1/* Analyze RTL for C-Compiler
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "toplev.h"
28#include "rtl.h"
29#include "hard-reg-set.h"
30#include "insn-config.h"
31#include "recog.h"
32#include "target.h"
33#include "output.h"
34#include "tm_p.h"
35#include "flags.h"
36#include "real.h"
37#include "regs.h"
38#include "function.h"
39
40/* Forward declarations */
41static int global_reg_mentioned_p_1 (rtx *, void *);
42static void set_of_1 (rtx, rtx, void *);
43static bool covers_regno_p (rtx, unsigned int);
44static bool covers_regno_no_parallel_p (rtx, unsigned int);
45static int rtx_referenced_p_1 (rtx *, void *);
46static int computed_jump_p_1 (rtx);
47static void parms_set (rtx, rtx, void *);
48
49static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50                                                   rtx, enum machine_mode,
51                                                   unsigned HOST_WIDE_INT);
52static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53                                             enum machine_mode,
54                                             unsigned HOST_WIDE_INT);
55static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56                                                enum machine_mode,
57                                                unsigned int);
58static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59                                          enum machine_mode, unsigned int);
60
61/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62   -1 if a code has no such operand.  */
63static int non_rtx_starting_operands[NUM_RTX_CODE];
64
65/* Bit flags that specify the machine subtype we are compiling for.
66   Bits are tested using macros TARGET_... defined in the tm.h file
67   and set by `-m...' switches.  Must be defined in rtlanal.c.  */
68
69int target_flags;
70
71/* Return 1 if the value of X is unstable
72   (would be different at a different point in the program).
73   The frame pointer, arg pointer, etc. are considered stable
74   (within one function) and so is anything marked `unchanging'.  */
75
76int
77rtx_unstable_p (rtx x)
78{
79  RTX_CODE code = GET_CODE (x);
80  int i;
81  const char *fmt;
82
83  switch (code)
84    {
85    case MEM:
86      return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
87
88    case CONST:
89    case CONST_INT:
90    case CONST_DOUBLE:
91    case CONST_VECTOR:
92    case SYMBOL_REF:
93    case LABEL_REF:
94      return 0;
95
96    case REG:
97      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
98      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99	  /* The arg pointer varies if it is not a fixed register.  */
100	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101	return 0;
102#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103      /* ??? When call-clobbered, the value is stable modulo the restore
104	 that must happen after a call.  This currently screws up local-alloc
105	 into believing that the restore is not needed.  */
106      if (x == pic_offset_table_rtx)
107	return 0;
108#endif
109      return 1;
110
111    case ASM_OPERANDS:
112      if (MEM_VOLATILE_P (x))
113	return 1;
114
115      /* Fall through.  */
116
117    default:
118      break;
119    }
120
121  fmt = GET_RTX_FORMAT (code);
122  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123    if (fmt[i] == 'e')
124      {
125	if (rtx_unstable_p (XEXP (x, i)))
126	  return 1;
127      }
128    else if (fmt[i] == 'E')
129      {
130	int j;
131	for (j = 0; j < XVECLEN (x, i); j++)
132	  if (rtx_unstable_p (XVECEXP (x, i, j)))
133	    return 1;
134      }
135
136  return 0;
137}
138
139/* Return 1 if X has a value that can vary even between two
140   executions of the program.  0 means X can be compared reliably
141   against certain constants or near-constants.
142   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143   zero, we are slightly more conservative.
144   The frame pointer and the arg pointer are considered constant.  */
145
146int
147rtx_varies_p (rtx x, int for_alias)
148{
149  RTX_CODE code;
150  int i;
151  const char *fmt;
152
153  if (!x)
154    return 0;
155
156  code = GET_CODE (x);
157  switch (code)
158    {
159    case MEM:
160      return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
161
162    case CONST:
163    case CONST_INT:
164    case CONST_DOUBLE:
165    case CONST_VECTOR:
166    case SYMBOL_REF:
167    case LABEL_REF:
168      return 0;
169
170    case REG:
171      /* Note that we have to test for the actual rtx used for the frame
172	 and arg pointers and not just the register number in case we have
173	 eliminated the frame and/or arg pointer and are using it
174	 for pseudos.  */
175      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176	  /* The arg pointer varies if it is not a fixed register.  */
177	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178	return 0;
179      if (x == pic_offset_table_rtx
180#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181	  /* ??? When call-clobbered, the value is stable modulo the restore
182	     that must happen after a call.  This currently screws up
183	     local-alloc into believing that the restore is not needed, so we
184	     must return 0 only if we are called from alias analysis.  */
185	  && for_alias
186#endif
187	  )
188	return 0;
189      return 1;
190
191    case LO_SUM:
192      /* The operand 0 of a LO_SUM is considered constant
193	 (in fact it is related specifically to operand 1)
194	 during alias analysis.  */
195      return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196	     || rtx_varies_p (XEXP (x, 1), for_alias);
197
198    case ASM_OPERANDS:
199      if (MEM_VOLATILE_P (x))
200	return 1;
201
202      /* Fall through.  */
203
204    default:
205      break;
206    }
207
208  fmt = GET_RTX_FORMAT (code);
209  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210    if (fmt[i] == 'e')
211      {
212	if (rtx_varies_p (XEXP (x, i), for_alias))
213	  return 1;
214      }
215    else if (fmt[i] == 'E')
216      {
217	int j;
218	for (j = 0; j < XVECLEN (x, i); j++)
219	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220	    return 1;
221      }
222
223  return 0;
224}
225
226/* Return nonzero if the use of X as an address in a MEM can cause a trap.
