extract_number_and_incr (&mcnt, &p);
938#ifdef _LIBC
939  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
940#else
941  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
942#endif
943          break;
944
945	case push_dummy_failure:
946          printf ("/push_dummy_failure");
947          break;
948
949        case maybe_pop_jump:
950          extract_number_and_incr (&mcnt, &p);
951#ifdef _LIBC
952  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
953#else
954  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
955#endif
956	  break;
957
958        case pop_failure_jump:
959	  extract_number_and_incr (&mcnt, &p);
960#ifdef _LIBC
961  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
962#else
963  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
964#endif
965	  break;
966
967        case jump_past_alt:
968	  extract_number_and_incr (&mcnt, &p);
969#ifdef _LIBC
970  	  printf ("/jump_past_alt to %td", p + mcnt - start);
971#else
972  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
973#endif
974	  break;
975
976        case jump:
977	  extract_number_and_incr (&mcnt, &p);
978#ifdef _LIBC
979  	  printf ("/jump to %td", p + mcnt - start);
980#else
981  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
982#endif
983	  break;
984
985        case succeed_n:
986          extract_number_and_incr (&mcnt, &p);
987	  p1 = p + mcnt;
988          extract_number_and_incr (&mcnt2, &p);
989#ifdef _LIBC
990	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
991#else
992	  printf ("/succeed_n to %ld, %d times",
993		  (long int) (p1 - start), mcnt2);
994#endif
995          break;
996
997        case jump_n:
998          extract_number_and_incr (&mcnt, &p);
999	  p1 = p + mcnt;
1000          extract_number_and_incr (&mcnt2, &p);
1001	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1002          break;
1003
1004        case set_number_at:
1005          extract_number_and_incr (&mcnt, &p);
1006	  p1 = p + mcnt;
1007          extract_number_and_incr (&mcnt2, &p);
1008#ifdef _LIBC
1009	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1010#else
1011	  printf ("/set_number_at location %ld to %d",
1012		  (long int) (p1 - start), mcnt2);
1013#endif
1014          break;
1015
1016        case wordbound:
1017	  printf ("/wordbound");
1018	  break;
1019
1020	case notwordbound:
1021	  printf ("/notwordbound");
1022          break;
1023
1024	case wordbeg:
1025	  printf ("/wordbeg");
1026	  break;
1027
1028	case wordend:
1029	  printf ("/wordend");
1030	  break;
1031
1032# ifdef emacs
1033	case before_dot:
1034	  printf ("/before_dot");
1035          break;
1036
1037	case at_dot:
1038	  printf ("/at_dot");
1039          break;
1040
1041	case after_dot:
1042	  printf ("/after_dot");
1043          break;
1044
1045	case syntaxspec:
1046          printf ("/syntaxspec");
1047	  mcnt = *p++;
1048	  printf ("/%d", mcnt);
1049          break;
1050
1051	case notsyntaxspec:
1052          printf ("/notsyntaxspec");
1053	  mcnt = *p++;
1054	  printf ("/%d", mcnt);
1055	  break;
1056# endif /* emacs */
1057
1058	case wordchar:
1059	  printf ("/wordchar");
1060          break;
1061
1062	case notwordchar:
1063	  printf ("/notwordchar");
1064          break;
1065
1066	case begbuf:
1067	  printf ("/begbuf");
1068          break;
1069
1070	case endbuf:
1071	  printf ("/endbuf");
1072          break;
1073
1074        default:
1075          printf ("?%ld", (long int) *(p-1));
1076	}
1077
1078      putchar ('\n');
1079    }
1080
1081#ifdef _LIBC
1082  printf ("%td:\tend of pattern.\n", p - start);
1083#else
1084  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1085#endif
1086}
1087
1088
1089void
1090print_compiled_pattern (bufp)
1091    struct re_pattern_buffer *bufp;
1092{
1093  US_CHAR_TYPE *buffer = (US_CHAR_TYPE*) bufp->buffer;
1094
1095  print_partial_compiled_pattern (buffer, buffer
1096				  + bufp->used / sizeof(US_CHAR_TYPE));
1097  printf ("%ld bytes used/%ld bytes allocated.\n",
1098	  bufp->used, bufp->allocated);
1099
1100  if (bufp->fastmap_accurate && bufp->fastmap)
1101    {
1102      printf ("fastmap: ");
1103      print_fastmap (bufp->fastmap);
1104    }
1105
1106#ifdef _LIBC
1107  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1108#else
1109  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1110#endif
1111  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1112  printf ("can_be_null: %d\t", bufp->can_be_null);
1113  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1114  printf ("no_sub: %d\t", bufp->no_sub);
1115  printf ("not_bol: %d\t", bufp->not_bol);
1116  printf ("not_eol: %d\t", bufp->not_eol);
1117  printf ("syntax: %lx\n", bufp->syntax);
1118  /* Perhaps we should print the translate table?  */
1119}
1120
1121
1122void
1123print_double_string (where, string1, size1, string2, size2)
1124    const CHAR_TYPE *where;
1125    const CHAR_TYPE *string1;
1126    const CHAR_TYPE *string2;
1127    int size1;
1128    int size2;
1129{
1130  ptrdiff_t this_char;
1131
1132  if (where == NULL)
1133    printf ("(null)");
1134  else
1135    {
1136      if (FIRST_STRING_P (where))
1137        {
1138          for (this_char = where - string1; this_char < size1; this_char++)
1139	    PUT_CHAR (string1[this_char]);
1140
1141          where = string2;
1142        }
1143
1144      for (this_char = where - string2; this_char < size2; this_char++)
1145        PUT_CHAR (string2[this_char]);
1146    }
1147}
1148
1149void
1150printchar (c)
1151     int c;
1152{
1153  putc (c, stderr);
1154}
1155
1156#else /* not DEBUG */
1157
1158# undef assert
1159# define assert(e)
1160
1161# define DEBUG_STATEMENT(e)
1162# define DEBUG_PRINT1(x)
1163# define DEBUG_PRINT2(x1, x2)
1164# define DEBUG_PRINT3(x1, x2, x3)
1165# define DEBUG_PRINT4(x1, x2, x3, x4)
1166# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1167# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1168
1169#endif /* not DEBUG */
1170
1171#ifdef MBS_SUPPORT
1172/* This  convert a multibyte string to a wide character string.
1173   And write their correspondances to offset_buffer(see below)
1174   and write whether each wchar_t is binary data to is_binary.
1175   This assume invalid multibyte sequences as binary data.
1176   We assume offset_buffer and is_binary is already allocated
1177   enough space.  */
1178
1179static size_t convert_mbs_to_wcs (CHAR_TYPE *dest, const unsigned char* src,
1180				  size_t len, int *offset_buffer,
1181				  char *is_binary);
1182static size_t
1183convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1184     CHAR_TYPE *dest;
1185     const unsigned char* src;
1186     size_t len; /* the length of multibyte string.  */
1187
1188     /* It hold correspondances between src(char string) and
1189	dest(wchar_t string) for optimization.
1190	e.g. src  = "xxxyzz"
1191             dest = {'X', 'Y', 'Z'}
1192	      (each "xxx", "y" and "zz" represent one multibyte character
1193	       corresponding to 'X', 'Y' and 'Z'.)
1194	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1195	  	        = {0, 3, 4, 6}
1196     */
1197     int *offset_buffer;
1198     char *is_binary;
1199{
1200  wchar_t *pdest = dest;
1201  const unsigned char *psrc = src;
1202  size_t wc_count = 0;
1203
1204  if (MB_CUR_MAX == 1)
1205    { /* We don't need conversion.  */
1206      for ( ; wc_count < len ; ++wc_count)
1207	{
1208	  *pdest++ = *psrc++;
1209	  is_binary[wc_count] = FALSE;
1210	  offset_buffer[wc_count] = wc_count;
1211	}
1212      offset_buffer[wc_count] = wc_count;
1213    }
1214  else
1215    {
1216      /* We need conversion.  */
1217      mbstate_t mbs;
1218      int consumed;
1219      size_t mb_remain = len;
1220      size_t mb_count = 0;
1221
1222      /* Initialize the conversion state.  */
1223      memset (&mbs, 0, sizeof (mbstate_t));
1224
1225      offset_buffer[0] = 0;
1226      for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1227	     psrc += consumed)
1228	{
1229	  consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1230
1231	  if (consumed <= 0)
1232	    /* failed to convert. maybe src contains binary data.
1233	       So we consume 1 byte manualy.  */
1234	    {
1235	      *pdest = *psrc;
1236	      consumed = 1;
1237	      is_binary[wc_count] = TRUE;
1238	    }
1239	  else
1240	    is_binary[wc_count] = FALSE;
1241	  /* In sjis encoding, we use yen sign as escape character in
1242	     place of reverse solidus. So we convert 0x5c(yen sign in
1243	     sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1244	     solidus in UCS2).  */
1245	  if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1246	    *pdest = (wchar_t) *psrc;
1247
1248	  offset_buffer[wc_count + 1] = mb_count += consumed;
1249	}
1250    }
1251
1252  return wc_count;
1253}
1254
1255#endif /* MBS_SUPPORT */
1256
1257/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1258   also be assigned to arbitrarily: each pattern buffer stores its own
1259   syntax, so it can be changed between regex compilations.  */
1260/* This has no initializer because initialized variables in Emacs
1261   become read-only after dumping.  */
1262reg_syntax_t re_syntax_options;
1263
1264
1265/* Specify the precise syntax of regexps for compilation.  This provides
1266   for compatibility for various utilities which historically have
1267   different, incompatible syntaxes.
1268
1269   The argument SYNTAX is a bit mask comprised of the various bits
1270   defined in regex.h.  We return the old syntax.  */
1271
1272reg_syntax_t
1273re_set_syntax (syntax)
1274    reg_syntax_t syntax;
1275{
1276  reg_syntax_t ret = re_syntax_options;
1277
1278  re_syntax_options = syntax;
1279#ifdef DEBUG
1280  if (syntax & RE_DEBUG)
1281    debug = 1;
1282  else if (debug) /* was on but now is not */
1283    debug = 0;
1284#endif /* DEBUG */
1285  return ret;
1286}
1287#ifdef _LIBC
1288weak_alias (__re_set_syntax, re_set_syntax)
1289#endif
1290
1291/* This table gives an error message for each of the error codes listed
1292   in regex.h.  Obviously the order here has to be same as there.
1293   POSIX doesn't require that we do anything for REG_NOERROR,
1294   but why not be nice?  */
1295
1296static const char re_error_msgid[] =
1297  {
1298#define REG_NOERROR_IDX	0
1299    gettext_noop ("Success")	/* REG_NOERROR */
1300    "\0"
1301#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1302    gettext_noop ("No match")	/* REG_NOMATCH */
1303    "\0"
1304#define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1305    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1306    "\0"
1307#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1308    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1309    "\0"
1310#define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1311    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1312    "\0"
1313#define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1314    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1315    "\0"
1316#define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1317    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1318    "\0"
1319#define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1320    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1321    "\0"
1322#define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1323    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1324    "\0"
1325#define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1326    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1327    "\0"
1328#define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1329    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1330    "\0"
1331#define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1332    gettext_noop ("Invalid range end")	/* REG_ERANGE */
1333    "\0"
1334#define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1335    gettext_noop ("Memory exhausted") /* REG_ESPACE */
1336    "\0"
1337#define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1338    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1339    "\0"
1340#define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1341    gettext_noop ("Premature end of regular expression") /* REG_EEND */
1342    "\0"
1343#define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1344    gettext_noop ("Regular expression too big") /* REG_ESIZE */
1345    "\0"
1346#define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1347    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1348  };
1349
1350static const size_t re_error_msgid_idx[] =
1351  {
1352    REG_NOERROR_IDX,
1353    REG_NOMATCH_IDX,
1354    REG_BADPAT_IDX,
1355    REG_ECOLLATE_IDX,
1356    REG_ECTYPE_IDX,
1357    REG_EESCAPE_IDX,
1358    REG_ESUBREG_IDX,
1359    REG_EBRACK_IDX,
1360    REG_EPAREN_IDX,
1361    REG_EBRACE_IDX,
1362    REG_BADBR_IDX,
1363    REG_ERANGE_IDX,
1364    REG_ESPACE_IDX,
1365    REG_BADRPT_IDX,
1366    REG_EEND_IDX,
1367    REG_ESIZE_IDX,
1368    REG_ERPAREN_IDX
1369  };
1370
1371/* Avoiding alloca during matching, to placate r_alloc.  */
1372
1373/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374   searching and matching functions should not call alloca.  On some
1375   systems, alloca is implemented in terms of malloc, and if we're
1376   using the relocating allocator routines, then malloc could cause a
1377   relocation, which might (if the strings being searched are in the
1378   ralloc heap) shift the data out from underneath the regexp
1379   routines.
1380
1381   Here's another reason to avoid allocation: Emacs
1382   processes input from X in a signal handler; processing X input may
1383   call malloc; if input arrives while a matching routine is calling
1384   malloc, then we're scrod.  But Emacs can't just block input while
1385   calling matching routines; then we don't notice interrupts when
1386   they come in.  So, Emacs blocks input around all regexp calls
1387   except the matching calls, which it leaves unprotected, in the
1388   faith that they will not malloc.  */
1389
1390/* Normally, this is fine.  */
1391#define MATCH_MAY_ALLOCATE
1392
1393/* When using GNU C, we are not REALLY using the C alloca, no matter
1394   what config.h may say.  So don't take precautions for it.  */
1395#ifdef __GNUC__
1396# undef C_ALLOCA
1397#endif
1398
1399/* The match routines may not allocate if (1) they would do it with malloc
1400   and (2) it's not safe for them to use malloc.
1401   Note that if REL_ALLOC is defined, matching would not use malloc for the
1402   failure stack, but we would still use it for the register vectors;
1403   so REL_ALLOC should not affect this.  */
1404#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405# undef MATCH_MAY_ALLOCATE
1406#endif
1407
1408
1409/* Failure stack declarations and macros; both re_compile_fastmap and
1410   re_match_2 use a failure stack.  These have to be macros because of
1411   REGEX_ALLOCATE_STACK.  */
1412
1413
1414/* Number of failure points for which to initially allocate space
1415   when matching.  If this number is exceeded, we allocate more
1416   space, so it is not a hard limit.  */
1417#ifndef INIT_FAILURE_ALLOC
1418# define INIT_FAILURE_ALLOC 5
1419#endif
1420
1421/* Roughly the maximum number of failure points on the stack.  Would be
1422   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423   This is a variable only so users of regex can assign to it; we never
1424   change it ourselves.  */
1425
1426#ifdef INT_IS_16BIT
1427
1428# if defined MATCH_MAY_ALLOCATE
1429/* 4400 was enough to cause a crash on Alpha OSF/1,
1430   whose default stack limit is 2mb.  */
1431long int re_max_failures = 4000;
1432# else
1433long int re_max_failures = 2000;
1434# endif
1435
1436union fail_stack_elt
1437{
1438  US_CHAR_TYPE *pointer;
1439  long int integer;
1440};
1441
1442typedef union fail_stack_elt fail_stack_elt_t;
1443
1444typedef struct
1445{
1446  fail_stack_elt_t *stack;
1447  unsigned long int size;
1448  unsigned long int avail;		/* Offset of next open position.  */
1449} fail_stack_type;
1450
1451#else /* not INT_IS_16BIT */
1452
1453# if defined MATCH_MAY_ALLOCATE
1454/* 4400 was enough to cause a crash on Alpha OSF/1,
1455   whose default stack limit is 2mb.  */
1456int re_max_failures = 4000;
1457# else
1458int re_max_failures = 2000;
1459# endif
1460
1461union fail_stack_elt
1462{
1463  US_CHAR_TYPE *pointer;
1464  int integer;
1465};
1466
1467typedef union fail_stack_elt fail_stack_elt_t;
1468
1469typedef struct
1470{
1471  fail_stack_elt_t *stack;
1472  unsigned size;
1473  unsigned avail;			/* Offset of next open position.  */
1474} fail_stack_type;
1475
1476#endif /* INT_IS_16BIT */
1477
1478#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1479#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1480#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1481
1482
1483/* Define macros to initialize and free the failure stack.
1484   Do `return -2' if the alloc fails.  */
1485
1486#ifdef MATCH_MAY_ALLOCATE
1487# define INIT_FAIL_STACK()						\
1488  do {									\
1489    fail_stack.stack = (fail_stack_elt_t *)				\
1490      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1491									\
1492    if (fail_stack.stack == NULL)					\
1493      return -2;							\
1494									\
1495    fail_stack.size = INIT_FAILURE_ALLOC;				\
1496    fail_stack.avail = 0;						\
1497  } while (0)
1498
1499# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1500#else
1501# define INIT_FAIL_STACK()						\
1502  do {									\
1503    fail_stack.avail = 0;						\
1504  } while (0)
1505
1506# define RESET_FAIL_STACK()
1507#endif
1508
1509
1510/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1511
1512   Return 1 if succeeds, and 0 if either ran out of memory
1513   allocating space for it or it was already too large.
1514
1515   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1516
1517#define DOUBLE_FAIL_STACK(fail_stack)					\
1518  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1519   ? 0									\
1520   : ((fail_stack).stack = (fail_stack_elt_t *)				\
1521        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1522          (fail_stack).size * sizeof (fail_stack_elt_t),		\
1523          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1524									\
1525      (fail_stack).stack == NULL					\
1526      ? 0								\
1527      : ((fail_stack).size <<= 1, 					\
1528         1)))
1529
1530
1531/* Push pointer POINTER on FAIL_STACK.
1532   Return 1 if was able to do so and 0 if ran out of memory allocating
1533   space to do so.  */
1534#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1535  ((FAIL_STACK_FULL ()							\
1536    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1537   ? 0									\
1538   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1539      1))
1540
1541/* Push a pointer value onto the failure stack.
1542   Assumes the variable `fail_stack'.  Probably should only
1543   be called from within `PUSH_FAILURE_POINT'.  */
1544#define PUSH_FAILURE_POINTER(item)					\
1545  fail_stack.stack[fail_stack.avail++].pointer = (US_CHAR_TYPE *) (item)
1546
1547/* This pushes an integer-valued item onto the failure stack.
1548   Assumes the variable `fail_stack'.  Probably should only
1549   be called from within `PUSH_FAILURE_POINT'.  */
1550#define PUSH_FAILURE_INT(item)					\
1551  fail_stack.stack[fail_stack.avail++].integer = (item)
1552
1553/* Push a fail_stack_elt_t value onto the failure stack.
1554   Assumes the variable `fail_stack'.  Probably should only
1555   be called from within `PUSH_FAILURE_POINT'.  */
1556#define PUSH_FAILURE_ELT(item)					\
1557  fail_stack.stack[fail_stack.avail++] =  (item)
1558
1559/* These three POP... operations complement the three PUSH... operations.
1560   All assume that `fail_stack' is nonempty.  */
1561#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1562#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1563#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1564
1565/* Used to omit pushing failure point id's when we're not debugging.  */
1566#ifdef DEBUG
1567# define DEBUG_PUSH PUSH_FAILURE_INT
1568# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1569#else
1570# define DEBUG_PUSH(item)
1571# define DEBUG_POP(item_addr)
1572#endif
1573
1574
1575/* Push the information about the state we will need
1576   if we ever fail back to it.
1577
1578   Requires variables fail_stack, regstart, regend, reg_info, and
1579   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1580   be declared.
1581
1582   Does `return FAILURE_CODE' if runs out of memory.  */
1583
1584#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1585  do {									\
1586    char *destination;							\
1587    /* Must be int, so when we don't save any registers, the arithmetic	\
1588       of 0 + -1 isn't done as unsigned.  */				\
1589    /* Can't be int, since there is not a shred of a guarantee that int	\
1590       is wide enough to hold a value of something to which pointer can	\
1591       be assigned */							\
1592    active_reg_t this_reg;						\
1593    									\
1594    DEBUG_STATEMENT (failure_id++);					\
1595    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1596    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1597    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1598    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1599									\
1600    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1601    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1602									\
1603    /* Ensure we have enough space allocated for what we will push.  */	\
1604    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1605      {									\
1606        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1607          return failure_code;						\
1608									\
1609        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1610		       (fail_stack).size);				\
1611        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1612      }									\
1613									\
1614    /* Push the info, starting with the registers.  */			\
1615    DEBUG_PRINT1 ("\n");						\
1616									\
1617    if (1)								\
1618      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1619	   this_reg++)							\
1620	{								\
1621	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1622	  DEBUG_STATEMENT (num_regs_pushed++);				\
1623									\
1624	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1625	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1626									\
1627	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1628	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1629									\
1630	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1631			reg_info[this_reg].word.pointer);		\
1632	  DEBUG_PRINT2 (" match_null=%d",				\
1633			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1634	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1635	  DEBUG_PRINT2 (" matched_something=%d",			\
1636			MATCHED_SOMETHING (reg_info[this_reg]));	\
1637	  DEBUG_PRINT2 (" ever_matched=%d",				\
1638			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1639	  DEBUG_PRINT1 ("\n");						\
1640	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1641	}								\
1642									\
1643    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1644    PUSH_FAILURE_INT (lowest_active_reg);				\
1645									\
1646    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1647    PUSH_FAILURE_INT (highest_active_reg);				\
1648									\
1649    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1650    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1651    PUSH_FAILURE_POINTER (pattern_place);				\
1652									\
1653    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1654    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1655				 size2);				\
1656    DEBUG_PRINT1 ("'\n");						\
1657    PUSH_FAILURE_POINTER (string_place);				\
1658									\
1659    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1660    DEBUG_PUSH (failure_id);						\
1661  } while (0)
1662
1663/* This is the number of items that are pushed and popped on the stack
1664   for each register.  */
1665#define NUM_REG_ITEMS  3
1666
1667/* Individual items aside from the registers.  */
1668#ifdef DEBUG
1669# define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1670#else
1671# define NUM_NONREG_ITEMS 4
1672#endif
1673
1674/* We push at most this many items on the stack.  */
1675/* We used to use (num_regs - 1), which is the number of registers
1676   this regexp will save; but that was changed to 5
1677   to avoid stack overflow for a regexp with lots of parens.  */
1678#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1679
1680/* We actually push this many items.  */
1681#define NUM_FAILURE_ITEMS				\
1682  (((0							\
1683     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1684    * NUM_REG_ITEMS)					\
1685   + NUM_NONREG_ITEMS)
1686
1687/* How many items can still be added to the stack without overflowing it.  */
1688#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1689
1690
1691/* Pops what PUSH_FAIL_STACK pushes.
1692
1693   We restore into the parameters, all of which should be lvalues:
1694     STR -- the saved data position.
1695     PAT -- the saved pattern position.
1696     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1697     REGSTART, REGEND -- arrays of string positions.
1698     REG_INFO -- array of information about each subexpression.
1699
1700   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1701   `pend', `string1', `size1', `string2', and `size2'.  */
1702#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1703{									\
1704  DEBUG_STATEMENT (unsigned failure_id;)				\
1705  active_reg_t this_reg;						\
1706  const US_CHAR_TYPE *string_temp;					\
1707									\
1708  assert (!FAIL_STACK_EMPTY ());					\
1709									\
1710  /* Remove failure points and point to how many regs pushed.  */	\
1711  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1712  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1713  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1714									\
1715  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1716									\
1717  DEBUG_POP (&failure_id);						\
1718  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1719									\
1720  /* If the saved string location is NULL, it came from an		\
1721     on_failure_keep_string_jump opcode, and we want to throw away the	\
1722     saved NULL, thus retaining our current position in the string.  */	\
1723  string_temp = POP_FAILURE_POINTER ();					\
1724  if (string_temp != NULL)						\
1725    str = (const CHAR_TYPE *) string_temp;				\
1726									\
1727  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1728  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1729  DEBUG_PRINT1 ("'\n");							\
1730									\
1731  pat = (US_CHAR_TYPE *) POP_FAILURE_POINTER ();			\
1732  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1733  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1734									\
1735  /* Restore register info.  */						\
1736  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1737  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1738									\
1739  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1740  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1741									\
1742  if (1)								\
1743    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1744      {									\
1745	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1746									\
1747	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1748	DEBUG_PRINT2 ("      info: %p\n",				\
1749		      reg_info[this_reg].word.pointer);			\
1750									\
1751	regend[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();	\
1752	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1753									\
1754	regstart[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();\
1755	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1756      }									\
1757  else									\
1758    {									\
1759      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1760	{								\
1761	  reg_info[this_reg].word.integer = 0;				\
1762	  regend[this_reg] = 0;						\
1763	  regstart[this_reg] = 0;					\
1764	}								\
1765      highest_active_reg = high_reg;					\
1766    }									\
1767									\
1768  set_regs_matched_done = 0;						\
1769  DEBUG_STATEMENT (nfailure_points_popped++);				\
1770} /* POP_FAILURE_POINT */
1771
1772
1773/* Structure for per-register (a.k.a. per-group) information.
1774   Other register information, such as the
1775   starting and ending positions (which are addresses), and the list of
1776   inner groups (which is a bits list) are maintained in separate
1777   variables.
