1/* Dead code elimination pass for the GNU compiler.
2   Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Ben Elliston <bje@redhat.com>
4   and Andrew MacLeod <amacleod@redhat.com>
5   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it
10under the terms of the GNU General Public License as published by the
11Free Software Foundation; either version 2, or (at your option) any
12later version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT
15ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING.  If not, write to the Free
21Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2202110-1301, USA.  */
23
24/* Dead code elimination.
25
26   References:
27
28     Building an Optimizing Compiler,
29     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31     Advanced Compiler Design and Implementation,
32     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34   Dead-code elimination is the removal of statements which have no
35   impact on the program's output.  "Dead statements" have no impact
36   on the program's output, while "necessary statements" may have
37   impact on the output.
38
39   The algorithm consists of three phases:
40   1. Marking as necessary all statements known to be necessary,
41      e.g. most function calls, writing a value to memory, etc;
42   2. Propagating necessary statements, e.g., the statements
43      giving values to operands in necessary statements; and
44   3. Removing dead statements.  */
45
46#include "config.h"
47#include "system.h"
48#include "coretypes.h"
49#include "tm.h"
50#include "ggc.h"
51
52/* These RTL headers are needed for basic-block.h.  */
53#include "rtl.h"
54#include "tm_p.h"
55#include "hard-reg-set.h"
56#include "obstack.h"
57#include "basic-block.h"
58
59#include "tree.h"
60#include "diagnostic.h"
61#include "tree-flow.h"
62#include "tree-gimple.h"
63#include "tree-dump.h"
64#include "tree-pass.h"
65#include "timevar.h"
66#include "flags.h"
67#include "cfgloop.h"
68#include "tree-scalar-evolution.h"
69
70static struct stmt_stats
71{
72  int total;
73  int total_phis;
74  int removed;
75  int removed_phis;
76} stats;
77
78static VEC(tree,heap) *worklist;
79
80/* Vector indicating an SSA name has already been processed and marked
81   as necessary.  */
82static sbitmap processed;
83
84/* Vector indicating that last_stmt if a basic block has already been
85   marked as necessary.  */
86static sbitmap last_stmt_necessary;
87
88/* Before we can determine whether a control branch is dead, we need to
89   compute which blocks are control dependent on which edges.
90
91   We expect each block to be control dependent on very few edges so we
92   use a bitmap for each block recording its edges.  An array holds the
93   bitmap.  The Ith bit in the bitmap is set if that block is dependent
94   on the Ith edge.  */
95static bitmap *control_dependence_map;
96
97/* Vector indicating that a basic block has already had all the edges
98   processed that it is control dependent on.  */
99static sbitmap visited_control_parents;
100
101/* TRUE if this pass alters the CFG (by removing control statements).
102   FALSE otherwise.
103
104   If this pass alters the CFG, then it will arrange for the dominators
105   to be recomputed.  */
106static bool cfg_altered;
107
108/* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
109   for which the block with index N is control dependent.  */
110#define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE)		      \
111  {									      \
112    bitmap_iterator bi;							      \
113									      \
114    EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi)  \
115      {									      \
116	CODE;								      \
117      }									      \
118  }
119
120/* Local function prototypes.  */
121static inline void set_control_dependence_map_bit (basic_block, int);
122static inline void clear_control_dependence_bitmap (basic_block);
123static void find_all_control_dependences (struct edge_list *);
124static void find_control_dependence (struct edge_list *, int);
125static inline basic_block find_pdom (basic_block);
126
127static inline void mark_stmt_necessary (tree, bool);
128static inline void mark_operand_necessary (tree, bool);
129
130static void mark_stmt_if_obviously_necessary (tree, bool);
131static void find_obviously_necessary_stmts (struct edge_list *);