227   MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228   whether nonzero is returned for unaligned memory accesses on strict
229   alignment machines.  */
230
231static int
232rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
233{
234  enum rtx_code code = GET_CODE (x);
235
236  switch (code)
237    {
238    case SYMBOL_REF:
239      return SYMBOL_REF_WEAK (x);
240
241    case LABEL_REF:
242      return 0;
243
244    case REG:
245      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
246      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247	  || x == stack_pointer_rtx
248	  /* The arg pointer varies if it is not a fixed register.  */
249	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250	return 0;
251      /* All of the virtual frame registers are stack references.  */
252      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254	return 0;
255      return 1;
256
257    case CONST:
258      return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
259
260    case PLUS:
261      /* An address is assumed not to trap if:
262	 - it is an address that can't trap plus a constant integer,
263	   with the proper remainder modulo the mode size if we are
264	   considering unaligned memory references.  */
265      if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
267	{
268	  HOST_WIDE_INT offset;
269
270	  if (!STRICT_ALIGNMENT
271	      || !unaligned_mems
272	      || GET_MODE_SIZE (mode) == 0)
273	    return 0;
274
275	  offset = INTVAL (XEXP (x, 1));
276
277#ifdef SPARC_STACK_BOUNDARY_HACK
278	  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279	     the real alignment of %sp.  However, when it does this, the
280	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
281	  if (SPARC_STACK_BOUNDARY_HACK
282	      && (XEXP (x, 0) == stack_pointer_rtx
283		  || XEXP (x, 0) == hard_frame_pointer_rtx))
284	    offset -= STACK_POINTER_OFFSET;
285#endif
286
287	  return offset % GET_MODE_SIZE (mode) != 0;
288	}
289
290      /* - or it is the pic register plus a constant.  */
291      if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292	return 0;
293
294      return 1;
295
296    case LO_SUM:
297    case PRE_MODIFY:
298      return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
299
300    case PRE_DEC:
301    case PRE_INC:
302    case POST_DEC:
303    case POST_INC:
304    case POST_MODIFY:
305      return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
306
307    default:
308      break;
309    }
310
311  /* If it isn't one of the case above, it can cause a trap.  */
312  return 1;
313}
314
315/* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
316
317int
318rtx_addr_can_trap_p (rtx x)
319{
320  return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
321}
322
323/* Return true if X is an address that is known to not be zero.  */
324
325bool
326nonzero_address_p (rtx x)
327{
328  enum rtx_code code = GET_CODE (x);
329
330  switch (code)
331    {
332    case SYMBOL_REF:
333      return !SYMBOL_REF_WEAK (x);
334
335    case LABEL_REF:
336      return true;
337
338    case REG:
339      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
340      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341	  || x == stack_pointer_rtx
342	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343	return true;
344      /* All of the virtual frame registers are stack references.  */
345      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347	return true;
348      return false;
349
350    case CONST:
351      return nonzero_address_p (XEXP (x, 0));
352
353    case PLUS:
354      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
355	{
356	  /* Pointers aren't allowed to wrap.  If we've got a register
357	     that is known to be a pointer, and a positive offset, then
358	     the composite can't be zero.  */
359	  if (INTVAL (XEXP (x, 1)) > 0
360	      && REG_P (XEXP (x, 0))
361	      && REG_POINTER (XEXP (x, 0)))
362	    return true;
363
364	  return nonzero_address_p (XEXP (x, 0));
365	}
366      /* Handle PIC references.  */
367      else if (XEXP (x, 0) == pic_offset_table_rtx
368	       && CONSTANT_P (XEXP (x, 1)))
369	return true;
370      return false;
371
372    case PRE_MODIFY:
373      /* Similar to the above; allow positive offsets.  Further, since
374	 auto-inc is only allowed in memories, the register must be a
375	 pointer.  */
376      if (GET_CODE (XEXP (x, 1)) == CONST_INT
377	  && INTVAL (XEXP (x, 1)) > 0)
378	return true;
379      return nonzero_address_p (XEXP (x, 0));
380
381    case PRE_INC:
382      /* Similarly.  Further, the offset is always positive.  */
383      return true;
384
385    case PRE_DEC:
386    case POST_DEC:
387    case POST_INC:
388    case POST_MODIFY:
389      return nonzero_address_p (XEXP (x, 0));
390
391    case LO_SUM:
392      return nonzero_address_p (XEXP (x, 1));
393
394    default:
395      break;
396    }
397
398  /* If it isn't one of the case above, might be zero.  */
399  return false;
400}
401
402/* Return 1 if X refers to a memory location whose address
403   cannot be compared reliably with constant addresses,
404   or if X refers to a BLKmode memory object.
405   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406   zero, we are slightly more conservative.  */
407
408int
409rtx_addr_varies_p (rtx x, int for_alias)
410{
411  enum rtx_code code;
412  int i;
413  const char *fmt;
414
415  if (x == 0)
416    return 0;
417
418  code = GET_CODE (x);
419  if (code == MEM)
420    return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
421
422  fmt = GET_RTX_FORMAT (code);
423  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424    if (fmt[i] == 'e')
425      {
426	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427	  return 1;
428      }
429    else if (fmt[i] == 'E')
430      {
431	int j;
432	for (j = 0; j < XVECLEN (x, i); j++)
433	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434	    return 1;
435      }
436  return 0;
437}
438
439/* Return the value of the integer term in X, if one is apparent;
440   otherwise return 0.
441   Only obvious integer terms are detected.
442   This is used in cse.c with the `related_value' field.  */
443
444HOST_WIDE_INT
445get_integer_term (rtx x)
446{
447  if (GET_CODE (x) == CONST)
448    x = XEXP (x, 0);
449
450  if (GET_CODE (x) == MINUS
451      && GET_CODE (XEXP (x, 1)) == CONST_INT)
452    return - INTVAL (XEXP (x, 1));
453  if (GET_CODE (x) == PLUS
454      && GET_CODE (XEXP (x, 1)) == CONST_INT)
455    return INTVAL (XEXP (x, 1));
456  return 0;
457}
458
459/* If X is a constant, return the value sans apparent integer term;
460   otherwise return 0.