1778
1779   We are making a (strictly speaking) nonportable assumption here: that
1780   the compiler will pack our bit fields into something that fits into
1781   the type of `word', i.e., is something that fits into one item on the
1782   failure stack.  */
1783
1784
1785/* Declarations and macros for re_match_2.  */
1786
1787typedef union
1788{
1789  fail_stack_elt_t word;
1790  struct
1791  {
1792      /* This field is one if this group can match the empty string,
1793         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1794#define MATCH_NULL_UNSET_VALUE 3
1795    unsigned match_null_string_p : 2;
1796    unsigned is_active : 1;
1797    unsigned matched_something : 1;
1798    unsigned ever_matched_something : 1;
1799  } bits;
1800} register_info_type;
1801
1802#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1803#define IS_ACTIVE(R)  ((R).bits.is_active)
1804#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1805#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1806
1807
1808/* Call this when have matched a real character; it sets `matched' flags
1809   for the subexpressions which we are currently inside.  Also records
1810   that those subexprs have matched.  */
1811#define SET_REGS_MATCHED()						\
1812  do									\
1813    {									\
1814      if (!set_regs_matched_done)					\
1815	{								\
1816	  active_reg_t r;						\
1817	  set_regs_matched_done = 1;					\
1818	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1819	    {								\
1820	      MATCHED_SOMETHING (reg_info[r])				\
1821		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1822		= 1;							\
1823	    }								\
1824	}								\
1825    }									\
1826  while (0)
1827
1828/* Registers are set to a sentinel when they haven't yet matched.  */
1829static CHAR_TYPE reg_unset_dummy;
1830#define REG_UNSET_VALUE (&reg_unset_dummy)
1831#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1832
1833/* Subroutine declarations and macros for regex_compile.  */
1834
1835static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1836					      reg_syntax_t syntax,
1837					      struct re_pattern_buffer *bufp));
1838static void store_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, int arg));
1839static void store_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1840				 int arg1, int arg2));
1841static void insert_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1842				  int arg, US_CHAR_TYPE *end));
1843static void insert_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1844				  int arg1, int arg2, US_CHAR_TYPE *end));
1845static boolean at_begline_loc_p _RE_ARGS ((const CHAR_TYPE *pattern,
1846					   const CHAR_TYPE *p,
1847					   reg_syntax_t syntax));
1848static boolean at_endline_loc_p _RE_ARGS ((const CHAR_TYPE *p,
1849					   const CHAR_TYPE *pend,
1850					   reg_syntax_t syntax));
1851#ifdef MBS_SUPPORT
1852static reg_errcode_t compile_range _RE_ARGS ((CHAR_TYPE range_start,
1853					      const CHAR_TYPE **p_ptr,
1854					      const CHAR_TYPE *pend,
1855					      char *translate,
1856					      reg_syntax_t syntax,
1857					      US_CHAR_TYPE *b,
1858					      CHAR_TYPE *char_set));
1859static void insert_space _RE_ARGS ((int num, CHAR_TYPE *loc, CHAR_TYPE *end));
1860#else
1861static reg_errcode_t compile_range _RE_ARGS ((unsigned int range_start,
1862					      const CHAR_TYPE **p_ptr,
1863					      const CHAR_TYPE *pend,
1864					      char *translate,
1865					      reg_syntax_t syntax,
1866					      US_CHAR_TYPE *b));
1867#endif /* MBS_SUPPORT */
1868
1869/* Fetch the next character in the uncompiled pattern---translating it
1870   if necessary.  Also cast from a signed character in the constant
1871   string passed to us by the user to an unsigned char that we can use
1872   as an array index (in, e.g., `translate').  */
1873/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1874   because it is impossible to allocate 4GB array for some encodings
1875   which have 4 byte character_set like UCS4.  */
1876#ifndef PATFETCH
1877# ifdef MBS_SUPPORT
1878#  define PATFETCH(c)							\
1879  do {if (p == pend) return REG_EEND;					\
1880    c = (US_CHAR_TYPE) *p++;						\
1881    if (translate && (c <= 0xff)) c = (US_CHAR_TYPE) translate[c];	\
1882  } while (0)
1883# else
1884#  define PATFETCH(c)							\
1885  do {if (p == pend) return REG_EEND;					\
1886    c = (unsigned char) *p++;						\
1887    if (translate) c = (unsigned char) translate[c];			\
1888  } while (0)
1889# endif /* MBS_SUPPORT */
1890#endif
1891
1892/* Fetch the next character in the uncompiled pattern, with no
1893   translation.  */
1894#define PATFETCH_RAW(c)							\
1895  do {if (p == pend) return REG_EEND;					\
1896    c = (US_CHAR_TYPE) *p++; 						\
1897  } while (0)
1898
1899/* Go backwards one character in the pattern.  */
1900#define PATUNFETCH p--
1901
1902
1903/* If `translate' is non-null, return translate[D], else just D.  We
1904   cast the subscript to translate because some data is declared as
1905   `char *', to avoid warnings when a string constant is passed.  But
1906   when we use a character as a subscript we must make it unsigned.  */
1907/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1908   because it is impossible to allocate 4GB array for some encodings
1909   which have 4 byte character_set like UCS4.  */
1910#ifndef TRANSLATE
1911# ifdef MBS_SUPPORT
1912#  define TRANSLATE(d) \
1913  ((translate && ((US_CHAR_TYPE) (d)) <= 0xff) \
1914   ? (char) translate[(unsigned char) (d)] : (d))
1915#else
1916#  define TRANSLATE(d) \
1917  (translate ? (char) translate[(unsigned char) (d)] : (d))
1918# endif /* MBS_SUPPORT */
1919#endif
1920
1921
1922/* Macros for outputting the compiled pattern into `buffer'.  */
1923
1924/* If the buffer isn't allocated when it comes in, use this.  */
1925#define INIT_BUF_SIZE  (32 * sizeof(US_CHAR_TYPE))
1926
1927/* Make sure we have at least N more bytes of space in buffer.  */
1928#ifdef MBS_SUPPORT
1929# define GET_BUFFER_SPACE(n)						\
1930    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1931            + (n)*sizeof(CHAR_TYPE)) > bufp->allocated)			\
1932      EXTEND_BUFFER ()
1933#else
1934# define GET_BUFFER_SPACE(n)						\
1935    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1936      EXTEND_BUFFER ()
1937#endif /* MBS_SUPPORT */
1938
1939/* Make sure we have one more byte of buffer space and then add C to it.  */
1940#define BUF_PUSH(c)							\
1941  do {									\
1942    GET_BUFFER_SPACE (1);						\
1943    *b++ = (US_CHAR_TYPE) (c);						\
1944  } while (0)
1945
1946
1947/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1948#define BUF_PUSH_2(c1, c2)						\
1949  do {									\
1950    GET_BUFFER_SPACE (2);						\
1951    *b++ = (US_CHAR_TYPE) (c1);					\
1952    *b++ = (US_CHAR_TYPE) (c2);					\
1953  } while (0)
1954
1955
1956/* As with BUF_PUSH_2, except for three bytes.  */
1957#define BUF_PUSH_3(c1, c2, c3)						\
1958  do {									\
1959    GET_BUFFER_SPACE (3);						\
1960    *b++ = (US_CHAR_TYPE) (c1);					\
1961    *b++ = (US_CHAR_TYPE) (c2);					\
1962    *b++ = (US_CHAR_TYPE) (c3);					\
1963  } while (0)
1964
1965/* Store a jump with opcode OP at LOC to location TO.  We store a
1966   relative address offset by the three bytes the jump itself occupies.  */
1967#define STORE_JUMP(op, loc, to) \
1968  store_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1969
1970/* Likewise, for a two-argument jump.  */
1971#define STORE_JUMP2(op, loc, to, arg) \
1972  store_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1973
1974/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1975#define INSERT_JUMP(op, loc, to) \
1976  insert_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1977
1978/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1979#define INSERT_JUMP2(op, loc, to, arg) \
1980  insert_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1981	      arg, b)
1982
1983
1984/* This is not an arbitrary limit: the arguments which represent offsets
1985   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1986   be too small, many things would have to change.  */
1987/* Any other compiler which, like MSC, has allocation limit below 2^16
1988   bytes will have to use approach similar to what was done below for
1989   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1990   reallocating to 0 bytes.  Such thing is not going to work too well.
1991   You have been warned!!  */
1992#if defined _MSC_VER  && !defined WIN32
1993/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1994   The REALLOC define eliminates a flurry of conversion warnings,
1995   but is not required. */
1996# define MAX_BUF_SIZE  65500L
1997# define REALLOC(p,s) realloc ((p), (size_t) (s))
1998#else
1999# define MAX_BUF_SIZE (1L << 16)
2000# define REALLOC(p,s) realloc ((p), (s))
2001#endif
2002
2003/* Extend the buffer by twice its current size via realloc and
2004   reset the pointers that pointed into the old block to point to the
2005   correct places in the new one.  If extending the buffer results in it
2006   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2007#if __BOUNDED_POINTERS__
2008# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2009# define MOVE_BUFFER_POINTER(P) \
2010  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2011# define ELSE_EXTEND_BUFFER_HIGH_BOUND		\
2012  else						\
2013    {						\
2014      SET_HIGH_BOUND (b);			\
2015      SET_HIGH_BOUND (begalt);			\
2016      if (fixup_alt_jump)			\
2017	SET_HIGH_BOUND (fixup_alt_jump);	\
2018      if (laststart)				\
2019	SET_HIGH_BOUND (laststart);		\
2020      if (pending_exact)			\
2021	SET_HIGH_BOUND (pending_exact);		\
2022    }
2023#else
2024# define MOVE_BUFFER_POINTER(P) (P) += incr
2025# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2026#endif
2027
2028#ifdef MBS_SUPPORT
2029# define EXTEND_BUFFER()						\
2030  do {									\
2031    US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2032    int wchar_count;							\
2033    if (bufp->allocated + sizeof(US_CHAR_TYPE) > MAX_BUF_SIZE)		\
2034      return REG_ESIZE;							\
2035    bufp->allocated <<= 1;						\
2036    if (bufp->allocated > MAX_BUF_SIZE)					\
2037      bufp->allocated = MAX_BUF_SIZE;					\
2038    /* How many characters the new buffer can have?  */			\
2039    wchar_count = bufp->allocated / sizeof(US_CHAR_TYPE);		\
2040    if (wchar_count == 0) wchar_count = 1;				\
2041    /* Truncate the buffer to CHAR_TYPE align.  */			\
2042    bufp->allocated = wchar_count * sizeof(US_CHAR_TYPE);		\
2043    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, US_CHAR_TYPE);		\
2044    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2045    if (COMPILED_BUFFER_VAR == NULL)					\
2046      return REG_ESPACE;						\
2047    /* If the buffer moved, move all the pointers into it.  */		\
2048    if (old_buffer != COMPILED_BUFFER_VAR)				\
2049      {									\
2050	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2051	MOVE_BUFFER_POINTER (b);					\
2052	MOVE_BUFFER_POINTER (begalt);					\
2053	if (fixup_alt_jump)						\
2054	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2055	if (laststart)							\
2056	  MOVE_BUFFER_POINTER (laststart);				\
2057	if (pending_exact)						\
2058	  MOVE_BUFFER_POINTER (pending_exact);				\
2059      }									\
2060    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2061  } while (0)
2062#else
2063# define EXTEND_BUFFER()						\
2064  do {									\
2065    US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2066    if (bufp->allocated == MAX_BUF_SIZE)				\
2067      return REG_ESIZE;							\
2068    bufp->allocated <<= 1;						\
2069    if (bufp->allocated > MAX_BUF_SIZE)					\
2070      bufp->allocated = MAX_BUF_SIZE;					\
2071    bufp->buffer = (US_CHAR_TYPE *) REALLOC (COMPILED_BUFFER_VAR,	\
2072						bufp->allocated);	\
2073    if (COMPILED_BUFFER_VAR == NULL)					\
2074      return REG_ESPACE;						\
2075    /* If the buffer moved, move all the pointers into it.  */		\
2076    if (old_buffer != COMPILED_BUFFER_VAR)				\
2077      {									\
2078	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2079	MOVE_BUFFER_POINTER (b);					\
2080	MOVE_BUFFER_POINTER (begalt);					\
2081	if (fixup_alt_jump)						\
2082	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2083	if (laststart)							\
2084	  MOVE_BUFFER_POINTER (laststart);				\
2085	if (pending_exact)						\
2086	  MOVE_BUFFER_POINTER (pending_exact);				\
2087      }									\
2088    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2089  } while (0)
2090#endif /* MBS_SUPPORT */
2091
2092/* Since we have one byte reserved for the register number argument to
2093   {start,stop}_memory, the maximum number of groups we can report
2094   things about is what fits in that byte.  */
2095#define MAX_REGNUM 255
2096
2097/* But patterns can have more than `MAX_REGNUM' registers.  We just
2098   ignore the excess.  */
2099typedef unsigned regnum_t;
2100
2101
2102/* Macros for the compile stack.  */
2103
2104/* Since offsets can go either forwards or backwards, this type needs to
2105   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2106/* int may be not enough when sizeof(int) == 2.  */
2107typedef long pattern_offset_t;
2108
2109typedef struct
2110{
2111  pattern_offset_t begalt_offset;
2112  pattern_offset_t fixup_alt_jump;
2113  pattern_offset_t inner_group_offset;
2114  pattern_offset_t laststart_offset;
2115  regnum_t regnum;
2116} compile_stack_elt_t;
2117
2118
2119typedef struct
2120{
2121  compile_stack_elt_t *stack;
2122  unsigned size;
2123  unsigned avail;			/* Offset of next open position.  */
2124} compile_stack_type;
2125
2126
2127#define INIT_COMPILE_STACK_SIZE 32
2128
2129#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2130#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2131
2132/* The next available element.  */
2133#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2134
2135
2136/* Set the bit for character C in a list.  */
2137#define SET_LIST_BIT(c)                               \
2138  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2139   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2140
2141
2142/* Get the next unsigned number in the uncompiled pattern.  */
2143#define GET_UNSIGNED_NUMBER(num) 					\
2144  {									\
2145    while (p != pend)							\
2146      {									\
2147	PATFETCH (c);							\
2148	if (! ('0' <= c && c <= '9'))					\
2149	  break;							\
2150	if (num <= RE_DUP_MAX)						\
2151	  {								\
2152	    if (num < 0)						\
2153	      num = 0;							\
2154	    num = num * 10 + c - '0';					\
2155	  }								\
2156      }									\
2157  }
2158
2159#if defined _LIBC || WIDE_CHAR_SUPPORT
2160/* The GNU C library provides support for user-defined character classes
2161   and the functions from ISO C amendement 1.  */
2162# ifdef CHARCLASS_NAME_MAX
2163#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2164# else
2165/* This shouldn't happen but some implementation might still have this
2166   problem.  Use a reasonable default value.  */
2167#  define CHAR_CLASS_MAX_LENGTH 256
2168# endif
2169
2170# ifdef _LIBC
2171#  define IS_CHAR_CLASS(string) __wctype (string)
2172# else
2173#  define IS_CHAR_CLASS(string) wctype (string)
2174# endif
2175#else
2176# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2177
2178# define IS_CHAR_CLASS(string)						\
2179   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2180    || STREQ (string, "lower") || STREQ (string, "digit")		\
2181    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2182    || STREQ (string, "space") || STREQ (string, "print")		\
2183    || STREQ (string, "punct") || STREQ (string, "graph")		\
2184    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2185#endif
2186
2187#ifndef MATCH_MAY_ALLOCATE
2188
2189/* If we cannot allocate large objects within re_match_2_internal,
2190   we make the fail stack and register vectors global.
2191   The fail stack, we grow to the maximum size when a regexp
2192   is compiled.
2193   The register vectors, we adjust in size each time we
2194   compile a regexp, according to the number of registers it needs.  */
2195
2196static fail_stack_type fail_stack;
2197
2198/* Size with which the following vectors are currently allocated.
2199   That is so we can make them bigger as needed,
2200   but never make them smaller.  */
2201static int regs_allocated_size;
2202
2203static const char **     regstart, **     regend;
2204static const char ** old_regstart, ** old_regend;
2205static const char **best_regstart, **best_regend;
2206static register_info_type *reg_info;
2207static const char **reg_dummy;
2208static register_info_type *reg_info_dummy;
2209
2210/* Make the register vectors big enough for NUM_REGS registers,
2211   but don't make them smaller.  */
2212
2213static
2214regex_grow_registers (num_regs)
2215     int num_regs;
2216{
2217  if (num_regs > regs_allocated_size)
2218    {
2219      RETALLOC_IF (regstart,	 num_regs, const char *);
2220      RETALLOC_IF (regend,	 num_regs, const char *);
2221      RETALLOC_IF (old_regstart, num_regs, const char *);
2222      RETALLOC_IF (old_regend,	 num_regs, const char *);
2223      RETALLOC_IF (best_regstart, num_regs, const char *);
2224      RETALLOC_IF (best_regend,	 num_regs, const char *);
2225      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
2226      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2227      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2228
2229      regs_allocated_size = num_regs;
2230    }
2231}
2232
2233#endif /* not MATCH_MAY_ALLOCATE */
2234
2235static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2236						 compile_stack,
2237						 regnum_t regnum));
2238
2239/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2240   Returns one of error codes defined in `regex.h', or zero for success.
2241
2242   Assumes the `allocated' (and perhaps `buffer') and `translate'
2243   fields are set in BUFP on entry.
2244
2245   If it succeeds, results are put in BUFP (if it returns an error, the
2246   contents of BUFP are undefined):
2247     `buffer' is the compiled pattern;
2248     `syntax' is set to SYNTAX;
2249     `used' is set to the length of the compiled pattern;
2250     `fastmap_accurate' is zero;
2251     `re_nsub' is the number of subexpressions in PATTERN;
2252     `not_bol' and `not_eol' are zero;
2253
2254   The `fastmap' and `newline_anchor' fields are neither
2255   examined nor set.  */
2256
2257/* Return, freeing storage we allocated.  */
2258#ifdef MBS_SUPPORT
2259# define FREE_STACK_RETURN(value)		\
2260  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2261#else
2262# define FREE_STACK_RETURN(value)		\
2263  return (free (compile_stack.stack), value)
2264#endif /* MBS_SUPPORT */
2265
2266static reg_errcode_t
2267#ifdef MBS_SUPPORT
2268regex_compile (cpattern, csize, syntax, bufp)
2269     const char *cpattern;
2270     size_t csize;
2271#else
2272regex_compile (pattern, size, syntax, bufp)
2273     const char *pattern;
2274     size_t size;
2275#endif /* MBS_SUPPORT */
2276     reg_syntax_t syntax;
2277     struct re_pattern_buffer *bufp;
2278{
2279  /* We fetch characters from PATTERN here.  Even though PATTERN is
2280     `char *' (i.e., signed), we declare these variables as unsigned, so
2281     they can be reliably used as array indices.  */
2282  register US_CHAR_TYPE c, c1;
2283
2284#ifdef MBS_SUPPORT
2285  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2286  CHAR_TYPE *pattern, *COMPILED_BUFFER_VAR;
2287  size_t size;
2288  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
2289  int *mbs_offset = NULL;
2290  /* It hold whether each wchar_t is binary data or not.  */
2291  char *is_binary = NULL;
2292  /* A flag whether exactn is handling binary data or not.  */
2293  char is_exactn_bin = FALSE;
2294#endif /* MBS_SUPPORT */
2295
2296  /* A random temporary spot in PATTERN.  */
2297  const CHAR_TYPE *p1;
2298
2299  /* Points to the end of the buffer, where we should append.  */
2300  register US_CHAR_TYPE *b;
2301
2302  /* Keeps track of unclosed groups.  */
2303  compile_stack_type compile_stack;
2304
2305  /* Points to the current (ending) position in the pattern.  */
2306#ifdef MBS_SUPPORT
2307  const CHAR_TYPE *p;
2308  const CHAR_TYPE *pend;
2309#else
2310  const CHAR_TYPE *p = pattern;
2311  const CHAR_TYPE *pend = pattern + size;
2312#endif /* MBS_SUPPORT */
2313
2314  /* How to translate the characters in the pattern.  */
2315  RE_TRANSLATE_TYPE translate = bufp->translate;
2316
2317  /* Address of the count-byte of the most recently inserted `exactn'
2318     command.  This makes it possible to tell if a new exact-match
2319     character can be added to that command or if the character requires
2320     a new `exactn' command.  */
2321  US_CHAR_TYPE *pending_exact = 0;
2322
2323  /* Address of start of the most recently finished expression.
2324     This tells, e.g., postfix * where to find the start of its
2325     operand.  Reset at the beginning of groups and alternatives.  */
2326  US_CHAR_TYPE *laststart = 0;
2327
2328  /* Address of beginning of regexp, or inside of last group.  */
2329  US_CHAR_TYPE *begalt;
2330
2331  /* Address of the place where a forward jump should go to the end of
2332     the containing expression.  Each alternative of an `or' -- except the
2333     last -- ends with a forward jump of this sort.  */
2334  US_CHAR_TYPE *fixup_alt_jump = 0;
2335
2336  /* Counts open-groups as they are encountered.  Remembered for the
2337     matching close-group on the compile stack, so the same register
2338     number is put in the stop_memory as the start_memory.  */
2339  regnum_t regnum = 0;
2340
2341#ifdef MBS_SUPPORT
2342  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2343  p = pend = pattern = TALLOC(csize + 1, CHAR_TYPE);
2344  p[csize] = L'\0';	/* sentinel */
2345  mbs_offset = TALLOC(csize + 1, int);
2346  is_binary = TALLOC(csize + 1, char);
2347  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2348    {
2349      if (pattern) free(pattern);
2350      if (mbs_offset) free(mbs_offset);
2351      if (is_binary) free(is_binary);
2352      return REG_ESPACE;
2353    }
2354  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2355  pend = p + size;
2356  if (size < 0)
2357    {
2358      if (pattern) free(pattern);
2359      if (mbs_offset) free(mbs_offset);
2360      if (is_binary) free(is_binary);
2361      return REG_BADPAT;
2362    }
2363#endif
2364
2365#ifdef DEBUG
2366  DEBUG_PRINT1 ("\nCompiling pattern: ");
2367  if (debug)
2368    {
2369      unsigned debug_count;
2370
2371      for (debug_count = 0; debug_count < size; debug_count++)
2372        PUT_CHAR (pattern[debug_count]);
2373      putchar ('\n');
2374    }
2375#endif /* DEBUG */
2376
2377  /* Initialize the compile stack.  */
2378  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2379  if (compile_stack.stack == NULL)
2380    {
2381#ifdef MBS_SUPPORT
2382      if (pattern) free(pattern);
2383      if (mbs_offset) free(mbs_offset);
2384      if (is_binary) free(is_binary);
2385#endif
2386      return REG_ESPACE;
2387    }
2388
2389  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2390  compile_stack.avail = 0;
2391
2392  /* Initialize the pattern buffer.  */
2393  bufp->syntax = syntax;
2394  bufp->fastmap_accurate = 0;
2395  bufp->not_bol = bufp->not_eol = 0;
2396
2397  /* Set `used' to zero, so that if we return an error, the pattern
2398     printer (for debugging) will think there's no pattern.  We reset it
2399     at the end.  */
2400  bufp->used = 0;
2401
2402  /* Always count groups, whether or not bufp->no_sub is set.  */
2403  bufp->re_nsub = 0;
2404
2405#if !defined emacs && !defined SYNTAX_TABLE
2406  /* Initialize the syntax table.  */
2407   init_syntax_once ();
2408#endif
2409
2410  if (bufp->allocated == 0)
2411    {
2412      if (bufp->buffer)
2413	{ /* If zero allocated, but buffer is non-null, try to realloc
2414             enough space.  This loses if buffer's address is bogus, but
2415             that is the user's responsibility.  */
2416#ifdef MBS_SUPPORT
2417	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2418	     buffer.  */
2419          free(bufp->buffer);
2420          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(US_CHAR_TYPE),
2421					US_CHAR_TYPE);
2422#else
2423          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, US_CHAR_TYPE);
2424#endif /* MBS_SUPPORT */
2425        }
2426      else
2427        { /* Caller did not allocate a buffer.  Do it for them.  */
2428          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(US_CHAR_TYPE),
2429					US_CHAR_TYPE);
2430        }
2431
2432      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2433#ifdef MBS_SUPPORT
2434      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2435#endif /* MBS_SUPPORT */
2436      bufp->allocated = INIT_BUF_SIZE;
2437    }
2438#ifdef MBS_SUPPORT
2439  else
2440    COMPILED_BUFFER_VAR = (US_CHAR_TYPE*) bufp->buffer;
2441#endif
2442
2443  begalt = b = COMPILED_BUFFER_VAR;
2444
2445  /* Loop through the uncompiled pattern until we're at the end.  */
2446  while (p != pend)
2447    {
2448      PATFETCH (c);
2449
2450      switch (c)
2451        {
2452        case '^':
2453          {
2454            if (   /* If at start of pattern, it's an operator.  */
2455                   p == pattern + 1
2456                   /* If context independent, it's an operator.  */
2457                || syntax & RE_CONTEXT_INDEP_ANCHORS
2458                   /* Otherwise, depends on what's come before.  */
2459                || at_begline_loc_p (pattern, p, syntax))
2460              BUF_PUSH (begline);
2461            else
2462              goto normal_char;
2463          }
2464          break;
2465
2466
2467        case '$':
2468          {
2469            if (   /* If at end of pattern, it's an operator.  */
2470                   p == pend
2471                   /* If context independent, it's an operator.  */
2472                || syntax & RE_CONTEXT_INDEP_ANCHORS
2473                   /* Otherwise, depends on what's next.  */
2474                || at_endline_loc_p (p, pend, syntax))
2475               BUF_PUSH (endline);
2476             else
2477               goto normal_char;
2478           }
2479           break;
2480
2481
2482	case '+':
2483        case '?':
2484          if ((syntax & RE_BK_PLUS_QM)
2485              || (syntax & RE_LIMITED_OPS))
2486            goto normal_char;
2487        handle_plus:
2488        case '*':
2489          /* If there is no previous pattern... */
2490          if (!laststart)
2491            {
2492              if (syntax & RE_CONTEXT_INVALID_OPS)
2493                FREE_STACK_RETURN (REG_BADRPT);
2494              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2495                goto normal_char;
2496            }
2497
2498          {
2499            /* Are we optimizing this jump?  */
2500            boolean keep_string_p = false;
2501
2502            /* 1 means zero (many) matches is allowed.  */
2503            char zero_times_ok = 0, many_times_ok = 0;
2504
2505            /* If there is a sequence of repetition chars, collapse it
2506               down to just one (the right one).  We can't combine
2507               interval operators with these because of, e.g., `a{2}*',
2508               which should only match an even number of `a's.  */
2509
2510            for (;;)
2511              {
2512                zero_times_ok |= c != '+';
2513                many_times_ok |= c != '?';
2514
2515                if (p == pend)
2516                  break;
2517
2518                PATFETCH (c);
2519
2520                if (c == '*'
2521                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2522                  ;
2523
2524                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2525                  {
2526                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2527
2528                    PATFETCH (c1);
2529                    if (!(c1 == '+' || c1 == '?'))
2530                      {
2531                        PATUNFETCH;
2532                        PATUNFETCH;
2533                        break;
2534                      }
2535
2536                    c = c1;
2537                  }
2538                else
2539                  {
2540                    PATUNFETCH;
2541                    break;
2542                  }
2543
2544                /* If we get here, we found another repeat character.  */
2545               }
2546
2547            /* Star, etc. applied to an empty pattern is equivalent
2548               to an empty pattern.  */
2549            if (!laststart)
2550              break;
2551
2552            /* Now we know whether or not zero matches is allowed
2553               and also whether or not two or more matches is allowed.  */
2554            if (many_times_ok)
2555              { /* More than one repetition is allowed, so put in at the
2556                   end a backward relative jump from `b' to before the next
2557                   jump we're going to put in below (which jumps from
2558                   laststart to after this jump).
2559
2560                   But if we are at the `*' in the exact sequence `.*\n',
2561                   insert an unconditional jump backwards to the .,
2562                   instead of the beginning of the loop.  This way we only
2563                   push a failure point once, instead of every time
2564                   through the loop.  */
2565                assert (p - 1 > pattern);
2566
2567                /* Allocate the space for the jump.  */
2568                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2569
2570                /* We know we are not at the first character of the pattern,
2571                   because laststart was nonzero.  And we've already
2572                   incremented `p', by the way, to be the character after
2573                   the `*'.  Do we have to do something analogous here
2574                   for null bytes, because of RE_DOT_NOT_NULL?  */
2575                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2576		    && zero_times_ok
2577                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2578                    && !(syntax & RE_DOT_NEWLINE))
2579                  { /* We have .*\n.  */
2580                    STORE_JUMP (jump, b, laststart);
2581                    keep_string_p = true;
2582                  }
2583                else
2584                  /* Anything else.  */
2585                  STORE_JUMP (maybe_pop_jump, b, laststart -
2586			      (1 + OFFSET_ADDRESS_SIZE));
2587
2588                /* We've added more stuff to the buffer.  */
2589                b += 1 + OFFSET_ADDRESS_SIZE;
2590              }
2591
2592            /* On failure, jump from laststart to b + 3, which will be the
2593               end of the buffer after this jump is inserted.  */
2594	    /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2595	       'b + 3'.  */
2596            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2597            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2598                                       : on_failure_jump,
2599                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2600            pending_exact = 0;
2601            b += 1 + OFFSET_ADDRESS_SIZE;
2602
2603            if (!zero_times_ok)
2604              {
2605                /* At least one repetition is required, so insert a
2606                   `dummy_failure_jump' before the initial
2607                   `on_failure_jump' instruction of the loop. This
2608                   effects a skip over that instruction the first time
2609                   we hit that loop.  */
2610                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2611                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2612			     2 + 2 * OFFSET_ADDRESS_SIZE);
2613                b += 1 + OFFSET_ADDRESS_SIZE;
2614              }
2615            }
2616	  break;
2617
2618
2619	case '.':
2620          laststart = b;
2621          BUF_PUSH (anychar);
2622          break;
2623
2624
2625        case '[':
2626          {
2627            boolean had_char_class = false;
2628#ifdef MBS_SUPPORT
2629	    CHAR_TYPE range_start = 0xffffffff;
2630#else
2631	    unsigned int range_start = 0xffffffff;
2632#endif
2633            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2634
2635#ifdef MBS_SUPPORT
2636	    /* We assume a charset(_not) structure as a wchar_t array.
