1/* Loop Vectorization
2   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* Loop Vectorization Pass.
23
24   This pass tries to vectorize loops. This first implementation focuses on
25   simple inner-most loops, with no conditional control flow, and a set of
26   simple operations which vector form can be expressed using existing
27   tree codes (PLUS, MULT etc).
28
29   For example, the vectorizer transforms the following simple loop:
30
31	short a[N]; short b[N]; short c[N]; int i;
32
33	for (i=0; i<N; i++){
34	  a[i] = b[i] + c[i];
35	}
36
37   as if it was manually vectorized by rewriting the source code into:
38
39	typedef int __attribute__((mode(V8HI))) v8hi;
40	short a[N];  short b[N]; short c[N];   int i;
41	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
42	v8hi va, vb, vc;
43
44	for (i=0; i<N/8; i++){
45	  vb = pb[i];
46	  vc = pc[i];
47	  va = vb + vc;
48	  pa[i] = va;
49	}
50
51	The main entry to this pass is vectorize_loops(), in which
52   the vectorizer applies a set of analyses on a given set of loops,
53   followed by the actual vectorization transformation for the loops that
54   had successfully passed the analysis phase.
55
56	Throughout this pass we make a distinction between two types of
57   data: scalars (which are represented by SSA_NAMES), and memory references
58   ("data-refs"). These two types of data require different handling both
59   during analysis and transformation. The types of data-refs that the
60   vectorizer currently supports are ARRAY_REFS which base is an array DECL
61   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
62   accesses are required to have a  simple (consecutive) access pattern.
63
64   Analysis phase:
65   ===============
66	The driver for the analysis phase is vect_analyze_loop_nest().
67   It applies a set of analyses, some of which rely on the scalar evolution
68   analyzer (scev) developed by Sebastian Pop.
69
70	During the analysis phase the vectorizer records some information
71   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
72   loop, as well as general information about the loop as a whole, which is
73   recorded in a "loop_vec_info" struct attached to each loop.
74
75   Transformation phase:
76   =====================
77	The loop transformation phase scans all the stmts in the loop, and
78   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
79   the loop that needs to be vectorized. It insert the vector code sequence
80   just before the scalar stmt S, and records a pointer to the vector code
81   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
82   attached to S). This pointer will be used for the vectorization of following
83   stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
84   otherwise, we rely on dead code elimination for removing it.
85
86	For example, say stmt S1 was vectorized into stmt VS1:
87
88   VS1: vb = px[i];
89   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
90   S2:  a = b;
91
92   To vectorize stmt S2, the vectorizer first finds the stmt that defines
93   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
94   vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
95   resulting sequence would be:
96
97   VS1: vb = px[i];
98   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
99   VS2: va = vb;
100   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
101
102	Operands that are not SSA_NAMEs, are data-refs that appear in
103   load/store operations (like 'x[i]' in S1), and are handled differently.
104
105   Target modeling:
106   =================
107	Currently the only target specific information that is used is the
108   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
109   support different sizes of vectors, for now will need to specify one value
110   for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
111
112	Since we only vectorize operations which vector form can be
113   expressed using existing tree codes, to verify that an operation is
114   supported, the vectorizer checks the relevant optab at the relevant
115   machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
116   the value found is CODE_FOR_nothing, then there's no target support, and
117   we can't vectorize the stmt.
118
119   For additional information on this project see:
120   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
121*/
122
123#include "config.h"
124#include "system.h"
125#include "coretypes.h"
126#include "tm.h"
127#include "ggc.h"
128#include "tree.h"
129#include "target.h"
130#include "rtl.h"
131#include "basic-block.h"
132#include "diagnostic.h"
133#include "tree-flow.h"
134#include "tree-dump.h"
135#include "timevar.h"
136#include "cfgloop.h"
137#include "cfglayout.h"
138#include "expr.h"
139#include "optabs.h"
140#include "params.h"
141#include "toplev.h"
142#include "tree-chrec.h"
143#include "tree-data-ref.h"
144#include "tree-scalar-evolution.h"
145#include "input.h"
146#include "tree-vectorizer.h"
147#include "tree-pass.h"
148
149/*************************************************************************
150  Simple Loop Peeling Utilities
151 *************************************************************************/
152static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
153  (struct loop *, struct loops *, edge);
154static void slpeel_update_phis_for_duplicate_loop
155  (struct loop *, struct loop *, bool after);
156static void slpeel_update_phi_nodes_for_guard1
157  (edge, struct loop *, bool, basic_block *, bitmap *);
158static void slpeel_update_phi_nodes_for_guard2
159  (edge, struct loop *, bool, basic_block *);
160static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
161
162static void rename_use_op (use_operand_p);
163static void rename_variables_in_bb (basic_block);
164static void rename_variables_in_loop (struct loop *);
165
166/*************************************************************************
167  General Vectorization Utilities
168 *************************************************************************/
169static void vect_set_dump_settings (void);
170
171/* vect_dump will be set to stderr or dump_file if exist.  */
172FILE *vect_dump;
173
174/* vect_verbosity_level set to an invalid value
175   to mark that it's uninitialized.  */
176enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
177
178/* Number of loops, at the beginning of vectorization.  */
179unsigned int vect_loops_num;
180
181/* Loop location.  */
182static LOC vect_loop_location;
183
184/* Bitmap of virtual variables to be renamed.  */
185bitmap vect_vnames_to_rename;
186
187/*************************************************************************
188  Simple Loop Peeling Utilities
189
190  Utilities to support loop peeling for vectorization purposes.
191 *************************************************************************/
192
193
194/* Renames the use *OP_P.  */
195
196static void
197rename_use_op (use_operand_p op_p)
198{
199  tree new_name;
200
201  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
202    return;
203
204  new_name = get_current_def (USE_FROM_PTR (op_p));
205
206  /* Something defined outside of the loop.  */
207  if (!new_name)
208    return;
209
210  /* An ordinary ssa name defined in the loop.  */
211
212  SET_USE (op_p, new_name);
213}
214
215
216/* Renames the variables in basic block BB.  */
217
218static void
219rename_variables_in_bb (basic_block bb)
220{
221  tree phi;
222  block_stmt_iterator bsi;
223  tree stmt;
224  use_operand_p use_p;
225  ssa_op_iter iter;
226  edge e;
227  edge_iterator ei;
228  struct loop *loop = bb->loop_father;
229
230  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
231    {
232      stmt = bsi_stmt (bsi);
233      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
234				 (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
235	rename_use_op (use_p);
236    }
237
238  FOR_EACH_EDGE (e, ei, bb->succs)
239    {
240      if (!flow_bb_inside_loop_p (loop, e->dest))
241	continue;
242      for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
243        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
244    }
245}
246
247
248/* Renames variables in new generated LOOP.  */
249
250static void
251rename_variables_in_loop (struct loop *loop)
252{
253  unsigned i;
254  basic_block *bbs;
255
256  bbs = get_loop_body (loop);
257
258  for (i = 0; i < loop->num_nodes; i++)
259    rename_variables_in_bb (bbs[i]);
260
261  free (bbs);
262}
263
264
265/* Update the PHI nodes of NEW_LOOP.
266
267   NEW_LOOP is a duplicate of ORIG_LOOP.
268   AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
269   AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
270   executes before it.  */
271
272static void
273slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
274				       struct loop *new_loop, bool after)
275{
276  tree new_ssa_name;
277  tree phi_new, phi_orig;
278  tree def;
279  edge orig_loop_latch = loop_latch_edge (orig_loop);
280  edge orig_entry_e = loop_preheader_edge (orig_loop);
281  edge new_loop_exit_e = new_loop->single_exit;
282  edge new_loop_entry_e = loop_preheader_edge (new_loop);
283  edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
284
285  /*
286     step 1. For each loop-header-phi:
287             Add the first phi argument for the phi in NEW_LOOP
288            (the one associated with the entry of NEW_LOOP)
289
290     step 2. For each loop-header-phi:
291             Add the second phi argument for the phi in NEW_LOOP
292            (the one associated with the latch of NEW_LOOP)
293
294     step 3. Update the phis in the successor block of NEW_LOOP.