461   Only obvious integer terms are detected.  */
462
463rtx
464get_related_value (rtx x)
465{
466  if (GET_CODE (x) != CONST)
467    return 0;
468  x = XEXP (x, 0);
469  if (GET_CODE (x) == PLUS
470      && GET_CODE (XEXP (x, 1)) == CONST_INT)
471    return XEXP (x, 0);
472  else if (GET_CODE (x) == MINUS
473	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
474    return XEXP (x, 0);
475  return 0;
476}
477
478/* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
479   a global register.  */
480
481static int
482global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
483{
484  int regno;
485  rtx x = *loc;
486
487  if (! x)
488    return 0;
489
490  switch (GET_CODE (x))
491    {
492    case SUBREG:
493      if (REG_P (SUBREG_REG (x)))
494	{
495	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
496	      && global_regs[subreg_regno (x)])
497	    return 1;
498	  return 0;
499	}
500      break;
501
502    case REG:
503      regno = REGNO (x);
504      if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
505	return 1;
506      return 0;
507
508    case SCRATCH:
509    case PC:
510    case CC0:
511    case CONST_INT:
512    case CONST_DOUBLE:
513    case CONST:
514    case LABEL_REF:
515      return 0;
516
517    case CALL:
518      /* A non-constant call might use a global register.  */
519      return 1;
520
521    default:
522      break;
523    }
524
525  return 0;
526}
527
528/* Returns nonzero if X mentions a global register.  */
529
530int
531global_reg_mentioned_p (rtx x)
532{
533  if (INSN_P (x))
534    {
535      if (CALL_P (x))
536	{
537	  if (! CONST_OR_PURE_CALL_P (x))
538	    return 1;
539	  x = CALL_INSN_FUNCTION_USAGE (x);
540	  if (x == 0)
541	    return 0;
542	}
543      else
544	x = PATTERN (x);
545    }
546
547  return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
548}
549
550/* Return the number of places FIND appears within X.  If COUNT_DEST is
551   zero, we do not count occurrences inside the destination of a SET.  */
552
553int
554count_occurrences (rtx x, rtx find, int count_dest)
555{
556  int i, j;
557  enum rtx_code code;
558  const char *format_ptr;
559  int count;
560
561  if (x == find)
562    return 1;
563
564  code = GET_CODE (x);
565
566  switch (code)
567    {
568    case REG:
569    case CONST_INT:
570    case CONST_DOUBLE:
571    case CONST_VECTOR:
572    case SYMBOL_REF:
573    case CODE_LABEL:
574    case PC:
575    case CC0:
576      return 0;
577
578    case MEM:
579      if (MEM_P (find) && rtx_equal_p (x, find))
580	return 1;
581      break;
582
583    case SET:
584      if (SET_DEST (x) == find && ! count_dest)
585	return count_occurrences (SET_SRC (x), find, count_dest);
586      break;
587
588    default:
589      break;
590    }
591
592  format_ptr = GET_RTX_FORMAT (code);
593  count = 0;
594
595  for (i = 0; i < GET_RTX_LENGTH (code); i++)
596    {
597      switch (*format_ptr++)
598	{
599	case 'e':
600	  count += count_occurrences (XEXP (x, i), find, count_dest);
601	  break;
602
603	case 'E':
604	  for (j = 0; j < XVECLEN (x, i); j++)
605	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
606	  break;
607	}
608    }
609  return count;
610}
611
612/* Nonzero if register REG appears somewhere within IN.
613   Also works if REG is not a register; in this case it checks
614   for a subexpression of IN that is Lisp "equal" to REG.  */
615
616int
617reg_mentioned_p (rtx reg, rtx in)
618{
619  const char *fmt;
620  int i;
621  enum rtx_code code;
622
623  if (in == 0)
624    return 0;
625
626  if (reg == in)
627    return 1;
628
629  if (GET_CODE (in) == LABEL_REF)
630    return reg == XEXP (in, 0);
631
632  code = GET_CODE (in);
633
634  switch (code)
635    {
636      /* Compare registers by number.  */
637    case REG:
638      return REG_P (reg) && REGNO (in) == REGNO (reg);
639
640      /* These codes have no constituent expressions
641	 and are unique.  */
642    case SCRATCH:
643    case CC0:
644    case PC:
645      return 0;
646
647    case CONST_INT:
648    case CONST_VECTOR:
649    case CONST_DOUBLE:
650      /* These are kept unique for a given value.  */
651      return 0;
652
653    default:
654      break;
655    }
656
657  if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
658    return 1;
659
660  fmt = GET_RTX_FORMAT (code);
661
662  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
663    {
664      if (fmt[i] == 'E')
665	{
666	  int j;
667	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
668	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
669	      return 1;
670	}
671      else if (fmt[i] == 'e'
672	       && reg_mentioned_p (reg, XEXP (in, i)))
673	return 1;
674    }
675  return 0;
676}
677
678/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
679   no CODE_LABEL insn.  */
680
681int
682no_labels_between_p (rtx beg, rtx end)
683{
684  rtx p;
685  if (beg == end)
686    return 0;
687  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
688    if (LABEL_P (p))
689      return 0;
690  return 1;
691}
692
693/* Nonzero if register REG is used in an insn between
694   FROM_INSN and TO_INSN (exclusive of those two).  */
695
696int
697reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
698{
699  rtx insn;
700
701  if (from_insn == to_insn)
702    return 0;
703
704  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
705    if (INSN_P (insn)
706	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
707	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
708      return 1;
709  return 0;
710}
711
712/* Nonzero if the old value of X, a register, is referenced in BODY.  If X
713   is entirely replaced by a new value and the only use is as a SET_DEST,
714   we do not consider it a reference.  */
715
716int
717reg_referenced_p (rtx x, rtx body)
718{
719  int i;
720
721  switch (GET_CODE (body))
722    {
723    case SET:
724      if (reg_overlap_mentioned_p (x, SET_SRC (body)))
725	return 1;
726
727      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
728	 of a REG that occupies all of the REG, the insn references X if
729	 it is mentioned in the destination.  */
730      if (GET_CODE (SET_DEST (body)) != CC0
731	  && GET_CODE (SET_DEST (body)) != PC
732	  && !REG_P (SET_DEST (body))
733	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