2637	       charset[0] = (re_opcode_t) charset(_not)
2638               charset[1] = l (= length of char_classes)
2639               charset[2] = m (= length of collating_symbols)
2640               charset[3] = n (= length of equivalence_classes)
2641	       charset[4] = o (= length of char_ranges)
2642	       charset[5] = p (= length of chars)
2643
2644               charset[6] = char_class (wctype_t)
2645               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2646                         ...
2647               charset[l+5]  = char_class (wctype_t)
2648
2649               charset[l+6]  = collating_symbol (wchar_t)
2650                            ...
2651               charset[l+m+5]  = collating_symbol (wchar_t)
2652					ifdef _LIBC we use the index if
2653					_NL_COLLATE_SYMB_EXTRAMB instead of
2654					wchar_t string.
2655
2656               charset[l+m+6]  = equivalence_classes (wchar_t)
2657                              ...
2658               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2659					ifdef _LIBC we use the index in
2660					_NL_COLLATE_WEIGHT instead of
2661					wchar_t string.
2662
2663	       charset[l+m+n+6] = range_start
2664	       charset[l+m+n+7] = range_end
2665	                       ...
2666	       charset[l+m+n+2o+4] = range_start
2667	       charset[l+m+n+2o+5] = range_end
2668					ifdef _LIBC we use the value looked up
2669					in _NL_COLLATE_COLLSEQ instead of
2670					wchar_t character.
2671
2672	       charset[l+m+n+2o+6] = char
2673	                          ...
2674	       charset[l+m+n+2o+p+5] = char
2675
2676	     */
2677
2678	    /* We need at least 6 spaces: the opcode, the length of
2679               char_classes, the length of collating_symbols, the length of
2680               equivalence_classes, the length of char_ranges, the length of
2681               chars.  */
2682	    GET_BUFFER_SPACE (6);
2683
2684	    /* Save b as laststart. And We use laststart as the pointer
2685	       to the first element of the charset here.
2686	       In other words, laststart[i] indicates charset[i].  */
2687            laststart = b;
2688
2689            /* We test `*p == '^' twice, instead of using an if
2690               statement, so we only need one BUF_PUSH.  */
2691            BUF_PUSH (*p == '^' ? charset_not : charset);
2692            if (*p == '^')
2693              p++;
2694
2695            /* Push the length of char_classes, the length of
2696               collating_symbols, the length of equivalence_classes, the
2697               length of char_ranges and the length of chars.  */
2698            BUF_PUSH_3 (0, 0, 0);
2699            BUF_PUSH_2 (0, 0);
2700
2701            /* Remember the first position in the bracket expression.  */
2702            p1 = p;
2703
2704            /* charset_not matches newline according to a syntax bit.  */
2705            if ((re_opcode_t) b[-6] == charset_not
2706                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2707	      {
2708		BUF_PUSH('\n');
2709		laststart[5]++; /* Update the length of characters  */
2710	      }
2711
2712            /* Read in characters and ranges, setting map bits.  */
2713            for (;;)
2714              {
2715                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2716
2717                PATFETCH (c);
2718
2719                /* \ might escape characters inside [...] and [^...].  */
2720                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2721                  {
2722                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2723
2724                    PATFETCH (c1);
2725		    BUF_PUSH(c1);
2726		    laststart[5]++; /* Update the length of chars  */
2727		    range_start = c1;
2728                    continue;
2729                  }
2730
2731                /* Could be the end of the bracket expression.  If it's
2732                   not (i.e., when the bracket expression is `[]' so
2733                   far), the ']' character bit gets set way below.  */
2734                if (c == ']' && p != p1 + 1)
2735                  break;
2736
2737                /* Look ahead to see if it's a range when the last thing
2738                   was a character class.  */
2739                if (had_char_class && c == '-' && *p != ']')
2740                  FREE_STACK_RETURN (REG_ERANGE);
2741
2742                /* Look ahead to see if it's a range when the last thing
2743                   was a character: if this is a hyphen not at the
2744                   beginning or the end of a list, then it's the range
2745                   operator.  */
2746                if (c == '-'
2747                    && !(p - 2 >= pattern && p[-2] == '[')
2748                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2749                    && *p != ']')
2750                  {
2751                    reg_errcode_t ret;
2752		    /* Allocate the space for range_start and range_end.  */
2753		    GET_BUFFER_SPACE (2);
2754		    /* Update the pointer to indicate end of buffer.  */
2755                    b += 2;
2756                    ret = compile_range (range_start, &p, pend, translate,
2757                                         syntax, b, laststart);
2758                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2759                    range_start = 0xffffffff;
2760                  }
2761                else if (p[0] == '-' && p[1] != ']')
2762                  { /* This handles ranges made up of characters only.  */
2763                    reg_errcode_t ret;
2764
2765		    /* Move past the `-'.  */
2766                    PATFETCH (c1);
2767		    /* Allocate the space for range_start and range_end.  */
2768		    GET_BUFFER_SPACE (2);
2769		    /* Update the pointer to indicate end of buffer.  */
2770                    b += 2;
2771                    ret = compile_range (c, &p, pend, translate, syntax, b,
2772                                         laststart);
2773                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2774		    range_start = 0xffffffff;
2775                  }
2776
2777                /* See if we're at the beginning of a possible character
2778                   class.  */
2779                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2780                  { /* Leave room for the null.  */
2781                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2782
2783                    PATFETCH (c);
2784                    c1 = 0;
2785
2786                    /* If pattern is `[[:'.  */
2787                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2788
2789                    for (;;)
2790                      {
2791                        PATFETCH (c);
2792                        if ((c == ':' && *p == ']') || p == pend)
2793                          break;
2794			if (c1 < CHAR_CLASS_MAX_LENGTH)
2795			  str[c1++] = c;
2796			else
2797			  /* This is in any case an invalid class name.  */
2798			  str[0] = '\0';
2799                      }
2800                    str[c1] = '\0';
2801
2802                    /* If isn't a word bracketed by `[:' and `:]':
2803                       undo the ending character, the letters, and leave
2804                       the leading `:' and `[' (but store them as character).  */
2805                    if (c == ':' && *p == ']')
2806                      {
2807			wctype_t wt;
2808			uintptr_t alignedp;
2809
2810			/* Query the character class as wctype_t.  */
2811			wt = IS_CHAR_CLASS (str);
2812			if (wt == 0)
2813			  FREE_STACK_RETURN (REG_ECTYPE);
2814
2815                        /* Throw away the ] at the end of the character
2816                           class.  */
2817                        PATFETCH (c);
2818
2819                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2820
2821			/* Allocate the space for character class.  */
2822                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2823			/* Update the pointer to indicate end of buffer.  */
2824                        b += CHAR_CLASS_SIZE;
2825			/* Move data which follow character classes
2826			    not to violate the data.  */
2827                        insert_space(CHAR_CLASS_SIZE,
2828				     laststart + 6 + laststart[1],
2829				     b - 1);
2830			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2831				    + __alignof__(wctype_t) - 1)
2832			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2833			/* Store the character class.  */
2834                        *((wctype_t*)alignedp) = wt;
2835                        /* Update length of char_classes */
2836                        laststart[1] += CHAR_CLASS_SIZE;
2837
2838                        had_char_class = true;
2839                      }
2840                    else
2841                      {
2842                        c1++;
2843                        while (c1--)
2844                          PATUNFETCH;
2845                        BUF_PUSH ('[');
2846                        BUF_PUSH (':');
2847                        laststart[5] += 2; /* Update the length of characters  */
2848			range_start = ':';
2849                        had_char_class = false;
2850                      }
2851                  }
2852                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2853							  || *p == '.'))
2854		  {
2855		    CHAR_TYPE str[128];	/* Should be large enough.  */
2856		    CHAR_TYPE delim = *p; /* '=' or '.'  */
2857# ifdef _LIBC
2858		    uint32_t nrules =
2859		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2860# endif
2861		    PATFETCH (c);
2862		    c1 = 0;
2863
2864		    /* If pattern is `[[=' or '[[.'.  */
2865		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2866
2867		    for (;;)
2868		      {
2869			PATFETCH (c);
2870			if ((c == delim && *p == ']') || p == pend)
2871			  break;
2872			if (c1 < sizeof (str) - 1)
2873			  str[c1++] = c;
2874			else
2875			  /* This is in any case an invalid class name.  */
2876			  str[0] = '\0';
2877                      }
2878		    str[c1] = '\0';
2879
2880		    if (c == delim && *p == ']' && str[0] != '\0')
2881		      {
2882                        unsigned int i, offset;
2883			/* If we have no collation data we use the default
2884			   collation in which each character is in a class
2885			   by itself.  It also means that ASCII is the
2886			   character set and therefore we cannot have character
2887			   with more than one byte in the multibyte
2888			   representation.  */
2889
2890                        /* If not defined _LIBC, we push the name and
2891			   `\0' for the sake of matching performance.  */
2892			int datasize = c1 + 1;
2893
2894# ifdef _LIBC
2895			int32_t idx = 0;
2896			if (nrules == 0)
2897# endif
2898			  {
2899			    if (c1 != 1)
2900			      FREE_STACK_RETURN (REG_ECOLLATE);
2901			  }
2902# ifdef _LIBC
2903			else
2904			  {
2905			    const int32_t *table;
2906			    const int32_t *weights;
2907			    const int32_t *extra;
2908			    const int32_t *indirect;
2909			    wint_t *cp;
2910
2911			    /* This #include defines a local function!  */
2912#  include <locale/weightwc.h>
2913
2914			    if(delim == '=')
2915			      {
2916				/* We push the index for equivalence class.  */
2917				cp = (wint_t*)str;
2918
2919				table = (const int32_t *)
2920				  _NL_CURRENT (LC_COLLATE,
2921					       _NL_COLLATE_TABLEWC);
2922				weights = (const int32_t *)
2923				  _NL_CURRENT (LC_COLLATE,
2924					       _NL_COLLATE_WEIGHTWC);
2925				extra = (const int32_t *)
2926				  _NL_CURRENT (LC_COLLATE,
2927					       _NL_COLLATE_EXTRAWC);
2928				indirect = (const int32_t *)
2929				  _NL_CURRENT (LC_COLLATE,
2930					       _NL_COLLATE_INDIRECTWC);
2931
2932				idx = findidx ((const wint_t**)&cp);
2933				if (idx == 0 || cp < (wint_t*) str + c1)
2934				  /* This is no valid character.  */
2935				  FREE_STACK_RETURN (REG_ECOLLATE);
2936
2937				str[0] = (wchar_t)idx;
2938			      }
2939			    else /* delim == '.' */
2940			      {
2941				/* We push collation sequence value
2942				   for collating symbol.  */
2943				int32_t table_size;
2944				const int32_t *symb_table;
2945				const unsigned char *extra;
2946				int32_t idx;
2947				int32_t elem;
2948				int32_t second;
2949				int32_t hash;
2950				char char_str[c1];
2951
2952				/* We have to convert the name to a single-byte
2953				   string.  This is possible since the names
2954				   consist of ASCII characters and the internal
2955				   representation is UCS4.  */
2956				for (i = 0; i < c1; ++i)
2957				  char_str[i] = str[i];
2958
2959				table_size =
2960				  _NL_CURRENT_WORD (LC_COLLATE,
2961						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2962				symb_table = (const int32_t *)
2963				  _NL_CURRENT (LC_COLLATE,
2964					       _NL_COLLATE_SYMB_TABLEMB);
2965				extra = (const unsigned char *)
2966				  _NL_CURRENT (LC_COLLATE,
2967					       _NL_COLLATE_SYMB_EXTRAMB);
2968
2969				/* Locate the character in the hashing table.  */
2970				hash = elem_hash (char_str, c1);
2971
2972				idx = 0;
2973				elem = hash % table_size;
2974				second = hash % (table_size - 2);
2975				while (symb_table[2 * elem] != 0)
2976				  {
2977				    /* First compare the hashing value.  */
2978				    if (symb_table[2 * elem] == hash
2979					&& c1 == extra[symb_table[2 * elem + 1]]
2980					&& memcmp (str,
2981						   &extra[symb_table[2 * elem + 1]
2982							 + 1], c1) == 0)
2983				      {
2984					/* Yep, this is the entry.  */
2985					idx = symb_table[2 * elem + 1];
2986					idx += 1 + extra[idx];
2987					break;
2988				      }
2989
2990				    /* Next entry.  */
2991				    elem += second;
2992				  }
2993
2994				if (symb_table[2 * elem] != 0)
2995				  {
2996				    /* Compute the index of the byte sequence
2997				       in the table.  */
2998				    idx += 1 + extra[idx];
2999				    /* Adjust for the alignment.  */
3000				    idx = (idx + 3) & ~4;
3001
3002				    str[0] = (wchar_t) idx + 4;
3003				  }
3004				else if (symb_table[2 * elem] == 0 && c1 == 1)
3005				  {
3006				    /* No valid character.  Match it as a
3007				       single byte character.  */
3008				    had_char_class = false;
3009				    BUF_PUSH(str[0]);
3010				    /* Update the length of characters  */
3011				    laststart[5]++;
3012				    range_start = str[0];
3013
3014				    /* Throw away the ] at the end of the
3015				       collating symbol.  */
3016				    PATFETCH (c);
3017				    /* exit from the switch block.  */
3018				    continue;
3019				  }
3020				else
3021				  FREE_STACK_RETURN (REG_ECOLLATE);
3022			      }
3023			    datasize = 1;
3024			  }
3025# endif
3026                        /* Throw away the ] at the end of the equivalence
3027                           class (or collating symbol).  */
3028                        PATFETCH (c);
3029
3030			/* Allocate the space for the equivalence class
3031			   (or collating symbol) (and '\0' if needed).  */
3032                        GET_BUFFER_SPACE(datasize);
3033			/* Update the pointer to indicate end of buffer.  */
3034                        b += datasize;
3035
3036			if (delim == '=')
3037			  { /* equivalence class  */
3038			    /* Calculate the offset of char_ranges,
3039			       which is next to equivalence_classes.  */
3040			    offset = laststart[1] + laststart[2]
3041			      + laststart[3] +6;
3042			    /* Insert space.  */
3043			    insert_space(datasize, laststart + offset, b - 1);
3044
3045			    /* Write the equivalence_class and \0.  */
3046			    for (i = 0 ; i < datasize ; i++)
3047			      laststart[offset + i] = str[i];
3048
3049			    /* Update the length of equivalence_classes.  */
3050			    laststart[3] += datasize;
3051			    had_char_class = true;
3052			  }
3053			else /* delim == '.' */
3054			  { /* collating symbol  */
3055			    /* Calculate the offset of the equivalence_classes,
3056			       which is next to collating_symbols.  */
3057			    offset = laststart[1] + laststart[2] + 6;
3058			    /* Insert space and write the collationg_symbol
3059			       and \0.  */
3060			    insert_space(datasize, laststart + offset, b-1);
3061			    for (i = 0 ; i < datasize ; i++)
3062			      laststart[offset + i] = str[i];
3063
3064			    /* In re_match_2_internal if range_start < -1, we
3065			       assume -range_start is the offset of the
3066			       collating symbol which is specified as
3067			       the character of the range start.  So we assign
3068			       -(laststart[1] + laststart[2] + 6) to
3069			       range_start.  */
3070			    range_start = -(laststart[1] + laststart[2] + 6);
3071			    /* Update the length of collating_symbol.  */
3072			    laststart[2] += datasize;
3073			    had_char_class = false;
3074			  }
3075		      }
3076                    else
3077                      {
3078                        c1++;
3079                        while (c1--)
3080                          PATUNFETCH;
3081                        BUF_PUSH ('[');
3082                        BUF_PUSH (delim);
3083                        laststart[5] += 2; /* Update the length of characters  */
3084			range_start = delim;
3085                        had_char_class = false;
3086                      }
3087		  }
3088                else
3089                  {
3090                    had_char_class = false;
3091		    BUF_PUSH(c);
3092		    laststart[5]++;  /* Update the length of characters  */
3093		    range_start = c;
3094                  }
3095	      }
3096
3097#else /* not MBS_SUPPORT */
3098            /* Ensure that we have enough space to push a charset: the
3099               opcode, the length count, and the bitset; 34 bytes in all.  */
3100	    GET_BUFFER_SPACE (34);
3101
3102            laststart = b;
3103
3104            /* We test `*p == '^' twice, instead of using an if
3105               statement, so we only need one BUF_PUSH.  */
3106            BUF_PUSH (*p == '^' ? charset_not : charset);
3107            if (*p == '^')
3108              p++;
3109
3110            /* Remember the first position in the bracket expression.  */
3111            p1 = p;
3112
3113            /* Push the number of bytes in the bitmap.  */
3114            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3115
3116            /* Clear the whole map.  */
3117            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3118
3119            /* charset_not matches newline according to a syntax bit.  */
3120            if ((re_opcode_t) b[-2] == charset_not
3121                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3122              SET_LIST_BIT ('\n');
3123
3124            /* Read in characters and ranges, setting map bits.  */
3125            for (;;)
3126              {
3127                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3128
3129                PATFETCH (c);
3130
3131                /* \ might escape characters inside [...] and [^...].  */
3132                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3133                  {
3134                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3135
3136                    PATFETCH (c1);
3137                    SET_LIST_BIT (c1);
3138		    range_start = c1;
3139                    continue;
3140                  }
3141
3142                /* Could be the end of the bracket expression.  If it's
3143                   not (i.e., when the bracket expression is `[]' so
3144                   far), the ']' character bit gets set way below.  */
3145                if (c == ']' && p != p1 + 1)
3146                  break;
3147
3148                /* Look ahead to see if it's a range when the last thing
3149                   was a character class.  */
3150                if (had_char_class && c == '-' && *p != ']')
3151                  FREE_STACK_RETURN (REG_ERANGE);
3152
3153                /* Look ahead to see if it's a range when the last thing
3154                   was a character: if this is a hyphen not at the
3155                   beginning or the end of a list, then it's the range
3156                   operator.  */
3157                if (c == '-'
3158                    && !(p - 2 >= pattern && p[-2] == '[')
3159                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3160                    && *p != ']')
3161                  {
3162                    reg_errcode_t ret
3163                      = compile_range (range_start, &p, pend, translate,
3164				       syntax, b);
3165                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3166		    range_start = 0xffffffff;
3167                  }
3168
3169                else if (p[0] == '-' && p[1] != ']')
3170                  { /* This handles ranges made up of characters only.  */
3171                    reg_errcode_t ret;
3172
3173		    /* Move past the `-'.  */
3174                    PATFETCH (c1);
3175
3176                    ret = compile_range (c, &p, pend, translate, syntax, b);
3177                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3178		    range_start = 0xffffffff;
3179                  }
3180
3181                /* See if we're at the beginning of a possible character
3182                   class.  */
3183
3184                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3185                  { /* Leave room for the null.  */
3186                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3187
3188                    PATFETCH (c);
3189                    c1 = 0;
3190
3191                    /* If pattern is `[[:'.  */
3192                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3193
3194                    for (;;)
3195                      {
3196                        PATFETCH (c);
3197                        if ((c == ':' && *p == ']') || p == pend)
3198                          break;
3199			if (c1 < CHAR_CLASS_MAX_LENGTH)
3200			  str[c1++] = c;
3201			else
3202			  /* This is in any case an invalid class name.  */
3203			  str[0] = '\0';
3204                      }
3205                    str[c1] = '\0';
3206
3207                    /* If isn't a word bracketed by `[:' and `:]':
3208                       undo the ending character, the letters, and leave
3209                       the leading `:' and `[' (but set bits for them).  */
3210                    if (c == ':' && *p == ']')
3211                      {
3212# if defined _LIBC || WIDE_CHAR_SUPPORT
3213                        boolean is_lower = STREQ (str, "lower");
3214                        boolean is_upper = STREQ (str, "upper");
3215			wctype_t wt;
3216                        int ch;
3217
3218			wt = IS_CHAR_CLASS (str);
3219			if (wt == 0)
3220			  FREE_STACK_RETURN (REG_ECTYPE);
3221
3222                        /* Throw away the ] at the end of the character
3223                           class.  */
3224                        PATFETCH (c);
3225
3226                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3227
3228                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3229			  {
3230#  ifdef _LIBC
3231			    if (__iswctype (__btowc (ch), wt))
3232			      SET_LIST_BIT (ch);
3233#  else
3234			    if (iswctype (btowc (ch), wt))
3235			      SET_LIST_BIT (ch);
3236#  endif
3237
3238			    if (translate && (is_upper || is_lower)
3239				&& (ISUPPER (ch) || ISLOWER (ch)))
3240			      SET_LIST_BIT (ch);
3241			  }
3242
3243                        had_char_class = true;
3244# else
3245                        int ch;
3246                        boolean is_alnum = STREQ (str, "alnum");
3247                        boolean is_alpha = STREQ (str, "alpha");
3248                        boolean is_blank = STREQ (str, "blank");
3249                        boolean is_cntrl = STREQ (str, "cntrl");
3250                        boolean is_digit = STREQ (str, "digit");
3251                        boolean is_graph = STREQ (str, "graph");
3252                        boolean is_lower = STREQ (str, "lower");
3253                        boolean is_print = STREQ (str, "print");
3254                        boolean is_punct = STREQ (str, "punct");
3255                        boolean is_space = STREQ (str, "space");
3256                        boolean is_upper = STREQ (str, "upper");
3257                        boolean is_xdigit = STREQ (str, "xdigit");
3258
3259                        if (!IS_CHAR_CLASS (str))
3260			  FREE_STACK_RETURN (REG_ECTYPE);
3261
3262                        /* Throw away the ] at the end of the character
3263                           class.  */
3264                        PATFETCH (c);
3265
3266                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3267
3268                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3269                          {
3270			    /* This was split into 3 if's to
3271			       avoid an arbitrary limit in some compiler.  */
3272                            if (   (is_alnum  && ISALNUM (ch))
3273                                || (is_alpha  && ISALPHA (ch))
3274                                || (is_blank  && ISBLANK (ch))
3275                                || (is_cntrl  && ISCNTRL (ch)))
3276			      SET_LIST_BIT (ch);
3277			    if (   (is_digit  && ISDIGIT (ch))
3278                                || (is_graph  && ISGRAPH (ch))
3279                                || (is_lower  && ISLOWER (ch))
3280                                || (is_print  && ISPRINT (ch)))
3281			      SET_LIST_BIT (ch);
3282			    if (   (is_punct  && ISPUNCT (ch))
3283                                || (is_space  && ISSPACE (ch))
3284                                || (is_upper  && ISUPPER (ch))
3285                                || (is_xdigit && ISXDIGIT (ch)))
3286			      SET_LIST_BIT (ch);
3287			    if (   translate && (is_upper || is_lower)
3288				&& (ISUPPER (ch) || ISLOWER (ch)))
3289			      SET_LIST_BIT (ch);
3290                          }
3291                        had_char_class = true;
3292# endif	/* libc || wctype.h */
3293                      }
3294                    else
3295                      {
3296                        c1++;
3297                        while (c1--)
3298                          PATUNFETCH;
3299                        SET_LIST_BIT ('[');
3300                        SET_LIST_BIT (':');
3301			range_start = ':';
3302                        had_char_class = false;
3303                      }
3304                  }
3305                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3306		  {
3307		    unsigned char str[MB_LEN_MAX + 1];
3308# ifdef _LIBC
3309		    uint32_t nrules =
3310		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3311# endif
3312
3313		    PATFETCH (c);
3314		    c1 = 0;
3315
3316		    /* If pattern is `[[='.  */
3317		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3318
3319		    for (;;)
3320		      {
3321			PATFETCH (c);
3322			if ((c == '=' && *p == ']') || p == pend)
3323			  break;
3324			if (c1 < MB_LEN_MAX)
3325			  str[c1++] = c;
3326			else
3327			  /* This is in any case an invalid class name.  */
3328			  str[0] = '\0';
3329                      }
3330		    str[c1] = '\0';
3331
3332		    if (c == '=' && *p == ']' && str[0] != '\0')
3333		      {
3334			/* If we have no collation data we use the default
3335			   collation in which each character is in a class
3336			   by itself.  It also means that ASCII is the
3337			   character set and therefore we cannot have character
3338			   with more than one byte in the multibyte
3339			   representation.  */
3340# ifdef _LIBC
3341			if (nrules == 0)
3342# endif
3343			  {
3344			    if (c1 != 1)
3345			      FREE_STACK_RETURN (REG_ECOLLATE);
3346
3347			    /* Throw away the ] at the end of the equivalence
3348			       class.  */
3349			    PATFETCH (c);
3350
3351			    /* Set the bit for the character.  */
3352			    SET_LIST_BIT (str[0]);
3353			  }
3354# ifdef _LIBC
3355			else
3356			  {
3357			    /* Try to match the byte sequence in `str' against
3358			       those known to the collate implementation.
3359			       First find out whether the bytes in `str' are
3360			       actually from exactly one character.  */
3361			    const int32_t *table;
3362			    const unsigned char *weights;
3363			    const unsigned char *extra;
3364			    const int32_t *indirect;
3365			    int32_t idx;
3366			    const unsigned char *cp = str;
3367			    int ch;
3368
3369			    /* This #include defines a local function!  */
3370#  include <locale/weight.h>
3371
3372			    table = (const int32_t *)
3373			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3374			    weights = (const unsigned char *)
3375			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3376			    extra = (const unsigned char *)
3377			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3378			    indirect = (const int32_t *)
3379			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3380
3381			    idx = findidx (&cp);
3382			    if (idx == 0 || cp < str + c1)
3383			      /* This is no valid character.  */
3384			      FREE_STACK_RETURN (REG_ECOLLATE);
3385
3386			    /* Throw away the ] at the end of the equivalence
3387			       class.  */
3388			    PATFETCH (c);
3389
3390			    /* Now we have to go throught the whole table
3391			       and find all characters which have the same
3392			       first level weight.