295
296        case 1: NEW_LOOP was placed before ORIG_LOOP:
297                The successor block of NEW_LOOP is the header of ORIG_LOOP.
298                Updating the phis in the successor block can therefore be done
299                along with the scanning of the loop header phis, because the
300                header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
301                phi nodes, organized in the same order.
302
303        case 2: NEW_LOOP was placed after ORIG_LOOP:
304                The successor block of NEW_LOOP is the original exit block of
305                ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
306                We postpone updating these phis to a later stage (when
307                loop guards are added).
308   */
309
310
311  /* Scan the phis in the headers of the old and new loops
312     (they are organized in exactly the same order).  */
313
314  for (phi_new = phi_nodes (new_loop->header),
315       phi_orig = phi_nodes (orig_loop->header);
316       phi_new && phi_orig;
317       phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
318    {
319      /* step 1.  */
320      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
321      add_phi_arg (phi_new, def, new_loop_entry_e);
322
323      /* step 2.  */
324      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
325      if (TREE_CODE (def) != SSA_NAME)
326        continue;
327
328      new_ssa_name = get_current_def (def);
329      if (!new_ssa_name)
330	{
331	  /* This only happens if there are no definitions
332	     inside the loop. use the phi_result in this case.  */
333	  new_ssa_name = PHI_RESULT (phi_new);
334	}
335
336      /* An ordinary ssa name defined in the loop.  */
337      add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
338
339      /* step 3 (case 1).  */
340      if (!after)
341        {
342          gcc_assert (new_loop_exit_e == orig_entry_e);
343          SET_PHI_ARG_DEF (phi_orig,
344                           new_loop_exit_e->dest_idx,
345                           new_ssa_name);
346        }
347    }
348}
349
350
351/* Update PHI nodes for a guard of the LOOP.
352
353   Input:
354   - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
355        controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
356        originates from the guard-bb, skips LOOP and reaches the (unique) exit
357        bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
358        We denote this bb NEW_MERGE_BB because before the guard code was added
359        it had a single predecessor (the LOOP header), and now it became a merge
360        point of two paths - the path that ends with the LOOP exit-edge, and
361        the path that ends with GUARD_EDGE.
362   - NEW_EXIT_BB: New basic block that is added by this function between LOOP
363        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
364
365   ===> The CFG before the guard-code was added:
366        LOOP_header_bb:
367          loop_body
368          if (exit_loop) goto update_bb
369          else           goto LOOP_header_bb
370        update_bb:
371
372   ==> The CFG after the guard-code was added:
373        guard_bb:
374          if (LOOP_guard_condition) goto new_merge_bb
375          else                      goto LOOP_header_bb
376        LOOP_header_bb:
377          loop_body
378          if (exit_loop_condition) goto new_merge_bb
379          else                     goto LOOP_header_bb
380        new_merge_bb:
381          goto update_bb
382        update_bb:
383
384   ==> The CFG after this function:
385        guard_bb:
386          if (LOOP_guard_condition) goto new_merge_bb
387          else                      goto LOOP_header_bb
388        LOOP_header_bb:
389          loop_body
390          if (exit_loop_condition) goto new_exit_bb
391          else                     goto LOOP_header_bb
392        new_exit_bb:
393        new_merge_bb:
394          goto update_bb
395        update_bb:
396
397   This function:
398   1. creates and updates the relevant phi nodes to account for the new
399      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
400      1.1. Create phi nodes at NEW_MERGE_BB.
401      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
402           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
403   2. preserves loop-closed-ssa-form by creating the required phi nodes
404      at the exit of LOOP (i.e, in NEW_EXIT_BB).
405
406   There are two flavors to this function:
407
408   slpeel_update_phi_nodes_for_guard1:
409     Here the guard controls whether we enter or skip LOOP, where LOOP is a
410     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
411     for variables that have phis in the loop header.
412
413   slpeel_update_phi_nodes_for_guard2:
414     Here the guard controls whether we enter or skip LOOP, where LOOP is an
415     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
416     for variables that have phis in the loop exit.
417
418   I.E., the overall structure is:
419
420        loop1_preheader_bb:
421                guard1 (goto loop1/merg1_bb)
422        loop1
423        loop1_exit_bb:
424                guard2 (goto merge1_bb/merge2_bb)
425        merge1_bb
426        loop2
427        loop2_exit_bb
428        merge2_bb
429        next_bb
430
431   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
432   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
433   that have phis in loop1->header).
434
435   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
436   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
437   that have phis in next_bb). It also adds some of these phis to
438   loop1_exit_bb.
439
440   slpeel_update_phi_nodes_for_guard1 is always called before
441   slpeel_update_phi_nodes_for_guard2. They are both needed in order
442   to create correct data-flow and loop-closed-ssa-form.
443
444   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
445   that change between iterations of a loop (and therefore have a phi-node
446   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
447   phis for variables that are used out of the loop (and therefore have
448   loop-closed exit phis). Some variables may be both updated between
449   iterations and used after the loop. This is why in loop1_exit_bb we
450   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
451   and exit phis (created by slpeel_update_phi_nodes_for_guard2).
452
453   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
454     an original loop. i.e., we have:
455
456           orig_loop
457           guard_bb (goto LOOP/new_merge)
458           new_loop <-- LOOP
459           new_exit
460           new_merge
461           next_bb
462
463     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
464     have:
465
466           new_loop
467           guard_bb (goto LOOP/new_merge)
468           orig_loop <-- LOOP
469           new_exit
470           new_merge
471           next_bb
472
473     The SSA names defined in the original loop have a current
474     reaching definition that that records the corresponding new
475     ssa-name used in the new duplicated loop copy.
476  */
477
478/* Function slpeel_update_phi_nodes_for_guard1
479
480   Input:
481   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
482   - DEFS - a bitmap of ssa names to mark new names for which we recorded
483            information.
484
485   In the context of the overall structure, we have:
486
487        loop1_preheader_bb:
488                guard1 (goto loop1/merg1_bb)
489LOOP->  loop1
490        loop1_exit_bb:
491                guard2 (goto merge1_bb/merge2_bb)
492        merge1_bb
493        loop2
494        loop2_exit_bb
495        merge2_bb
496        next_bb
497
498   For each name updated between loop iterations (i.e - for each name that has
499   an entry (loop-header) phi in LOOP) we create a new phi in:
500   1. merge1_bb (to account for the edge from guard1)
501   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
502*/
503
504static void
505slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
506                                    bool is_new_loop, basic_block *new_exit_bb,
507                                    bitmap *defs)
508{
509  tree orig_phi, new_phi;
510  tree update_phi, update_phi2;
511  tree guard_arg, loop_arg;
512  basic_block new_merge_bb = guard_edge->dest;
513  edge e = EDGE_SUCC (new_merge_bb, 0);
514  basic_block update_bb = e->dest;
515  basic_block orig_bb = loop->header;
516  edge new_exit_e;
517  tree current_new_name;
518  tree name;
519
520  /* Create new bb between loop and new_merge_bb.  */
521  *new_exit_bb = split_edge (loop->single_exit);
522  add_bb_to_loop (*new_exit_bb, loop->outer);
523
524  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
525
526  for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
527       orig_phi && update_phi;
528       orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
529    {
530      /* Virtual phi; Mark it for renaming. We actually want to call
531	 mar_sym_for_renaming, but since all ssa renaming datastructures
532	 are going to be freed before we get to call ssa_upate, we just
533	 record this name for now in a bitmap, and will mark it for
534	 renaming later.  */
535      name = PHI_RESULT (orig_phi);
536      if (!is_gimple_reg (SSA_NAME_VAR (name)))
537        bitmap_set_bit (vect_vnames_to_rename, SSA_NAME_VERSION (name));
538
539      /** 1. Handle new-merge-point phis  **/
540
541      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
542      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
543                                 new_merge_bb);
544
545      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
546            of LOOP. Set the two phi args in NEW_PHI for these edges:  */
547      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
548      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
549
550      add_phi_arg (new_phi, loop_arg, new_exit_e);
551      add_phi_arg (new_phi, guard_arg, guard_edge);
552
553      /* 1.3. Update phi in successor block.  */
554      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
555                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
556      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
557      update_phi2 = new_phi;
558
559
560      /** 2. Handle loop-closed-ssa-form phis  **/
561
562      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
563      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
564                                 *new_exit_bb);
565
566      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
567      add_phi_arg (new_phi, loop_arg, loop->single_exit);
568
569      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
570      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
571      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
572
573      /* 2.4. Record the newly created name with set_current_def.