734		&& REG_P (SUBREG_REG (SET_DEST (body)))
735		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
736		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
737		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
738			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
739	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
740	return 1;
741      return 0;
742
743    case ASM_OPERANDS:
744      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
745	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
746	  return 1;
747      return 0;
748
749    case CALL:
750    case USE:
751    case IF_THEN_ELSE:
752      return reg_overlap_mentioned_p (x, body);
753
754    case TRAP_IF:
755      return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
756
757    case PREFETCH:
758      return reg_overlap_mentioned_p (x, XEXP (body, 0));
759
760    case UNSPEC:
761    case UNSPEC_VOLATILE:
762      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
763	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
764	  return 1;
765      return 0;
766
767    case PARALLEL:
768      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
769	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
770	  return 1;
771      return 0;
772
773    case CLOBBER:
774      if (MEM_P (XEXP (body, 0)))
775	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
776	  return 1;
777      return 0;
778
779    case COND_EXEC:
780      if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
781	return 1;
782      return reg_referenced_p (x, COND_EXEC_CODE (body));
783
784    default:
785      return 0;
786    }
787}
788
789/* Nonzero if register REG is set or clobbered in an insn between
790   FROM_INSN and TO_INSN (exclusive of those two).  */
791
792int
793reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
794{
795  rtx insn;
796
797  if (from_insn == to_insn)
798    return 0;
799
800  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
801    if (INSN_P (insn) && reg_set_p (reg, insn))
802      return 1;
803  return 0;
804}
805
806/* Internals of reg_set_between_p.  */
807int
808reg_set_p (rtx reg, rtx insn)
809{
810  /* We can be passed an insn or part of one.  If we are passed an insn,
811     check if a side-effect of the insn clobbers REG.  */
812  if (INSN_P (insn)
813      && (FIND_REG_INC_NOTE (insn, reg)
814	  || (CALL_P (insn)
815	      && ((REG_P (reg)
816		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
817		   && TEST_HARD_REG_BIT (regs_invalidated_by_call,
818					 REGNO (reg)))
819		  || MEM_P (reg)
820		  || find_reg_fusage (insn, CLOBBER, reg)))))
821    return 1;
822
823  return set_of (reg, insn) != NULL_RTX;
824}
825
826/* Similar to reg_set_between_p, but check all registers in X.  Return 0
827   only if none of them are modified between START and END.  Return 1 if
828   X contains a MEM; this routine does usememory aliasing.  */
829
830int
831modified_between_p (rtx x, rtx start, rtx end)
832{
833  enum rtx_code code = GET_CODE (x);
834  const char *fmt;
835  int i, j;
836  rtx insn;
837
838  if (start == end)
839    return 0;
840
841  switch (code)
842    {
843    case CONST_INT:
844    case CONST_DOUBLE:
845    case CONST_VECTOR:
846    case CONST:
847    case SYMBOL_REF:
848    case LABEL_REF:
849      return 0;
850
851    case PC:
852    case CC0:
853      return 1;
854
855    case MEM:
856      if (modified_between_p (XEXP (x, 0), start, end))
857	return 1;
858      if (MEM_READONLY_P (x))
859	return 0;
860      for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
861	if (memory_modified_in_insn_p (x, insn))
862	  return 1;
863      return 0;
864      break;
865
866    case REG:
867      return reg_set_between_p (x, start, end);
868
869    default:
870      break;
871    }
872
873  fmt = GET_RTX_FORMAT (code);
874  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
875    {
876      if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
877	return 1;
878
879      else if (fmt[i] == 'E')
880	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
881	  if (modified_between_p (XVECEXP (x, i, j), start, end))
882	    return 1;
883    }
884
885  return 0;
886}
887
888/* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
889   of them are modified in INSN.  Return 1 if X contains a MEM; this routine
890   does use memory aliasing.  */
891
892int
893modified_in_p (rtx x, rtx insn)
894{
895  enum rtx_code code = GET_CODE (x);
896  const char *fmt;
897  int i, j;
898
899  switch (code)
900    {
901    case CONST_INT:
902    case CONST_DOUBLE:
903    case CONST_VECTOR:
904    case CONST:
905    case SYMBOL_REF:
906    case LABEL_REF:
907      return 0;
908
909    case PC:
910    case CC0:
911      return 1;
912
913    case MEM:
914      if (modified_in_p (XEXP (x, 0), insn))
915	return 1;
916      if (MEM_READONLY_P (x))
917	return 0;
918      if (memory_modified_in_insn_p (x, insn))
919	return 1;
920      return 0;
921      break;
922
923    case REG:
924      return reg_set_p (x, insn);
925
926    default:
927      break;
928    }
929
930  fmt = GET_RTX_FORMAT (code);
931  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
932    {
933      if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
934	return 1;
935
936      else if (fmt[i] == 'E')
937	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
938	  if (modified_in_p (XVECEXP (x, i, j), insn))
939	    return 1;
940    }
941
942  return 0;
943}
944
945/* Helper function for set_of.  */
946struct set_of_data
947  {
948    rtx found;
949    rtx pat;
950  };
951
952static void
953set_of_1 (rtx x, rtx pat, void *data1)
954{
955   struct set_of_data *data = (struct set_of_data *) (data1);
956   if (rtx_equal_p (x, data->pat)
957       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
958     data->found = pat;
959}
960
961/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
962   (either directly or via STRICT_LOW_PART and similar modifiers).  */
963rtx
964set_of (rtx pat, rtx insn)
965{
966  struct set_of_data data;
967  data.found = NULL_RTX;
968  data.pat = pat;
969  note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
970  return data.found;
971}
972
973/* Given an INSN, return a SET expression if this insn has only a single SET.