3393
3394			       XXX Note that this is not entirely correct.
3395			       we would have to match multibyte sequences
3396			       but this is not possible with the current
3397			       implementation.  */
3398			    for (ch = 1; ch < 256; ++ch)
3399			      /* XXX This test would have to be changed if we
3400				 would allow matching multibyte sequences.  */
3401			      if (table[ch] > 0)
3402				{
3403				  int32_t idx2 = table[ch];
3404				  size_t len = weights[idx2];
3405
3406				  /* Test whether the lenghts match.  */
3407				  if (weights[idx] == len)
3408				    {
3409				      /* They do.  New compare the bytes of
3410					 the weight.  */
3411				      size_t cnt = 0;
3412
3413				      while (cnt < len
3414					     && (weights[idx + 1 + cnt]
3415						 == weights[idx2 + 1 + cnt]))
3416					++cnt;
3417
3418				      if (cnt == len)
3419					/* They match.  Mark the character as
3420					   acceptable.  */
3421					SET_LIST_BIT (ch);
3422				    }
3423				}
3424			  }
3425# endif
3426			had_char_class = true;
3427		      }
3428                    else
3429                      {
3430                        c1++;
3431                        while (c1--)
3432                          PATUNFETCH;
3433                        SET_LIST_BIT ('[');
3434                        SET_LIST_BIT ('=');
3435			range_start = '=';
3436                        had_char_class = false;
3437                      }
3438		  }
3439                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3440		  {
3441		    unsigned char str[128];	/* Should be large enough.  */
3442# ifdef _LIBC
3443		    uint32_t nrules =
3444		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3445# endif
3446
3447		    PATFETCH (c);
3448		    c1 = 0;
3449
3450		    /* If pattern is `[[.'.  */
3451		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3452
3453		    for (;;)
3454		      {
3455			PATFETCH (c);
3456			if ((c == '.' && *p == ']') || p == pend)
3457			  break;
3458			if (c1 < sizeof (str))
3459			  str[c1++] = c;
3460			else
3461			  /* This is in any case an invalid class name.  */
3462			  str[0] = '\0';
3463                      }
3464		    str[c1] = '\0';
3465
3466		    if (c == '.' && *p == ']' && str[0] != '\0')
3467		      {
3468			/* If we have no collation data we use the default
3469			   collation in which each character is the name
3470			   for its own class which contains only the one
3471			   character.  It also means that ASCII is the
3472			   character set and therefore we cannot have character
3473			   with more than one byte in the multibyte
3474			   representation.  */
3475# ifdef _LIBC
3476			if (nrules == 0)
3477# endif
3478			  {
3479			    if (c1 != 1)
3480			      FREE_STACK_RETURN (REG_ECOLLATE);
3481
3482			    /* Throw away the ] at the end of the equivalence
3483			       class.  */
3484			    PATFETCH (c);
3485
3486			    /* Set the bit for the character.  */
3487			    SET_LIST_BIT (str[0]);
3488			    range_start = ((const unsigned char *) str)[0];
3489			  }
3490# ifdef _LIBC
3491			else
3492			  {
3493			    /* Try to match the byte sequence in `str' against
3494			       those known to the collate implementation.
3495			       First find out whether the bytes in `str' are
3496			       actually from exactly one character.  */
3497			    int32_t table_size;
3498			    const int32_t *symb_table;
3499			    const unsigned char *extra;
3500			    int32_t idx;
3501			    int32_t elem;
3502			    int32_t second;
3503			    int32_t hash;
3504
3505			    table_size =
3506			      _NL_CURRENT_WORD (LC_COLLATE,
3507						_NL_COLLATE_SYMB_HASH_SIZEMB);
3508			    symb_table = (const int32_t *)
3509			      _NL_CURRENT (LC_COLLATE,
3510					   _NL_COLLATE_SYMB_TABLEMB);
3511			    extra = (const unsigned char *)
3512			      _NL_CURRENT (LC_COLLATE,
3513					   _NL_COLLATE_SYMB_EXTRAMB);
3514
3515			    /* Locate the character in the hashing table.  */
3516			    hash = elem_hash (str, c1);
3517
3518			    idx = 0;
3519			    elem = hash % table_size;
3520			    second = hash % (table_size - 2);
3521			    while (symb_table[2 * elem] != 0)
3522			      {
3523				/* First compare the hashing value.  */
3524				if (symb_table[2 * elem] == hash
3525				    && c1 == extra[symb_table[2 * elem + 1]]
3526				    && memcmp (str,
3527					       &extra[symb_table[2 * elem + 1]
3528						     + 1],
3529					       c1) == 0)
3530				  {
3531				    /* Yep, this is the entry.  */
3532				    idx = symb_table[2 * elem + 1];
3533				    idx += 1 + extra[idx];
3534				    break;
3535				  }
3536
3537				/* Next entry.  */
3538				elem += second;
3539			      }
3540
3541			    if (symb_table[2 * elem] == 0)
3542			      /* This is no valid character.  */
3543			      FREE_STACK_RETURN (REG_ECOLLATE);
3544
3545			    /* Throw away the ] at the end of the equivalence
3546			       class.  */
3547			    PATFETCH (c);
3548
3549			    /* Now add the multibyte character(s) we found
3550			       to the accept list.
3551
3552			       XXX Note that this is not entirely correct.
3553			       we would have to match multibyte sequences
3554			       but this is not possible with the current
3555			       implementation.  Also, we have to match
3556			       collating symbols, which expand to more than
3557			       one file, as a whole and not allow the
3558			       individual bytes.  */
3559			    c1 = extra[idx++];
3560			    if (c1 == 1)
3561			      range_start = extra[idx];
3562			    while (c1-- > 0)
3563			      {
3564				SET_LIST_BIT (extra[idx]);
3565				++idx;
3566			      }
3567			  }
3568# endif
3569			had_char_class = false;
3570		      }
3571                    else
3572                      {
3573                        c1++;
3574                        while (c1--)
3575                          PATUNFETCH;
3576                        SET_LIST_BIT ('[');
3577                        SET_LIST_BIT ('.');
3578			range_start = '.';
3579                        had_char_class = false;
3580                      }
3581		  }
3582                else
3583                  {
3584                    had_char_class = false;
3585                    SET_LIST_BIT (c);
3586		    range_start = c;
3587                  }
3588              }
3589
3590            /* Discard any (non)matching list bytes that are all 0 at the
3591               end of the map.  Decrease the map-length byte too.  */
3592            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3593              b[-1]--;
3594            b += b[-1];
3595#endif /* MBS_SUPPORT */
3596          }
3597          break;
3598
3599
3600	case '(':
3601          if (syntax & RE_NO_BK_PARENS)
3602            goto handle_open;
3603          else
3604            goto normal_char;
3605
3606
3607        case ')':
3608          if (syntax & RE_NO_BK_PARENS)
3609            goto handle_close;
3610          else
3611            goto normal_char;
3612
3613
3614        case '\n':
3615          if (syntax & RE_NEWLINE_ALT)
3616            goto handle_alt;
3617          else
3618            goto normal_char;
3619
3620
3621	case '|':
3622          if (syntax & RE_NO_BK_VBAR)
3623            goto handle_alt;
3624          else
3625            goto normal_char;
3626
3627
3628        case '{':
3629           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3630             goto handle_interval;
3631           else
3632             goto normal_char;
3633
3634
3635        case '\\':
3636          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3637
3638          /* Do not translate the character after the \, so that we can
3639             distinguish, e.g., \B from \b, even if we normally would
3640             translate, e.g., B to b.  */
3641          PATFETCH_RAW (c);
3642
3643          switch (c)
3644            {
3645            case '(':
3646              if (syntax & RE_NO_BK_PARENS)
3647                goto normal_backslash;
3648
3649            handle_open:
3650              bufp->re_nsub++;
3651              regnum++;
3652
3653              if (COMPILE_STACK_FULL)
3654                {
3655                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3656                            compile_stack_elt_t);
3657                  if (compile_stack.stack == NULL) return REG_ESPACE;
3658
3659                  compile_stack.size <<= 1;
3660                }
3661
3662              /* These are the values to restore when we hit end of this
3663                 group.  They are all relative offsets, so that if the
3664                 whole pattern moves because of realloc, they will still
3665                 be valid.  */
3666              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3667              COMPILE_STACK_TOP.fixup_alt_jump
3668                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3669              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3670              COMPILE_STACK_TOP.regnum = regnum;
3671
3672              /* We will eventually replace the 0 with the number of
3673                 groups inner to this one.  But do not push a
3674                 start_memory for groups beyond the last one we can
3675                 represent in the compiled pattern.  */
3676              if (regnum <= MAX_REGNUM)
3677                {
3678                  COMPILE_STACK_TOP.inner_group_offset = b
3679		    - COMPILED_BUFFER_VAR + 2;
3680                  BUF_PUSH_3 (start_memory, regnum, 0);
3681                }
3682
3683              compile_stack.avail++;
3684
3685              fixup_alt_jump = 0;
3686              laststart = 0;
3687              begalt = b;
3688	      /* If we've reached MAX_REGNUM groups, then this open
3689		 won't actually generate any code, so we'll have to
3690		 clear pending_exact explicitly.  */
3691	      pending_exact = 0;
3692              break;
3693
3694
3695            case ')':
3696              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3697
3698              if (COMPILE_STACK_EMPTY)
3699		{
3700		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3701		    goto normal_backslash;
3702		  else
3703		    FREE_STACK_RETURN (REG_ERPAREN);
3704		}
3705
3706            handle_close:
3707              if (fixup_alt_jump)
3708                { /* Push a dummy failure point at the end of the
3709                     alternative for a possible future
3710                     `pop_failure_jump' to pop.  See comments at
3711                     `push_dummy_failure' in `re_match_2'.  */
3712                  BUF_PUSH (push_dummy_failure);
3713
3714                  /* We allocated space for this jump when we assigned
3715                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3716                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3717                }
3718
3719              /* See similar code for backslashed left paren above.  */
3720              if (COMPILE_STACK_EMPTY)
3721		{
3722		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3723		    goto normal_char;
3724		  else
3725		    FREE_STACK_RETURN (REG_ERPAREN);
3726		}
3727
3728              /* Since we just checked for an empty stack above, this
3729                 ``can't happen''.  */
3730              assert (compile_stack.avail != 0);
3731              {
3732                /* We don't just want to restore into `regnum', because
3733                   later groups should continue to be numbered higher,
3734                   as in `(ab)c(de)' -- the second group is #2.  */
3735                regnum_t this_group_regnum;
3736
3737                compile_stack.avail--;
3738                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3739                fixup_alt_jump
3740                  = COMPILE_STACK_TOP.fixup_alt_jump
3741                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3742                    : 0;
3743                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3744                this_group_regnum = COMPILE_STACK_TOP.regnum;
3745		/* If we've reached MAX_REGNUM groups, then this open
3746		   won't actually generate any code, so we'll have to
3747		   clear pending_exact explicitly.  */
3748		pending_exact = 0;
3749
3750                /* We're at the end of the group, so now we know how many
3751                   groups were inside this one.  */
3752                if (this_group_regnum <= MAX_REGNUM)
3753                  {
3754		    US_CHAR_TYPE *inner_group_loc
3755                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3756
3757                    *inner_group_loc = regnum - this_group_regnum;
3758                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3759                                regnum - this_group_regnum);
3760                  }
3761              }
3762              break;
3763
3764
3765            case '|':					/* `\|'.  */
3766              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3767                goto normal_backslash;
3768            handle_alt:
3769              if (syntax & RE_LIMITED_OPS)
3770                goto normal_char;
3771
3772              /* Insert before the previous alternative a jump which
3773                 jumps to this alternative if the former fails.  */
3774              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3775              INSERT_JUMP (on_failure_jump, begalt,
3776			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3777              pending_exact = 0;
3778              b += 1 + OFFSET_ADDRESS_SIZE;
3779
3780              /* The alternative before this one has a jump after it
3781                 which gets executed if it gets matched.  Adjust that
3782                 jump so it will jump to this alternative's analogous
3783                 jump (put in below, which in turn will jump to the next
3784                 (if any) alternative's such jump, etc.).  The last such
3785                 jump jumps to the correct final destination.  A picture:
3786                          _____ _____
3787                          |   | |   |
3788                          |   v |   v
3789                         a | b   | c
3790
3791                 If we are at `b', then fixup_alt_jump right now points to a
3792                 three-byte space after `a'.  We'll put in the jump, set
3793                 fixup_alt_jump to right after `b', and leave behind three
3794                 bytes which we'll fill in when we get to after `c'.  */
3795
3796              if (fixup_alt_jump)
3797                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3798
3799              /* Mark and leave space for a jump after this alternative,
3800                 to be filled in later either by next alternative or
3801                 when know we're at the end of a series of alternatives.  */
3802              fixup_alt_jump = b;
3803              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3804              b += 1 + OFFSET_ADDRESS_SIZE;
3805
3806              laststart = 0;
3807              begalt = b;
3808              break;
3809
3810
3811            case '{':
3812              /* If \{ is a literal.  */
3813              if (!(syntax & RE_INTERVALS)
3814                     /* If we're at `\{' and it's not the open-interval
3815                        operator.  */
3816		  || (syntax & RE_NO_BK_BRACES))
3817                goto normal_backslash;
3818
3819            handle_interval:
3820              {
3821                /* If got here, then the syntax allows intervals.  */
3822
3823                /* At least (most) this many matches must be made.  */
3824                int lower_bound = -1, upper_bound = -1;
3825
3826		/* Place in the uncompiled pattern (i.e., just after
3827		   the '{') to go back to if the interval is invalid.  */
3828		const CHAR_TYPE *beg_interval = p;
3829
3830                if (p == pend)
3831		  goto invalid_interval;
3832
3833                GET_UNSIGNED_NUMBER (lower_bound);
3834
3835                if (c == ',')
3836                  {
3837                    GET_UNSIGNED_NUMBER (upper_bound);
3838		    if (upper_bound < 0)
3839		      upper_bound = RE_DUP_MAX;
3840                  }
3841                else
3842                  /* Interval such as `{1}' => match exactly once. */
3843                  upper_bound = lower_bound;
3844
3845                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3846		  goto invalid_interval;
3847
3848                if (!(syntax & RE_NO_BK_BRACES))
3849                  {
3850		    if (c != '\\' || p == pend)
3851		      goto invalid_interval;
3852                    PATFETCH (c);
3853                  }
3854
3855                if (c != '}')
3856		  goto invalid_interval;
3857
3858                /* If it's invalid to have no preceding re.  */
3859                if (!laststart)
3860                  {
3861		    if (syntax & RE_CONTEXT_INVALID_OPS
3862			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3863                      FREE_STACK_RETURN (REG_BADRPT);
3864                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3865                      laststart = b;
3866                    else
3867                      goto unfetch_interval;
3868                  }
3869
3870                /* We just parsed a valid interval.  */
3871
3872                if (RE_DUP_MAX < upper_bound)
3873		  FREE_STACK_RETURN (REG_BADBR);
3874
3875                /* If the upper bound is zero, don't want to succeed at
3876                   all; jump from `laststart' to `b + 3', which will be
3877		   the end of the buffer after we insert the jump.  */
3878		/* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE'
3879		   instead of 'b + 3'.  */
3880                 if (upper_bound == 0)
3881                   {
3882                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3883                     INSERT_JUMP (jump, laststart, b + 1
3884				  + OFFSET_ADDRESS_SIZE);
3885                     b += 1 + OFFSET_ADDRESS_SIZE;
3886                   }
3887
3888                 /* Otherwise, we have a nontrivial interval.  When
3889                    we're all done, the pattern will look like:
3890                      set_number_at <jump count> <upper bound>
3891                      set_number_at <succeed_n count> <lower bound>
3892                      succeed_n <after jump addr> <succeed_n count>
3893                      <body of loop>
3894                      jump_n <succeed_n addr> <jump count>
3895                    (The upper bound and `jump_n' are omitted if
3896                    `upper_bound' is 1, though.)  */
3897                 else
3898                   { /* If the upper bound is > 1, we need to insert
3899                        more at the end of the loop.  */
3900                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3901		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3902
3903                     GET_BUFFER_SPACE (nbytes);
3904
3905                     /* Initialize lower bound of the `succeed_n', even
3906                        though it will be set during matching by its
3907                        attendant `set_number_at' (inserted next),
3908                        because `re_compile_fastmap' needs to know.
3909                        Jump to the `jump_n' we might insert below.  */
3910                     INSERT_JUMP2 (succeed_n, laststart,
3911                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3912				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3913				   , lower_bound);
3914                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3915
3916                     /* Code to initialize the lower bound.  Insert
3917                        before the `succeed_n'.  The `5' is the last two
3918                        bytes of this `set_number_at', plus 3 bytes of
3919                        the following `succeed_n'.  */
3920		     /* ifdef MBS_SUPPORT, The '1+2*OFFSET_ADDRESS_SIZE'
3921			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3922			of the following `succeed_n'.  */
3923                     insert_op2 (set_number_at, laststart, 1
3924				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3925                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3926
3927                     if (upper_bound > 1)
3928                       { /* More than one repetition is allowed, so
3929                            append a backward jump to the `succeed_n'
3930                            that starts this interval.
3931
3932                            When we've reached this during matching,
3933                            we'll have matched the interval once, so
3934                            jump back only `upper_bound - 1' times.  */
3935                         STORE_JUMP2 (jump_n, b, laststart
3936				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3937                                      upper_bound - 1);
3938                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3939
3940                         /* The location we want to set is the second
3941                            parameter of the `jump_n'; that is `b-2' as
3942                            an absolute address.  `laststart' will be
3943                            the `set_number_at' we're about to insert;
3944                            `laststart+3' the number to set, the source
3945                            for the relative address.  But we are
3946                            inserting into the middle of the pattern --
3947                            so everything is getting moved up by 5.
3948                            Conclusion: (b - 2) - (laststart + 3) + 5,
3949                            i.e., b - laststart.
3950
3951                            We insert this at the beginning of the loop
3952                            so that if we fail during matching, we'll
3953                            reinitialize the bounds.  */
3954                         insert_op2 (set_number_at, laststart, b - laststart,
3955                                     upper_bound - 1, b);
3956                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3957                       }
3958                   }
3959                pending_exact = 0;
3960		break;
3961
3962	      invalid_interval:
3963		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3964		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3965	      unfetch_interval:
3966		/* Match the characters as literals.  */
3967		p = beg_interval;
3968		c = '{';
3969		if (syntax & RE_NO_BK_BRACES)
3970		  goto normal_char;
3971		else
3972		  goto normal_backslash;
3973	      }
3974
3975#ifdef emacs
3976            /* There is no way to specify the before_dot and after_dot
3977               operators.  rms says this is ok.  --karl  */
3978            case '=':
3979              BUF_PUSH (at_dot);
3980              break;
3981
3982            case 's':
3983              laststart = b;
3984              PATFETCH (c);
3985              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3986              break;
3987
3988            case 'S':
3989              laststart = b;
3990              PATFETCH (c);
3991              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3992              break;
3993#endif /* emacs */
3994
3995
3996            case 'w':
3997	      if (syntax & RE_NO_GNU_OPS)
3998		goto normal_char;
3999              laststart = b;
4000              BUF_PUSH (wordchar);
4001              break;
4002
4003
4004            case 'W':
4005	      if (syntax & RE_NO_GNU_OPS)
4006		goto normal_char;
4007              laststart = b;
4008              BUF_PUSH (notwordchar);
4009              break;
4010
4011
4012            case '<':
4013	      if (syntax & RE_NO_GNU_OPS)
4014		goto normal_char;
4015              BUF_PUSH (wordbeg);
4016              break;
4017
4018            case '>':
4019	      if (syntax & RE_NO_GNU_OPS)
4020		goto normal_char;
4021              BUF_PUSH (wordend);
4022              break;
4023
4024            case 'b':
4025	      if (syntax & RE_NO_GNU_OPS)
4026		goto normal_char;
4027              BUF_PUSH (wordbound);
4028              break;
4029
4030            case 'B':
4031	      if (syntax & RE_NO_GNU_OPS)
4032		goto normal_char;
4033              BUF_PUSH (notwordbound);
4034              break;
4035
4036            case '`':
4037	      if (syntax & RE_NO_GNU_OPS)
4038		goto normal_char;
4039              BUF_PUSH (begbuf);
4040              break;
4041
4042            case '\'':
4043	      if (syntax & RE_NO_GNU_OPS)
4044		goto normal_char;
4045              BUF_PUSH (endbuf);
4046              break;
4047
4048            case '1': case '2': case '3': case '4': case '5':
4049            case '6': case '7': case '8': case '9':
4050              if (syntax & RE_NO_BK_REFS)
4051                goto normal_char;
4052
4053              c1 = c - '0';
4054
4055              if (c1 > regnum)
4056                FREE_STACK_RETURN (REG_ESUBREG);
4057
4058              /* Can't back reference to a subexpression if inside of it.  */
4059              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4060                goto normal_char;
4061
4062              laststart = b;
4063              BUF_PUSH_2 (duplicate, c1);
4064              break;
4065
4066
4067            case '+':
4068            case '?':
4069              if (syntax & RE_BK_PLUS_QM)
4070                goto handle_plus;
4071              else
4072                goto normal_backslash;
4073
4074            default:
4075            normal_backslash:
4076              /* You might think it would be useful for \ to mean
4077                 not to translate; but if we don't translate it
4078                 it will never match anything.  */
4079              c = TRANSLATE (c);
4080              goto normal_char;
4081            }
4082          break;
4083
4084
4085	default:
4086        /* Expects the character in `c'.  */
4087	normal_char:
4088	      /* If no exactn currently being built.  */
4089          if (!pending_exact
4090#ifdef MBS_SUPPORT
4091	      /* If last exactn handle binary(or character) and
4092		 new exactn handle character(or binary).  */
4093	      || is_exactn_bin != is_binary[p - 1 - pattern]
4094#endif /* MBS_SUPPORT */
4095
4096              /* If last exactn not at current position.  */
4097              || pending_exact + *pending_exact + 1 != b
4098
4099              /* We have only one byte following the exactn for the count.  */
4100	      || *pending_exact == (1 << BYTEWIDTH) - 1
4101
4102              /* If followed by a repetition operator.  */
4103              || *p == '*' || *p == '^'
4104	      || ((syntax & RE_BK_PLUS_QM)
4105		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4106		  : (*p == '+' || *p == '?'))
4107	      || ((syntax & RE_INTERVALS)
4108                  && ((syntax & RE_NO_BK_BRACES)
4109		      ? *p == '{'
4110                      : (p[0] == '\\' && p[1] == '{'))))
4111	    {
4112	      /* Start building a new exactn.  */
4113
4114              laststart = b;
4115
4116#ifdef MBS_SUPPORT
4117	      /* Is this exactn binary data or character? */
4118	      is_exactn_bin = is_binary[p - 1 - pattern];
4119	      if (is_exactn_bin)
4120		  BUF_PUSH_2 (exactn_bin, 0);
4121	      else
4122		  BUF_PUSH_2 (exactn, 0);
4123#else
4124	      BUF_PUSH_2 (exactn, 0);
4125#endif /* MBS_SUPPORT */
4126	      pending_exact = b - 1;
4127            }
4128
4129	  BUF_PUSH (c);
4130          (*pending_exact)++;
4131	  break;
4132        } /* switch (c) */
4133    } /* while p != pend */
4134
4135
4136  /* Through the pattern now.  */
4137
4138  if (fixup_alt_jump)
4139    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4140
4141  if (!COMPILE_STACK_EMPTY)
4142    FREE_STACK_RETURN (REG_EPAREN);
4143
4144  /* If we don't want backtracking, force success
4145     the first time we reach the end of the compiled pattern.  */
4146  if (syntax & RE_NO_POSIX_BACKTRACKING)
4147    BUF_PUSH (succeed);
4148
4149#ifdef MBS_SUPPORT
4150  free (pattern);
4151  free (mbs_offset);
4152  free (is_binary);
4153#endif
4154  free (compile_stack.stack);
4155
4156  /* We have succeeded; set the length of the buffer.  */
4157#ifdef MBS_SUPPORT
4158  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4159#else
4160  bufp->used = b - bufp->buffer;
4161#endif
4162
4163#ifdef DEBUG
4164  if (debug)
4165    {
4166      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4167      print_compiled_pattern (bufp);
4168    }
4169#endif /* DEBUG */
4170
4171#ifndef MATCH_MAY_ALLOCATE
4172  /* Initialize the failure stack to the largest possible stack.  This
4173     isn't necessary unless we're trying to avoid calling alloca in
4174     the search and match routines.  */
4175  {
4176    int num_regs = bufp->re_nsub + 1;
4177
4178    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4179       is strictly greater than re_max_failures, the largest possible stack
4180       is 2 * re_max_failures failure points.  */
4181    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4182      {
4183	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4184
4185# ifdef emacs
4186	if (! fail_stack.stack)
4187	  fail_stack.stack
4188	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
4189					    * sizeof (fail_stack_elt_t));
4190	else
4191	  fail_stack.stack
4192	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
4193					     (fail_stack.size
4194					      * sizeof (fail_stack_elt_t)));
4195# else /* not emacs */
4196	if (! fail_stack.stack)
4197	  fail_stack.stack
4198	    = (fail_stack_elt_t *) malloc (fail_stack.size
4199					   * sizeof (fail_stack_elt_t));
4200	else
4201	  fail_stack.stack
4202	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
4203					    (fail_stack.size
4204					     * sizeof (fail_stack_elt_t)));
4205# endif /* not emacs */
4206      }
4207
4208    regex_grow_registers (num_regs);
4209  }
4210#endif /* not MATCH_MAY_ALLOCATE */
4211
4212  return REG_NOERROR;
4213} /* regex_compile */
4214
4215/* Subroutines for `regex_compile'.  */
4216
4217/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4218/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4219
4220static void
4221store_op1 (op, loc, arg)
4222    re_opcode_t op;
4223    US_CHAR_TYPE *loc;
4224    int arg;
4225{
4226  *loc = (US_CHAR_TYPE) op;
4227  STORE_NUMBER (loc + 1, arg);
4228}
4229
4230
4231/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4232/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4233
4234static void
4235store_op2 (op, loc, arg1, arg2)
4236    re_opcode_t op;
4237    US_CHAR_TYPE *loc;
4238    int arg1, arg2;
4239{
4240  *loc = (US_CHAR_TYPE) op;
4241  STORE_NUMBER (loc + 1, arg1);
4242  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4243}
4244
4245
4246/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4247   for OP followed by two-byte integer parameter ARG.  */
4248/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4249
4250static void
4251insert_op1 (op, loc, arg, end)
4252    re_opcode_t op;
4253    US_CHAR_TYPE *loc;
4254    int arg;
4255    US_CHAR_TYPE *end;
4256{
4257  register US_CHAR_TYPE *pfrom = end;
4258  register US_CHAR_TYPE *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4259
4260  while (pfrom != loc)
4261    *--pto = *--pfrom;
4262
4263  store_op1 (op, loc, arg);
4264}
4265
4266
4267/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4268/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4269
4270static void
4271insert_op2 (op, loc, arg1, arg2, end)
4272    re_opcode_t op;
4273    US_CHAR_TYPE *loc;
4274    int arg1, arg2;
4275    US_CHAR_TYPE *end;
4276{
4277  register US_CHAR_TYPE *pfrom = end;
4278  register US_CHAR_TYPE *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4279
4280  while (pfrom != loc)
4281    *--pto = *--pfrom;
4282
4283  store_op2 (op, loc, arg1, arg2);
4284}
4285
4286
4287/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4288   after an alternative or a begin-subexpression.  We assume there is at
4289   least one character before the ^.  */
4290
4291static boolean
4292at_begline_loc_p (pattern, p, syntax)
4293    const CHAR_TYPE *pattern, *p;
4294    reg_syntax_t syntax;
4295{
4296  const CHAR_TYPE *prev = p - 2;
4297  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4298
4299  return
4300       /* After a subexpression?  */
4301       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4302       /* After an alternative?  */
4303    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4304}
4305
4306
4307/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4308   at least one character after the $, i.e., `P < PEND'.  */
4309
4310static boolean
4311at_endline_loc_p (p, pend, syntax)
4312    const CHAR_TYPE *p, *pend;
4313    reg_syntax_t syntax;
4314{
4315  const CHAR_TYPE *next = p;
4316  boolean next_backslash = *next == '\\';
4317  const CHAR_TYPE *next_next = p + 1 < pend ? p + 1 : 0;
4318
4319  return
4320       /* Before a subexpression?  */
4321       (syntax & RE_NO_BK_PARENS ? *next == ')'
4322        : next_backslash && next_next && *next_next == ')')
4323       /* Before an alternative?  */
4324    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4325        : next_backslash && next_next && *next_next == '|');
4326}
4327
4328
4329/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4330   false if it's not.  */
4331
4332static boolean
4333group_in_compile_stack (compile_stack, regnum)
4334    compile_stack_type compile_stack;
4335    regnum_t regnum;
4336{
4337  int this_element;
4338
4339  for (this_element = compile_stack.avail - 1;
4340       this_element >= 0;
4341       this_element--)
4342    if (compile_stack.stack[this_element].regnum == regnum)
4343      return true;
4344
4345  return false;
4346}
4347
4348#ifdef MBS_SUPPORT
4349/* This insert space, which size is "num", into the pattern at "loc".