132
133static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
134static void propagate_necessity (struct edge_list *);
135
136static void eliminate_unnecessary_stmts (void);
137static void remove_dead_phis (basic_block);
138static void remove_dead_stmt (block_stmt_iterator *, basic_block);
139
140static void print_stats (void);
141static void tree_dce_init (bool);
142static void tree_dce_done (bool);
143
144/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
145static inline void
146set_control_dependence_map_bit (basic_block bb, int edge_index)
147{
148  if (bb == ENTRY_BLOCK_PTR)
149    return;
150  gcc_assert (bb != EXIT_BLOCK_PTR);
151  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
152}
153
154/* Clear all control dependences for block BB.  */
155static inline
156void clear_control_dependence_bitmap (basic_block bb)
157{
158  bitmap_clear (control_dependence_map[bb->index]);
159}
160
161/* Record all blocks' control dependences on all edges in the edge
162   list EL, ala Morgan, Section 3.6.  */
163
164static void
165find_all_control_dependences (struct edge_list *el)
166{
167  int i;
168
169  for (i = 0; i < NUM_EDGES (el); ++i)
170    find_control_dependence (el, i);
171}
172
173/* Determine all blocks' control dependences on the given edge with edge_list
174   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
175
176static void
177find_control_dependence (struct edge_list *el, int edge_index)
178{
179  basic_block current_block;
180  basic_block ending_block;
181
182  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
183
184  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
185    ending_block = ENTRY_BLOCK_PTR->next_bb;
186  else
187    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
188
189  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
190       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
191       current_block = find_pdom (current_block))
192    {
193      edge e = INDEX_EDGE (el, edge_index);
194
195      /* For abnormal edges, we don't make current_block control
196	 dependent because instructions that throw are always necessary
197	 anyway.  */
198      if (e->flags & EDGE_ABNORMAL)
199	continue;
200
201      set_control_dependence_map_bit (current_block, edge_index);
202    }
203}
204
205/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
206   This function is necessary because some blocks have negative numbers.  */
207
208static inline basic_block
209find_pdom (basic_block block)
210{
211  gcc_assert (block != ENTRY_BLOCK_PTR);
212
213  if (block == EXIT_BLOCK_PTR)
214    return EXIT_BLOCK_PTR;
215  else
216    {
217      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
218      if (! bb)
219	return EXIT_BLOCK_PTR;
220      return bb;
221    }
222}
223
224#define NECESSARY(stmt)		stmt->common.asm_written_flag
225
226/* If STMT is not already marked necessary, mark it, and add it to the
227   worklist if ADD_TO_WORKLIST is true.  */
228static inline void
229mark_stmt_necessary (tree stmt, bool add_to_worklist)
230{
231  gcc_assert (stmt);
232  gcc_assert (!DECL_P (stmt));
233
234  if (NECESSARY (stmt))
235    return;
236
237  if (dump_file && (dump_flags & TDF_DETAILS))
238    {
239      fprintf (dump_file, "Marking useful stmt: ");
240      print_generic_stmt (dump_file, stmt, TDF_SLIM);
241      fprintf (dump_file, "\n");
242    }
243
244  NECESSARY (stmt) = 1;
245  if (add_to_worklist)
246    VEC_safe_push (tree, heap, worklist, stmt);
247}
248
249/* Mark the statement defining operand OP as necessary.  PHIONLY is true
250   if we should only mark it necessary if it is a phi node.  */
251
252static inline void
253mark_operand_necessary (tree op, bool phionly)
254{
255  tree stmt;
256  int ver;
257
258  gcc_assert (op);
259
260  ver = SSA_NAME_VERSION (op);
261  if (TEST_BIT (processed, ver))
262    return;
263  SET_BIT (processed, ver);
264
265  stmt = SSA_NAME_DEF_STMT (op);
266  gcc_assert (stmt);
267
268  if (NECESSARY (stmt)
269      || IS_EMPTY_STMT (stmt)
270      || (phionly && TREE_CODE (stmt) != PHI_NODE))
271    return;
272
273  NECESSARY (stmt) = 1;
274  VEC_safe_push (tree, heap, worklist, stmt);
275}
276
277
278/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
279   it can make other statements necessary.