974   It may also have CLOBBERs, USEs, or SET whose output
975   will not be used, which we ignore.  */
976
977rtx
978single_set_2 (rtx insn, rtx pat)
979{
980  rtx set = NULL;
981  int set_verified = 1;
982  int i;
983
984  if (GET_CODE (pat) == PARALLEL)
985    {
986      for (i = 0; i < XVECLEN (pat, 0); i++)
987	{
988	  rtx sub = XVECEXP (pat, 0, i);
989	  switch (GET_CODE (sub))
990	    {
991	    case USE:
992	    case CLOBBER:
993	      break;
994
995	    case SET:
996	      /* We can consider insns having multiple sets, where all
997		 but one are dead as single set insns.  In common case
998		 only single set is present in the pattern so we want
999		 to avoid checking for REG_UNUSED notes unless necessary.
1000
1001		 When we reach set first time, we just expect this is
1002		 the single set we are looking for and only when more
1003		 sets are found in the insn, we check them.  */
1004	      if (!set_verified)
1005		{
1006		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1007		      && !side_effects_p (set))
1008		    set = NULL;
1009		  else
1010		    set_verified = 1;
1011		}
1012	      if (!set)
1013		set = sub, set_verified = 0;
1014	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1015		       || side_effects_p (sub))
1016		return NULL_RTX;
1017	      break;
1018
1019	    default:
1020	      return NULL_RTX;
1021	    }
1022	}
1023    }
1024  return set;
1025}
1026
1027/* Given an INSN, return nonzero if it has more than one SET, else return
1028   zero.  */
1029
1030int
1031multiple_sets (rtx insn)
1032{
1033  int found;
1034  int i;
1035
1036  /* INSN must be an insn.  */
1037  if (! INSN_P (insn))
1038    return 0;
1039
1040  /* Only a PARALLEL can have multiple SETs.  */
1041  if (GET_CODE (PATTERN (insn)) == PARALLEL)
1042    {
1043      for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1044	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1045	  {
1046	    /* If we have already found a SET, then return now.  */
1047	    if (found)
1048	      return 1;
1049	    else
1050	      found = 1;
1051	  }
1052    }
1053
1054  /* Either zero or one SET.  */
1055  return 0;
1056}
1057
1058/* Return nonzero if the destination of SET equals the source
1059   and there are no side effects.  */
1060
1061int
1062set_noop_p (rtx set)
1063{
1064  rtx src = SET_SRC (set);
1065  rtx dst = SET_DEST (set);
1066
1067  if (dst == pc_rtx && src == pc_rtx)
1068    return 1;
1069
1070  if (MEM_P (dst) && MEM_P (src))
1071    return rtx_equal_p (dst, src) && !side_effects_p (dst);
1072
1073  if (GET_CODE (dst) == ZERO_EXTRACT)
1074    return rtx_equal_p (XEXP (dst, 0), src)
1075	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1076	   && !side_effects_p (src);
1077
1078  if (GET_CODE (dst) == STRICT_LOW_PART)
1079    dst = XEXP (dst, 0);
1080
1081  if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1082    {
1083      if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1084	return 0;
1085      src = SUBREG_REG (src);
1086      dst = SUBREG_REG (dst);
1087    }
1088
1089  return (REG_P (src) && REG_P (dst)
1090	  && REGNO (src) == REGNO (dst));
1091}
1092
1093/* Return nonzero if an insn consists only of SETs, each of which only sets a
1094   value to itself.  */
1095
1096int
1097noop_move_p (rtx insn)
1098{
1099  rtx pat = PATTERN (insn);
1100
1101  if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1102    return 1;
1103
1104  /* Insns carrying these notes are useful later on.  */
1105  if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1106    return 0;
1107
1108  /* For now treat an insn with a REG_RETVAL note as a
1109     a special insn which should not be considered a no-op.  */
1110  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1111    return 0;
1112
1113  if (GET_CODE (pat) == SET && set_noop_p (pat))
1114    return 1;
1115
1116  if (GET_CODE (pat) == PARALLEL)
1117    {
1118      int i;
1119      /* If nothing but SETs of registers to themselves,
1120	 this insn can also be deleted.  */
1121      for (i = 0; i < XVECLEN (pat, 0); i++)
1122	{
1123	  rtx tem = XVECEXP (pat, 0, i);
1124
1125	  if (GET_CODE (tem) == USE
1126	      || GET_CODE (tem) == CLOBBER)
1127	    continue;
1128
1129	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1130	    return 0;
1131	}
1132
1133      return 1;
1134    }
1135  return 0;
1136}
1137
1138
1139/* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1140   is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1141   If the object was modified, if we hit a partial assignment to X, or hit a
1142   CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1143   point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1144   be the src.  */
1145
1146rtx
1147find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1148{
1149  rtx p;
1150
1151  for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1152       p = PREV_INSN (p))
1153    if (INSN_P (p))
1154      {
1155	rtx set = single_set (p);
1156	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1157
1158	if (set && rtx_equal_p (x, SET_DEST (set)))
1159	  {
1160	    rtx src = SET_SRC (set);
1161
1162	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1163	      src = XEXP (note, 0);
1164
1165	    if ((valid_to == NULL_RTX
1166		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1167		/* Reject hard registers because we don't usually want
1168		   to use them; we'd rather use a pseudo.  */
1169		&& (! (REG_P (src)
1170		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1171	      {
1172		*pinsn = p;
1173		return src;
1174	      }
1175	  }
1176
1177	/* If set in non-simple way, we don't have a value.  */
1178	if (reg_set_p (x, p))
1179	  break;
1180      }
1181
1182  return x;
1183}
1184
1185/* Return nonzero if register in range [REGNO, ENDREGNO)
1186   appears either explicitly or implicitly in X
1187   other than being stored into.