4350   "end" must point the end of the allocated buffer.  */
4351static void
4352insert_space (num, loc, end)
4353     int num;
4354     CHAR_TYPE *loc;
4355     CHAR_TYPE *end;
4356{
4357  register CHAR_TYPE *pto = end;
4358  register CHAR_TYPE *pfrom = end - num;
4359
4360  while (pfrom >= loc)
4361    *pto-- = *pfrom--;
4362}
4363#endif /* MBS_SUPPORT */
4364
4365#ifdef MBS_SUPPORT
4366static reg_errcode_t
4367compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4368	       char_set)
4369     CHAR_TYPE range_start_char;
4370     const CHAR_TYPE **p_ptr, *pend;
4371     CHAR_TYPE *char_set, *b;
4372     RE_TRANSLATE_TYPE translate;
4373     reg_syntax_t syntax;
4374{
4375  const CHAR_TYPE *p = *p_ptr;
4376  CHAR_TYPE range_start, range_end;
4377  reg_errcode_t ret;
4378# ifdef _LIBC
4379  uint32_t nrules;
4380  uint32_t start_val, end_val;
4381# endif
4382  if (p == pend)
4383    return REG_ERANGE;
4384
4385# ifdef _LIBC
4386  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4387  if (nrules != 0)
4388    {
4389      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4390						       _NL_COLLATE_COLLSEQWC);
4391      const unsigned char *extra = (const unsigned char *)
4392	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4393
4394      if (range_start_char < -1)
4395	{
4396	  /* range_start is a collating symbol.  */
4397	  int32_t *wextra;
4398	  /* Retreive the index and get collation sequence value.  */
4399	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4400	  start_val = wextra[1 + *wextra];
4401	}
4402      else
4403	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4404
4405      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4406
4407      /* Report an error if the range is empty and the syntax prohibits
4408	 this.  */
4409      ret = ((syntax & RE_NO_EMPTY_RANGES)
4410	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4411
4412      /* Insert space to the end of the char_ranges.  */
4413      insert_space(2, b - char_set[5] - 2, b - 1);
4414      *(b - char_set[5] - 2) = (wchar_t)start_val;
4415      *(b - char_set[5] - 1) = (wchar_t)end_val;
4416      char_set[4]++; /* ranges_index */
4417    }
4418  else
4419# endif
4420    {
4421      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4422	range_start_char;
4423      range_end = TRANSLATE (p[0]);
4424      /* Report an error if the range is empty and the syntax prohibits
4425	 this.  */
4426      ret = ((syntax & RE_NO_EMPTY_RANGES)
4427	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4428
4429      /* Insert space to the end of the char_ranges.  */
4430      insert_space(2, b - char_set[5] - 2, b - 1);
4431      *(b - char_set[5] - 2) = range_start;
4432      *(b - char_set[5] - 1) = range_end;
4433      char_set[4]++; /* ranges_index */
4434    }
4435  /* Have to increment the pointer into the pattern string, so the
4436     caller isn't still at the ending character.  */
4437  (*p_ptr)++;
4438
4439  return ret;
4440}
4441#else
4442/* Read the ending character of a range (in a bracket expression) from the
4443   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4444   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4445   Then we set the translation of all bits between the starting and
4446   ending characters (inclusive) in the compiled pattern B.
4447
4448   Return an error code.
4449
4450   We use these short variable names so we can use the same macros as
4451   `regex_compile' itself.  */
4452
4453static reg_errcode_t
4454compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4455     unsigned int range_start_char;
4456     const char **p_ptr, *pend;
4457     RE_TRANSLATE_TYPE translate;
4458     reg_syntax_t syntax;
4459     unsigned char *b;
4460{
4461  unsigned this_char;
4462  const char *p = *p_ptr;
4463  reg_errcode_t ret;
4464# if _LIBC
4465  const unsigned char *collseq;
4466  unsigned int start_colseq;
4467  unsigned int end_colseq;
4468# else
4469  unsigned end_char;
4470# endif
4471
4472  if (p == pend)
4473    return REG_ERANGE;
4474
4475  /* Have to increment the pointer into the pattern string, so the
4476     caller isn't still at the ending character.  */
4477  (*p_ptr)++;
4478
4479  /* Report an error if the range is empty and the syntax prohibits this.  */
4480  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4481
4482# if _LIBC
4483  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4484						 _NL_COLLATE_COLLSEQMB);
4485
4486  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4487  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4488  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4489    {
4490      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4491
4492      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4493	{
4494	  SET_LIST_BIT (TRANSLATE (this_char));
4495	  ret = REG_NOERROR;
4496	}
4497    }
4498# else
4499  /* Here we see why `this_char' has to be larger than an `unsigned
4500     char' -- we would otherwise go into an infinite loop, since all
4501     characters <= 0xff.  */
4502  range_start_char = TRANSLATE (range_start_char);
4503  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4504     and some compilers cast it to int implicitly, so following for_loop
4505     may fall to (almost) infinite loop.
4506     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4507     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4508  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4509
4510  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4511    {
4512      SET_LIST_BIT (TRANSLATE (this_char));
4513      ret = REG_NOERROR;
4514    }
4515# endif
4516
4517  return ret;
4518}
4519#endif /* MBS_SUPPORT */
4520
4521/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4522   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4523   characters can start a string that matches the pattern.  This fastmap
4524   is used by re_search to skip quickly over impossible starting points.
4525
4526   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4527   area as BUFP->fastmap.
4528
4529   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4530   the pattern buffer.
4531
4532   Returns 0 if we succeed, -2 if an internal error.   */
4533
4534#ifdef MBS_SUPPORT
4535/* local function for re_compile_fastmap.
4536   truncate wchar_t character to char.  */
4537static unsigned char truncate_wchar (CHAR_TYPE c);
4538
4539static unsigned char
4540truncate_wchar (c)
4541     CHAR_TYPE c;
4542{
4543  unsigned char buf[MB_LEN_MAX];
4544  int retval = wctomb(buf, c);
4545  return retval > 0 ? buf[0] : (unsigned char)c;
4546}
4547#endif /* MBS_SUPPORT */
4548
4549int
4550re_compile_fastmap (bufp)
4551     struct re_pattern_buffer *bufp;
4552{
4553  int j, k;
4554#ifdef MATCH_MAY_ALLOCATE
4555  fail_stack_type fail_stack;
4556#endif
4557#ifndef REGEX_MALLOC
4558  char *destination;
4559#endif
4560
4561  register char *fastmap = bufp->fastmap;
4562
4563#ifdef MBS_SUPPORT
4564  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4565     pattern to (char*) in regex_compile.  */
4566  US_CHAR_TYPE *pattern = (US_CHAR_TYPE*)bufp->buffer;
4567  register US_CHAR_TYPE *pend = (US_CHAR_TYPE*) (bufp->buffer + bufp->used);
4568#else
4569  US_CHAR_TYPE *pattern = bufp->buffer;
4570  register US_CHAR_TYPE *pend = pattern + bufp->used;
4571#endif /* MBS_SUPPORT */
4572  US_CHAR_TYPE *p = pattern;
4573
4574#ifdef REL_ALLOC
4575  /* This holds the pointer to the failure stack, when
4576     it is allocated relocatably.  */
4577  fail_stack_elt_t *failure_stack_ptr;
4578#endif
4579
4580  /* Assume that each path through the pattern can be null until
4581     proven otherwise.  We set this false at the bottom of switch
4582     statement, to which we get only if a particular path doesn't
4583     match the empty string.  */
4584  boolean path_can_be_null = true;
4585
4586  /* We aren't doing a `succeed_n' to begin with.  */
4587  boolean succeed_n_p = false;
4588
4589  assert (fastmap != NULL && p != NULL);
4590
4591  INIT_FAIL_STACK ();
4592  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4593  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4594  bufp->can_be_null = 0;
4595
4596  while (1)
4597    {
4598      if (p == pend || *p == succeed)
4599	{
4600	  /* We have reached the (effective) end of pattern.  */
4601	  if (!FAIL_STACK_EMPTY ())
4602	    {
4603	      bufp->can_be_null |= path_can_be_null;
4604
4605	      /* Reset for next path.  */
4606	      path_can_be_null = true;
4607
4608	      p = fail_stack.stack[--fail_stack.avail].pointer;
4609
4610	      continue;
4611	    }
4612	  else
4613	    break;
4614	}
4615
4616      /* We should never be about to go beyond the end of the pattern.  */
4617      assert (p < pend);
4618
4619      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4620	{
4621
4622        /* I guess the idea here is to simply not bother with a fastmap
4623           if a backreference is used, since it's too hard to figure out
4624           the fastmap for the corresponding group.  Setting
4625           `can_be_null' stops `re_search_2' from using the fastmap, so
4626           that is all we do.  */
4627	case duplicate:
4628	  bufp->can_be_null = 1;
4629          goto done;
4630
4631
4632      /* Following are the cases which match a character.  These end
4633         with `break'.  */
4634
4635#ifdef MBS_SUPPORT
4636	case exactn:
4637          fastmap[truncate_wchar(p[1])] = 1;
4638	  break;
4639	case exactn_bin:
4640	  fastmap[p[1]] = 1;
4641	  break;
4642#else
4643	case exactn:
4644          fastmap[p[1]] = 1;
4645	  break;
4646#endif /* MBS_SUPPORT */
4647
4648
4649#ifdef MBS_SUPPORT
4650        /* It is hard to distinguish fastmap from (multi byte) characters
4651           which depends on current locale.  */
4652        case charset:
4653	case charset_not:
4654	case wordchar:
4655	case notwordchar:
4656          bufp->can_be_null = 1;
4657          goto done;
4658#else
4659        case charset:
4660          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4661	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4662              fastmap[j] = 1;
4663	  break;
4664
4665
4666	case charset_not:
4667	  /* Chars beyond end of map must be allowed.  */
4668	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4669            fastmap[j] = 1;
4670
4671	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4672	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4673              fastmap[j] = 1;
4674          break;
4675
4676
4677	case wordchar:
4678	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4679	    if (SYNTAX (j) == Sword)
4680	      fastmap[j] = 1;
4681	  break;
4682
4683
4684	case notwordchar:
4685	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4686	    if (SYNTAX (j) != Sword)
4687	      fastmap[j] = 1;
4688	  break;
4689#endif
4690
4691        case anychar:
4692	  {
4693	    int fastmap_newline = fastmap['\n'];
4694
4695	    /* `.' matches anything ...  */
4696	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4697	      fastmap[j] = 1;
4698
4699	    /* ... except perhaps newline.  */
4700	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4701	      fastmap['\n'] = fastmap_newline;
4702
4703	    /* Return if we have already set `can_be_null'; if we have,
4704	       then the fastmap is irrelevant.  Something's wrong here.  */
4705	    else if (bufp->can_be_null)
4706	      goto done;
4707
4708	    /* Otherwise, have to check alternative paths.  */
4709	    break;
4710	  }
4711
4712#ifdef emacs
4713        case syntaxspec:
4714	  k = *p++;
4715	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4716	    if (SYNTAX (j) == (enum syntaxcode) k)
4717	      fastmap[j] = 1;
4718	  break;
4719
4720
4721	case notsyntaxspec:
4722	  k = *p++;
4723	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4724	    if (SYNTAX (j) != (enum syntaxcode) k)
4725	      fastmap[j] = 1;
4726	  break;
4727
4728
4729      /* All cases after this match the empty string.  These end with
4730         `continue'.  */
4731
4732
4733	case before_dot:
4734	case at_dot:
4735	case after_dot:
4736          continue;
4737#endif /* emacs */
4738
4739
4740        case no_op:
4741        case begline:
4742        case endline:
4743	case begbuf:
4744	case endbuf:
4745	case wordbound:
4746	case notwordbound:
4747	case wordbeg:
4748	case wordend:
4749        case push_dummy_failure:
4750          continue;
4751
4752
4753	case jump_n:
4754        case pop_failure_jump:
4755	case maybe_pop_jump:
4756	case jump:
4757        case jump_past_alt:
4758	case dummy_failure_jump:
4759          EXTRACT_NUMBER_AND_INCR (j, p);
4760	  p += j;
4761	  if (j > 0)
4762	    continue;
4763
4764          /* Jump backward implies we just went through the body of a
4765             loop and matched nothing.  Opcode jumped to should be
4766             `on_failure_jump' or `succeed_n'.  Just treat it like an
4767             ordinary jump.  For a * loop, it has pushed its failure
4768             point already; if so, discard that as redundant.  */
4769          if ((re_opcode_t) *p != on_failure_jump
4770	      && (re_opcode_t) *p != succeed_n)
4771	    continue;
4772
4773          p++;
4774          EXTRACT_NUMBER_AND_INCR (j, p);
4775          p += j;
4776
4777          /* If what's on the stack is where we are now, pop it.  */
4778          if (!FAIL_STACK_EMPTY ()
4779	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4780            fail_stack.avail--;
4781
4782          continue;
4783
4784
4785        case on_failure_jump:
4786        case on_failure_keep_string_jump:
4787	handle_on_failure_jump:
4788          EXTRACT_NUMBER_AND_INCR (j, p);
4789
4790          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4791             end of the pattern.  We don't want to push such a point,
4792             since when we restore it above, entering the switch will
4793             increment `p' past the end of the pattern.  We don't need
4794             to push such a point since we obviously won't find any more
4795             fastmap entries beyond `pend'.  Such a pattern can match
4796             the null string, though.  */
4797          if (p + j < pend)
4798            {
4799              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4800		{
4801		  RESET_FAIL_STACK ();
4802		  return -2;
4803		}
4804            }
4805          else
4806            bufp->can_be_null = 1;
4807
4808          if (succeed_n_p)
4809            {
4810              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4811              succeed_n_p = false;
4812	    }
4813
4814          continue;
4815
4816
4817	case succeed_n:
4818          /* Get to the number of times to succeed.  */
4819          p += OFFSET_ADDRESS_SIZE;
4820
4821          /* Increment p past the n for when k != 0.  */
4822          EXTRACT_NUMBER_AND_INCR (k, p);
4823          if (k == 0)
4824	    {
4825              p -= 2 * OFFSET_ADDRESS_SIZE;
4826  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4827              goto handle_on_failure_jump;
4828            }
4829          continue;
4830
4831
4832	case set_number_at:
4833          p += 2 * OFFSET_ADDRESS_SIZE;
4834          continue;
4835
4836
4837	case start_memory:
4838        case stop_memory:
4839	  p += 2;
4840	  continue;
4841
4842
4843	default:
4844          abort (); /* We have listed all the cases.  */
4845        } /* switch *p++ */
4846
4847      /* Getting here means we have found the possible starting
4848         characters for one path of the pattern -- and that the empty
4849         string does not match.  We need not follow this path further.
4850         Instead, look at the next alternative (remembered on the
4851         stack), or quit if no more.  The test at the top of the loop
4852         does these things.  */
4853      path_can_be_null = false;
4854      p = pend;
4855    } /* while p */
4856
4857  /* Set `can_be_null' for the last path (also the first path, if the
4858     pattern is empty).  */
4859  bufp->can_be_null |= path_can_be_null;
4860
4861 done:
4862  RESET_FAIL_STACK ();
4863  return 0;
4864} /* re_compile_fastmap */
4865#ifdef _LIBC
4866weak_alias (__re_compile_fastmap, re_compile_fastmap)
4867#endif
4868
4869/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4870   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4871   this memory for recording register information.  STARTS and ENDS
4872   must be allocated using the malloc library routine, and must each
4873   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4874
4875   If NUM_REGS == 0, then subsequent matches should allocate their own
4876   register data.
4877
4878   Unless this function is called, the first search or match using
4879   PATTERN_BUFFER will allocate its own register data, without
4880   freeing the old data.  */
4881
4882void
4883re_set_registers (bufp, regs, num_regs, starts, ends)
4884    struct re_pattern_buffer *bufp;
4885    struct re_registers *regs;
4886    unsigned num_regs;
4887    regoff_t *starts, *ends;
4888{
4889  if (num_regs)
4890    {
4891      bufp->regs_allocated = REGS_REALLOCATE;
4892      regs->num_regs = num_regs;
4893      regs->start = starts;
4894      regs->end = ends;
4895    }
4896  else
4897    {
4898      bufp->regs_allocated = REGS_UNALLOCATED;
4899      regs->num_regs = 0;
4900      regs->start = regs->end = (regoff_t *) 0;
4901    }
4902}
4903#ifdef _LIBC
4904weak_alias (__re_set_registers, re_set_registers)
4905#endif
4906
4907/* Searching routines.  */
4908
4909/* Like re_search_2, below, but only one string is specified, and
4910   doesn't let you say where to stop matching.  */
4911
4912int
4913re_search (bufp, string, size, startpos, range, regs)
4914     struct re_pattern_buffer *bufp;
4915     const char *string;
4916     int size, startpos, range;
4917     struct re_registers *regs;
4918{
4919  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4920		      regs, size);
4921}
4922#ifdef _LIBC
4923weak_alias (__re_search, re_search)
4924#endif
4925
4926
4927/* Using the compiled pattern in BUFP->buffer, first tries to match the
4928   virtual concatenation of STRING1 and STRING2, starting first at index
4929   STARTPOS, then at STARTPOS + 1, and so on.
4930
4931   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932
4933   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4934   only at STARTPOS; in general, the last start tried is STARTPOS +
4935   RANGE.
4936
4937   In REGS, return the indices of the virtual concatenation of STRING1
4938   and STRING2 that matched the entire BUFP->buffer and its contained
4939   subexpressions.
4940
4941   Do not consider matching one past the index STOP in the virtual
4942   concatenation of STRING1 and STRING2.
4943
4944   We return either the position in the strings at which the match was
4945   found, -1 if no match, or -2 if error (such as failure
4946   stack overflow).  */
4947
4948int
4949re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
4950     struct re_pattern_buffer *bufp;
4951     const char *string1, *string2;
4952     int size1, size2;
4953     int startpos;
4954     int range;
4955     struct re_registers *regs;
4956     int stop;
4957{
4958  int val;
4959  register char *fastmap = bufp->fastmap;
4960  register RE_TRANSLATE_TYPE translate = bufp->translate;
4961  int total_size = size1 + size2;
4962  int endpos = startpos + range;
4963
4964  /* Check for out-of-range STARTPOS.  */
4965  if (startpos < 0 || startpos > total_size)
4966    return -1;
4967
4968  /* Fix up RANGE if it might eventually take us outside
4969     the virtual concatenation of STRING1 and STRING2.
4970     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
4971  if (endpos < 0)
4972    range = 0 - startpos;
4973  else if (endpos > total_size)
4974    range = total_size - startpos;
4975
4976  /* If the search isn't to be a backwards one, don't waste time in a
4977     search for a pattern that must be anchored.  */
4978  if (bufp->used > 0 && range > 0
4979      && ((re_opcode_t) bufp->buffer[0] == begbuf
4980	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
4981	  || ((re_opcode_t) bufp->buffer[0] == begline
4982	      && !bufp->newline_anchor)))
4983    {
4984      if (startpos > 0)
4985	return -1;
4986      else
4987	range = 1;
4988    }
4989
4990#ifdef emacs
4991  /* In a forward search for something that starts with \=.
4992     don't keep searching past point.  */
4993  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4994    {
4995      range = PT - startpos;
4996      if (range <= 0)
4997	return -1;
4998    }
4999#endif /* emacs */
5000
5001  /* Update the fastmap now if not correct already.  */
5002  if (fastmap && !bufp->fastmap_accurate)
5003    if (re_compile_fastmap (bufp) == -2)
5004      return -2;
5005
5006  /* Loop through the string, looking for a place to start matching.  */
5007  for (;;)
5008    {
5009      /* If a fastmap is supplied, skip quickly over characters that
5010         cannot be the start of a match.  If the pattern can match the
5011         null string, however, we don't need to skip characters; we want
5012         the first null string.  */
5013      if (fastmap && startpos < total_size && !bufp->can_be_null)
5014	{
5015	  if (range > 0)	/* Searching forwards.  */
5016	    {
5017	      register const char *d;
5018	      register int lim = 0;
5019	      int irange = range;
5020
5021              if (startpos < size1 && startpos + range >= size1)
5022                lim = range - (size1 - startpos);
5023
5024	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5025
5026              /* Written out as an if-else to avoid testing `translate'
5027                 inside the loop.  */
5028	      if (translate)
5029                while (range > lim
5030                       && !fastmap[(unsigned char)
5031				   translate[(unsigned char) *d++]])
5032                  range--;
5033	      else
5034                while (range > lim && !fastmap[(unsigned char) *d++])
5035                  range--;
5036
5037	      startpos += irange - range;
5038	    }
5039	  else				/* Searching backwards.  */
5040	    {
5041	      register CHAR_TYPE c = (size1 == 0 || startpos >= size1
5042				      ? string2[startpos - size1]
5043				      : string1[startpos]);
5044
5045	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5046		goto advance;
5047	    }
5048	}
5049
5050      /* If can't match the null string, and that's all we have left, fail.  */
5051      if (range >= 0 && startpos == total_size && fastmap
5052          && !bufp->can_be_null)
5053	return -1;
5054
5055      val = re_match_2_internal (bufp, string1, size1, string2, size2,
5056				 startpos, regs, stop);
5057#ifndef REGEX_MALLOC
5058# ifdef C_ALLOCA
5059      alloca (0);
5060# endif
5061#endif
5062
5063      if (val >= 0)
5064	return startpos;
5065
5066      if (val == -2)
5067	return -2;
5068
5069    advance:
5070      if (!range)
5071        break;
5072      else if (range > 0)
5073        {
5074          range--;
5075          startpos++;
5076        }
5077      else
5078        {
5079          range++;
5080          startpos--;
5081        }
5082    }
5083  return -1;
5084} /* re_search_2 */
5085#ifdef _LIBC
5086weak_alias (__re_search_2, re_search_2)
5087#endif
5088
5089#ifdef MBS_SUPPORT
5090/* This converts PTR, a pointer into one of the search wchar_t strings
5091   `string1' and `string2' into an multibyte string offset from the
5092   beginning of that string. We use mbs_offset to optimize.
5093   See convert_mbs_to_wcs.  */
5094# define POINTER_TO_OFFSET(ptr)						\
5095  (FIRST_STRING_P (ptr)							\
5096   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5097   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5098		 + csize1)))
5099#else
5100/* This converts PTR, a pointer into one of the search strings `string1'
5101   and `string2' into an offset from the beginning of that string.  */
5102# define POINTER_TO_OFFSET(ptr)			\
5103  (FIRST_STRING_P (ptr)				\
5104   ? ((regoff_t) ((ptr) - string1))		\
5105   : ((regoff_t) ((ptr) - string2 + size1)))
5106#endif /* MBS_SUPPORT */
5107
5108/* Macros for dealing with the split strings in re_match_2.  */
5109
5110#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5111
5112/* Call before fetching a character with *d.  This switches over to
5113   string2 if necessary.  */
5114#define PREFETCH()							\
5115  while (d == dend)						    	\
5116    {									\
5117      /* End of string2 => fail.  */					\
5118      if (dend == end_match_2) 						\
5119        goto fail;							\
5120      /* End of string1 => advance to string2.  */ 			\
5121      d = string2;						        \
5122      dend = end_match_2;						\
5123    }
5124
5125
5126/* Test if at very beginning or at very end of the virtual concatenation
5127   of `string1' and `string2'.  If only one string, it's `string2'.  */
5128#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5129#define AT_STRINGS_END(d) ((d) == end2)
5130
5131
5132/* Test if D points to a character which is word-constituent.  We have
5133   two special cases to check for: if past the end of string1, look at
5134   the first character in string2; and if before the beginning of
5135   string2, look at the last character in string1.  */
5136#ifdef MBS_SUPPORT
5137/* Use internationalized API instead of SYNTAX.  */
5138# define WORDCHAR_P(d)							\
5139  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5140           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0)
5141#else
5142# define WORDCHAR_P(d)							\
5143  (SYNTAX ((d) == end1 ? *string2					\
5144           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5145   == Sword)
5146#endif /* MBS_SUPPORT */
5147
5148/* Disabled due to a compiler bug -- see comment at case wordbound */
5149#if 0
5150/* Test if the character before D and the one at D differ with respect
5151   to being word-constituent.  */
5152#define AT_WORD_BOUNDARY(d)						\
5153  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5154   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5155#endif
5156
5157/* Free everything we malloc.  */
5158#ifdef MATCH_MAY_ALLOCATE
5159# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5160# ifdef MBS_SUPPORT
5161#  define FREE_VARIABLES()						\
5162  do {									\
5163    REGEX_FREE_STACK (fail_stack.stack);				\
5164    FREE_VAR (regstart);						\
5165    FREE_VAR (regend);							\
5166    FREE_VAR (old_regstart);						\
5167    FREE_VAR (old_regend);						\
5168    FREE_VAR (best_regstart);						\
5169    FREE_VAR (best_regend);						\
5170    FREE_VAR (reg_info);						\
5171    FREE_VAR (reg_dummy);						\
5172    FREE_VAR (reg_info_dummy);						\
5173    FREE_VAR (string1);							\
5174    FREE_VAR (string2);							\
5175    FREE_VAR (mbs_offset1);						\
5176    FREE_VAR (mbs_offset2);						\
5177  } while (0)
5178# else /* not MBS_SUPPORT */
5179#  define FREE_VARIABLES()						\
5180  do {									\
5181    REGEX_FREE_STACK (fail_stack.stack);				\
5182    FREE_VAR (regstart);						\
5183    FREE_VAR (regend);							\
5184    FREE_VAR (old_regstart);						\
5185    FREE_VAR (old_regend);						\
5186    FREE_VAR (best_regstart);						\
5187    FREE_VAR (best_regend);						\
5188    FREE_VAR (reg_info);						\
5189    FREE_VAR (reg_dummy);						\
5190    FREE_VAR (reg_info_dummy);						\
5191  } while (0)
5192# endif /* MBS_SUPPORT */
5193#else
5194# define FREE_VAR(var) if (var) free (var); var = NULL
5195# ifdef MBS_SUPPORT
5196#  define FREE_VARIABLES()						\
5197  do {									\
5198    FREE_VAR (string1);							\
5199    FREE_VAR (string2);							\
5200    FREE_VAR (mbs_offset1);						\
5201    FREE_VAR (mbs_offset2);						\
5202  } while (0)
5203# else
5204#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5205# endif /* MBS_SUPPORT */
5206#endif /* not MATCH_MAY_ALLOCATE */
5207
5208/* These values must meet several constraints.  They must not be valid
5209   register values; since we have a limit of 255 registers (because
5210   we use only one byte in the pattern for the register number), we can
5211   use numbers larger than 255.  They must differ by 1, because of
5212   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5213   be larger than the value for the highest register, so we do not try
5214   to actually save any registers when none are active.  */
5215#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5216#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5217
5218/* Matching routines.  */
5219
5220#ifndef emacs   /* Emacs never uses this.  */
5221/* re_match is like re_match_2 except it takes only a single string.  */
5222
5223int
5224re_match (bufp, string, size, pos, regs)
5225     struct re_pattern_buffer *bufp;
5226     const char *string;
5227     int size, pos;
5228     struct re_registers *regs;
5229{
5230  int result = re_match_2_internal (bufp, NULL, 0, string, size,
5231				    pos, regs, size);
5232# ifndef REGEX_MALLOC
5233#  ifdef C_ALLOCA
5234  alloca (0);
5235#  endif
5236# endif
5237  return result;
5238}
5239# ifdef _LIBC
5240weak_alias (__re_match, re_match)
5241# endif
5242#endif /* not emacs */
5243
5244static boolean group_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5245						    US_CHAR_TYPE *end,
5246						register_info_type *reg_info));
5247static boolean alt_match_null_string_p _RE_ARGS ((US_CHAR_TYPE *p,
5248						  US_CHAR_TYPE *end,
5249						register_info_type *reg_info));
5250static boolean common_op_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5251							US_CHAR_TYPE *end,
5252						register_info_type *reg_info));
5253static int bcmp_translate _RE_ARGS ((const CHAR_TYPE *s1, const CHAR_TYPE *s2,
5254				     int len, char *translate));
5255
5256/* re_match_2 matches the compiled pattern in BUFP against the
5257   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5258   and SIZE2, respectively).  We start matching at POS, and stop
5259   matching at STOP.