280
281   If AGGRESSIVE is false, control statements are conservatively marked as
282   necessary.  */
283
284static void
285mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
286{
287  stmt_ann_t ann;
288  tree op, def;
289  ssa_op_iter iter;
290
291  /* With non-call exceptions, we have to assume that all statements could
292     throw.  If a statement may throw, it is inherently necessary.  */
293  if (flag_non_call_exceptions
294      && tree_could_throw_p (stmt))
295    {
296      mark_stmt_necessary (stmt, true);
297      return;
298    }
299
300  /* Statements that are implicitly live.  Most function calls, asm and return
301     statements are required.  Labels and BIND_EXPR nodes are kept because
302     they are control flow, and we have no way of knowing whether they can be
303     removed.  DCE can eliminate all the other statements in a block, and CFG
304     can then remove the block and labels.  */
305  switch (TREE_CODE (stmt))
306    {
307    case BIND_EXPR:
308    case LABEL_EXPR:
309    case CASE_LABEL_EXPR:
310      mark_stmt_necessary (stmt, false);
311      return;
312
313    case ASM_EXPR:
314    case RESX_EXPR:
315    case RETURN_EXPR:
316      mark_stmt_necessary (stmt, true);
317      return;
318
319    case CALL_EXPR:
320      /* Most, but not all function calls are required.  Function calls that
321	 produce no result and have no side effects (i.e. const pure
322	 functions) are unnecessary.  */
323      if (TREE_SIDE_EFFECTS (stmt))
324	mark_stmt_necessary (stmt, true);
325      return;
326
327    case MODIFY_EXPR:
328      op = get_call_expr_in (stmt);
329      if (op && TREE_SIDE_EFFECTS (op))
330	{
331	  mark_stmt_necessary (stmt, true);
332	  return;
333	}
334
335      /* These values are mildly magic bits of the EH runtime.  We can't
336	 see the entire lifetime of these values until landing pads are
337	 generated.  */
338      if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
339	  || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
340	{
341	  mark_stmt_necessary (stmt, true);
342	  return;
343	}
344      break;
345
346    case GOTO_EXPR:
347      gcc_assert (!simple_goto_p (stmt));
348      mark_stmt_necessary (stmt, true);
349      return;
350
351    case COND_EXPR:
352      gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
353      /* Fall through.  */
354
355    case SWITCH_EXPR:
356      if (! aggressive)
357	mark_stmt_necessary (stmt, true);
358      break;
359
360    default:
361      break;
362    }
363
364  ann = stmt_ann (stmt);
365
366  /* If the statement has volatile operands, it needs to be preserved.
367     Same for statements that can alter control flow in unpredictable
368     ways.  */
369  if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
370    {
371      mark_stmt_necessary (stmt, true);
372      return;
373    }
374
375  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
376    {
377      if (is_global_var (SSA_NAME_VAR (def)))
378	{
379	  mark_stmt_necessary (stmt, true);
380	  return;
381        }
382    }
383  if (is_hidden_global_store (stmt))
384    {
385      mark_stmt_necessary (stmt, true);
386      return;
387    }
388
389  return;
390}
391
392/* Find obviously necessary statements.  These are things like most function
393   calls, and stores to file level variables.
394
395   If EL is NULL, control statements are conservatively marked as
396   necessary.  Otherwise it contains the list of edges used by control
397   dependence analysis.  */
398
399static void
400find_obviously_necessary_stmts (struct edge_list *el)
401{
402  basic_block bb;
403  block_stmt_iterator i;
404  edge e;
405
406  FOR_EACH_BB (bb)
407    {
408      tree phi;
409
410      /* Check any PHI nodes in the block.  */
411      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
412	{
413	  NECESSARY (phi) = 0;
414
415	  /* PHIs for virtual variables do not directly affect code
416	     generation and need not be considered inherently necessary
417	     regardless of the bits set in their decl.
418
419	     Thus, we only need to mark PHIs for real variables which
420	     need their result preserved as being inherently necessary.  */
421	  if (is_gimple_reg (PHI_RESULT (phi))
422	      && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
423	    mark_stmt_necessary (phi, true);
424        }
425
426      /* Check all statements in the block.  */
427      for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
428	{
429	  tree stmt = bsi_stmt (i);
430	  NECESSARY (stmt) = 0;
431	  mark_stmt_if_obviously_necessary (stmt, el != NULL);
432	}
433    }
434
435  if (el)
436    {
437      /* Prevent the loops from being removed.  We must keep the infinite loops,
438	 and we currently do not have a means to recognize the finite ones.  */
439      FOR_EACH_BB (bb)
440	{
441	  edge_iterator ei;
442	  FOR_EACH_EDGE (e, ei, bb->succs)
443	    if (e->flags & EDGE_DFS_BACK)
444	      mark_control_dependent_edges_necessary (e->dest, el);
445	}
446    }
447}
448
449/* Make corresponding control dependent edges necessary.  We only
450   have to do this once for each basic block, so we clear the bitmap
451   after we're done.  */
452static void
453mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
454{
455  unsigned edge_number;
456
457  gcc_assert (bb != EXIT_BLOCK_PTR);
458
459  if (bb == ENTRY_BLOCK_PTR)
460    return;
461
462  EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
463    {
464      tree t;
465      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
466
467      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
468	continue;
469      SET_BIT (last_stmt_necessary, cd_bb->index);
470
471      t = last_stmt (cd_bb);
472      if (t && is_ctrl_stmt (t))
473	mark_stmt_necessary (t, true);
474    });
475}
476
477/* Propagate necessity using the operands of necessary statements.  Process
478   the uses on each statement in the worklist, and add all feeding statements
479   which contribute to the calculation of this value to the worklist.