574         We want to find a name such that
575                name = get_current_def (orig_loop_name)
576         and to set its current definition as follows:
577                set_current_def (name, new_phi_name)
578
579         If LOOP is a new loop then loop_arg is already the name we're
580         looking for. If LOOP is the original loop, then loop_arg is
581         the orig_loop_name and the relevant name is recorded in its
582         current reaching definition.  */
583      if (is_new_loop)
584        current_new_name = loop_arg;
585      else
586        {
587          current_new_name = get_current_def (loop_arg);
588	  /* current_def is not available only if the variable does not
589	     change inside the loop, in which case we also don't care
590	     about recording a current_def for it because we won't be
591	     trying to create loop-exit-phis for it.  */
592	  if (!current_new_name)
593	    continue;
594        }
595      gcc_assert (get_current_def (current_new_name) == NULL_TREE);
596
597      set_current_def (current_new_name, PHI_RESULT (new_phi));
598      bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
599    }
600
601  set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
602}
603
604
605/* Function slpeel_update_phi_nodes_for_guard2
606
607   Input:
608   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
609
610   In the context of the overall structure, we have:
611
612        loop1_preheader_bb:
613                guard1 (goto loop1/merg1_bb)
614        loop1
615        loop1_exit_bb:
616                guard2 (goto merge1_bb/merge2_bb)
617        merge1_bb
618LOOP->  loop2
619        loop2_exit_bb
620        merge2_bb
621        next_bb
622
623   For each name used out side the loop (i.e - for each name that has an exit
624   phi in next_bb) we create a new phi in:
625   1. merge2_bb (to account for the edge from guard_bb)
626   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
627   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
628      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
629*/
630
631static void
632slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
633                                    bool is_new_loop, basic_block *new_exit_bb)
634{
635  tree orig_phi, new_phi;
636  tree update_phi, update_phi2;
637  tree guard_arg, loop_arg;
638  basic_block new_merge_bb = guard_edge->dest;
639  edge e = EDGE_SUCC (new_merge_bb, 0);
640  basic_block update_bb = e->dest;
641  edge new_exit_e;
642  tree orig_def, orig_def_new_name;
643  tree new_name, new_name2;
644  tree arg;
645
646  /* Create new bb between loop and new_merge_bb.  */
647  *new_exit_bb = split_edge (loop->single_exit);
648  add_bb_to_loop (*new_exit_bb, loop->outer);
649
650  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
651
652  for (update_phi = phi_nodes (update_bb); update_phi;
653       update_phi = PHI_CHAIN (update_phi))
654    {
655      orig_phi = update_phi;
656      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
657      /* This loop-closed-phi actually doesn't represent a use
658         out of the loop - the phi arg is a constant.  */
659      if (TREE_CODE (orig_def) != SSA_NAME)
660        continue;
661      orig_def_new_name = get_current_def (orig_def);
662      arg = NULL_TREE;
663
664      /** 1. Handle new-merge-point phis  **/
665
666      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
667      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
668                                 new_merge_bb);
669
670      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
671            of LOOP. Set the two PHI args in NEW_PHI for these edges:  */
672      new_name = orig_def;
673      new_name2 = NULL_TREE;
674      if (orig_def_new_name)
675        {
676          new_name = orig_def_new_name;
677	  /* Some variables have both loop-entry-phis and loop-exit-phis.
678	     Such variables were given yet newer names by phis placed in
679	     guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
680	     new_name2 = get_current_def (get_current_def (orig_name)).  */
681          new_name2 = get_current_def (new_name);
682        }
683
684      if (is_new_loop)
685        {
686          guard_arg = orig_def;
687          loop_arg = new_name;
688        }
689      else
690        {
691          guard_arg = new_name;
692          loop_arg = orig_def;
693        }
694      if (new_name2)
695        guard_arg = new_name2;
696
697      add_phi_arg (new_phi, loop_arg, new_exit_e);
698      add_phi_arg (new_phi, guard_arg, guard_edge);
699
700      /* 1.3. Update phi in successor block.  */
701      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
702      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
703      update_phi2 = new_phi;
704
705
706      /** 2. Handle loop-closed-ssa-form phis  **/
707
708      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
709      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
710                                 *new_exit_bb);
711
712      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
713      add_phi_arg (new_phi, loop_arg, loop->single_exit);
714
715      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
716      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
717      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
718
719
720      /** 3. Handle loop-closed-ssa-form phis for first loop  **/
721
722      /* 3.1. Find the relevant names that need an exit-phi in
723	 GUARD_BB, i.e. names for which
724	 slpeel_update_phi_nodes_for_guard1 had not already created a
725	 phi node. This is the case for names that are used outside
726	 the loop (and therefore need an exit phi) but are not updated
727	 across loop iterations (and therefore don't have a
728	 loop-header-phi).
729
730	 slpeel_update_phi_nodes_for_guard1 is responsible for
731	 creating loop-exit phis in GUARD_BB for names that have a
732	 loop-header-phi.  When such a phi is created we also record
733	 the new name in its current definition.  If this new name
734	 exists, then guard_arg was set to this new name (see 1.2
735	 above).  Therefore, if guard_arg is not this new name, this
736	 is an indication that an exit-phi in GUARD_BB was not yet
737	 created, so we take care of it here.  */
738      if (guard_arg == new_name2)
739	continue;
740      arg = guard_arg;
741
742      /* 3.2. Generate new phi node in GUARD_BB:  */
743      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
744                                 guard_edge->src);
745
746      /* 3.3. GUARD_BB has one incoming edge:  */
747      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
748      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
749
750      /* 3.4. Update phi in successor of GUARD_BB:  */
751      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
752                                                                == guard_arg);
753      SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
754    }
755
756  set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
757}
758
759
760/* Make the LOOP iterate NITERS times. This is done by adding a new IV
761   that starts at zero, increases by one and its limit is NITERS.