1188
1189   References contained within the substructure at LOC do not count.
1190   LOC may be zero, meaning don't ignore anything.  */
1191
1192int
1193refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1194		   rtx *loc)
1195{
1196  int i;
1197  unsigned int x_regno;
1198  RTX_CODE code;
1199  const char *fmt;
1200
1201 repeat:
1202  /* The contents of a REG_NONNEG note is always zero, so we must come here
1203     upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1204  if (x == 0)
1205    return 0;
1206
1207  code = GET_CODE (x);
1208
1209  switch (code)
1210    {
1211    case REG:
1212      x_regno = REGNO (x);
1213
1214      /* If we modifying the stack, frame, or argument pointer, it will
1215	 clobber a virtual register.  In fact, we could be more precise,
1216	 but it isn't worth it.  */
1217      if ((x_regno == STACK_POINTER_REGNUM
1218#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219	   || x_regno == ARG_POINTER_REGNUM
1220#endif
1221	   || x_regno == FRAME_POINTER_REGNUM)
1222	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1223	return 1;
1224
1225      return (endregno > x_regno
1226	      && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1227				    ? hard_regno_nregs[x_regno][GET_MODE (x)]
1228			      : 1));
1229
1230    case SUBREG:
1231      /* If this is a SUBREG of a hard reg, we can see exactly which
1232	 registers are being modified.  Otherwise, handle normally.  */
1233      if (REG_P (SUBREG_REG (x))
1234	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1235	{
1236	  unsigned int inner_regno = subreg_regno (x);
1237	  unsigned int inner_endregno
1238	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1239			     ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1240
1241	  return endregno > inner_regno && regno < inner_endregno;
1242	}
1243      break;
1244
1245    case CLOBBER:
1246    case SET:
1247      if (&SET_DEST (x) != loc
1248	  /* Note setting a SUBREG counts as referring to the REG it is in for
1249	     a pseudo but not for hard registers since we can
1250	     treat each word individually.  */
1251	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1252	       && loc != &SUBREG_REG (SET_DEST (x))
1253	       && REG_P (SUBREG_REG (SET_DEST (x)))
1254	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1255	       && refers_to_regno_p (regno, endregno,
1256				     SUBREG_REG (SET_DEST (x)), loc))
1257	      || (!REG_P (SET_DEST (x))
1258		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1259	return 1;
1260
1261      if (code == CLOBBER || loc == &SET_SRC (x))
1262	return 0;
1263      x = SET_SRC (x);
1264      goto repeat;
1265
1266    default:
1267      break;
1268    }
1269
1270  /* X does not match, so try its subexpressions.  */
1271
1272  fmt = GET_RTX_FORMAT (code);
1273  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1274    {
1275      if (fmt[i] == 'e' && loc != &XEXP (x, i))
1276	{
1277	  if (i == 0)
1278	    {
1279	      x = XEXP (x, 0);
1280	      goto repeat;
1281	    }
1282	  else
1283	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1284	      return 1;
1285	}
1286      else if (fmt[i] == 'E')
1287	{
1288	  int j;
1289	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1290	    if (loc != &XVECEXP (x, i, j)
1291		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1292	      return 1;
1293	}
1294    }
1295  return 0;
1296}
1297
1298/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1299   we check if any register number in X conflicts with the relevant register
1300   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1301   contains a MEM (we don't bother checking for memory addresses that can't
1302   conflict because we expect this to be a rare case.  */
1303
1304int
1305reg_overlap_mentioned_p (rtx x, rtx in)
1306{
1307  unsigned int regno, endregno;
1308
1309  /* If either argument is a constant, then modifying X can not
1310     affect IN.  Here we look at IN, we can profitably combine
1311     CONSTANT_P (x) with the switch statement below.  */
1312  if (CONSTANT_P (in))
1313    return 0;
1314
1315 recurse:
1316  switch (GET_CODE (x))
1317    {
1318    case STRICT_LOW_PART:
1319    case ZERO_EXTRACT:
1320    case SIGN_EXTRACT:
1321      /* Overly conservative.  */
1322      x = XEXP (x, 0);
1323      goto recurse;
1324
1325    case SUBREG:
1326      regno = REGNO (SUBREG_REG (x));
1327      if (regno < FIRST_PSEUDO_REGISTER)
1328	regno = subreg_regno (x);
1329      goto do_reg;
1330
1331    case REG:
1332      regno = REGNO (x);
1333    do_reg:
1334      endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1335			  ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1336      return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1337
1338    case MEM:
1339      {
1340	const char *fmt;
1341	int i;
1342
1343	if (MEM_P (in))
1344	  return 1;
1345
1346	fmt = GET_RTX_FORMAT (GET_CODE (in));
1347	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1348	  if (fmt[i] == 'e')
1349	    {
1350	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1351		return 1;
1352	    }
1353	  else if (fmt[i] == 'E')
1354	    {
1355	      int j;
1356	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1357		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1358		  return 1;
1359	    }
1360
1361	return 0;
1362      }
1363
1364    case SCRATCH:
1365    case PC:
1366    case CC0:
1367      return reg_mentioned_p (x, in);
1368
1369    case PARALLEL:
1370      {
1371	int i;
1372
1373	/* If any register in here refers to it we return true.  */
1374	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1375	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1376	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1377	    return 1;
1378	return 0;
1379      }
1380
1381    default:
1382      gcc_assert (CONSTANT_P (x));
1383      return 0;
1384    }
1385}
1386
1387/* Call FUN on each register or MEM that is stored into or clobbered by X.
1388   (X would be the pattern of an insn).
1389   FUN receives two arguments:
1390     the REG, MEM, CC0 or PC being stored in or clobbered,
1391     the SET or CLOBBER rtx that does the store.