480
481   In conservative mode, EL is NULL.  */
482
483static void
484propagate_necessity (struct edge_list *el)
485{
486  tree i;
487  bool aggressive = (el ? true : false);
488
489  if (dump_file && (dump_flags & TDF_DETAILS))
490    fprintf (dump_file, "\nProcessing worklist:\n");
491
492  while (VEC_length (tree, worklist) > 0)
493    {
494      /* Take `i' from worklist.  */
495      i = VEC_pop (tree, worklist);
496
497      if (dump_file && (dump_flags & TDF_DETAILS))
498	{
499	  fprintf (dump_file, "processing: ");
500	  print_generic_stmt (dump_file, i, TDF_SLIM);
501	  fprintf (dump_file, "\n");
502	}
503
504      if (aggressive)
505	{
506	  /* Mark the last statements of the basic blocks that the block
507	     containing `i' is control dependent on, but only if we haven't
508	     already done so.  */
509	  basic_block bb = bb_for_stmt (i);
510	  if (bb != ENTRY_BLOCK_PTR
511	      && ! TEST_BIT (visited_control_parents, bb->index))
512	    {
513	      SET_BIT (visited_control_parents, bb->index);
514	      mark_control_dependent_edges_necessary (bb, el);
515	    }
516	}
517
518      if (TREE_CODE (i) == PHI_NODE)
519	{
520	  /* PHI nodes are somewhat special in that each PHI alternative has
521	     data and control dependencies.  All the statements feeding the
522	     PHI node's arguments are always necessary.  In aggressive mode,
523	     we also consider the control dependent edges leading to the
524	     predecessor block associated with each PHI alternative as
525	     necessary.  */
526	  int k;
527	  for (k = 0; k < PHI_NUM_ARGS (i); k++)
528            {
529	      tree arg = PHI_ARG_DEF (i, k);
530	      if (TREE_CODE (arg) == SSA_NAME)
531		mark_operand_necessary (arg, false);
532	    }
533
534	  if (aggressive)
535	    {
536	      for (k = 0; k < PHI_NUM_ARGS (i); k++)
537		{
538		  basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
539		  if (arg_bb != ENTRY_BLOCK_PTR
540		      && ! TEST_BIT (visited_control_parents, arg_bb->index))
541		    {
542		      SET_BIT (visited_control_parents, arg_bb->index);
543		      mark_control_dependent_edges_necessary (arg_bb, el);
544		    }
545		}
546	    }
547	}
548      else
549	{
550	  /* Propagate through the operands.  Examine all the USE, VUSE and
551	     V_MAY_DEF operands in this statement.  Mark all the statements
552	     which feed this statement's uses as necessary.  */
553	  ssa_op_iter iter;
554	  tree use;
555
556	  /* The operands of V_MAY_DEF expressions are also needed as they
557	     represent potential definitions that may reach this
558	     statement (V_MAY_DEF operands allow us to follow def-def
559	     links).  */
560
561	  FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
562	    mark_operand_necessary (use, false);
563	}
564    }
565}
566
567
568/* Propagate necessity around virtual phi nodes used in kill operands.
569   The reason this isn't done during propagate_necessity is because we don't
570   want to keep phis around that are just there for must-defs, unless we
571   absolutely have to.  After we've rewritten the reaching definitions to be
572   correct in the previous part of the fixup routine, we can simply propagate
573   around the information about which of these virtual phi nodes are really
574   used, and set the NECESSARY flag accordingly.
