1// Multimap implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_multimap.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _MULTIMAP_H
62#define _MULTIMAP_H 1
63
64#include <bits/concept_check.h>
65
66namespace _GLIBCXX_STD
67{
68  // Forward declaration of operators < and ==, needed for friend declaration.
69
70  template <typename _Key, typename _Tp,
71            typename _Compare = std::less<_Key>,
72            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
73    class multimap;
74
75  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76    inline bool
77    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
78	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
79
80  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
81    inline bool
82    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
83	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
84
85  /**
86   *  @brief A standard container made up of (key,value) pairs, which can be
87   *  retrieved based on a key, in logarithmic time.
88   *
89   *  @ingroup Containers
90   *  @ingroup Assoc_containers
91   *
92   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
93   *  <a href="tables.html#66">reversible container</a>, and an
94   *  <a href="tables.html#69">associative container</a> (using equivalent
95   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
96   *  is T, and the value_type is std::pair<const Key,T>.
97   *
98   *  Multimaps support bidirectional iterators.
99   *
100   *  @if maint
101   *  The private tree data is declared exactly the same way for map and
102   *  multimap; the distinction is made entirely in how the tree functions are
103   *  called (*_unique versus *_equal, same as the standard).
104   *  @endif
105  */
106  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
107    class multimap
108    {
109    public:
110      typedef _Key                                          key_type;
111      typedef _Tp                                           mapped_type;
112      typedef std::pair<const _Key, _Tp>                    value_type;
113      typedef _Compare                                      key_compare;
114      typedef _Alloc                                        allocator_type;
115
116    private:
117      // concept requirements
118      typedef typename _Alloc::value_type                   _Alloc_value_type;
119      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
120      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
121				_BinaryFunctionConcept)
122      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
123
124    public:
125      class value_compare
126      : public std::binary_function<value_type, value_type, bool>
127      {
128	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
129      protected:
130	_Compare comp;
131
132	value_compare(_Compare __c)
133	: comp(__c) { }
134
135      public:
136	bool operator()(const value_type& __x, const value_type& __y) const
137	{ return comp(__x.first, __y.first); }
138      };
139
140    private:
141      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
142      typedef typename _Alloc::template rebind<value_type>::other
143        _Pair_alloc_type;
144
145      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
146		       key_compare, _Pair_alloc_type> _Rep_type;
147      /// @if maint  The actual tree structure.  @endif
148      _Rep_type _M_t;
149
150    public:
151      // many of these are specified differently in ISO, but the following are
152      // "functionally equivalent"
153      typedef typename _Pair_alloc_type::pointer         pointer;
154      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
155      typedef typename _Pair_alloc_type::reference       reference;
156      typedef typename _Pair_alloc_type::const_reference const_reference;
157      typedef typename _Rep_type::iterator               iterator;
158      typedef typename _Rep_type::const_iterator         const_iterator;
159      typedef typename _Rep_type::size_type              size_type;
160      typedef typename _Rep_type::difference_type        difference_type;
161      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
162      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
163
164      // [23.3.2] construct/copy/destroy
165      // (get_allocator() is also listed in this section)
166      /**
167       *  @brief  Default constructor creates no elements.
168       */
169      multimap()
170      : _M_t(_Compare(), allocator_type()) { }
171
172      // for some reason this was made a separate function
173      /**
174       *  @brief  Default constructor creates no elements.
175       */
176      explicit
177      multimap(const _Compare& __comp,
178	       const allocator_type& __a = allocator_type())
179      : _M_t(__comp, __a) { }
180
181      /**
182       *  @brief  %Multimap copy constructor.
183       *  @param  x  A %multimap of identical element and allocator types.
184       *
185       *  The newly-created %multimap uses a copy of the allocation object used
186       *  by @a x.
187       */
188      multimap(const multimap& __x)
189      : _M_t(__x._M_t) { }
190
191      /**
192       *  @brief  Builds a %multimap from a range.
193       *  @param  first  An input iterator.
194       *  @param  last  An input iterator.