1392
1393  If the item being stored in or clobbered is a SUBREG of a hard register,
1394  the SUBREG will be passed.  */
1395
1396void
1397note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1398{
1399  int i;
1400
1401  if (GET_CODE (x) == COND_EXEC)
1402    x = COND_EXEC_CODE (x);
1403
1404  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1405    {
1406      rtx dest = SET_DEST (x);
1407
1408      while ((GET_CODE (dest) == SUBREG
1409	      && (!REG_P (SUBREG_REG (dest))
1410		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1411	     || GET_CODE (dest) == ZERO_EXTRACT
1412	     || GET_CODE (dest) == STRICT_LOW_PART)
1413	dest = XEXP (dest, 0);
1414
1415      /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1416	 each of whose first operand is a register.  */
1417      if (GET_CODE (dest) == PARALLEL)
1418	{
1419	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1420	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1421	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1422	}
1423      else
1424	(*fun) (dest, x, data);
1425    }
1426
1427  else if (GET_CODE (x) == PARALLEL)
1428    for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1429      note_stores (XVECEXP (x, 0, i), fun, data);
1430}
1431
1432/* Like notes_stores, but call FUN for each expression that is being
1433   referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1434   FUN for each expression, not any interior subexpressions.  FUN receives a
1435   pointer to the expression and the DATA passed to this function.
1436
1437   Note that this is not quite the same test as that done in reg_referenced_p
1438   since that considers something as being referenced if it is being
1439   partially set, while we do not.  */
1440
1441void
1442note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1443{
1444  rtx body = *pbody;
1445  int i;
1446
1447  switch (GET_CODE (body))
1448    {
1449    case COND_EXEC:
1450      (*fun) (&COND_EXEC_TEST (body), data);
1451      note_uses (&COND_EXEC_CODE (body), fun, data);
1452      return;
1453
1454    case PARALLEL:
1455      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1456	note_uses (&XVECEXP (body, 0, i), fun, data);
1457      return;
1458
1459    case USE:
1460      (*fun) (&XEXP (body, 0), data);
1461      return;
1462
1463    case ASM_OPERANDS:
1464      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1465	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1466      return;
1467
1468    case TRAP_IF:
1469      (*fun) (&TRAP_CONDITION (body), data);
1470      return;
1471
1472    case PREFETCH:
1473      (*fun) (&XEXP (body, 0), data);
1474      return;
1475
1476    case UNSPEC:
1477    case UNSPEC_VOLATILE:
1478      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1479	(*fun) (&XVECEXP (body, 0, i), data);
1480      return;
1481
1482    case CLOBBER:
1483      if (MEM_P (XEXP (body, 0)))
1484	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1485      return;
1486
1487    case SET:
1488      {
1489	rtx dest = SET_DEST (body);
1490
1491	/* For sets we replace everything in source plus registers in memory
1492	   expression in store and operands of a ZERO_EXTRACT.  */
1493	(*fun) (&SET_SRC (body), data);
1494
1495	if (GET_CODE (dest) == ZERO_EXTRACT)
1496	  {
1497	    (*fun) (&XEXP (dest, 1), data);
1498	    (*fun) (&XEXP (dest, 2), data);
1499	  }
1500
1501	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1502	  dest = XEXP (dest, 0);
1503
1504	if (MEM_P (dest))
1505	  (*fun) (&XEXP (dest, 0), data);
1506      }
1507      return;
1508
1509    default:
1510      /* All the other possibilities never store.  */
1511      (*fun) (pbody, data);
1512      return;
1513    }
1514}
1515
1516/* Return nonzero if X's old contents don't survive after INSN.
1517   This will be true if X is (cc0) or if X is a register and
1518   X dies in INSN or because INSN entirely sets X.
1519
1520   "Entirely set" means set directly and not through a SUBREG, or
1521   ZERO_EXTRACT, so no trace of the old contents remains.
1522   Likewise, REG_INC does not count.
1523
1524   REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1525   but for this use that makes no difference, since regs don't overlap
1526   during their lifetimes.  Therefore, this function may be used
1527   at any time after deaths have been computed (in flow.c).
1528
1529   If REG is a hard reg that occupies multiple machine registers, this
1530   function will only return 1 if each of those registers will be replaced
1531   by INSN.  */
1532
1533int
1534dead_or_set_p (rtx insn, rtx x)
1535{
1536  unsigned int regno, last_regno;
1537  unsigned int i;
1538
1539  /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1540  if (GET_CODE (x) == CC0)
1541    return 1;
1542
1543  gcc_assert (REG_P (x));
1544
1545  regno = REGNO (x);
1546  last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1547		: regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1548
1549  for (i = regno; i <= last_regno; i++)
1550    if (! dead_or_set_regno_p (insn, i))
1551      return 0;
1552
1553  return 1;
1554}
1555
1556/* Return TRUE iff DEST is a register or subreg of a register and
1557   doesn't change the number of words of the inner register, and any
1558   part of the register is TEST_REGNO.  */
1559
1560static bool
1561covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1562{
1563  unsigned int regno, endregno;
1564
1565  if (GET_CODE (dest) == SUBREG
1566      && (((GET_MODE_SIZE (GET_MODE (dest))
1567	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1568	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1569	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1570    dest = SUBREG_REG (dest);
1571
1572  if (!REG_P (dest))
1573    return false;
1574
1575  regno = REGNO (dest);
1576  endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1577	      : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1578  return (test_regno >= regno && test_regno < endregno);
1579}
1580
1581/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1582   any member matches the covers_regno_no_parallel_p criteria.  */
1583
1584static bool
1585covers_regno_p (rtx dest, unsigned int test_regno)
1586{
1587  if (GET_CODE (dest) == PARALLEL)
1588    {
1589      /* Some targets place small structures in registers for return
1590	 values of functions, and those registers are wrapped in
1591	 PARALLELs that we may see as the destination of a SET.  */
1592      int i;
1593
1594      for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1595	{
1596	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1597	  if (inner != NULL_RTX
1598	      && covers_regno_no_parallel_p (inner, test_regno))
1599	    return true;
1600	}
1601
1602      return false;
1603    }
1604  else
1605    return covers_regno_no_parallel_p (dest, test_regno);
1606}
1607
1608/* Utility function for dead_or_set_p to check an individual register.  Also
1609   called from flow.c.  */
1610
1611int
1612dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1613{
1614  rtx pattern;
1615
1616  /* See if there is a death note for something that includes TEST_REGNO.  */
1617  if (find_regno_note (insn, REG_DEAD, test_regno))
1618    return 1;
1619
1620  if (CALL_P (insn)
1621      && find_regno_fusage (insn, CLOBBER, test_regno))
1622    return 1;
1623
1624  pattern = PATTERN (insn);
1625
1626  if (GET_CODE (pattern) == COND_EXEC)
1627    pattern = COND_EXEC_CODE (pattern);
1628
1629  if (GET_CODE (pattern) == SET)
1630    return covers_regno_p (SET_DEST (pattern), test_regno);
1631  else if (GET_CODE (pattern) == PARALLEL)
1632    {
1633      int i;
1634
1635      for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1636	{
1637	  rtx body = XVECEXP (pattern, 0, i);
1638
1639	  if (GET_CODE (body) == COND_EXEC)
1640	    body = COND_EXEC_CODE (body);
1641
1642	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1643	      && covers_regno_p (SET_DEST (body), test_regno))
1644	    return 1;
1645	}
1646    }
1647
1648  return 0;
1649}
1650
1651/* Return the reg-note of kind KIND in insn INSN, if there is one.