5260
5261   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5262   store offsets for the substring each group matched in REGS.  See the
5263   documentation for exactly how many groups we fill.
5264
5265   We return -1 if no match, -2 if an internal error (such as the
5266   failure stack overflowing).  Otherwise, we return the length of the
5267   matched substring.  */
5268
5269int
5270re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5271     struct re_pattern_buffer *bufp;
5272     const char *string1, *string2;
5273     int size1, size2;
5274     int pos;
5275     struct re_registers *regs;
5276     int stop;
5277{
5278  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
5279				    pos, regs, stop);
5280#ifndef REGEX_MALLOC
5281# ifdef C_ALLOCA
5282  alloca (0);
5283# endif
5284#endif
5285  return result;
5286}
5287#ifdef _LIBC
5288weak_alias (__re_match_2, re_match_2)
5289#endif
5290
5291#ifdef MBS_SUPPORT
5292
5293static int count_mbs_length PARAMS ((int *, int));
5294
5295/* This check the substring (from 0, to length) of the multibyte string,
5296   to which offset_buffer correspond. And count how many wchar_t_characters
5297   the substring occupy. We use offset_buffer to optimization.
5298   See convert_mbs_to_wcs.  */
5299
5300static int
5301count_mbs_length(offset_buffer, length)
5302     int *offset_buffer;
5303     int length;
5304{
5305  int wcs_size;
5306
5307  /* Check whether the size is valid.  */
5308  if (length < 0)
5309    return -1;
5310
5311  if (offset_buffer == NULL)
5312    return 0;
5313
5314  for (wcs_size = 0 ; offset_buffer[wcs_size] != -1 ; wcs_size++)
5315    {
5316      if (offset_buffer[wcs_size] == length)
5317	return wcs_size;
5318      if (offset_buffer[wcs_size] > length)
5319	/* It is a fragment of a wide character.  */
5320	return -1;
5321    }
5322
5323  /* We reached at the sentinel.  */
5324  return -1;
5325}
5326#endif /* MBS_SUPPORT */
5327
5328/* This is a separate function so that we can force an alloca cleanup
5329   afterwards.  */
5330static int
5331#ifdef MBS_SUPPORT
5332re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos, regs, stop)
5333     struct re_pattern_buffer *bufp;
5334     const char *cstring1, *cstring2;
5335     int csize1, csize2;
5336#else
5337re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5338     struct re_pattern_buffer *bufp;
5339     const char *string1, *string2;
5340     int size1, size2;
5341#endif
5342     int pos;
5343     struct re_registers *regs;
5344     int stop;
5345{
5346  /* General temporaries.  */
5347  int mcnt;
5348  US_CHAR_TYPE *p1;
5349#ifdef MBS_SUPPORT
5350  /* We need wchar_t* buffers correspond to string1, string2.  */
5351  CHAR_TYPE *string1 = NULL, *string2 = NULL;
5352  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5353  int size1 = 0, size2 = 0;
5354  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5355  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5356  /* They hold whether each wchar_t is binary data or not.  */
5357  char *is_binary = NULL;
5358#endif /* MBS_SUPPORT */
5359
5360  /* Just past the end of the corresponding string.  */
5361  const CHAR_TYPE *end1, *end2;
5362
5363  /* Pointers into string1 and string2, just past the last characters in
5364     each to consider matching.  */
5365  const CHAR_TYPE *end_match_1, *end_match_2;
5366
5367  /* Where we are in the data, and the end of the current string.  */
5368  const CHAR_TYPE *d, *dend;
5369
5370  /* Where we are in the pattern, and the end of the pattern.  */
5371#ifdef MBS_SUPPORT
5372  US_CHAR_TYPE *pattern, *p;
5373  register US_CHAR_TYPE *pend;
5374#else
5375  US_CHAR_TYPE *p = bufp->buffer;
5376  register US_CHAR_TYPE *pend = p + bufp->used;
5377#endif /* MBS_SUPPORT */
5378
5379  /* Mark the opcode just after a start_memory, so we can test for an
5380     empty subpattern when we get to the stop_memory.  */
5381  US_CHAR_TYPE *just_past_start_mem = 0;
5382
5383  /* We use this to map every character in the string.  */
5384  RE_TRANSLATE_TYPE translate = bufp->translate;
5385
5386  /* Failure point stack.  Each place that can handle a failure further
5387     down the line pushes a failure point on this stack.  It consists of
5388     restart, regend, and reg_info for all registers corresponding to
5389     the subexpressions we're currently inside, plus the number of such
5390     registers, and, finally, two char *'s.  The first char * is where
5391     to resume scanning the pattern; the second one is where to resume
5392     scanning the strings.  If the latter is zero, the failure point is
5393     a ``dummy''; if a failure happens and the failure point is a dummy,
5394     it gets discarded and the next next one is tried.  */
5395#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5396  fail_stack_type fail_stack;
5397#endif
5398#ifdef DEBUG
5399  static unsigned failure_id;
5400  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5401#endif
5402
5403#ifdef REL_ALLOC
5404  /* This holds the pointer to the failure stack, when
5405     it is allocated relocatably.  */
5406  fail_stack_elt_t *failure_stack_ptr;
5407#endif
5408
5409  /* We fill all the registers internally, independent of what we
5410     return, for use in backreferences.  The number here includes
5411     an element for register zero.  */
5412  size_t num_regs = bufp->re_nsub + 1;
5413
5414  /* The currently active registers.  */
5415  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5416  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5417
5418  /* Information on the contents of registers. These are pointers into
5419     the input strings; they record just what was matched (on this
5420     attempt) by a subexpression part of the pattern, that is, the
5421     regnum-th regstart pointer points to where in the pattern we began
5422     matching and the regnum-th regend points to right after where we
5423     stopped matching the regnum-th subexpression.  (The zeroth register
5424     keeps track of what the whole pattern matches.)  */
5425#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5426  const CHAR_TYPE **regstart, **regend;
5427#endif
5428
5429  /* If a group that's operated upon by a repetition operator fails to
5430     match anything, then the register for its start will need to be
5431     restored because it will have been set to wherever in the string we
5432     are when we last see its open-group operator.  Similarly for a
5433     register's end.  */
5434#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5435  const CHAR_TYPE **old_regstart, **old_regend;
5436#endif
5437
5438  /* The is_active field of reg_info helps us keep track of which (possibly
5439     nested) subexpressions we are currently in. The matched_something
5440     field of reg_info[reg_num] helps us tell whether or not we have
5441     matched any of the pattern so far this time through the reg_num-th
5442     subexpression.  These two fields get reset each time through any
5443     loop their register is in.  */
5444#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5445  register_info_type *reg_info;
5446#endif
5447
5448  /* The following record the register info as found in the above
5449     variables when we find a match better than any we've seen before.
5450     This happens as we backtrack through the failure points, which in
5451     turn happens only if we have not yet matched the entire string. */
5452  unsigned best_regs_set = false;
5453#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5454  const CHAR_TYPE **best_regstart, **best_regend;
5455#endif
5456
5457  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5458     allocate space for that if we're not allocating space for anything
5459     else (see below).  Also, we never need info about register 0 for
5460     any of the other register vectors, and it seems rather a kludge to
5461     treat `best_regend' differently than the rest.  So we keep track of
5462     the end of the best match so far in a separate variable.  We
5463     initialize this to NULL so that when we backtrack the first time
5464     and need to test it, it's not garbage.  */
5465  const CHAR_TYPE *match_end = NULL;
5466
5467  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5468  int set_regs_matched_done = 0;
5469
5470  /* Used when we pop values we don't care about.  */
5471#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5472  const CHAR_TYPE **reg_dummy;
5473  register_info_type *reg_info_dummy;
5474#endif
5475
5476#ifdef DEBUG
5477  /* Counts the total number of registers pushed.  */
5478  unsigned num_regs_pushed = 0;
5479#endif
5480
5481  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5482
5483  INIT_FAIL_STACK ();
5484
5485#ifdef MATCH_MAY_ALLOCATE
5486  /* Do not bother to initialize all the register variables if there are
5487     no groups in the pattern, as it takes a fair amount of time.  If
5488     there are groups, we include space for register 0 (the whole
5489     pattern), even though we never use it, since it simplifies the
5490     array indexing.  We should fix this.  */
5491  if (bufp->re_nsub)
5492    {
5493      regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5494      regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5495      old_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5496      old_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5497      best_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5498      best_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5499      reg_info = REGEX_TALLOC (num_regs, register_info_type);
5500      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5501      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
5502
5503      if (!(regstart && regend && old_regstart && old_regend && reg_info
5504            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5505        {
5506          FREE_VARIABLES ();
5507          return -2;
5508        }
5509    }
5510  else
5511    {
5512      /* We must initialize all our variables to NULL, so that
5513         `FREE_VARIABLES' doesn't try to free them.  */
5514      regstart = regend = old_regstart = old_regend = best_regstart
5515        = best_regend = reg_dummy = NULL;
5516      reg_info = reg_info_dummy = (register_info_type *) NULL;
5517    }
5518#endif /* MATCH_MAY_ALLOCATE */
5519
5520  /* The starting position is bogus.  */
5521#ifdef MBS_SUPPORT
5522  if (pos < 0 || pos > csize1 + csize2)
5523#else
5524  if (pos < 0 || pos > size1 + size2)
5525#endif
5526    {
5527      FREE_VARIABLES ();
5528      return -1;
5529    }
5530
5531#ifdef MBS_SUPPORT
5532  /* Allocate wchar_t array for string1 and string2 and
5533     fill them with converted string.  */
5534  if (csize1 != 0)
5535    {
5536      string1 = REGEX_TALLOC (csize1 + 1, CHAR_TYPE);
5537      mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5538      is_binary = REGEX_TALLOC (csize1 + 1, char);
5539      if (!string1 || !mbs_offset1 || !is_binary)
5540	{
5541	  FREE_VAR (string1);
5542	  FREE_VAR (mbs_offset1);
5543	  FREE_VAR (is_binary);
5544	  return -2;
5545	}
5546      size1 = convert_mbs_to_wcs(string1, cstring1, csize1,
5547				 mbs_offset1, is_binary);
5548      string1[size1] = L'\0'; /* for a sentinel  */
5549      FREE_VAR (is_binary);
5550    }
5551  if (csize2 != 0)
5552    {
5553      string2 = REGEX_TALLOC (csize2 + 1, CHAR_TYPE);
5554      mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5555      is_binary = REGEX_TALLOC (csize2 + 1, char);
5556      if (!string2 || !mbs_offset2 || !is_binary)
5557	{
5558	  FREE_VAR (string1);
5559	  FREE_VAR (mbs_offset1);
5560	  FREE_VAR (string2);
5561	  FREE_VAR (mbs_offset2);
5562	  FREE_VAR (is_binary);
5563	  return -2;
5564	}
5565      size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5566				 mbs_offset2, is_binary);
5567      string2[size2] = L'\0'; /* for a sentinel  */
5568      FREE_VAR (is_binary);
5569    }
5570
5571  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5572     pattern to (char*) in regex_compile.  */
5573  p = pattern = (CHAR_TYPE*)bufp->buffer;
5574  pend = (CHAR_TYPE*)(bufp->buffer + bufp->used);
5575
5576#endif /* MBS_SUPPORT */
5577
5578  /* Initialize subexpression text positions to -1 to mark ones that no
5579     start_memory/stop_memory has been seen for. Also initialize the
5580     register information struct.  */
5581  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5582    {
5583      regstart[mcnt] = regend[mcnt]
5584        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5585
5586      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5587      IS_ACTIVE (reg_info[mcnt]) = 0;
5588      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5589      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5590    }
5591
5592  /* We move `string1' into `string2' if the latter's empty -- but not if
5593     `string1' is null.  */
5594  if (size2 == 0 && string1 != NULL)
5595    {
5596      string2 = string1;
5597      size2 = size1;
5598      string1 = 0;
5599      size1 = 0;
5600    }
5601  end1 = string1 + size1;
5602  end2 = string2 + size2;
5603
5604  /* Compute where to stop matching, within the two strings.  */
5605#ifdef MBS_SUPPORT
5606  if (stop <= csize1)
5607    {
5608      mcnt = count_mbs_length(mbs_offset1, stop);
5609      end_match_1 = string1 + mcnt;
5610      end_match_2 = string2;
5611    }
5612  else
5613    {
5614      end_match_1 = end1;
5615      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5616      end_match_2 = string2 + mcnt;
5617    }
5618  if (mcnt < 0)
5619    { /* count_mbs_length return error.  */
5620      FREE_VARIABLES ();
5621      return -1;
5622    }
5623#else
5624  if (stop <= size1)
5625    {
5626      end_match_1 = string1 + stop;
5627      end_match_2 = string2;
5628    }
5629  else
5630    {
5631      end_match_1 = end1;
5632      end_match_2 = string2 + stop - size1;
5633    }
5634#endif /* MBS_SUPPORT */
5635
5636  /* `p' scans through the pattern as `d' scans through the data.
5637     `dend' is the end of the input string that `d' points within.  `d'
5638     is advanced into the following input string whenever necessary, but
5639     this happens before fetching; therefore, at the beginning of the
5640     loop, `d' can be pointing at the end of a string, but it cannot
5641     equal `string2'.  */
5642#ifdef MBS_SUPPORT
5643  if (size1 > 0 && pos <= csize1)
5644    {
5645      mcnt = count_mbs_length(mbs_offset1, pos);
5646      d = string1 + mcnt;
5647      dend = end_match_1;
5648    }
5649  else
5650    {
5651      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5652      d = string2 + mcnt;
5653      dend = end_match_2;
5654    }
5655
5656  if (mcnt < 0)
5657    { /* count_mbs_length return error.  */
5658      FREE_VARIABLES ();
5659      return -1;
5660    }
5661#else
5662  if (size1 > 0 && pos <= size1)
5663    {
5664      d = string1 + pos;
5665      dend = end_match_1;
5666    }
5667  else
5668    {
5669      d = string2 + pos - size1;
5670      dend = end_match_2;
5671    }
5672#endif /* MBS_SUPPORT */
5673
5674  DEBUG_PRINT1 ("The compiled pattern is:\n");
5675  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5676  DEBUG_PRINT1 ("The string to match is: `");
5677  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5678  DEBUG_PRINT1 ("'\n");
5679
5680  /* This loops over pattern commands.  It exits by returning from the
5681     function if the match is complete, or it drops through if the match
5682     fails at this starting point in the input data.  */
5683  for (;;)
5684    {
5685#ifdef _LIBC
5686      DEBUG_PRINT2 ("\n%p: ", p);
5687#else
5688      DEBUG_PRINT2 ("\n0x%x: ", p);
5689#endif
5690
5691      if (p == pend)
5692	{ /* End of pattern means we might have succeeded.  */
5693          DEBUG_PRINT1 ("end of pattern ... ");
5694
5695	  /* If we haven't matched the entire string, and we want the
5696             longest match, try backtracking.  */
5697          if (d != end_match_2)
5698	    {
5699	      /* 1 if this match ends in the same string (string1 or string2)
5700		 as the best previous match.  */
5701	      boolean same_str_p = (FIRST_STRING_P (match_end)
5702				    == MATCHING_IN_FIRST_STRING);
5703	      /* 1 if this match is the best seen so far.  */
5704	      boolean best_match_p;
5705
5706	      /* AIX compiler got confused when this was combined
5707		 with the previous declaration.  */
5708	      if (same_str_p)
5709		best_match_p = d > match_end;
5710	      else
5711		best_match_p = !MATCHING_IN_FIRST_STRING;
5712
5713              DEBUG_PRINT1 ("backtracking.\n");
5714
5715              if (!FAIL_STACK_EMPTY ())
5716                { /* More failure points to try.  */
5717
5718                  /* If exceeds best match so far, save it.  */
5719                  if (!best_regs_set || best_match_p)
5720                    {
5721                      best_regs_set = true;
5722                      match_end = d;
5723
5724                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5725
5726                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5727                        {
5728                          best_regstart[mcnt] = regstart[mcnt];
5729                          best_regend[mcnt] = regend[mcnt];
5730                        }
5731                    }
5732                  goto fail;
5733                }
5734
5735              /* If no failure points, don't restore garbage.  And if
5736                 last match is real best match, don't restore second
5737                 best one. */
5738              else if (best_regs_set && !best_match_p)
5739                {
5740  	        restore_best_regs:
5741                  /* Restore best match.  It may happen that `dend ==
5742                     end_match_1' while the restored d is in string2.
5743                     For example, the pattern `x.*y.*z' against the
5744                     strings `x-' and `y-z-', if the two strings are
5745                     not consecutive in memory.  */
5746                  DEBUG_PRINT1 ("Restoring best registers.\n");
5747
5748                  d = match_end;
5749                  dend = ((d >= string1 && d <= end1)
5750		           ? end_match_1 : end_match_2);
5751
5752		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5753		    {
5754		      regstart[mcnt] = best_regstart[mcnt];
5755		      regend[mcnt] = best_regend[mcnt];
5756		    }
5757                }
5758            } /* d != end_match_2 */
5759
5760	succeed_label:
5761          DEBUG_PRINT1 ("Accepting match.\n");
5762          /* If caller wants register contents data back, do it.  */
5763          if (regs && !bufp->no_sub)
5764	    {
5765	      /* Have the register data arrays been allocated?  */
5766              if (bufp->regs_allocated == REGS_UNALLOCATED)
5767                { /* No.  So allocate them with malloc.  We need one
5768                     extra element beyond `num_regs' for the `-1' marker
5769                     GNU code uses.  */
5770                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5771                  regs->start = TALLOC (regs->num_regs, regoff_t);
5772                  regs->end = TALLOC (regs->num_regs, regoff_t);
5773                  if (regs->start == NULL || regs->end == NULL)
5774		    {
5775		      FREE_VARIABLES ();
5776		      return -2;
5777		    }
5778                  bufp->regs_allocated = REGS_REALLOCATE;
5779                }
5780              else if (bufp->regs_allocated == REGS_REALLOCATE)
5781                { /* Yes.  If we need more elements than were already
5782                     allocated, reallocate them.  If we need fewer, just
5783                     leave it alone.  */
5784                  if (regs->num_regs < num_regs + 1)
5785                    {
5786                      regs->num_regs = num_regs + 1;
5787                      RETALLOC (regs->start, regs->num_regs, regoff_t);
5788                      RETALLOC (regs->end, regs->num_regs, regoff_t);
5789                      if (regs->start == NULL || regs->end == NULL)
5790			{
5791			  FREE_VARIABLES ();
5792			  return -2;
5793			}
5794                    }
5795                }
5796              else
5797		{
5798		  /* These braces fend off a "empty body in an else-statement"
5799		     warning under GCC when assert expands to nothing.  */
5800		  assert (bufp->regs_allocated == REGS_FIXED);
5801		}
5802
5803              /* Convert the pointer data in `regstart' and `regend' to
5804                 indices.  Register zero has to be set differently,
5805                 since we haven't kept track of any info for it.  */
5806              if (regs->num_regs > 0)
5807                {
5808                  regs->start[0] = pos;
5809#ifdef MBS_SUPPORT
5810		  if (MATCHING_IN_FIRST_STRING)
5811		    regs->end[0] = mbs_offset1 != NULL ?
5812					mbs_offset1[d-string1] : 0;
5813		  else
5814		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
5815					     mbs_offset2[d-string2] : 0);
5816#else
5817                  regs->end[0] = (MATCHING_IN_FIRST_STRING
5818				  ? ((regoff_t) (d - string1))
5819			          : ((regoff_t) (d - string2 + size1)));
5820#endif /* MBS_SUPPORT */
5821                }
5822
5823              /* Go through the first `min (num_regs, regs->num_regs)'
5824                 registers, since that is all we initialized.  */
5825	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
5826		   mcnt++)
5827		{
5828                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
5829                    regs->start[mcnt] = regs->end[mcnt] = -1;
5830                  else
5831                    {
5832		      regs->start[mcnt]
5833			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
5834                      regs->end[mcnt]
5835			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
5836                    }
5837		}
5838
5839              /* If the regs structure we return has more elements than
5840                 were in the pattern, set the extra elements to -1.  If
5841                 we (re)allocated the registers, this is the case,
5842                 because we always allocate enough to have at least one
5843                 -1 at the end.  */
5844              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
5845                regs->start[mcnt] = regs->end[mcnt] = -1;
5846	    } /* regs && !bufp->no_sub */
5847
5848          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5849                        nfailure_points_pushed, nfailure_points_popped,
5850                        nfailure_points_pushed - nfailure_points_popped);
5851          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5852
5853#ifdef MBS_SUPPORT
5854	  if (MATCHING_IN_FIRST_STRING)
5855	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
5856	  else
5857	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
5858			csize1;
5859          mcnt -= pos;
5860#else
5861          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5862			    ? string1
5863			    : string2 - size1);
5864#endif /* MBS_SUPPORT */
5865
5866          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5867
5868          FREE_VARIABLES ();
5869          return mcnt;
5870        }
5871
5872      /* Otherwise match next pattern command.  */
5873      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5874	{
5875        /* Ignore these.  Used to ignore the n of succeed_n's which
5876           currently have n == 0.  */
5877        case no_op:
5878          DEBUG_PRINT1 ("EXECUTING no_op.\n");
5879          break;
5880
5881	case succeed:
5882          DEBUG_PRINT1 ("EXECUTING succeed.\n");
5883	  goto succeed_label;
5884
5885        /* Match the next n pattern characters exactly.  The following
5886           byte in the pattern defines n, and the n bytes after that
5887           are the characters to match.  */
5888	case exactn:
5889#ifdef MBS_SUPPORT
5890	case exactn_bin:
5891#endif
5892	  mcnt = *p++;
5893          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5894
5895          /* This is written out as an if-else so we don't waste time
5896             testing `translate' inside the loop.  */
5897          if (translate)
5898	    {
5899	      do
5900		{
5901		  PREFETCH ();
5902#ifdef MBS_SUPPORT
5903		  if (*d <= 0xff)
5904		    {
5905		      if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5906			  != (US_CHAR_TYPE) *p++)
5907			goto fail;
5908		    }
5909		  else
5910		    {
5911		      if (*d++ != (CHAR_TYPE) *p++)
5912			goto fail;
5913		    }
5914#else
5915		  if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5916		      != (US_CHAR_TYPE) *p++)
5917                    goto fail;
5918#endif /* MBS_SUPPORT */
5919		}
5920	      while (--mcnt);
5921	    }
5922	  else
5923	    {
5924	      do
5925		{
5926		  PREFETCH ();
5927		  if (*d++ != (CHAR_TYPE) *p++) goto fail;
5928		}
5929	      while (--mcnt);
5930	    }
5931	  SET_REGS_MATCHED ();
5932          break;
5933
5934
5935        /* Match any character except possibly a newline or a null.  */
5936	case anychar:
5937          DEBUG_PRINT1 ("EXECUTING anychar.\n");
5938
5939          PREFETCH ();
5940
5941          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
5942              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
5943	    goto fail;
5944
5945          SET_REGS_MATCHED ();
5946          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
5947          d++;
5948	  break;
5949
5950
5951	case charset:
5952	case charset_not:
5953	  {
5954	    register US_CHAR_TYPE c;
5955#ifdef MBS_SUPPORT
5956	    unsigned int i, char_class_length, coll_symbol_length,
5957              equiv_class_length, ranges_length, chars_length, length;
5958	    CHAR_TYPE *workp, *workp2, *charset_top;
5959#define WORK_BUFFER_SIZE 128
5960            CHAR_TYPE str_buf[WORK_BUFFER_SIZE];
5961# ifdef _LIBC
5962	    uint32_t nrules;
5963# endif /* _LIBC */
5964#endif /* MBS_SUPPORT */
5965	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
5966
5967            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5968	    PREFETCH ();
5969	    c = TRANSLATE (*d); /* The character to match.  */
5970#ifdef MBS_SUPPORT
5971# ifdef _LIBC
5972	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
5973# endif /* _LIBC */
5974	    charset_top = p - 1;
5975	    char_class_length = *p++;
5976	    coll_symbol_length = *p++;
5977	    equiv_class_length = *p++;
5978	    ranges_length = *p++;
5979	    chars_length = *p++;
5980	    /* p points charset[6], so the address of the next instruction
5981	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
5982	       where l=length of char_classes, m=length of collating_symbol,
5983	       n=equivalence_class, o=length of char_range,
5984	       p'=length of character.  */
5985	    workp = p;
5986	    /* Update p to indicate the next instruction.  */
5987	    p += char_class_length + coll_symbol_length+ equiv_class_length +
5988              2*ranges_length + chars_length;
5989
5990            /* match with char_class?  */
5991	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
5992	      {
5993		wctype_t wctype;
5994		uintptr_t alignedp = ((uintptr_t)workp
5995				      + __alignof__(wctype_t) - 1)
5996		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
5997		wctype = *((wctype_t*)alignedp);
5998		workp += CHAR_CLASS_SIZE;
5999		if (iswctype((wint_t)c, wctype))
6000		  goto char_set_matched;
6001	      }
6002
6003            /* match with collating_symbol?  */
6004# ifdef _LIBC
6005	    if (nrules != 0)
6006	      {
6007		const unsigned char *extra = (const unsigned char *)
6008		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6009
6010		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6011		     workp++)
6012		  {
6013		    int32_t *wextra;
6014		    wextra = (int32_t*)(extra + *workp++);
6015		    for (i = 0; i < *wextra; ++i)
6016		      if (TRANSLATE(d[i]) != wextra[1 + i])
6017			break;
6018
6019		    if (i == *wextra)
6020		      {
6021			/* Update d, however d will be incremented at
6022			   char_set_matched:, we decrement d here.  */
6023			d += i - 1;
6024			goto char_set_matched;
6025		      }
6026		  }
6027	      }
6028	    else /* (nrules == 0) */
6029# endif
6030	      /* If we can't look up collation data, we use wcscoll
6031		 instead.  */
6032	      {
6033		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6034		  {
6035		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6036		    length = wcslen(workp);
6037
6038		    /* If wcscoll(the collating symbol, whole string) > 0,
6039		       any substring of the string never match with the
6040		       collating symbol.  */
6041		    if (wcscoll(workp, d) > 0)
6042		      {
6043			workp += length + 1;
6044			continue;
6045		      }
6046
6047		    /* First, we compare the collating symbol with
6048		       the first character of the string.