762
763   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */
764
765void
766slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
767{
768  tree indx_before_incr, indx_after_incr, cond_stmt, cond;
769  tree orig_cond;
770  edge exit_edge = loop->single_exit;
771  block_stmt_iterator loop_cond_bsi;
772  block_stmt_iterator incr_bsi;
773  bool insert_after;
774  tree begin_label = tree_block_label (loop->latch);
775  tree exit_label = tree_block_label (loop->single_exit->dest);
776  tree init = build_int_cst (TREE_TYPE (niters), 0);
777  tree step = build_int_cst (TREE_TYPE (niters), 1);
778  tree then_label;
779  tree else_label;
780  LOC loop_loc;
781
782  orig_cond = get_loop_exit_condition (loop);
783  gcc_assert (orig_cond);
784  loop_cond_bsi = bsi_for_stmt (orig_cond);
785
786  standard_iv_increment_position (loop, &incr_bsi, &insert_after);
787  create_iv (init, step, NULL_TREE, loop,
788             &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
789
790  if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop.  */
791    {
792      cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
793      then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
794      else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
795    }
796  else /* 'then' edge loops back.  */
797    {
798      cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
799      then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
800      else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
801    }
802
803  cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
804		     then_label, else_label);
805  bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
806
807  /* Remove old loop exit test:  */
808  bsi_remove (&loop_cond_bsi);
809
810  loop_loc = find_loop_location (loop);
811  if (dump_file && (dump_flags & TDF_DETAILS))
812    {
813      if (loop_loc != UNKNOWN_LOC)
814        fprintf (dump_file, "\nloop at %s:%d: ",
815                 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
816      print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
817    }
818
819  loop->nb_iterations = niters;
820}
821
822
823/* Given LOOP this function generates a new copy of it and puts it
824   on E which is either the entry or exit of LOOP.  */
825
826static struct loop *
827slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
828					edge e)
829{
830  struct loop *new_loop;
831  basic_block *new_bbs, *bbs;
832  bool at_exit;
833  bool was_imm_dom;
834  basic_block exit_dest;
835  tree phi, phi_arg;
836
837  at_exit = (e == loop->single_exit);
838  if (!at_exit && e != loop_preheader_edge (loop))
839    return NULL;
840
841  bbs = get_loop_body (loop);
842
843  /* Check whether duplication is possible.  */
844  if (!can_copy_bbs_p (bbs, loop->num_nodes))
845    {
846      free (bbs);
847      return NULL;
848    }
849
850  /* Generate new loop structure.  */
851  new_loop = duplicate_loop (loops, loop, loop->outer);
852  if (!new_loop)
853    {
854      free (bbs);
855      return NULL;
856    }
857
858  exit_dest = loop->single_exit->dest;
859  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
860					  exit_dest) == loop->header ?
861		 true : false);
862
863  new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
864
865  copy_bbs (bbs, loop->num_nodes, new_bbs,
866	    &loop->single_exit, 1, &new_loop->single_exit, NULL,
867	    e->src);
868
869  /* Duplicating phi args at exit bbs as coming
870     also from exit of duplicated loop.  */
871  for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
872    {
873      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
874      if (phi_arg)
875	{
876	  edge new_loop_exit_edge;
877
878	  if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
879	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
880	  else
881	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
882
883	  add_phi_arg (phi, phi_arg, new_loop_exit_edge);
884	}
885    }
886
887  if (at_exit) /* Add the loop copy at exit.  */
888    {
889      redirect_edge_and_branch_force (e, new_loop->header);
890      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
891      if (was_imm_dom)
892	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
893    }
894  else /* Add the copy at entry.  */
895    {
896      edge new_exit_e;
897      edge entry_e = loop_preheader_edge (loop);
898      basic_block preheader = entry_e->src;
899
900      if (!flow_bb_inside_loop_p (new_loop,
901				  EDGE_SUCC (new_loop->header, 0)->dest))
902        new_exit_e = EDGE_SUCC (new_loop->header, 0);
903      else
904	new_exit_e = EDGE_SUCC (new_loop->header, 1);
905
906      redirect_edge_and_branch_force (new_exit_e, loop->header);
907      set_immediate_dominator (CDI_DOMINATORS, loop->header,
908			       new_exit_e->src);
909
910      /* We have to add phi args to the loop->header here as coming
911	 from new_exit_e edge.  */
912      for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
913	{
914	  phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
915	  if (phi_arg)
916	    add_phi_arg (phi, phi_arg, new_exit_e);
917	}
918
919      redirect_edge_and_branch_force (entry_e, new_loop->header);
920      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
921    }
922
923  free (new_bbs);
924  free (bbs);
925
926  return new_loop;
927}
928
929
930/* Given the condition statement COND, put it as the last statement
931   of GUARD_BB; EXIT_BB is the basic block to skip the loop;
932   Assumes that this is the single exit of the guarded loop.
933   Returns the skip edge.  */
934
935static edge
936slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
937		        basic_block dom_bb)
938{
939  block_stmt_iterator bsi;
940  edge new_e, enter_e;
941  tree cond_stmt, then_label, else_label;
942
943  enter_e = EDGE_SUCC (guard_bb, 0);
944  enter_e->flags &= ~EDGE_FALLTHRU;
945  enter_e->flags |= EDGE_FALSE_VALUE;
946  bsi = bsi_last (guard_bb);
947
948  then_label = build1 (GOTO_EXPR, void_type_node,
949                       tree_block_label (exit_bb));
950  else_label = build1 (GOTO_EXPR, void_type_node,
951                       tree_block_label (enter_e->dest));
952  cond_stmt = build3 (COND_EXPR, void_type_node, cond,
953   		     then_label, else_label);
954  bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
955  /* Add new edge to connect guard block to the merge/loop-exit block.  */
956  new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
957  set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
958  return new_e;
959}
960
961
962/* This function verifies that the following restrictions apply to LOOP:
963   (1) it is innermost
964   (2) it consists of exactly 2 basic blocks - header, and an empty latch.
965   (3) it is single entry, single exit
966   (4) its exit condition is the last stmt in the header
967   (5) E is the entry/exit edge of LOOP.
968 */
969
970bool
971slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
972{
973  edge exit_e = loop->single_exit;
974  edge entry_e = loop_preheader_edge (loop);
975  tree orig_cond = get_loop_exit_condition (loop);
976  block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
977
978  if (need_ssa_update_p ())
979    return false;
980
981  if (loop->inner
982      /* All loops have an outer scope; the only case loop->outer is NULL is for
983         the function itself.  */
984      || !loop->outer
985      || loop->num_nodes != 2
986      || !empty_block_p (loop->latch)
987      || !loop->single_exit
988      /* Verify that new loop exit condition can be trivially modified.  */
989      || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
990      || (e != exit_e && e != entry_e))
991    return false;
992
993  return true;
994}
995
996#ifdef ENABLE_CHECKING
997void
998slpeel_verify_cfg_after_peeling (struct loop *first_loop,
999                                 struct loop *second_loop)
1000{
1001  basic_block loop1_exit_bb = first_loop->single_exit->dest;
1002  basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1003  basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1004
1005  /* A guard that controls whether the second_loop is to be executed or skipped
1006     is placed in first_loop->exit.  first_loopt->exit therefore has two
1007     successors - one is the preheader of second_loop, and the other is a bb
1008     after second_loop.
1009   */
1010  gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1011
1012  /* 1. Verify that one of the successors of first_loopt->exit is the preheader
1013        of second_loop.  */
1014
1015  /* The preheader of new_loop is expected to have two predecessors:
1016     first_loop->exit and the block that precedes first_loop.  */
1017
1018  gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1019              && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1020                   && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1021               || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb
1022                   && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1023
1024  /* Verify that the other successor of first_loopt->exit is after the
1025     second_loop.  */
1026  /* TODO */
1027}
1028#endif
1029
1030/* Function slpeel_tree_peel_loop_to_edge.
1031
1032   Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1033   that is placed on the entry (exit) edge E of LOOP. After this transformation
1034   we have two loops one after the other - first-loop iterates FIRST_NITERS
1035   times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1036
1037   Input:
1038   - LOOP: the loop to be peeled.
1039   - E: the exit or entry edge of LOOP.
1040        If it is the entry edge, we peel the first iterations of LOOP. In this
1041        case first-loop is LOOP, and second-loop is the newly created loop.
1042        If it is the exit edge, we peel the last iterations of LOOP. In this
1043        case, first-loop is the newly created loop, and second-loop is LOOP.
1044   - NITERS: the number of iterations that LOOP iterates.
1045   - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1046   - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible
1047        for updating the loop bound of the first-loop to FIRST_NITERS.  If it
1048        is false, the caller of this function may want to take care of this
1049        (this can be useful if we don't want new stmts added to first-loop).
1050
1051   Output:
1052   The function returns a pointer to the new loop-copy, or NULL if it failed
1053   to perform the transformation.
1054
1055   The function generates two if-then-else guards: one before the first loop,
1056   and the other before the second loop:
1057   The first guard is:
1058     if (FIRST_NITERS == 0) then skip the first loop,
1059     and go directly to the second loop.
1060   The second guard is:
1061     if (FIRST_NITERS == NITERS) then skip the second loop.