575   Note that we do the minimum here to ensure that we keep alive the phis that
576   are actually used in the corrected SSA form.  In particular, some of these
577   phis may now have all of the same operand, and will be deleted by some
578   other pass.  */
579
580static void
581mark_really_necessary_kill_operand_phis (void)
582{
583  basic_block bb;
584  int i;
585
586  /* Seed the worklist with the new virtual phi arguments and virtual
587     uses */
588  FOR_EACH_BB (bb)
589    {
590      block_stmt_iterator bsi;
591      tree phi;
592
593      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
594	{
595	  if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
596	    {
597	      for (i = 0; i < PHI_NUM_ARGS (phi); i++)
598		mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
599	    }
600	}
601
602      for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
603	{
604	  tree stmt = bsi_stmt (bsi);
605
606	  if (NECESSARY (stmt))
607	    {
608	      use_operand_p use_p;
609	      ssa_op_iter iter;
610	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
611					SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
612		{
613		  tree use = USE_FROM_PTR (use_p);
614		  mark_operand_necessary (use, true);
615		}
616	    }
617	}
618    }
619
620  /* Mark all virtual phis still in use as necessary, and all of their
621     arguments that are phis as necessary.  */
622  while (VEC_length (tree, worklist) > 0)
623    {
624      tree use = VEC_pop (tree, worklist);
625
626      for (i = 0; i < PHI_NUM_ARGS (use); i++)
627	mark_operand_necessary (PHI_ARG_DEF (use, i), true);
628    }
629}
630
631
632
633
634/* Eliminate unnecessary statements. Any instruction not marked as necessary
635   contributes nothing to the program, and can be deleted.  */
636
637static void
638eliminate_unnecessary_stmts (void)
639{
640  basic_block bb;
641  block_stmt_iterator i;
642
643  if (dump_file && (dump_flags & TDF_DETAILS))
644    fprintf (dump_file, "\nEliminating unnecessary statements:\n");
645
646  clear_special_calls ();
647  FOR_EACH_BB (bb)
648    {
649      /* Remove dead PHI nodes.  */
650      remove_dead_phis (bb);
651    }
652
653  FOR_EACH_BB (bb)
654    {
655      /* Remove dead statements.  */
656      for (i = bsi_start (bb); ! bsi_end_p (i) ; )
657	{
658         tree t = bsi_stmt (i);
659
660         stats.total++;
661
662         /* If `i' is not necessary then remove it.  */
663         if (! NECESSARY (t))
664           remove_dead_stmt (&i, bb);
665         else
666           {
667             tree call = get_call_expr_in (t);
668             if (call)
669               notice_special_calls (call);
670             bsi_next (&i);
671           }
672	}
673    }
674 }
675
676/* Remove dead PHI nodes from block BB.  */
677
678static void
679remove_dead_phis (basic_block bb)
680{
681  tree prev, phi;
682
683  prev = NULL_TREE;
684  phi = phi_nodes (bb);
685  while (phi)
686    {
687      stats.total_phis++;
688
689      if (! NECESSARY (phi))
690	{
691	  tree next = PHI_CHAIN (phi);
692
693	  if (dump_file && (dump_flags & TDF_DETAILS))
694	    {
695	      fprintf (dump_file, "Deleting : ");
696	      print_generic_stmt (dump_file, phi, TDF_SLIM);
697	      fprintf (dump_file, "\n");
698	    }
699
700	  remove_phi_node (phi, prev);
701	  stats.removed_phis++;
702	  phi = next;
703	}
704      else
705	{
706	  prev = phi;
707	  phi = PHI_CHAIN (phi);
708	}
709    }
710}
711
712/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
713   containing I so that we don't have to look it up.  */
714
715static void
716remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
717{
718  tree t = bsi_stmt (*i);
719  def_operand_p def_p;
720
721  ssa_op_iter iter;
722
723  if (dump_file && (dump_flags & TDF_DETAILS))
724    {
725      fprintf (dump_file, "Deleting : ");
726      print_generic_stmt (dump_file, t, TDF_SLIM);
727      fprintf (dump_file, "\n");
728    }
729
730  stats.removed++;
731
732  /* If we have determined that a conditional branch statement contributes
733     nothing to the program, then we not only remove it, but we also change
734     the flow graph so that the current block will simply fall-thru to its
735     immediate post-dominator.  The blocks we are circumventing will be
736     removed by cleaup_tree_cfg if this change in the flow graph makes them
737     unreachable.  */
738  if (is_ctrl_stmt (t))
739    {
740      basic_block post_dom_bb;
741
742      /* The post dominance info has to be up-to-date.  */
743      gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
744      /* Get the immediate post dominator of bb.  */