195       *
196       *  Create a %multimap consisting of copies of the elements from
197       *  [first,last).  This is linear in N if the range is already sorted,
198       *  and NlogN otherwise (where N is distance(first,last)).
199       */
200      template <typename _InputIterator>
201        multimap(_InputIterator __first, _InputIterator __last)
202	: _M_t(_Compare(), allocator_type())
203        { _M_t.insert_equal(__first, __last); }
204
205      /**
206       *  @brief  Builds a %multimap from a range.
207       *  @param  first  An input iterator.
208       *  @param  last  An input iterator.
209       *  @param  comp  A comparison functor.
210       *  @param  a  An allocator object.
211       *
212       *  Create a %multimap consisting of copies of the elements from
213       *  [first,last).  This is linear in N if the range is already sorted,
214       *  and NlogN otherwise (where N is distance(first,last)).
215       */
216      template <typename _InputIterator>
217        multimap(_InputIterator __first, _InputIterator __last,
218		 const _Compare& __comp,
219		 const allocator_type& __a = allocator_type())
220        : _M_t(__comp, __a)
221        { _M_t.insert_equal(__first, __last); }
222
223      // FIXME There is no dtor declared, but we should have something generated
224      // by Doxygen.  I don't know what tags to add to this paragraph to make
225      // that happen:
226      /**
227       *  The dtor only erases the elements, and note that if the elements
228       *  themselves are pointers, the pointed-to memory is not touched in any
229       *  way.  Managing the pointer is the user's responsibilty.
230       */
231
232      /**
233       *  @brief  %Multimap assignment operator.
234       *  @param  x  A %multimap of identical element and allocator types.
235       *
236       *  All the elements of @a x are copied, but unlike the copy constructor,
237       *  the allocator object is not copied.
238       */
239      multimap&
240      operator=(const multimap& __x)
241      {
242	_M_t = __x._M_t;
243	return *this;
244      }
245
246      /// Get a copy of the memory allocation object.
247      allocator_type
248      get_allocator() const
249      { return _M_t.get_allocator(); }
250
251      // iterators
252      /**
253       *  Returns a read/write iterator that points to the first pair in the
254       *  %multimap.  Iteration is done in ascending order according to the
255       *  keys.
256       */
257      iterator
258      begin()
259      { return _M_t.begin(); }
260
261      /**
262       *  Returns a read-only (constant) iterator that points to the first pair
263       *  in the %multimap.  Iteration is done in ascending order according to
264       *  the keys.
265       */
266      const_iterator
267      begin() const
268      { return _M_t.begin(); }
269
270      /**
271       *  Returns a read/write iterator that points one past the last pair in
272       *  the %multimap.  Iteration is done in ascending order according to the
273       *  keys.
274       */
275      iterator
276      end()
277      { return _M_t.end(); }
278
279      /**
280       *  Returns a read-only (constant) iterator that points one past the last
281       *  pair in the %multimap.  Iteration is done in ascending order according
282       *  to the keys.
283       */
284      const_iterator
285      end() const
286      { return _M_t.end(); }
287
288      /**
289       *  Returns a read/write reverse iterator that points to the last pair in
290       *  the %multimap.  Iteration is done in descending order according to the
291       *  keys.
292       */
293      reverse_iterator
294      rbegin()
295      { return _M_t.rbegin(); }
296
297      /**
298       *  Returns a read-only (constant) reverse iterator that points to the
299       *  last pair in the %multimap.  Iteration is done in descending order
300       *  according to the keys.
301       */
302      const_reverse_iterator
303      rbegin() const
304      { return _M_t.rbegin(); }
305
306      /**
307       *  Returns a read/write reverse iterator that points to one before the
308       *  first pair in the %multimap.  Iteration is done in descending order
309       *  according to the keys.
310       */
311      reverse_iterator
312      rend()
313      { return _M_t.rend(); }
314
315      /**
316       *  Returns a read-only (constant) reverse iterator that points to one
317       *  before the first pair in the %multimap.  Iteration is done in
318       *  descending order according to the keys.