1062
1063   FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1064   FORNOW the resulting code will not be in loop-closed-ssa form.
1065*/
1066
1067struct loop*
1068slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
1069			       edge e, tree first_niters,
1070			       tree niters, bool update_first_loop_count)
1071{
1072  struct loop *new_loop = NULL, *first_loop, *second_loop;
1073  edge skip_e;
1074  tree pre_condition;
1075  bitmap definitions;
1076  basic_block bb_before_second_loop, bb_after_second_loop;
1077  basic_block bb_before_first_loop;
1078  basic_block bb_between_loops;
1079  basic_block new_exit_bb;
1080  edge exit_e = loop->single_exit;
1081  LOC loop_loc;
1082
1083  if (!slpeel_can_duplicate_loop_p (loop, e))
1084    return NULL;
1085
1086  /* We have to initialize cfg_hooks. Then, when calling
1087   cfg_hooks->split_edge, the function tree_split_edge
1088   is actually called and, when calling cfg_hooks->duplicate_block,
1089   the function tree_duplicate_bb is called.  */
1090  tree_register_cfg_hooks ();
1091
1092
1093  /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1094        Resulting CFG would be:
1095
1096        first_loop:
1097        do {
1098        } while ...
1099
1100        second_loop:
1101        do {
1102        } while ...
1103
1104        orig_exit_bb:
1105   */
1106
1107  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
1108    {
1109      loop_loc = find_loop_location (loop);
1110      if (dump_file && (dump_flags & TDF_DETAILS))
1111        {
1112          if (loop_loc != UNKNOWN_LOC)
1113            fprintf (dump_file, "\n%s:%d: note: ",
1114                     LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1115          fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1116        }
1117      return NULL;
1118    }
1119
1120  if (e == exit_e)
1121    {
1122      /* NEW_LOOP was placed after LOOP.  */
1123      first_loop = loop;
1124      second_loop = new_loop;
1125    }
1126  else
1127    {
1128      /* NEW_LOOP was placed before LOOP.  */
1129      first_loop = new_loop;
1130      second_loop = loop;
1131    }
1132
1133  definitions = ssa_names_to_replace ();
1134  slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1135  rename_variables_in_loop (new_loop);
1136
1137
1138  /* 2. Add the guard that controls whether the first loop is executed.
1139        Resulting CFG would be:
1140
1141        bb_before_first_loop:
1142        if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1143                               GOTO first-loop
1144
1145        first_loop:
1146        do {
1147        } while ...
1148
1149        bb_before_second_loop:
1150
1151        second_loop:
1152        do {
1153        } while ...
1154
1155        orig_exit_bb:
1156   */
1157
1158  bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1159  add_bb_to_loop (bb_before_first_loop, first_loop->outer);
1160  bb_before_second_loop = split_edge (first_loop->single_exit);
1161  add_bb_to_loop (bb_before_second_loop, first_loop->outer);
1162
1163  pre_condition =
1164    fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1165                 build_int_cst (TREE_TYPE (first_niters), 0));
1166  skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1167                                  bb_before_second_loop, bb_before_first_loop);
1168  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1169				      first_loop == new_loop,
1170				      &new_exit_bb, &definitions);
1171
1172
1173  /* 3. Add the guard that controls whether the second loop is executed.
1174        Resulting CFG would be:
1175
1176        bb_before_first_loop:
1177        if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1178                               GOTO first-loop
1179
1180        first_loop:
1181        do {
1182        } while ...
1183
1184        bb_between_loops:
1185        if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1186                                    GOTO bb_before_second_loop
1187
1188        bb_before_second_loop:
1189
1190        second_loop:
1191        do {
1192        } while ...
1193
1194        bb_after_second_loop:
1195
1196        orig_exit_bb:
1197   */
1198
1199  bb_between_loops = new_exit_bb;
1200  bb_after_second_loop = split_edge (second_loop->single_exit);
1201  add_bb_to_loop (bb_after_second_loop, second_loop->outer);
1202
1203  pre_condition =
1204	fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1205  skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
1206                                  bb_after_second_loop, bb_before_first_loop);
1207  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1208                                     second_loop == new_loop, &new_exit_bb);
1209
1210  /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1211   */
1212  if (update_first_loop_count)
1213    slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1214
1215  BITMAP_FREE (definitions);
1216  delete_update_ssa ();
1217
1218  return new_loop;
1219}
1220
1221/* Function vect_get_loop_location.
1222
1223   Extract the location of the loop in the source code.
1224   If the loop is not well formed for vectorization, an estimated
1225   location is calculated.
1226   Return the loop location if succeed and NULL if not.  */
1227
1228LOC
1229find_loop_location (struct loop *loop)
1230{
1231  tree node = NULL_TREE;
1232  basic_block bb;
1233  block_stmt_iterator si;
1234
1235  if (!loop)
1236    return UNKNOWN_LOC;
1237
1238  node = get_loop_exit_condition (loop);
1239
1240  if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
1241      && EXPR_FILENAME (node) && EXPR_LINENO (node))
1242    return EXPR_LOC (node);
1243
1244  /* If we got here the loop is probably not "well formed",
1245     try to estimate the loop location */
1246
1247  if (!loop->header)
1248    return UNKNOWN_LOC;
1249
1250  bb = loop->header;
1251
1252  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1253    {
1254      node = bsi_stmt (si);
1255      if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
1256        return EXPR_LOC (node);
1257    }
1258
1259  return UNKNOWN_LOC;
1260}
1261
1262
1263/*************************************************************************
1264  Vectorization Debug Information.
1265 *************************************************************************/
1266
1267/* Function vect_set_verbosity_level.
1268
1269   Called from toplev.c upon detection of the
1270   -ftree-vectorizer-verbose=N option.  */
1271
1272void
1273vect_set_verbosity_level (const char *val)
1274{
1275   unsigned int vl;
1276
1277   vl = atoi (val);
1278   if (vl < MAX_VERBOSITY_LEVEL)
1279     vect_verbosity_level = vl;
1280   else
1281     vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
1282}
1283
1284
1285/* Function vect_set_dump_settings.
1286
1287   Fix the verbosity level of the vectorizer if the
1288   requested level was not set explicitly using the flag
1289   -ftree-vectorizer-verbose=N.
1290   Decide where to print the debugging information (dump_file/stderr).
1291   If the user defined the verbosity level, but there is no dump file,
1292   print to stderr, otherwise print to the dump file.  */
1293
1294static void
1295vect_set_dump_settings (void)
1296{
1297  vect_dump = dump_file;
1298
1299  /* Check if the verbosity level was defined by the user:  */
1300  if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
1301    {
1302      /* If there is no dump file, print to stderr.  */
1303      if (!dump_file)
1304        vect_dump = stderr;
1305      return;
1306    }
1307
1308  /* User didn't specify verbosity level:  */
1309  if (dump_file && (dump_flags & TDF_DETAILS))
1310    vect_verbosity_level = REPORT_DETAILS;
1311  else if (dump_file && (dump_flags & TDF_STATS))
1312    vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
1313  else
1314    vect_verbosity_level = REPORT_NONE;
1315
1316  gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1317}
1318
1319
1320/* Function debug_loop_details.
1321
1322   For vectorization debug dumps.  */
1323
1324bool
1325vect_print_dump_info (enum verbosity_levels vl)
1326{
1327  if (vl > vect_verbosity_level)
1328    return false;
1329
1330  if (vect_loop_location == UNKNOWN_LOC)
1331    fprintf (vect_dump, "\n%s:%d: note: ",
1332		 DECL_SOURCE_FILE (current_function_decl),
1333		 DECL_SOURCE_LINE (current_function_decl));
1334  else
1335    fprintf (vect_dump, "\n%s:%d: note: ",
1336	     LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
1337
1338
1339  return true;
1340}
1341
1342
1343/*************************************************************************
1344  Vectorization Utilities.
1345 *************************************************************************/
1346
1347/* Function new_stmt_vec_info.