6049		       If it don't match, we add the next character to
6050		       the compare buffer in turn.  */
6051		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6052		      {
6053			int match;
6054			if (d == dend)
6055			  {
6056			    if (dend == end_match_2)
6057			      break;
6058			    d = string2;
6059			    dend = end_match_2;
6060			  }
6061
6062			/* add next character to the compare buffer.  */
6063			str_buf[i] = TRANSLATE(*d);
6064			str_buf[i+1] = '\0';
6065
6066			match = wcscoll(workp, str_buf);
6067			if (match == 0)
6068			  goto char_set_matched;
6069
6070			if (match < 0)
6071			  /* (str_buf > workp) indicate (str_buf + X > workp),
6072			     because for all X (str_buf + X > str_buf).
6073			     So we don't need continue this loop.  */
6074			  break;
6075
6076			/* Otherwise(str_buf < workp),
6077			   (str_buf+next_character) may equals (workp).
6078			   So we continue this loop.  */
6079		      }
6080		    /* not matched */
6081		    d = backup_d;
6082		    dend = backup_dend;
6083		    workp += length + 1;
6084		  }
6085              }
6086            /* match with equivalence_class?  */
6087# ifdef _LIBC
6088	    if (nrules != 0)
6089	      {
6090                const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6091		/* Try to match the equivalence class against
6092		   those known to the collate implementation.  */
6093		const int32_t *table;
6094		const int32_t *weights;
6095		const int32_t *extra;
6096		const int32_t *indirect;
6097		int32_t idx, idx2;
6098		wint_t *cp;
6099		size_t len;
6100
6101		/* This #include defines a local function!  */
6102#  include <locale/weightwc.h>
6103
6104		table = (const int32_t *)
6105		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6106		weights = (const wint_t *)
6107		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6108		extra = (const wint_t *)
6109		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6110		indirect = (const int32_t *)
6111		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6112
6113		/* Write 1 collating element to str_buf, and
6114		   get its index.  */
6115		idx2 = 0;
6116
6117		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6118		  {
6119		    cp = (wint_t*)str_buf;
6120		    if (d == dend)
6121		      {
6122			if (dend == end_match_2)
6123			  break;
6124			d = string2;
6125			dend = end_match_2;
6126		      }
6127		    str_buf[i] = TRANSLATE(*(d+i));
6128		    str_buf[i+1] = '\0'; /* sentinel */
6129		    idx2 = findidx ((const wint_t**)&cp);
6130		  }
6131
6132		/* Update d, however d will be incremented at
6133		   char_set_matched:, we decrement d here.  */
6134		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6135		if (d >= dend)
6136		  {
6137		    if (dend == end_match_2)
6138			d = dend;
6139		    else
6140		      {
6141			d = string2;
6142			dend = end_match_2;
6143		      }
6144		  }
6145
6146		len = weights[idx2];
6147
6148		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6149		     workp++)
6150		  {
6151		    idx = (int32_t)*workp;
6152		    /* We already checked idx != 0 in regex_compile. */
6153
6154		    if (idx2 != 0 && len == weights[idx])
6155		      {
6156			int cnt = 0;
6157			while (cnt < len && (weights[idx + 1 + cnt]
6158					     == weights[idx2 + 1 + cnt]))
6159			  ++cnt;
6160
6161			if (cnt == len)
6162			  goto char_set_matched;
6163		      }
6164		  }
6165		/* not matched */
6166                d = backup_d;
6167                dend = backup_dend;
6168	      }
6169	    else /* (nrules == 0) */
6170# endif
6171	      /* If we can't look up collation data, we use wcscoll
6172		 instead.  */
6173	      {
6174		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6175		  {
6176		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6177		    length = wcslen(workp);
6178
6179		    /* If wcscoll(the collating symbol, whole string) > 0,
6180		       any substring of the string never match with the
6181		       collating symbol.  */
6182		    if (wcscoll(workp, d) > 0)
6183		      {
6184			workp += length + 1;
6185			break;
6186		      }
6187
6188		    /* First, we compare the equivalence class with
6189		       the first character of the string.
6190		       If it don't match, we add the next character to
6191		       the compare buffer in turn.  */
6192		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6193		      {
6194			int match;
6195			if (d == dend)
6196			  {
6197			    if (dend == end_match_2)
6198			      break;
6199			    d = string2;
6200			    dend = end_match_2;
6201			  }
6202
6203			/* add next character to the compare buffer.  */
6204			str_buf[i] = TRANSLATE(*d);
6205			str_buf[i+1] = '\0';
6206
6207			match = wcscoll(workp, str_buf);
6208
6209			if (match == 0)
6210			  goto char_set_matched;
6211
6212			if (match < 0)
6213			/* (str_buf > workp) indicate (str_buf + X > workp),
6214			   because for all X (str_buf + X > str_buf).
6215			   So we don't need continue this loop.  */
6216			  break;
6217
6218			/* Otherwise(str_buf < workp),
6219			   (str_buf+next_character) may equals (workp).
6220			   So we continue this loop.  */
6221		      }
6222		    /* not matched */
6223		    d = backup_d;
6224		    dend = backup_dend;
6225		    workp += length + 1;
6226		  }
6227	      }
6228
6229            /* match with char_range?  */
6230#ifdef _LIBC
6231	    if (nrules != 0)
6232	      {
6233		uint32_t collseqval;
6234		const char *collseq = (const char *)
6235		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6236
6237		collseqval = collseq_table_lookup (collseq, c);
6238
6239		for (; workp < p - chars_length ;)
6240		  {
6241		    uint32_t start_val, end_val;
6242
6243		    /* We already compute the collation sequence value
6244		       of the characters (or collating symbols).  */
6245		    start_val = (uint32_t) *workp++; /* range_start */
6246		    end_val = (uint32_t) *workp++; /* range_end */
6247
6248		    if (start_val <= collseqval && collseqval <= end_val)
6249		      goto char_set_matched;
6250		  }
6251	      }
6252	    else
6253#endif
6254	      {
6255		/* We set range_start_char at str_buf[0], range_end_char
6256		   at str_buf[4], and compared char at str_buf[2].  */
6257		str_buf[1] = 0;
6258		str_buf[2] = c;
6259		str_buf[3] = 0;
6260		str_buf[5] = 0;
6261		for (; workp < p - chars_length ;)
6262		  {
6263		    wchar_t *range_start_char, *range_end_char;
6264
6265		    /* match if (range_start_char <= c <= range_end_char).  */
6266
6267		    /* If range_start(or end) < 0, we assume -range_start(end)
6268		       is the offset of the collating symbol which is specified
6269		       as the character of the range start(end).  */
6270
6271		    /* range_start */
6272		    if (*workp < 0)
6273		      range_start_char = charset_top - (*workp++);
6274		    else
6275		      {
6276			str_buf[0] = *workp++;
6277			range_start_char = str_buf;
6278		      }
6279
6280		    /* range_end */
6281		    if (*workp < 0)
6282		      range_end_char = charset_top - (*workp++);
6283		    else
6284		      {
6285			str_buf[4] = *workp++;
6286			range_end_char = str_buf + 4;
6287		      }
6288
6289		    if (wcscoll(range_start_char, str_buf+2) <= 0 &&
6290			wcscoll(str_buf+2, range_end_char) <= 0)
6291
6292		      goto char_set_matched;
6293		  }
6294	      }
6295
6296            /* match with char?  */
6297	    for (; workp < p ; workp++)
6298	      if (c == *workp)
6299		goto char_set_matched;
6300
6301	    not = !not;
6302
6303	  char_set_matched:
6304	    if (not) goto fail;
6305#else
6306            /* Cast to `unsigned' instead of `unsigned char' in case the
6307               bit list is a full 32 bytes long.  */
6308	    if (c < (unsigned) (*p * BYTEWIDTH)
6309		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6310	      not = !not;
6311
6312	    p += 1 + *p;
6313
6314	    if (!not) goto fail;
6315#undef WORK_BUFFER_SIZE
6316#endif /* MBS_SUPPORT */
6317	    SET_REGS_MATCHED ();
6318            d++;
6319	    break;
6320	  }
6321
6322
6323        /* The beginning of a group is represented by start_memory.
6324           The arguments are the register number in the next byte, and the
6325           number of groups inner to this one in the next.  The text
6326           matched within the group is recorded (in the internal
6327           registers data structure) under the register number.  */
6328        case start_memory:
6329	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6330			(long int) *p, (long int) p[1]);
6331
6332          /* Find out if this group can match the empty string.  */
6333	  p1 = p;		/* To send to group_match_null_string_p.  */
6334
6335          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6336            REG_MATCH_NULL_STRING_P (reg_info[*p])
6337              = group_match_null_string_p (&p1, pend, reg_info);
6338
6339          /* Save the position in the string where we were the last time
6340             we were at this open-group operator in case the group is
6341             operated upon by a repetition operator, e.g., with `(a*)*b'
6342             against `ab'; then we want to ignore where we are now in
6343             the string in case this attempt to match fails.  */
6344          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6345                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6346                             : regstart[*p];
6347	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6348			 POINTER_TO_OFFSET (old_regstart[*p]));
6349
6350          regstart[*p] = d;
6351	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6352
6353          IS_ACTIVE (reg_info[*p]) = 1;
6354          MATCHED_SOMETHING (reg_info[*p]) = 0;
6355
6356	  /* Clear this whenever we change the register activity status.  */
6357	  set_regs_matched_done = 0;
6358
6359          /* This is the new highest active register.  */
6360          highest_active_reg = *p;
6361
6362          /* If nothing was active before, this is the new lowest active
6363             register.  */
6364          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6365            lowest_active_reg = *p;
6366
6367          /* Move past the register number and inner group count.  */
6368          p += 2;
6369	  just_past_start_mem = p;
6370
6371          break;
6372
6373
6374        /* The stop_memory opcode represents the end of a group.  Its
6375           arguments are the same as start_memory's: the register
6376           number, and the number of inner groups.  */
6377	case stop_memory:
6378	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6379			(long int) *p, (long int) p[1]);
6380
6381          /* We need to save the string position the last time we were at
6382             this close-group operator in case the group is operated
6383             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6384             against `aba'; then we want to ignore where we are now in
6385             the string in case this attempt to match fails.  */
6386          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6387                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6388			   : regend[*p];
6389	  DEBUG_PRINT2 ("      old_regend: %d\n",
6390			 POINTER_TO_OFFSET (old_regend[*p]));
6391
6392          regend[*p] = d;
6393	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6394
6395          /* This register isn't active anymore.  */
6396          IS_ACTIVE (reg_info[*p]) = 0;
6397
6398	  /* Clear this whenever we change the register activity status.  */
6399	  set_regs_matched_done = 0;
6400
6401          /* If this was the only register active, nothing is active
6402             anymore.  */
6403          if (lowest_active_reg == highest_active_reg)
6404            {
6405              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6406              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6407            }
6408          else
6409            { /* We must scan for the new highest active register, since
6410                 it isn't necessarily one less than now: consider
6411                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6412                 new highest active register is 1.  */
6413              US_CHAR_TYPE r = *p - 1;
6414              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6415                r--;
6416
6417              /* If we end up at register zero, that means that we saved
6418                 the registers as the result of an `on_failure_jump', not
6419                 a `start_memory', and we jumped to past the innermost
6420                 `stop_memory'.  For example, in ((.)*) we save
6421                 registers 1 and 2 as a result of the *, but when we pop
6422                 back to the second ), we are at the stop_memory 1.
6423                 Thus, nothing is active.  */
6424	      if (r == 0)
6425                {
6426                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6427                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6428                }
6429              else
6430                highest_active_reg = r;
6431            }
6432
6433          /* If just failed to match something this time around with a
6434             group that's operated on by a repetition operator, try to
6435             force exit from the ``loop'', and restore the register
6436             information for this group that we had before trying this
6437             last match.  */
6438          if ((!MATCHED_SOMETHING (reg_info[*p])
6439               || just_past_start_mem == p - 1)
6440	      && (p + 2) < pend)
6441            {
6442              boolean is_a_jump_n = false;
6443
6444              p1 = p + 2;
6445              mcnt = 0;
6446              switch ((re_opcode_t) *p1++)
6447                {
6448                  case jump_n:
6449		    is_a_jump_n = true;
6450                  case pop_failure_jump:
6451		  case maybe_pop_jump:
6452		  case jump:
6453		  case dummy_failure_jump:
6454                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6455		    if (is_a_jump_n)
6456		      p1 += OFFSET_ADDRESS_SIZE;
6457                    break;
6458
6459                  default:
6460                    /* do nothing */ ;
6461                }
6462	      p1 += mcnt;
6463
6464              /* If the next operation is a jump backwards in the pattern
6465	         to an on_failure_jump right before the start_memory
6466                 corresponding to this stop_memory, exit from the loop
6467                 by forcing a failure after pushing on the stack the
6468                 on_failure_jump's jump in the pattern, and d.  */
6469              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6470                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6471		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6472		{
6473                  /* If this group ever matched anything, then restore
6474                     what its registers were before trying this last
6475                     failed match, e.g., with `(a*)*b' against `ab' for
6476                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6477                     against `aba' for regend[3].
6478
6479                     Also restore the registers for inner groups for,
6480                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6481                     otherwise get trashed).  */
6482
6483                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6484		    {
6485		      unsigned r;
6486
6487                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6488
6489		      /* Restore this and inner groups' (if any) registers.  */
6490                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6491			   r++)
6492                        {
6493                          regstart[r] = old_regstart[r];
6494
6495                          /* xx why this test?  */
6496                          if (old_regend[r] >= regstart[r])
6497                            regend[r] = old_regend[r];
6498                        }
6499                    }
6500		  p1++;
6501                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6502                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6503
6504                  goto fail;
6505                }
6506            }
6507
6508          /* Move past the register number and the inner group count.  */
6509          p += 2;
6510          break;
6511
6512
6513	/* \<digit> has been turned into a `duplicate' command which is
6514           followed by the numeric value of <digit> as the register number.  */
6515        case duplicate:
6516	  {
6517	    register const CHAR_TYPE *d2, *dend2;
6518	    int regno = *p++;   /* Get which register to match against.  */
6519	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6520
6521	    /* Can't back reference a group which we've never matched.  */
6522            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6523              goto fail;
6524
6525            /* Where in input to try to start matching.  */
6526            d2 = regstart[regno];
6527
6528            /* Where to stop matching; if both the place to start and
6529               the place to stop matching are in the same string, then
6530               set to the place to stop, otherwise, for now have to use
6531               the end of the first string.  */
6532
6533            dend2 = ((FIRST_STRING_P (regstart[regno])
6534		      == FIRST_STRING_P (regend[regno]))
6535		     ? regend[regno] : end_match_1);
6536	    for (;;)
6537	      {
6538		/* If necessary, advance to next segment in register
6539                   contents.  */
6540		while (d2 == dend2)
6541		  {
6542		    if (dend2 == end_match_2) break;
6543		    if (dend2 == regend[regno]) break;
6544
6545                    /* End of string1 => advance to string2. */
6546                    d2 = string2;
6547                    dend2 = regend[regno];
6548		  }
6549		/* At end of register contents => success */
6550		if (d2 == dend2) break;
6551
6552		/* If necessary, advance to next segment in data.  */
6553		PREFETCH ();
6554
6555		/* How many characters left in this segment to match.  */
6556		mcnt = dend - d;
6557
6558		/* Want how many consecutive characters we can match in
6559                   one shot, so, if necessary, adjust the count.  */
6560                if (mcnt > dend2 - d2)
6561		  mcnt = dend2 - d2;
6562
6563		/* Compare that many; failure if mismatch, else move
6564                   past them.  */
6565		if (translate
6566                    ? bcmp_translate (d, d2, mcnt, translate)
6567                    : memcmp (d, d2, mcnt*sizeof(US_CHAR_TYPE)))
6568		  goto fail;
6569		d += mcnt, d2 += mcnt;
6570
6571		/* Do this because we've match some characters.  */
6572		SET_REGS_MATCHED ();
6573	      }
6574	  }
6575	  break;
6576
6577
6578        /* begline matches the empty string at the beginning of the string
6579           (unless `not_bol' is set in `bufp'), and, if
6580           `newline_anchor' is set, after newlines.  */
6581	case begline:
6582          DEBUG_PRINT1 ("EXECUTING begline.\n");
6583
6584          if (AT_STRINGS_BEG (d))
6585            {
6586              if (!bufp->not_bol) break;
6587            }
6588          else if (d[-1] == '\n' && bufp->newline_anchor)
6589            {
6590              break;
6591            }
6592          /* In all other cases, we fail.  */
6593          goto fail;
6594
6595
6596        /* endline is the dual of begline.  */
6597	case endline:
6598          DEBUG_PRINT1 ("EXECUTING endline.\n");
6599
6600          if (AT_STRINGS_END (d))
6601            {
6602              if (!bufp->not_eol) break;
6603            }
6604
6605          /* We have to ``prefetch'' the next character.  */
6606          else if ((d == end1 ? *string2 : *d) == '\n'
6607                   && bufp->newline_anchor)
6608            {
6609              break;
6610            }
6611          goto fail;
6612
6613
6614	/* Match at the very beginning of the data.  */
6615        case begbuf:
6616          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6617          if (AT_STRINGS_BEG (d))
6618            break;
6619          goto fail;
6620
6621
6622	/* Match at the very end of the data.  */
6623        case endbuf:
6624          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6625	  if (AT_STRINGS_END (d))
6626	    break;
6627          goto fail;
6628
6629
6630        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6631           pushes NULL as the value for the string on the stack.  Then
6632           `pop_failure_point' will keep the current value for the
6633           string, instead of restoring it.  To see why, consider
6634           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6635           then the . fails against the \n.  But the next thing we want
6636           to do is match the \n against the \n; if we restored the
6637           string value, we would be back at the foo.
6638
6639           Because this is used only in specific cases, we don't need to
6640           check all the things that `on_failure_jump' does, to make
6641           sure the right things get saved on the stack.  Hence we don't
6642           share its code.  The only reason to push anything on the
6643           stack at all is that otherwise we would have to change
6644           `anychar's code to do something besides goto fail in this
6645           case; that seems worse than this.  */
6646        case on_failure_keep_string_jump:
6647          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6648
6649          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6650#ifdef _LIBC
6651          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6652#else
6653          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6654#endif
6655
6656          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6657          break;
6658
6659
6660	/* Uses of on_failure_jump:
6661
6662           Each alternative starts with an on_failure_jump that points
6663           to the beginning of the next alternative.  Each alternative
6664           except the last ends with a jump that in effect jumps past
6665           the rest of the alternatives.  (They really jump to the
6666           ending jump of the following alternative, because tensioning
6667           these jumps is a hassle.)
6668
6669           Repeats start with an on_failure_jump that points past both
6670           the repetition text and either the following jump or
6671           pop_failure_jump back to this on_failure_jump.  */
6672	case on_failure_jump:
6673        on_failure:
6674          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6675
6676          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6677#ifdef _LIBC
6678          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6679#else
6680          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6681#endif
6682
6683          /* If this on_failure_jump comes right before a group (i.e.,
6684             the original * applied to a group), save the information
6685             for that group and all inner ones, so that if we fail back
6686             to this point, the group's information will be correct.
6687             For example, in \(a*\)*\1, we need the preceding group,
6688             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6689
6690          /* We can't use `p' to check ahead because we push
6691             a failure point to `p + mcnt' after we do this.  */
6692          p1 = p;
6693
6694          /* We need to skip no_op's before we look for the
6695             start_memory in case this on_failure_jump is happening as
6696             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6697             against aba.  */
6698          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6699            p1++;
6700
6701          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6702            {
6703              /* We have a new highest active register now.  This will
6704                 get reset at the start_memory we are about to get to,
6705                 but we will have saved all the registers relevant to
6706                 this repetition op, as described above.  */
6707              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6708              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6709                lowest_active_reg = *(p1 + 1);
6710            }
6711
6712          DEBUG_PRINT1 (":\n");
6713          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6714          break;
6715
6716
6717        /* A smart repeat ends with `maybe_pop_jump'.
6718	   We change it to either `pop_failure_jump' or `jump'.  */
6719        case maybe_pop_jump:
6720          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6721          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6722          {
6723	    register US_CHAR_TYPE *p2 = p;
6724
6725            /* Compare the beginning of the repeat with what in the
6726               pattern follows its end. If we can establish that there
6727               is nothing that they would both match, i.e., that we
6728               would have to backtrack because of (as in, e.g., `a*a')
6729               then we can change to pop_failure_jump, because we'll
6730               never have to backtrack.
6731
6732               This is not true in the case of alternatives: in
6733               `(a|ab)*' we do need to backtrack to the `ab' alternative
6734               (e.g., if the string was `ab').  But instead of trying to
6735               detect that here, the alternative has put on a dummy
6736               failure point which is what we will end up popping.  */
6737
6738	    /* Skip over open/close-group commands.
6739	       If what follows this loop is a ...+ construct,
6740	       look at what begins its body, since we will have to
6741	       match at least one of that.  */
6742	    while (1)
6743	      {
6744		if (p2 + 2 < pend
6745		    && ((re_opcode_t) *p2 == stop_memory
6746			|| (re_opcode_t) *p2 == start_memory))
6747		  p2 += 3;
6748		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6749			 && (re_opcode_t) *p2 == dummy_failure_jump)
6750		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6751		else
6752		  break;
6753	      }
6754
6755	    p1 = p + mcnt;
6756	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
6757	       to the `maybe_finalize_jump' of this case.  Examine what
6758	       follows.  */
6759
6760            /* If we're at the end of the pattern, we can change.  */
6761            if (p2 == pend)
6762	      {
6763		/* Consider what happens when matching ":\(.*\)"
6764		   against ":/".  I don't really understand this code
6765		   yet.  */
6766  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6767		  pop_failure_jump;
6768                DEBUG_PRINT1
6769                  ("  End of pattern: change to `pop_failure_jump'.\n");
6770              }
6771
6772            else if ((re_opcode_t) *p2 == exactn
6773#ifdef MBS_SUPPORT
6774		     || (re_opcode_t) *p2 == exactn_bin
6775#endif
6776		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
6777	      {
6778		register US_CHAR_TYPE c
6779                  = *p2 == (US_CHAR_TYPE) endline ? '\n' : p2[2];
6780
6781                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
6782#ifdef MBS_SUPPORT
6783		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
6784#endif
6785		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
6786                  {
6787  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6788		      pop_failure_jump;
6789#ifdef MBS_SUPPORT
6790		    if (MB_CUR_MAX != 1)
6791		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
6792				    (wint_t) c,
6793				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
6794		    else
6795#endif
6796		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
6797				    (char) c,
6798				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
6799                  }
6800
6801#ifndef MBS_SUPPORT
6802		else if ((re_opcode_t) p1[3] == charset
6803			 || (re_opcode_t) p1[3] == charset_not)
6804		  {
6805		    int not = (re_opcode_t) p1[3] == charset_not;
6806
6807		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
6808			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6809		      not = !not;
6810
6811                    /* `not' is equal to 1 if c would match, which means
6812                        that we can't change to pop_failure_jump.  */
6813		    if (!not)
6814                      {
6815  		        p[-3] = (unsigned char) pop_failure_jump;
6816                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6817                      }
6818		  }
6819#endif /* not MBS_SUPPORT */
6820	      }
6821#ifndef MBS_SUPPORT
6822            else if ((re_opcode_t) *p2 == charset)
6823	      {
6824		/* We win if the first character of the loop is not part
6825                   of the charset.  */
6826                if ((re_opcode_t) p1[3] == exactn
6827 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
6828 			  && (p2[2 + p1[5] / BYTEWIDTH]
6829 			      & (1 << (p1[5] % BYTEWIDTH)))))
6830		  {
6831		    p[-3] = (unsigned char) pop_failure_jump;
6832		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6833                  }
6834
6835		else if ((re_opcode_t) p1[3] == charset_not)
6836		  {
6837		    int idx;
6838		    /* We win if the charset_not inside the loop
6839		       lists every character listed in the charset after.  */
6840		    for (idx = 0; idx < (int) p2[1]; idx++)
6841		      if (! (p2[2 + idx] == 0
6842			     || (idx < (int) p1[4]
6843				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
6844			break;
6845
6846		    if (idx == p2[1])
6847                      {
6848  		        p[-3] = (unsigned char) pop_failure_jump;
6849                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6850                      }
6851		  }
6852		else if ((re_opcode_t) p1[3] == charset)
6853		  {
6854		    int idx;
6855		    /* We win if the charset inside the loop
6856		       has no overlap with the one after the loop.  */
6857		    for (idx = 0;
6858			 idx < (int) p2[1] && idx < (int) p1[4];
6859			 idx++)
6860		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
6861			break;
6862
6863		    if (idx == p2[1] || idx == p1[4])
6864                      {
6865  		        p[-3] = (unsigned char) pop_failure_jump;
6866                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6867                      }
6868		  }
6869	      }
6870#endif /* not MBS_SUPPORT */
6871	  }
6872	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
6873	  if ((re_opcode_t) p[-1] != pop_failure_jump)
6874	    {
6875	      p[-1] = (US_CHAR_TYPE) jump;
6876              DEBUG_PRINT1 ("  Match => jump.\n");
6877	      goto unconditional_jump;
6878	    }
6879        /* Note fall through.  */
6880
6881
6882	/* The end of a simple repeat has a pop_failure_jump back to
6883           its matching on_failure_jump, where the latter will push a
6884           failure point.  The pop_failure_jump takes off failure
6885           points put on by this pop_failure_jump's matching
6886           on_failure_jump; we got through the pattern to here from the
6887           matching on_failure_jump, so didn't fail.  */
6888        case pop_failure_jump:
6889          {
6890            /* We need to pass separate storage for the lowest and
6891               highest registers, even though we don't care about the
6892               actual values.  Otherwise, we will restore only one
6893               register from the stack, since lowest will == highest in
6894               `pop_failure_point'.  */
6895            active_reg_t dummy_low_reg, dummy_high_reg;
6896            US_CHAR_TYPE *pdummy = NULL;
6897            const CHAR_TYPE *sdummy = NULL;
6898
6899            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
6900            POP_FAILURE_POINT (sdummy, pdummy,
6901                               dummy_low_reg, dummy_high_reg,
6902                               reg_dummy, reg_dummy, reg_info_dummy);
6903          }
6904	  /* Note fall through.  */
6905
6906	unconditional_jump:
6907#ifdef _LIBC
6908	  DEBUG_PRINT2 ("\n%p: ", p);
6909#else
6910	  DEBUG_PRINT2 ("\n0x%x: ", p);
6911#endif
6912          /* Note fall through.  */
6913
6914        /* Unconditionally jump (without popping any failure points).  */
6915        case jump:
6916	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
6917          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
6918	  p += mcnt;				/* Do the jump.  */
6919#ifdef _LIBC
6920          DEBUG_PRINT2 ("(to %p).\n", p);
6921#else
6922          DEBUG_PRINT2 ("(to 0x%x).\n", p);
6923#endif
6924	  break;
6925
6926
6927        /* We need this opcode so we can detect where alternatives end
6928           in `group_match_null_string_p' et al.  */
6929        case jump_past_alt:
6930          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
6931          goto unconditional_jump;
6932
6933
6934        /* Normally, the on_failure_jump pushes a failure point, which
6935           then gets popped at pop_failure_jump.  We will end up at
6936           pop_failure_jump, also, and with a pattern of, say, `a+', we
6937           are skipping over the on_failure_jump, so we have to push
6938           something meaningless for pop_failure_jump to pop.  */
6939        case dummy_failure_jump:
6940          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
6941          /* It doesn't matter what we push for the string here.  What
6942             the code at `fail' tests is the value for the pattern.  */
6943          PUSH_FAILURE_POINT (NULL, NULL, -2);
6944          goto unconditional_jump;
6945
6946
6947        /* At the end of an alternative, we need to push a dummy failure
6948           point in case we are followed by a `pop_failure_jump', because
6949           we don't want the failure point for the alternative to be
6950           popped.  For example, matching `(a|ab)*' against `aab'
6951           requires that we match the `ab' alternative.  */
6952        case push_dummy_failure:
6953          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
6954          /* See comments just above at `dummy_failure_jump' about the
6955             two zeroes.  */
6956          PUSH_FAILURE_POINT (NULL, NULL, -2);
6957          break;
6958
6959        /* Have to succeed matching what follows at least n times.