319       */
320      const_reverse_iterator
321      rend() const
322      { return _M_t.rend(); }
323
324      // capacity
325      /** Returns true if the %multimap is empty.  */
326      bool
327      empty() const
328      { return _M_t.empty(); }
329
330      /** Returns the size of the %multimap.  */
331      size_type
332      size() const
333      { return _M_t.size(); }
334
335      /** Returns the maximum size of the %multimap.  */
336      size_type
337      max_size() const
338      { return _M_t.max_size(); }
339
340      // modifiers
341      /**
342       *  @brief Inserts a std::pair into the %multimap.
343       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
344       *             of pairs).
345       *  @return An iterator that points to the inserted (key,value) pair.
346       *
347       *  This function inserts a (key, value) pair into the %multimap.
348       *  Contrary to a std::map the %multimap does not rely on unique keys and
349       *  thus multiple pairs with the same key can be inserted.
350       *
351       *  Insertion requires logarithmic time.
352       */
353      iterator
354      insert(const value_type& __x)
355      { return _M_t.insert_equal(__x); }
356
357      /**
358       *  @brief Inserts a std::pair into the %multimap.
359       *  @param  position  An iterator that serves as a hint as to where the
360       *                    pair should be inserted.
361       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
362       *             of pairs).
363       *  @return An iterator that points to the inserted (key,value) pair.
364       *
365       *  This function inserts a (key, value) pair into the %multimap.
366       *  Contrary to a std::map the %multimap does not rely on unique keys and
367       *  thus multiple pairs with the same key can be inserted.
368       *  Note that the first parameter is only a hint and can potentially
369       *  improve the performance of the insertion process.  A bad hint would
370       *  cause no gains in efficiency.
371       *
372       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
373       *  for more on "hinting".
374       *
375       *  Insertion requires logarithmic time (if the hint is not taken).
376       */
377      iterator
378      insert(iterator __position, const value_type& __x)
379      { return _M_t.insert_equal(__position, __x); }
380
381      /**
382       *  @brief A template function that attemps to insert a range of elements.
383       *  @param  first  Iterator pointing to the start of the range to be
384       *                 inserted.
385       *  @param  last  Iterator pointing to the end of the range.
386       *
387       *  Complexity similar to that of the range constructor.
388       */
389      template <typename _InputIterator>
390        void
391        insert(_InputIterator __first, _InputIterator __last)
392        { _M_t.insert_equal(__first, __last); }
393
394      /**
395       *  @brief Erases an element from a %multimap.
396       *  @param  position  An iterator pointing to the element to be erased.
397       *
398       *  This function erases an element, pointed to by the given iterator,
399       *  from a %multimap.  Note that this function only erases the element,
400       *  and that if the element is itself a pointer, the pointed-to memory is
401       *  not touched in any way.  Managing the pointer is the user's
402       *  responsibilty.
403       */
404      void
405      erase(iterator __position)
406      { _M_t.erase(__position); }
407
408      /**
409       *  @brief Erases elements according to the provided key.
410       *  @param  x  Key of element to be erased.
411       *  @return  The number of elements erased.
412       *
413       *  This function erases all elements located by the given key from a
414       *  %multimap.
415       *  Note that this function only erases the element, and that if
416       *  the element is itself a pointer, the pointed-to memory is not touched
417       *  in any way.  Managing the pointer is the user's responsibilty.
418       */
419      size_type
420      erase(const key_type& __x)
421      { return _M_t.erase(__x); }
422
423      /**
424       *  @brief Erases a [first,last) range of elements from a %multimap.
425       *  @param  first  Iterator pointing to the start of the range to be
426       *                 erased.
427       *  @param  last  Iterator pointing to the end of the range to be erased.
428       *
429       *  This function erases a sequence of elements from a %multimap.
430       *  Note that this function only erases the elements, and that if
431       *  the elements themselves are pointers, the pointed-to memory is not
432       *  touched in any way.  Managing the pointer is the user's responsibilty.
433       */
434      void
435      erase(iterator __first, iterator __last)
436      { _M_t.erase(__first, __last); }
437
438      /**
439       *  @brief  Swaps data with another %multimap.