1348
1349   Create and initialize a new stmt_vec_info struct for STMT.  */
1350
1351stmt_vec_info
1352new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
1353{
1354  stmt_vec_info res;
1355  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
1356
1357  STMT_VINFO_TYPE (res) = undef_vec_info_type;
1358  STMT_VINFO_STMT (res) = stmt;
1359  STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1360  STMT_VINFO_RELEVANT_P (res) = 0;
1361  STMT_VINFO_LIVE_P (res) = 0;
1362  STMT_VINFO_VECTYPE (res) = NULL;
1363  STMT_VINFO_VEC_STMT (res) = NULL;
1364  STMT_VINFO_DATA_REF (res) = NULL;
1365  if (TREE_CODE (stmt) == PHI_NODE)
1366    STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
1367  else
1368    STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
1369  STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
1370
1371  return res;
1372}
1373
1374
1375/* Function new_loop_vec_info.
1376
1377   Create and initialize a new loop_vec_info struct for LOOP, as well as
1378   stmt_vec_info structs for all the stmts in LOOP.  */
1379
1380loop_vec_info
1381new_loop_vec_info (struct loop *loop)
1382{
1383  loop_vec_info res;
1384  basic_block *bbs;
1385  block_stmt_iterator si;
1386  unsigned int i;
1387
1388  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1389
1390  bbs = get_loop_body (loop);
1391
1392  /* Create stmt_info for all stmts in the loop.  */
1393  for (i = 0; i < loop->num_nodes; i++)
1394    {
1395      basic_block bb = bbs[i];
1396      tree phi;
1397
1398      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1399        {
1400          tree_ann_t ann = get_tree_ann (phi);
1401          set_stmt_info (ann, new_stmt_vec_info (phi, res));
1402        }
1403
1404      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1405	{
1406	  tree stmt = bsi_stmt (si);
1407	  stmt_ann_t ann;
1408
1409	  ann = stmt_ann (stmt);
1410	  set_stmt_info ((tree_ann_t)ann, new_stmt_vec_info (stmt, res));
1411	}
1412    }
1413
1414  LOOP_VINFO_LOOP (res) = loop;
1415  LOOP_VINFO_BBS (res) = bbs;
1416  LOOP_VINFO_EXIT_COND (res) = NULL;
1417  LOOP_VINFO_NITERS (res) = NULL;
1418  LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1419  LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1420  LOOP_VINFO_VECT_FACTOR (res) = 0;
1421  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREFS (res), 20, "loop_datarefs");
1422  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DDRS (res), 20, "loop_ddrs");
1423  LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1424  LOOP_VINFO_MAY_MISALIGN_STMTS (res)
1425    = VEC_alloc (tree, heap, PARAM_VALUE (PARAM_VECT_MAX_VERSION_CHECKS));
1426
1427  return res;
1428}
1429
1430
1431/* Function destroy_loop_vec_info.
1432
1433   Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1434   stmts in the loop.  */
1435
1436void
1437destroy_loop_vec_info (loop_vec_info loop_vinfo)
1438{
1439  struct loop *loop;
1440  basic_block *bbs;
1441  int nbbs;
1442  block_stmt_iterator si;
1443  int j;
1444
1445  if (!loop_vinfo)
1446    return;
1447
1448  loop = LOOP_VINFO_LOOP (loop_vinfo);
1449
1450  bbs = LOOP_VINFO_BBS (loop_vinfo);
1451  nbbs = loop->num_nodes;
1452
1453  for (j = 0; j < nbbs; j++)
1454    {
1455      basic_block bb = bbs[j];
1456      tree phi;
1457      stmt_vec_info stmt_info;
1458
1459      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1460        {
1461          tree_ann_t ann = get_tree_ann (phi);
1462
1463          stmt_info = vinfo_for_stmt (phi);
1464          free (stmt_info);
1465          set_stmt_info (ann, NULL);
1466        }
1467
1468      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1469	{
1470	  tree stmt = bsi_stmt (si);
1471	  stmt_ann_t ann = stmt_ann (stmt);
1472	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1473
1474	  if (stmt_info)
1475	    {
1476	      VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
1477	      free (stmt_info);
1478	      set_stmt_info ((tree_ann_t)ann, NULL);
1479	    }
1480	}
1481    }
1482
1483  free (LOOP_VINFO_BBS (loop_vinfo));
1484  varray_clear (LOOP_VINFO_DATAREFS (loop_vinfo));
1485  varray_clear (LOOP_VINFO_DDRS (loop_vinfo));
1486  VEC_free (tree, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1487
1488  free (loop_vinfo);
1489}
1490
1491
1492/* Function vect_force_dr_alignment_p.
1493
1494   Returns whether the alignment of a DECL can be forced to be aligned
1495   on ALIGNMENT bit boundary.  */
1496
1497bool
1498vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
1499{
1500  if (TREE_CODE (decl) != VAR_DECL)
1501    return false;
1502
1503  if (DECL_EXTERNAL (decl))
1504    return false;
1505
1506  if (TREE_ASM_WRITTEN (decl))
1507    return false;
1508
1509  if (TREE_STATIC (decl))
1510    return (alignment <= MAX_OFILE_ALIGNMENT);
1511  else
1512    /* This is not 100% correct.  The absolute correct stack alignment
1513       is STACK_BOUNDARY.  We're supposed to hope, but not assume, that
1514       PREFERRED_STACK_BOUNDARY is honored by all translation units.
1515       However, until someone implements forced stack alignment, SSE
1516       isn't really usable without this.  */
1517    return (alignment <= PREFERRED_STACK_BOUNDARY);
1518}
1519
1520
1521/* Function get_vectype_for_scalar_type.
1522
1523   Returns the vector type corresponding to SCALAR_TYPE as supported
1524   by the target.  */
1525
1526tree
1527get_vectype_for_scalar_type (tree scalar_type)
1528{
1529  enum machine_mode inner_mode = TYPE_MODE (scalar_type);
1530  int nbytes = GET_MODE_SIZE (inner_mode);
1531  int nunits;
1532  tree vectype;
1533
1534  if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD)
1535    return NULL_TREE;
1536
1537  /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
1538     is expected.  */
1539  nunits = UNITS_PER_SIMD_WORD / nbytes;
1540
1541  vectype = build_vector_type (scalar_type, nunits);
1542  if (vect_print_dump_info (REPORT_DETAILS))
1543    {
1544      fprintf (vect_dump, "get vectype with %d units of type ", nunits);
1545      print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1546    }
1547
1548  if (!vectype)
1549    return NULL_TREE;
1550
1551  if (vect_print_dump_info (REPORT_DETAILS))
1552    {
1553      fprintf (vect_dump, "vectype: ");
1554      print_generic_expr (vect_dump, vectype, TDF_SLIM);
1555    }
1556
1557  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1558      && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
1559    {
1560      if (vect_print_dump_info (REPORT_DETAILS))
1561        fprintf (vect_dump, "mode not supported by target.");
1562      return NULL_TREE;
1563    }
1564
1565  return vectype;
1566}
1567
1568
1569/* Function vect_supportable_dr_alignment
1570
1571   Return whether the data reference DR is supported with respect to its
1572   alignment.  */
1573
1574enum dr_alignment_support
1575vect_supportable_dr_alignment (struct data_reference *dr)
1576{
1577  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
1578  enum machine_mode mode = (int) TYPE_MODE (vectype);
1579
1580  if (aligned_access_p (dr))
1581    return dr_aligned;
1582
1583  /* Possibly unaligned access.  */
1584
1585  if (DR_IS_READ (dr))
1586    {
1587      if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
1588	  && (!targetm.vectorize.builtin_mask_for_load
1589	      || targetm.vectorize.builtin_mask_for_load ()))
1590	return dr_unaligned_software_pipeline;
1591
1592      if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
1593	/* Can't software pipeline the loads, but can at least do them.  */
1594	return dr_unaligned_supported;
1595    }
1596
1597  /* Unsupported.  */
1598  return dr_unaligned_unsupported;
1599}
1600
1601
1602/* Function vect_is_simple_use.