6960           After that, handle like `on_failure_jump'.  */
6961        case succeed_n:
6962          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
6963          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
6964
6965          assert (mcnt >= 0);
6966          /* Originally, this is how many times we HAVE to succeed.  */
6967          if (mcnt > 0)
6968            {
6969               mcnt--;
6970	       p += OFFSET_ADDRESS_SIZE;
6971               STORE_NUMBER_AND_INCR (p, mcnt);
6972#ifdef _LIBC
6973               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
6974			     , mcnt);
6975#else
6976               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
6977			     , mcnt);
6978#endif
6979            }
6980	  else if (mcnt == 0)
6981            {
6982#ifdef _LIBC
6983              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
6984			    p + OFFSET_ADDRESS_SIZE);
6985#else
6986              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
6987			    p + OFFSET_ADDRESS_SIZE);
6988#endif /* _LIBC */
6989
6990#ifdef MBS_SUPPORT
6991	      p[1] = (US_CHAR_TYPE) no_op;
6992#else
6993	      p[2] = (US_CHAR_TYPE) no_op;
6994              p[3] = (US_CHAR_TYPE) no_op;
6995#endif /* MBS_SUPPORT */
6996              goto on_failure;
6997            }
6998          break;
6999
7000        case jump_n:
7001          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7002          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7003
7004          /* Originally, this is how many times we CAN jump.  */
7005          if (mcnt)
7006            {
7007               mcnt--;
7008               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7009
7010#ifdef _LIBC
7011               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7012			     mcnt);
7013#else
7014               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7015			     mcnt);
7016#endif /* _LIBC */
7017	       goto unconditional_jump;
7018            }
7019          /* If don't have to jump any more, skip over the rest of command.  */
7020	  else
7021	    p += 2 * OFFSET_ADDRESS_SIZE;
7022          break;
7023
7024	case set_number_at:
7025	  {
7026            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7027
7028            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7029            p1 = p + mcnt;
7030            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7031#ifdef _LIBC
7032            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7033#else
7034            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7035#endif
7036	    STORE_NUMBER (p1, mcnt);
7037            break;
7038          }
7039
7040#if 0
7041	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7042	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7043	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7044	   macro and introducing temporary variables works around the bug.  */
7045
7046	case wordbound:
7047	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7048	  if (AT_WORD_BOUNDARY (d))
7049	    break;
7050	  goto fail;
7051
7052	case notwordbound:
7053	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7054	  if (AT_WORD_BOUNDARY (d))
7055	    goto fail;
7056	  break;
7057#else
7058	case wordbound:
7059	{
7060	  boolean prevchar, thischar;
7061
7062	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7063	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7064	    break;
7065
7066	  prevchar = WORDCHAR_P (d - 1);
7067	  thischar = WORDCHAR_P (d);
7068	  if (prevchar != thischar)
7069	    break;
7070	  goto fail;
7071	}
7072
7073      case notwordbound:
7074	{
7075	  boolean prevchar, thischar;
7076
7077	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7078	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7079	    goto fail;
7080
7081	  prevchar = WORDCHAR_P (d - 1);
7082	  thischar = WORDCHAR_P (d);
7083	  if (prevchar != thischar)
7084	    goto fail;
7085	  break;
7086	}
7087#endif
7088
7089	case wordbeg:
7090          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7091	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7092	    break;
7093          goto fail;
7094
7095	case wordend:
7096          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7097	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7098              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
7099	    break;
7100          goto fail;
7101
7102#ifdef emacs
7103  	case before_dot:
7104          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7105 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7106  	    goto fail;
7107  	  break;
7108
7109  	case at_dot:
7110          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7111 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7112  	    goto fail;
7113  	  break;
7114
7115  	case after_dot:
7116          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7117          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7118  	    goto fail;
7119  	  break;
7120
7121	case syntaxspec:
7122          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7123	  mcnt = *p++;
7124	  goto matchsyntax;
7125
7126        case wordchar:
7127          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7128	  mcnt = (int) Sword;
7129        matchsyntax:
7130	  PREFETCH ();
7131	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7132	  d++;
7133	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7134	    goto fail;
7135          SET_REGS_MATCHED ();
7136	  break;
7137
7138	case notsyntaxspec:
7139          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7140	  mcnt = *p++;
7141	  goto matchnotsyntax;
7142
7143        case notwordchar:
7144          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7145	  mcnt = (int) Sword;
7146        matchnotsyntax:
7147	  PREFETCH ();
7148	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7149	  d++;
7150	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7151	    goto fail;
7152	  SET_REGS_MATCHED ();
7153          break;
7154
7155#else /* not emacs */
7156	case wordchar:
7157          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7158	  PREFETCH ();
7159          if (!WORDCHAR_P (d))
7160            goto fail;
7161	  SET_REGS_MATCHED ();
7162          d++;
7163	  break;
7164
7165	case notwordchar:
7166          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7167	  PREFETCH ();
7168	  if (WORDCHAR_P (d))
7169            goto fail;
7170          SET_REGS_MATCHED ();
7171          d++;
7172	  break;
7173#endif /* not emacs */
7174
7175        default:
7176          abort ();
7177	}
7178      continue;  /* Successfully executed one pattern command; keep going.  */
7179
7180
7181    /* We goto here if a matching operation fails. */
7182    fail:
7183      if (!FAIL_STACK_EMPTY ())
7184	{ /* A restart point is known.  Restore to that state.  */
7185          DEBUG_PRINT1 ("\nFAIL:\n");
7186          POP_FAILURE_POINT (d, p,
7187                             lowest_active_reg, highest_active_reg,
7188                             regstart, regend, reg_info);
7189
7190          /* If this failure point is a dummy, try the next one.  */
7191          if (!p)
7192	    goto fail;
7193
7194          /* If we failed to the end of the pattern, don't examine *p.  */
7195	  assert (p <= pend);
7196          if (p < pend)
7197            {
7198              boolean is_a_jump_n = false;
7199
7200              /* If failed to a backwards jump that's part of a repetition
7201                 loop, need to pop this failure point and use the next one.  */
7202              switch ((re_opcode_t) *p)
7203                {
7204                case jump_n:
7205                  is_a_jump_n = true;
7206                case maybe_pop_jump:
7207                case pop_failure_jump:
7208                case jump:
7209                  p1 = p + 1;
7210                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7211                  p1 += mcnt;
7212
7213                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7214                      || (!is_a_jump_n
7215                          && (re_opcode_t) *p1 == on_failure_jump))
7216                    goto fail;
7217                  break;
7218                default:
7219                  /* do nothing */ ;
7220                }
7221            }
7222
7223          if (d >= string1 && d <= end1)
7224	    dend = end_match_1;
7225        }
7226      else
7227        break;   /* Matching at this starting point really fails.  */
7228    } /* for (;;) */
7229
7230  if (best_regs_set)
7231    goto restore_best_regs;
7232
7233  FREE_VARIABLES ();
7234
7235  return -1;         			/* Failure to match.  */
7236} /* re_match_2 */
7237
7238/* Subroutine definitions for re_match_2.  */
7239
7240
7241/* We are passed P pointing to a register number after a start_memory.
7242
7243   Return true if the pattern up to the corresponding stop_memory can
7244   match the empty string, and false otherwise.
7245
7246   If we find the matching stop_memory, sets P to point to one past its number.
7247   Otherwise, sets P to an undefined byte less than or equal to END.
7248
7249   We don't handle duplicates properly (yet).  */
7250
7251static boolean
7252group_match_null_string_p (p, end, reg_info)
7253    US_CHAR_TYPE **p, *end;
7254    register_info_type *reg_info;
7255{
7256  int mcnt;
7257  /* Point to after the args to the start_memory.  */
7258  US_CHAR_TYPE *p1 = *p + 2;
7259
7260  while (p1 < end)
7261    {
7262      /* Skip over opcodes that can match nothing, and return true or
7263	 false, as appropriate, when we get to one that can't, or to the
7264         matching stop_memory.  */
7265
7266      switch ((re_opcode_t) *p1)
7267        {
7268        /* Could be either a loop or a series of alternatives.  */
7269        case on_failure_jump:
7270          p1++;
7271          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7272
7273          /* If the next operation is not a jump backwards in the
7274	     pattern.  */
7275
7276	  if (mcnt >= 0)
7277	    {
7278              /* Go through the on_failure_jumps of the alternatives,
7279                 seeing if any of the alternatives cannot match nothing.
7280                 The last alternative starts with only a jump,
7281                 whereas the rest start with on_failure_jump and end
7282                 with a jump, e.g., here is the pattern for `a|b|c':
7283
7284                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7285                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7286                 /exactn/1/c
7287
7288                 So, we have to first go through the first (n-1)
7289                 alternatives and then deal with the last one separately.  */
7290
7291
7292              /* Deal with the first (n-1) alternatives, which start
7293                 with an on_failure_jump (see above) that jumps to right
7294                 past a jump_past_alt.  */
7295
7296              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7297		     jump_past_alt)
7298                {
7299                  /* `mcnt' holds how many bytes long the alternative
7300                     is, including the ending `jump_past_alt' and
7301                     its number.  */
7302
7303                  if (!alt_match_null_string_p (p1, p1 + mcnt -
7304						(1 + OFFSET_ADDRESS_SIZE),
7305						reg_info))
7306                    return false;
7307
7308                  /* Move to right after this alternative, including the
7309		     jump_past_alt.  */
7310                  p1 += mcnt;
7311
7312                  /* Break if it's the beginning of an n-th alternative
7313                     that doesn't begin with an on_failure_jump.  */
7314                  if ((re_opcode_t) *p1 != on_failure_jump)
7315                    break;
7316
7317		  /* Still have to check that it's not an n-th
7318		     alternative that starts with an on_failure_jump.  */
7319		  p1++;
7320                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7321                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7322		      jump_past_alt)
7323                    {
7324		      /* Get to the beginning of the n-th alternative.  */
7325                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7326                      break;
7327                    }
7328                }
7329
7330              /* Deal with the last alternative: go back and get number
7331                 of the `jump_past_alt' just before it.  `mcnt' contains
7332                 the length of the alternative.  */
7333              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7334
7335              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
7336                return false;
7337
7338              p1 += mcnt;	/* Get past the n-th alternative.  */
7339            } /* if mcnt > 0 */
7340          break;
7341
7342
7343        case stop_memory:
7344	  assert (p1[1] == **p);
7345          *p = p1 + 2;
7346          return true;
7347
7348
7349        default:
7350          if (!common_op_match_null_string_p (&p1, end, reg_info))
7351            return false;
7352        }
7353    } /* while p1 < end */
7354
7355  return false;
7356} /* group_match_null_string_p */
7357
7358
7359/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7360   It expects P to be the first byte of a single alternative and END one
7361   byte past the last. The alternative can contain groups.  */
7362
7363static boolean
7364alt_match_null_string_p (p, end, reg_info)
7365    US_CHAR_TYPE *p, *end;
7366    register_info_type *reg_info;
7367{
7368  int mcnt;
7369  US_CHAR_TYPE *p1 = p;
7370
7371  while (p1 < end)
7372    {
7373      /* Skip over opcodes that can match nothing, and break when we get
7374         to one that can't.  */
7375
7376      switch ((re_opcode_t) *p1)
7377        {
7378	/* It's a loop.  */
7379        case on_failure_jump:
7380          p1++;
7381          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7382          p1 += mcnt;
7383          break;
7384
7385	default:
7386          if (!common_op_match_null_string_p (&p1, end, reg_info))
7387            return false;
7388        }
7389    }  /* while p1 < end */
7390
7391  return true;
7392} /* alt_match_null_string_p */
7393
7394
7395/* Deals with the ops common to group_match_null_string_p and
7396   alt_match_null_string_p.
7397
7398   Sets P to one after the op and its arguments, if any.  */
7399
7400static boolean
7401common_op_match_null_string_p (p, end, reg_info)
7402    US_CHAR_TYPE **p, *end;
7403    register_info_type *reg_info;
7404{
7405  int mcnt;
7406  boolean ret;
7407  int reg_no;
7408  US_CHAR_TYPE *p1 = *p;
7409
7410  switch ((re_opcode_t) *p1++)
7411    {
7412    case no_op:
7413    case begline:
7414    case endline:
7415    case begbuf:
7416    case endbuf:
7417    case wordbeg:
7418    case wordend:
7419    case wordbound:
7420    case notwordbound:
7421#ifdef emacs
7422    case before_dot:
7423    case at_dot:
7424    case after_dot:
7425#endif
7426      break;
7427
7428    case start_memory:
7429      reg_no = *p1;
7430      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7431      ret = group_match_null_string_p (&p1, end, reg_info);
7432
7433      /* Have to set this here in case we're checking a group which
7434         contains a group and a back reference to it.  */
7435
7436      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7437        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7438
7439      if (!ret)
7440        return false;
7441      break;
7442
7443    /* If this is an optimized succeed_n for zero times, make the jump.  */
7444    case jump:
7445      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7446      if (mcnt >= 0)
7447        p1 += mcnt;
7448      else
7449        return false;
7450      break;
7451
7452    case succeed_n:
7453      /* Get to the number of times to succeed.  */
7454      p1 += OFFSET_ADDRESS_SIZE;
7455      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7456
7457      if (mcnt == 0)
7458        {
7459          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7460          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7461          p1 += mcnt;
7462        }
7463      else
7464        return false;
7465      break;
7466
7467    case duplicate:
7468      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7469        return false;
7470      break;
7471
7472    case set_number_at:
7473      p1 += 2 * OFFSET_ADDRESS_SIZE;
7474
7475    default:
7476      /* All other opcodes mean we cannot match the empty string.  */
7477      return false;
7478  }
7479
7480  *p = p1;
7481  return true;
7482} /* common_op_match_null_string_p */
7483
7484
7485/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7486   bytes; nonzero otherwise.  */
7487
7488static int
7489bcmp_translate (s1, s2, len, translate)
7490     const CHAR_TYPE *s1, *s2;
7491     register int len;
7492     RE_TRANSLATE_TYPE translate;
7493{
7494  register const US_CHAR_TYPE *p1 = (const US_CHAR_TYPE *) s1;
7495  register const US_CHAR_TYPE *p2 = (const US_CHAR_TYPE *) s2;
7496  while (len)
7497    {
7498#ifdef MBS_SUPPORT
7499      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7500	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7501	return 1;
7502#else
7503      if (translate[*p1++] != translate[*p2++]) return 1;
7504#endif /* MBS_SUPPORT */
7505      len--;
7506    }
7507  return 0;
7508}
7509
7510/* Entry points for GNU code.  */
7511
7512/* re_compile_pattern is the GNU regular expression compiler: it
7513   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7514   Returns 0 if the pattern was valid, otherwise an error string.
7515
7516   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7517   are set in BUFP on entry.
7518
7519   We call regex_compile to do the actual compilation.  */
7520
7521const char *
7522re_compile_pattern (pattern, length, bufp)
7523     const char *pattern;
7524     size_t length;
7525     struct re_pattern_buffer *bufp;
7526{
7527  reg_errcode_t ret;
7528
7529  /* GNU code is written to assume at least RE_NREGS registers will be set
7530     (and at least one extra will be -1).  */
7531  bufp->regs_allocated = REGS_UNALLOCATED;
7532
7533  /* And GNU code determines whether or not to get register information
7534     by passing null for the REGS argument to re_match, etc., not by
7535     setting no_sub.  */
7536  bufp->no_sub = 0;
7537
7538  /* Match anchors at newline.  */
7539  bufp->newline_anchor = 1;
7540
7541  ret = regex_compile (pattern, length, re_syntax_options, bufp);
7542
7543  if (!ret)
7544    return NULL;
7545  return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7546}
7547#ifdef _LIBC
7548weak_alias (__re_compile_pattern, re_compile_pattern)
7549#endif
7550
7551/* Entry points compatible with 4.2 BSD regex library.  We don't define
7552   them unless specifically requested.  */
7553
7554#if defined _REGEX_RE_COMP || defined _LIBC
7555
7556/* BSD has one and only one pattern buffer.  */
7557static struct re_pattern_buffer re_comp_buf;
7558
7559char *
7560#ifdef _LIBC
7561/* Make these definitions weak in libc, so POSIX programs can redefine
7562   these names if they don't use our functions, and still use
7563   regcomp/regexec below without link errors.  */
7564weak_function
7565#endif
7566re_comp (s)
7567    const char *s;
7568{
7569  reg_errcode_t ret;
7570
7571  if (!s)
7572    {
7573      if (!re_comp_buf.buffer)
7574	return gettext ("No previous regular expression");
7575      return 0;
7576    }
7577
7578  if (!re_comp_buf.buffer)
7579    {
7580      re_comp_buf.buffer = (unsigned char *) malloc (200);
7581      if (re_comp_buf.buffer == NULL)
7582        return (char *) gettext (re_error_msgid
7583				 + re_error_msgid_idx[(int) REG_ESPACE]);
7584      re_comp_buf.allocated = 200;
7585
7586      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7587      if (re_comp_buf.fastmap == NULL)
7588	return (char *) gettext (re_error_msgid
7589				 + re_error_msgid_idx[(int) REG_ESPACE]);
7590    }
7591
7592  /* Since `re_exec' always passes NULL for the `regs' argument, we
7593     don't need to initialize the pattern buffer fields which affect it.  */
7594
7595  /* Match anchors at newlines.  */
7596  re_comp_buf.newline_anchor = 1;
7597
7598  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7599
7600  if (!ret)
7601    return NULL;
7602
7603  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7604  return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7605}
7606
7607
7608int
7609#ifdef _LIBC
7610weak_function
7611#endif
7612re_exec (s)
7613    const char *s;
7614{
7615  const int len = strlen (s);
7616  return
7617    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7618}
7619
7620#endif /* _REGEX_RE_COMP */
7621
7622/* POSIX.2 functions.  Don't define these for Emacs.  */
7623
7624#ifndef emacs
7625
7626/* regcomp takes a regular expression as a string and compiles it.
7627
7628   PREG is a regex_t *.  We do not expect any fields to be initialized,
7629   since POSIX says we shouldn't.  Thus, we set
7630
7631     `buffer' to the compiled pattern;
7632     `used' to the length of the compiled pattern;
7633     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7634       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7635       RE_SYNTAX_POSIX_BASIC;
7636     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7637     `fastmap' to an allocated space for the fastmap;
7638     `fastmap_accurate' to zero;
7639     `re_nsub' to the number of subexpressions in PATTERN.
7640
7641   PATTERN is the address of the pattern string.
7642
7643   CFLAGS is a series of bits which affect compilation.
7644
7645     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7646     use POSIX basic syntax.
7647
7648     If REG_NEWLINE is set, then . and [^...] don't match newline.
7649     Also, regexec will try a match beginning after every newline.
7650
7651     If REG_ICASE is set, then we considers upper- and lowercase
7652     versions of letters to be equivalent when matching.
7653
7654     If REG_NOSUB is set, then when PREG is passed to regexec, that
7655     routine will report only success or failure, and nothing about the
7656     registers.
7657
7658   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7659   the return codes and their meanings.)  */
7660
7661int
7662regcomp (preg, pattern, cflags)
7663    regex_t *preg;
7664    const char *pattern;
7665    int cflags;
7666{
7667  reg_errcode_t ret;
7668  reg_syntax_t syntax
7669    = (cflags & REG_EXTENDED) ?
7670      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7671
7672  /* regex_compile will allocate the space for the compiled pattern.  */
7673  preg->buffer = 0;
7674  preg->allocated = 0;
7675  preg->used = 0;
7676
7677  /* Try to allocate space for the fastmap.  */
7678  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7679
7680  if (cflags & REG_ICASE)
7681    {
7682      unsigned i;
7683
7684      preg->translate
7685	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7686				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7687      if (preg->translate == NULL)
7688        return (int) REG_ESPACE;
7689
7690      /* Map uppercase characters to corresponding lowercase ones.  */
7691      for (i = 0; i < CHAR_SET_SIZE; i++)
7692        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7693    }
7694  else
7695    preg->translate = NULL;
7696
7697  /* If REG_NEWLINE is set, newlines are treated differently.  */
7698  if (cflags & REG_NEWLINE)
7699    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7700      syntax &= ~RE_DOT_NEWLINE;
7701      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7702      /* It also changes the matching behavior.  */
7703      preg->newline_anchor = 1;
7704    }
7705  else
7706    preg->newline_anchor = 0;
7707
7708  preg->no_sub = !!(cflags & REG_NOSUB);
7709
7710  /* POSIX says a null character in the pattern terminates it, so we
7711     can use strlen here in compiling the pattern.  */
7712  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
7713
7714  /* POSIX doesn't distinguish between an unmatched open-group and an
7715     unmatched close-group: both are REG_EPAREN.  */
7716  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7717
7718  if (ret == REG_NOERROR && preg->fastmap)
7719    {
7720      /* Compute the fastmap now, since regexec cannot modify the pattern
7721	 buffer.  */
7722      if (re_compile_fastmap (preg) == -2)
7723	{
7724	  /* Some error occurred while computing the fastmap, just forget
7725	     about it.  */
7726	  free (preg->fastmap);
7727	  preg->fastmap = NULL;
7728	}
7729    }
7730
7731  return (int) ret;
7732}
7733#ifdef _LIBC
7734weak_alias (__regcomp, regcomp)
7735#endif
7736
7737
7738/* regexec searches for a given pattern, specified by PREG, in the
7739   string STRING.
7740
7741   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7742   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7743   least NMATCH elements, and we set them to the offsets of the
7744   corresponding matched substrings.
7745
7746   EFLAGS specifies `execution flags' which affect matching: if
7747   REG_NOTBOL is set, then ^ does not match at the beginning of the
7748   string; if REG_NOTEOL is set, then $ does not match at the end.
7749
7750   We return 0 if we find a match and REG_NOMATCH if not.  */
7751
7752int
7753regexec (preg, string, nmatch, pmatch, eflags)
7754    const regex_t *preg;
7755    const char *string;
7756    size_t nmatch;
7757    regmatch_t pmatch[];
7758    int eflags;
7759{
7760  int ret;
7761  struct re_registers regs;
7762  regex_t private_preg;
7763  int len = strlen (string);
7764  boolean want_reg_info = !preg->no_sub && nmatch > 0;
7765
7766  private_preg = *preg;
7767
7768  private_preg.not_bol = !!(eflags & REG_NOTBOL);
7769  private_preg.not_eol = !!(eflags & REG_NOTEOL);
7770
7771  /* The user has told us exactly how many registers to return
7772     information about, via `nmatch'.  We have to pass that on to the
7773     matching routines.  */
7774  private_preg.regs_allocated = REGS_FIXED;
7775
7776  if (want_reg_info)
7777    {
7778      regs.num_regs = nmatch;
7779      regs.start = TALLOC (nmatch * 2, regoff_t);
7780      if (regs.start == NULL)
7781        return (int) REG_NOMATCH;
7782      regs.end = regs.start + nmatch;
7783    }
7784
7785  /* Perform the searching operation.  */
7786  ret = re_search (&private_preg, string, len,
7787                   /* start: */ 0, /* range: */ len,
7788                   want_reg_info ? &regs : (struct re_registers *) 0);
7789
7790  /* Copy the register information to the POSIX structure.  */
7791  if (want_reg_info)
7792    {
7793      if (ret >= 0)
7794        {
7795          unsigned r;
7796
7797          for (r = 0; r < nmatch; r++)
7798            {
7799              pmatch[r].rm_so = regs.start[r];
7800              pmatch[r].rm_eo = regs.end[r];
7801            }
7802        }
7803
7804      /* If we needed the temporary register info, free the space now.  */
7805      free (regs.start);
7806    }
7807
7808  /* We want zero return to mean success, unlike `re_search'.  */
7809  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
7810}
7811#ifdef _LIBC
7812weak_alias (__regexec, regexec)
7813#endif
7814
7815
7816/* Returns a message corresponding to an error code, ERRCODE, returned
7817   from either regcomp or regexec.   We don't use PREG here.  */
7818
7819size_t
7820regerror (errcode, preg, errbuf, errbuf_size)
7821    int errcode;
7822    const regex_t *preg;
7823    char *errbuf;
7824    size_t errbuf_size;
7825{
7826  const char *msg;
7827  size_t msg_size;
7828
7829  if (errcode < 0
7830      || errcode >= (int) (sizeof (re_error_msgid_idx)
7831			   / sizeof (re_error_msgid_idx[0])))
7832    /* Only error codes returned by the rest of the code should be passed
7833       to this routine.  If we are given anything else, or if other regex
7834       code generates an invalid error code, then the program has a bug.
7835       Dump core so we can fix it.  */
7836    abort ();
7837
7838  msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
7839
7840  msg_size = strlen (msg) + 1; /* Includes the null.  */
7841
7842  if (errbuf_size != 0)
7843    {
7844      if (msg_size > errbuf_size)
7845        {
7846#if defined HAVE_MEMPCPY || defined _LIBC
7847	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
7848#else
7849          memcpy (errbuf, msg, errbuf_size - 1);
7850          errbuf[errbuf_size - 1] = 0;
7851#endif
7852        }
7853      else
7854        memcpy (errbuf, msg, msg_size);
7855    }
7856
7857  return msg_size;
7858}
7859#ifdef _LIBC
7860weak_alias (__regerror, regerror)
7861#endif
7862
7863
7864/* Free dynamically allocated space used by PREG.  */
7865
7866void
7867regfree (preg)
7868    regex_t *preg;
7869{
7870  if (preg->buffer != NULL)
7871    free (preg->buffer);
7872  preg->buffer = NULL;
7873
7874  preg->allocated = 0;
7875  preg->used = 0;
7876
7877  if (preg->fastmap != NULL)
7878    free (preg->fastmap);
7879  preg->fastmap = NULL;
7880  preg->fastmap_accurate = 0;
7881
7882  if (preg->translate != NULL)
7883    free (preg->translate);
7884  preg->translate = NULL;
7885}
7886#ifdef _LIBC
7887weak_alias (__regfree, regfree)
7888#endif
7889
7890#endif /* not emacs  */
7891