440       *  @param  x  A %multimap of the same element and allocator types.
441       *
442       *  This exchanges the elements between two multimaps in constant time.
443       *  (It is only swapping a pointer, an integer, and an instance of
444       *  the @c Compare type (which itself is often stateless and empty), so it
445       *  should be quite fast.)
446       *  Note that the global std::swap() function is specialized such that
447       *  std::swap(m1,m2) will feed to this function.
448       */
449      void
450      swap(multimap& __x)
451      { _M_t.swap(__x._M_t); }
452
453      /**
454       *  Erases all elements in a %multimap.  Note that this function only
455       *  erases the elements, and that if the elements themselves are pointers,
456       *  the pointed-to memory is not touched in any way.  Managing the pointer
457       *  is the user's responsibilty.
458       */
459      void
460      clear()
461      { _M_t.clear(); }
462
463      // observers
464      /**
465       *  Returns the key comparison object out of which the %multimap
466       *  was constructed.
467       */
468      key_compare
469      key_comp() const
470      { return _M_t.key_comp(); }
471
472      /**
473       *  Returns a value comparison object, built from the key comparison
474       *  object out of which the %multimap was constructed.
475       */
476      value_compare
477      value_comp() const
478      { return value_compare(_M_t.key_comp()); }
479
480      // multimap operations
481      /**
482       *  @brief Tries to locate an element in a %multimap.
483       *  @param  x  Key of (key, value) pair to be located.
484       *  @return  Iterator pointing to sought-after element,
485       *           or end() if not found.
486       *
487       *  This function takes a key and tries to locate the element with which
488       *  the key matches.  If successful the function returns an iterator
489       *  pointing to the sought after %pair.  If unsuccessful it returns the
490       *  past-the-end ( @c end() ) iterator.
491       */
492      iterator
493      find(const key_type& __x)
494      { return _M_t.find(__x); }
495
496      /**
497       *  @brief Tries to locate an element in a %multimap.
498       *  @param  x  Key of (key, value) pair to be located.
499       *  @return  Read-only (constant) iterator pointing to sought-after
500       *           element, or end() if not found.
501       *
502       *  This function takes a key and tries to locate the element with which
503       *  the key matches.  If successful the function returns a constant
504       *  iterator pointing to the sought after %pair.  If unsuccessful it
505       *  returns the past-the-end ( @c end() ) iterator.
506       */
507      const_iterator
508      find(const key_type& __x) const
509      { return _M_t.find(__x); }
510
511      /**
512       *  @brief Finds the number of elements with given key.
513       *  @param  x  Key of (key, value) pairs to be located.
514       *  @return Number of elements with specified key.
515       */
516      size_type
517      count(const key_type& __x) const
518      { return _M_t.count(__x); }
519
520      /**
521       *  @brief Finds the beginning of a subsequence matching given key.
522       *  @param  x  Key of (key, value) pair to be located.
523       *  @return  Iterator pointing to first element equal to or greater
524       *           than key, or end().
525       *
526       *  This function returns the first element of a subsequence of elements
527       *  that matches the given key.  If unsuccessful it returns an iterator
528       *  pointing to the first element that has a greater value than given key
529       *  or end() if no such element exists.
530       */
531      iterator
532      lower_bound(const key_type& __x)
533      { return _M_t.lower_bound(__x); }
534
535      /**
536       *  @brief Finds the beginning of a subsequence matching given key.
537       *  @param  x  Key of (key, value) pair to be located.
538       *  @return  Read-only (constant) iterator pointing to first element
539       *           equal to or greater than key, or end().
540       *
541       *  This function returns the first element of a subsequence of elements
542       *  that matches the given key.  If unsuccessful the iterator will point
543       *  to the next greatest element or, if no such greater element exists, to
544       *  end().
545       */
546      const_iterator
547      lower_bound(const key_type& __x) const
548      { return _M_t.lower_bound(__x); }
549
550      /**
551       *  @brief Finds the end of a subsequence matching given key.