1603
1604   Input:
1605   LOOP - the loop that is being vectorized.
1606   OPERAND - operand of a stmt in LOOP.
1607   DEF - the defining stmt in case OPERAND is an SSA_NAME.
1608
1609   Returns whether a stmt with OPERAND can be vectorized.
1610   Supportable operands are constants, loop invariants, and operands that are
1611   defined by the current iteration of the loop. Unsupportable operands are
1612   those that are defined by a previous iteration of the loop (as is the case
1613   in reduction/induction computations).  */
1614
1615bool
1616vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt,
1617		    tree *def, enum vect_def_type *dt)
1618{
1619  basic_block bb;
1620  stmt_vec_info stmt_vinfo;
1621  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1622
1623  *def_stmt = NULL_TREE;
1624  *def = NULL_TREE;
1625
1626  if (vect_print_dump_info (REPORT_DETAILS))
1627    {
1628      fprintf (vect_dump, "vect_is_simple_use: operand ");
1629      print_generic_expr (vect_dump, operand, TDF_SLIM);
1630    }
1631
1632  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
1633    {
1634      *dt = vect_constant_def;
1635      return true;
1636    }
1637
1638  if (TREE_CODE (operand) != SSA_NAME)
1639    {
1640      if (vect_print_dump_info (REPORT_DETAILS))
1641        fprintf (vect_dump, "not ssa-name.");
1642      return false;
1643    }
1644
1645  *def_stmt = SSA_NAME_DEF_STMT (operand);
1646  if (*def_stmt == NULL_TREE )
1647    {
1648      if (vect_print_dump_info (REPORT_DETAILS))
1649        fprintf (vect_dump, "no def_stmt.");
1650      return false;
1651    }
1652
1653  if (vect_print_dump_info (REPORT_DETAILS))
1654    {
1655      fprintf (vect_dump, "def_stmt: ");
1656      print_generic_expr (vect_dump, *def_stmt, TDF_SLIM);
1657    }
1658
1659  /* empty stmt is expected only in case of a function argument.
1660     (Otherwise - we expect a phi_node or a modify_expr).  */
1661  if (IS_EMPTY_STMT (*def_stmt))
1662    {
1663      tree arg = TREE_OPERAND (*def_stmt, 0);
1664      if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
1665        {
1666          *def = operand;
1667          *dt = vect_invariant_def;
1668          return true;
1669        }
1670
1671      if (vect_print_dump_info (REPORT_DETAILS))
1672        fprintf (vect_dump, "Unexpected empty stmt.");
1673      return false;
1674    }
1675
1676  bb = bb_for_stmt (*def_stmt);
1677  if (!flow_bb_inside_loop_p (loop, bb))
1678    *dt = vect_invariant_def;
1679  else
1680    {
1681      stmt_vinfo = vinfo_for_stmt (*def_stmt);
1682      *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
1683    }
1684
1685  if (*dt == vect_unknown_def_type)
1686    {
1687      if (vect_print_dump_info (REPORT_DETAILS))
1688        fprintf (vect_dump, "Unsupported pattern.");
1689      return false;
1690    }
1691
1692  /* stmts inside the loop that have been identified as performing
1693     a reduction operation cannot have uses in the loop.  */
1694  if (*dt == vect_reduction_def && TREE_CODE (*def_stmt) != PHI_NODE)
1695    {
1696      if (vect_print_dump_info (REPORT_DETAILS))
1697        fprintf (vect_dump, "reduction used in loop.");
1698      return false;
1699    }
1700
1701  if (vect_print_dump_info (REPORT_DETAILS))
1702    fprintf (vect_dump, "type of def: %d.",*dt);
1703
1704  switch (TREE_CODE (*def_stmt))
1705    {
1706    case PHI_NODE:
1707      *def = PHI_RESULT (*def_stmt);
1708      gcc_assert (*dt == vect_induction_def || *dt == vect_reduction_def
1709                  || *dt == vect_invariant_def);
1710      break;
1711
1712    case MODIFY_EXPR:
1713      *def = TREE_OPERAND (*def_stmt, 0);
1714      gcc_assert (*dt == vect_loop_def || *dt == vect_invariant_def);
1715      break;
1716
1717    default:
1718      if (vect_print_dump_info (REPORT_DETAILS))
1719        fprintf (vect_dump, "unsupported defining stmt: ");
1720      return false;
1721    }
1722
1723  if (*dt == vect_induction_def)
1724    {
1725      if (vect_print_dump_info (REPORT_DETAILS))
1726        fprintf (vect_dump, "induction not supported.");
1727      return false;
1728    }
1729
1730  return true;
1731}
1732
1733
1734/* Function reduction_code_for_scalar_code
1735
1736   Input:
1737   CODE - tree_code of a reduction operations.
1738
1739   Output:
1740   REDUC_CODE - the corresponding tree-code to be used to reduce the
1741      vector of partial results into a single scalar result (which
1742      will also reside in a vector).
1743
1744   Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise.  */
1745
1746bool
1747reduction_code_for_scalar_code (enum tree_code code,
1748                                enum tree_code *reduc_code)
1749{
1750  switch (code)
1751  {
1752  case MAX_EXPR:
1753    *reduc_code = REDUC_MAX_EXPR;
1754    return true;
1755
1756  case MIN_EXPR:
1757    *reduc_code = REDUC_MIN_EXPR;
1758    return true;
1759
1760  case PLUS_EXPR:
1761    *reduc_code = REDUC_PLUS_EXPR;
1762    return true;
1763
1764  default:
1765    return false;
1766  }
1767}
1768
1769
1770/* Function vect_is_simple_reduction
1771
1772   Detect a cross-iteration def-use cucle that represents a simple
1773   reduction computation. We look for the following pattern:
1774
1775   loop_header:
1776     a1 = phi < a0, a2 >
1777     a3 = ...
1778     a2 = operation (a3, a1)
1779
1780   such that:
1781   1. operation is commutative and associative and it is safe to
1782      change the order of the computation.
1783   2. no uses for a2 in the loop (a2 is used out of the loop)
1784   3. no uses of a1 in the loop besides the reduction operation.