745      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
746      /* Some blocks don't have an immediate post dominator.  This can happen
747	 for example with infinite loops.  Removing an infinite loop is an
748	 inappropriate transformation anyway...  */
749      if (! post_dom_bb)
750	{
751	  bsi_next (i);
752	  return;
753	}
754
755      /* If the post dominator block has PHI nodes, we might be unable
756	 to compute the right PHI args for them.  Since the control
757	 statement is unnecessary, all edges can be regarded as
758	 equivalent, but we have to get rid of the condition, since it
759	 might reference a variable that was determined to be
760	 unnecessary and thus removed.  */
761      if (phi_nodes (post_dom_bb))
762	post_dom_bb = EDGE_SUCC (bb, 0)->dest;
763      else
764	{
765	  /* Redirect the first edge out of BB to reach POST_DOM_BB.  */
766	  redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
767	  PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
768	}
769      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
770      EDGE_SUCC (bb, 0)->count = bb->count;
771
772      /* The edge is no longer associated with a conditional, so it does
773	 not have TRUE/FALSE flags.  */
774      EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
775
776      /* If the edge reaches any block other than the exit, then it is a
777	 fallthru edge; if it reaches the exit, then it is not a fallthru
778	 edge.  */
779      if (post_dom_bb != EXIT_BLOCK_PTR)
780	EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
781      else
782	EDGE_SUCC (bb, 0)->flags &= ~EDGE_FALLTHRU;
783
784      /* Remove the remaining the outgoing edges.  */
785      while (!single_succ_p (bb))
786	{
787	  /* FIXME.  When we remove the edge, we modify the CFG, which
788	     in turn modifies the dominator and post-dominator tree.
789	     Is it safe to postpone recomputing the dominator and
790	     post-dominator tree until the end of this pass given that
791	     the post-dominators are used above?  */
792	  cfg_altered = true;
793          remove_edge (EDGE_SUCC (bb, 1));
794	}
795    }
796
797  FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
798    {
799      tree def = DEF_FROM_PTR (def_p);
800      mark_sym_for_renaming (SSA_NAME_VAR (def));
801    }
802  bsi_remove (i);
803  release_defs (t);
804}
805
806/* Print out removed statement statistics.  */
807
808static void
809print_stats (void)
810{
811  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
812    {
813      float percg;
814
815      percg = ((float) stats.removed / (float) stats.total) * 100;
816      fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
817	       stats.removed, stats.total, (int) percg);
818
819      if (stats.total_phis == 0)
820	percg = 0;
821      else
822	percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
823
824      fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
825	       stats.removed_phis, stats.total_phis, (int) percg);
826    }
827}
828
829/* Initialization for this pass.  Set up the used data structures.  */
830
831static void
832tree_dce_init (bool aggressive)
833{
834  memset ((void *) &stats, 0, sizeof (stats));
835
836  if (aggressive)
837    {
838      int i;
839
840      control_dependence_map
841	= xmalloc (last_basic_block * sizeof (bitmap));
842      for (i = 0; i < last_basic_block; ++i)
843	control_dependence_map[i] = BITMAP_ALLOC (NULL);
844
845      last_stmt_necessary = sbitmap_alloc (last_basic_block);
846      sbitmap_zero (last_stmt_necessary);
847    }
848
849  processed = sbitmap_alloc (num_ssa_names + 1);
850  sbitmap_zero (processed);
851
852  worklist = VEC_alloc (tree, heap, 64);
853  cfg_altered = false;
854}
855
856/* Cleanup after this pass.  */
857
858static void
859tree_dce_done (bool aggressive)
860{
861  if (aggressive)
862    {
863      int i;
864
865      for (i = 0; i < last_basic_block; ++i)
866	BITMAP_FREE (control_dependence_map[i]);
867      free (control_dependence_map);
868
869      sbitmap_free (visited_control_parents);
870      sbitmap_free (last_stmt_necessary);
871    }
872
873  sbitmap_free (processed);
874
875  VEC_free (tree, heap, worklist);
876}
877
878/* Main routine to eliminate dead code.
879
880   AGGRESSIVE controls the aggressiveness of the algorithm.
881   In conservative mode, we ignore control dependence and simply declare
882   all but the most trivially dead branches necessary.  This mode is fast.
883   In aggressive mode, control dependences are taken into account, which
884   results in more dead code elimination, but at the cost of some time.