552       *  @param  x  Key of (key, value) pair to be located.
553       *  @return Iterator pointing to the first element
554       *          greater than key, or end().
555       */
556      iterator
557      upper_bound(const key_type& __x)
558      { return _M_t.upper_bound(__x); }
559
560      /**
561       *  @brief Finds the end of a subsequence matching given key.
562       *  @param  x  Key of (key, value) pair to be located.
563       *  @return  Read-only (constant) iterator pointing to first iterator
564       *           greater than key, or end().
565       */
566      const_iterator
567      upper_bound(const key_type& __x) const
568      { return _M_t.upper_bound(__x); }
569
570      /**
571       *  @brief Finds a subsequence matching given key.
572       *  @param  x  Key of (key, value) pairs to be located.
573       *  @return  Pair of iterators that possibly points to the subsequence
574       *           matching given key.
575       *
576       *  This function is equivalent to
577       *  @code
578       *    std::make_pair(c.lower_bound(val),
579       *                   c.upper_bound(val))
580       *  @endcode
581       *  (but is faster than making the calls separately).
582       */
583      std::pair<iterator, iterator>
584      equal_range(const key_type& __x)
585      { return _M_t.equal_range(__x); }
586
587      /**
588       *  @brief Finds a subsequence matching given key.
589       *  @param  x  Key of (key, value) pairs to be located.
590       *  @return  Pair of read-only (constant) iterators that possibly points
591       *           to the subsequence matching given key.
592       *
593       *  This function is equivalent to
594       *  @code
595       *    std::make_pair(c.lower_bound(val),
596       *                   c.upper_bound(val))
597       *  @endcode
598       *  (but is faster than making the calls separately).
599       */
600      std::pair<const_iterator, const_iterator>
601      equal_range(const key_type& __x) const
602      { return _M_t.equal_range(__x); }
603
604      template <typename _K1, typename _T1, typename _C1, typename _A1>
605        friend bool
606        operator== (const multimap<_K1, _T1, _C1, _A1>&,
607		    const multimap<_K1, _T1, _C1, _A1>&);
608
609      template <typename _K1, typename _T1, typename _C1, typename _A1>
610        friend bool
611        operator< (const multimap<_K1, _T1, _C1, _A1>&,
612		   const multimap<_K1, _T1, _C1, _A1>&);
613  };
614
615  /**
616   *  @brief  Multimap equality comparison.
617   *  @param  x  A %multimap.
618   *  @param  y  A %multimap of the same type as @a x.
619   *  @return  True iff the size and elements of the maps are equal.
620   *
621   *  This is an equivalence relation.  It is linear in the size of the
622   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
623   *  and if corresponding elements compare equal.
624  */
625  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
626    inline bool
627    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
628               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
629    { return __x._M_t == __y._M_t; }
630
631  /**
632   *  @brief  Multimap ordering relation.
633   *  @param  x  A %multimap.
634   *  @param  y  A %multimap of the same type as @a x.
635   *  @return  True iff @a x is lexicographically less than @a y.
636   *
637   *  This is a total ordering relation.  It is linear in the size of the
638   *  multimaps.  The elements must be comparable with @c <.
639   *
640   *  See std::lexicographical_compare() for how the determination is made.
641  */
642  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
643    inline bool
644    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
645              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
646    { return __x._M_t < __y._M_t; }
647
648  /// Based on operator==
649  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
650    inline bool
651    operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
652               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
653    { return !(__x == __y); }
654
655  /// Based on operator<
656  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
657    inline bool
658    operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
659              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
660    { return __y < __x; }
661
662  /// Based on operator<
663  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
664    inline bool
665    operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
666               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
667    { return !(__y < __x); }
668
669  /// Based on operator<
670  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
671    inline bool
672    operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
673               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
674    { return !(__x < __y); }
675
676  /// See std::multimap::swap().
677  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
678    inline void
679    swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
680         multimap<_Key, _Tp, _Compare, _Alloc>& __y)
681    { __x.swap(__y); }
682} // namespace std
683
684#endif /* _MULTIMAP_H */
685