1785
1786   Condition 1 is tested here.
1787   Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.  */
1788
1789tree
1790vect_is_simple_reduction (struct loop *loop, tree phi)
1791{
1792  edge latch_e = loop_latch_edge (loop);
1793  tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1794  tree def_stmt, def1, def2;
1795  enum tree_code code;
1796  int op_type;
1797  tree operation, op1, op2;
1798  tree type;
1799
1800  if (TREE_CODE (loop_arg) != SSA_NAME)
1801    {
1802      if (vect_print_dump_info (REPORT_DETAILS))
1803        {
1804          fprintf (vect_dump, "reduction: not ssa_name: ");
1805          print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1806        }
1807      return NULL_TREE;
1808    }
1809
1810  def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1811  if (!def_stmt)
1812    {
1813      if (vect_print_dump_info (REPORT_DETAILS))
1814        fprintf (vect_dump, "reduction: no def_stmt.");
1815      return NULL_TREE;
1816    }
1817
1818  if (TREE_CODE (def_stmt) != MODIFY_EXPR)
1819    {
1820      if (vect_print_dump_info (REPORT_DETAILS))
1821        {
1822          print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
1823        }
1824      return NULL_TREE;
1825    }
1826
1827  operation = TREE_OPERAND (def_stmt, 1);
1828  code = TREE_CODE (operation);
1829  if (!commutative_tree_code (code) || !associative_tree_code (code))
1830    {
1831      if (vect_print_dump_info (REPORT_DETAILS))
1832        {
1833          fprintf (vect_dump, "reduction: not commutative/associative: ");
1834          print_generic_expr (vect_dump, operation, TDF_SLIM);
1835        }
1836      return NULL_TREE;
1837    }
1838
1839  op_type = TREE_CODE_LENGTH (code);
1840  if (op_type != binary_op)
1841    {
1842      if (vect_print_dump_info (REPORT_DETAILS))
1843        {
1844          fprintf (vect_dump, "reduction: not binary operation: ");
1845          print_generic_expr (vect_dump, operation, TDF_SLIM);
1846        }
1847      return NULL_TREE;
1848    }
1849
1850  op1 = TREE_OPERAND (operation, 0);
1851  op2 = TREE_OPERAND (operation, 1);
1852  if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1853    {
1854      if (vect_print_dump_info (REPORT_DETAILS))
1855        {
1856          fprintf (vect_dump, "reduction: uses not ssa_names: ");
1857          print_generic_expr (vect_dump, operation, TDF_SLIM);
1858        }
1859      return NULL_TREE;
1860    }
1861
1862  /* Check that it's ok to change the order of the computation.  */
1863  type = TREE_TYPE (operation);
1864  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
1865      || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
1866    {
1867      if (vect_print_dump_info (REPORT_DETAILS))
1868        {
1869          fprintf (vect_dump, "reduction: multiple types: operation type: ");
1870          print_generic_expr (vect_dump, type, TDF_SLIM);
1871          fprintf (vect_dump, ", operands types: ");
1872          print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1873          fprintf (vect_dump, ",");
1874          print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1875        }
1876      return NULL_TREE;
1877    }
1878
1879  /* CHECKME: check for !flag_finite_math_only too?  */
1880  if (SCALAR_FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
1881    {
1882      /* Changing the order of operations changes the semantics.  */
1883      if (vect_print_dump_info (REPORT_DETAILS))
1884        {
1885          fprintf (vect_dump, "reduction: unsafe fp math optimization: ");
1886          print_generic_expr (vect_dump, operation, TDF_SLIM);
1887        }
1888      return NULL_TREE;
1889    }
1890  else if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && flag_trapv)
1891    {
1892      /* Changing the order of operations changes the semantics.  */
1893      if (vect_print_dump_info (REPORT_DETAILS))
1894        {
1895          fprintf (vect_dump, "reduction: unsafe int math optimization: ");
1896          print_generic_expr (vect_dump, operation, TDF_SLIM);
1897        }
1898      return NULL_TREE;
1899    }
1900
1901  /* reduction is safe. we're dealing with one of the following:
1902     1) integer arithmetic and no trapv
1903     2) floating point arithmetic, and special flags permit this optimization.
1904   */
1905  def1 = SSA_NAME_DEF_STMT (op1);
1906  def2 = SSA_NAME_DEF_STMT (op2);
1907  if (!def1 || !def2)
1908    {
1909      if (vect_print_dump_info (REPORT_DETAILS))
1910        {
1911          fprintf (vect_dump, "reduction: no defs for operands: ");
1912          print_generic_expr (vect_dump, operation, TDF_SLIM);
1913        }
1914      return NULL_TREE;
1915    }
1916
1917  if (TREE_CODE (def1) == MODIFY_EXPR
1918      && flow_bb_inside_loop_p (loop, bb_for_stmt (def1))
1919      && def2 == phi)
1920    {
1921      if (vect_print_dump_info (REPORT_DETAILS))
1922        {
1923          fprintf (vect_dump, "detected reduction:");
1924          print_generic_expr (vect_dump, operation, TDF_SLIM);
1925        }
1926      return def_stmt;
1927    }
1928  else if (TREE_CODE (def2) == MODIFY_EXPR
1929      && flow_bb_inside_loop_p (loop, bb_for_stmt (def2))
1930      && def1 == phi)
1931    {
1932      /* Swap operands (just for simplicity - so that the rest of the code
1933	 can assume that the reduction variable is always the last (second)
1934	 argument).  */
1935      if (vect_print_dump_info (REPORT_DETAILS))
1936        {
1937          fprintf (vect_dump, "detected reduction: need to swap operands:");
1938          print_generic_expr (vect_dump, operation, TDF_SLIM);
1939        }
1940      swap_tree_operands (def_stmt, &TREE_OPERAND (operation, 0),
1941				    &TREE_OPERAND (operation, 1));
1942      return def_stmt;
1943    }
1944  else
1945    {
1946      if (vect_print_dump_info (REPORT_DETAILS))
1947        {
1948          fprintf (vect_dump, "reduction: unknown pattern.");
1949          print_generic_expr (vect_dump, operation, TDF_SLIM);
1950        }
1951      return NULL_TREE;
1952    }
1953}
1954
1955
1956/* Function vect_is_simple_iv_evolution.
1957
1958   FORNOW: A simple evolution of an induction variables in the loop is
1959   considered a polynomial evolution with constant step.  */
1960
1961bool
1962vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
1963			     tree * step)
1964{
1965  tree init_expr;
1966  tree step_expr;
1967
1968  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
1969
1970  /* When there is no evolution in this loop, the evolution function
1971     is not "simple".  */
1972  if (evolution_part == NULL_TREE)
1973    return false;
1974
1975  /* When the evolution is a polynomial of degree >= 2
1976     the evolution function is not "simple".  */
1977  if (tree_is_chrec (evolution_part))
1978    return false;
1979
1980  step_expr = evolution_part;
1981  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1982                                                           loop_nb));
1983
1984  if (vect_print_dump_info (REPORT_DETAILS))
1985    {
1986      fprintf (vect_dump, "step: ");
1987      print_generic_expr (vect_dump, step_expr, TDF_SLIM);
1988      fprintf (vect_dump, ",  init: ");
1989      print_generic_expr (vect_dump, init_expr, TDF_SLIM);
1990    }
1991
1992  *init = init_expr;
1993  *step = step_expr;
1994
1995  if (TREE_CODE (step_expr) != INTEGER_CST)
1996    {
1997      if (vect_print_dump_info (REPORT_DETAILS))
1998        fprintf (vect_dump, "step unknown.");
1999      return false;
2000    }
2001
2002  return true;
2003}
2004
2005
2006/* Function vectorize_loops.
2007
2008   Entry Point to loop vectorization phase.  */
2009
2010void
2011vectorize_loops (struct loops *loops)
2012{
2013  unsigned int i;
2014  unsigned int num_vectorized_loops = 0;
2015
2016  /* Fix the verbosity level if not defined explicitly by the user.  */
2017  vect_set_dump_settings ();
2018
2019  /* Allocate the bitmap that records which virtual variables that
2020     need to be renamed.  */
2021  vect_vnames_to_rename = BITMAP_ALLOC (NULL);
2022
2023  /*  ----------- Analyze loops. -----------  */
2024
2025  /* If some loop was duplicated, it gets bigger number
2026     than all previously defined loops. This fact allows us to run
2027     only over initial loops skipping newly generated ones.  */
2028  vect_loops_num = loops->num;
2029  for (i = 1; i < vect_loops_num; i++)
2030    {
2031      loop_vec_info loop_vinfo;
2032      struct loop *loop = loops->parray[i];
2033
2034      if (!loop)
2035        continue;
2036
2037      vect_loop_location = find_loop_location (loop);
2038      loop_vinfo = vect_analyze_loop (loop);
2039      loop->aux = loop_vinfo;
2040
2041      if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
2042	continue;
2043
2044      vect_transform_loop (loop_vinfo, loops);
2045      num_vectorized_loops++;
2046    }
2047
2048  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
2049    fprintf (vect_dump, "vectorized %u loops in function.\n",
2050	     num_vectorized_loops);
2051
2052  /*  ----------- Finalize. -----------  */
2053
2054  BITMAP_FREE (vect_vnames_to_rename);
2055
2056  for (i = 1; i < vect_loops_num; i++)
2057    {
2058      struct loop *loop = loops->parray[i];
2059      loop_vec_info loop_vinfo;
2060
2061      if (!loop)
2062	continue;
2063      loop_vinfo = loop->aux;
2064      destroy_loop_vec_info (loop_vinfo);
2065      loop->aux = NULL;
2066    }
2067}
2068