885
886   FIXME: Aggressive mode before PRE doesn't work currently because
887	  the dominance info is not invalidated after DCE1.  This is
888	  not an issue right now because we only run aggressive DCE
889	  as the last tree SSA pass, but keep this in mind when you
890	  start experimenting with pass ordering.  */
891
892static void
893perform_tree_ssa_dce (bool aggressive)
894{
895  struct edge_list *el = NULL;
896
897  tree_dce_init (aggressive);
898
899  if (aggressive)
900    {
901      /* Compute control dependence.  */
902      timevar_push (TV_CONTROL_DEPENDENCES);
903      calculate_dominance_info (CDI_POST_DOMINATORS);
904      el = create_edge_list ();
905      find_all_control_dependences (el);
906      timevar_pop (TV_CONTROL_DEPENDENCES);
907
908      visited_control_parents = sbitmap_alloc (last_basic_block);
909      sbitmap_zero (visited_control_parents);
910
911      mark_dfs_back_edges ();
912    }
913
914  find_obviously_necessary_stmts (el);
915
916  propagate_necessity (el);
917
918  mark_really_necessary_kill_operand_phis ();
919  eliminate_unnecessary_stmts ();
920
921  if (aggressive)
922    free_dominance_info (CDI_POST_DOMINATORS);
923
924  /* If we removed paths in the CFG, then we need to update
925     dominators as well.  I haven't investigated the possibility
926     of incrementally updating dominators.  */
927  if (cfg_altered)
928    free_dominance_info (CDI_DOMINATORS);
929
930  /* Debugging dumps.  */
931  if (dump_file)
932    print_stats ();
933
934  tree_dce_done (aggressive);
935
936  free_edge_list (el);
937}
938
939/* Pass entry points.  */
940static void
941tree_ssa_dce (void)
942{
943  perform_tree_ssa_dce (/*aggressive=*/false);
944}
945
946static void
947tree_ssa_dce_loop (void)
948{
949  perform_tree_ssa_dce (/*aggressive=*/false);
950  free_numbers_of_iterations_estimates (current_loops);
951  scev_reset ();
952}
953
954static void
955tree_ssa_cd_dce (void)
956{
957  perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
958}
959
960static bool
961gate_dce (void)
962{
963  return flag_tree_dce != 0;
964}
965
966struct tree_opt_pass pass_dce =
967{
968  "dce",				/* name */
969  gate_dce,				/* gate */
970  tree_ssa_dce,				/* execute */
971  NULL,					/* sub */
972  NULL,					/* next */
973  0,					/* static_pass_number */
974  TV_TREE_DCE,				/* tv_id */
975  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
976  0,					/* properties_provided */
977  0,					/* properties_destroyed */
978  0,					/* todo_flags_start */
979  TODO_dump_func
980    | TODO_update_ssa
981    | TODO_cleanup_cfg
982    | TODO_ggc_collect
983    | TODO_verify_ssa,			/* todo_flags_finish */
984  0					/* letter */
985};
986
987struct tree_opt_pass pass_dce_loop =
988{
989  "dceloop",				/* name */
990  gate_dce,				/* gate */
991  tree_ssa_dce_loop,			/* execute */
992  NULL,					/* sub */
993  NULL,					/* next */
994  0,					/* static_pass_number */
995  TV_TREE_DCE,				/* tv_id */
996  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
997  0,					/* properties_provided */
998  0,					/* properties_destroyed */
999  0,					/* todo_flags_start */
1000  TODO_dump_func
1001    | TODO_update_ssa
1002    | TODO_cleanup_cfg
1003    | TODO_verify_ssa,			/* todo_flags_finish */
1004  0					/* letter */
1005};
1006
1007struct tree_opt_pass pass_cd_dce =
1008{
1009  "cddce",				/* name */
1010  gate_dce,				/* gate */
1011  tree_ssa_cd_dce,			/* execute */
1012  NULL,					/* sub */
1013  NULL,					/* next */
1014  0,					/* static_pass_number */
1015  TV_TREE_CD_DCE,			/* tv_id */
1016  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
1017  0,					/* properties_provided */
1018  0,					/* properties_destroyed */
1019  0,					/* todo_flags_start */
1020  TODO_dump_func
1021    | TODO_update_ssa
1022    | TODO_cleanup_cfg
1023    | TODO_ggc_collect
1024    | TODO_verify_ssa
1025    | TODO_verify_flow,			/* todo_flags_finish */
1026  0					/* letter */
1027};
1028