1652   If DATUM is nonzero, look for one whose datum is DATUM.  */
1653
1654rtx
1655find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1656{
1657  rtx link;
1658
1659  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1660  if (! INSN_P (insn))
1661    return 0;
1662  if (datum == 0)
1663    {
1664      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1665	if (REG_NOTE_KIND (link) == kind)
1666	  return link;
1667      return 0;
1668    }
1669
1670  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1671    if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1672      return link;
1673  return 0;
1674}
1675
1676/* Return the reg-note of kind KIND in insn INSN which applies to register
1677   number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1678   the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1679   it might be the case that the note overlaps REGNO.  */
1680
1681rtx
1682find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1683{
1684  rtx link;
1685
1686  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1687  if (! INSN_P (insn))
1688    return 0;
1689
1690  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1691    if (REG_NOTE_KIND (link) == kind
1692	/* Verify that it is a register, so that scratch and MEM won't cause a
1693	   problem here.  */
1694	&& REG_P (XEXP (link, 0))
1695	&& REGNO (XEXP (link, 0)) <= regno
1696	&& ((REGNO (XEXP (link, 0))
1697	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1698		: hard_regno_nregs[REGNO (XEXP (link, 0))]
1699				  [GET_MODE (XEXP (link, 0))]))
1700	    > regno))
1701      return link;
1702  return 0;
1703}
1704
1705/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1706   has such a note.  */
1707
1708rtx
1709find_reg_equal_equiv_note (rtx insn)
1710{
1711  rtx link;
1712
1713  if (!INSN_P (insn))
1714    return 0;
1715  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1716    if (REG_NOTE_KIND (link) == REG_EQUAL
1717	|| REG_NOTE_KIND (link) == REG_EQUIV)
1718      {
1719	if (single_set (insn) == 0)
1720	  return 0;
1721	return link;
1722      }
1723  return NULL;
1724}
1725
1726/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1727   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1728
1729int
1730find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1731{
1732  /* If it's not a CALL_INSN, it can't possibly have a
1733     CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1734  if (!CALL_P (insn))
1735    return 0;
1736
1737  gcc_assert (datum);
1738
1739  if (!REG_P (datum))
1740    {
1741      rtx link;
1742
1743      for (link = CALL_INSN_FUNCTION_USAGE (insn);
1744	   link;
1745	   link = XEXP (link, 1))
1746	if (GET_CODE (XEXP (link, 0)) == code
1747	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1748	  return 1;
1749    }
1750  else
1751    {
1752      unsigned int regno = REGNO (datum);
1753
1754      /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1755	 to pseudo registers, so don't bother checking.  */
1756
1757      if (regno < FIRST_PSEUDO_REGISTER)
1758	{
1759	  unsigned int end_regno
1760	    = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1761	  unsigned int i;
1762
1763	  for (i = regno; i < end_regno; i++)
1764	    if (find_regno_fusage (insn, code, i))
1765	      return 1;
1766	}
1767    }
1768
1769  return 0;
1770}
1771
1772/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1773   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1774
1775int
1776find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1777{
1778  rtx link;
1779
1780  /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1781     to pseudo registers, so don't bother checking.  */
1782
1783  if (regno >= FIRST_PSEUDO_REGISTER
1784      || !CALL_P (insn) )
1785    return 0;
1786
1787  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1788    {
1789      unsigned int regnote;
1790      rtx op, reg;
1791
1792      if (GET_CODE (op = XEXP (link, 0)) == code
1793	  && REG_P (reg = XEXP (op, 0))
1794	  && (regnote = REGNO (reg)) <= regno
1795	  && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1796	return 1;
1797    }
1798
1799  return 0;
1800}
1801
1802/* Return true if INSN is a call to a pure function.  */
1803
1804int
1805pure_call_p (rtx insn)
1806{
1807  rtx link;
1808
1809  if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1810    return 0;
1811
1812  /* Look for the note that differentiates const and pure functions.  */
1813  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1814    {
1815      rtx u, m;
1816
1817      if (GET_CODE (u = XEXP (link, 0)) == USE
1818	  && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1819	  && GET_CODE (XEXP (m, 0)) == SCRATCH)
1820	return 1;
1821    }
1822
1823  return 0;
1824}
1825
1826/* Remove register note NOTE from the REG_NOTES of INSN.  */
1827
1828void
1829remove_note (rtx insn, rtx note)
1830{
1831  rtx link;
1832
1833  if (note == NULL_RTX)
1834    return;
1835
1836  if (REG_NOTES (insn) == note)
1837    {
1838      REG_NOTES (insn) = XEXP (note, 1);
1839      return;
1840    }
1841
1842  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1843    if (XEXP (link, 1) == note)
1844      {
1845	XEXP (link, 1) = XEXP (note, 1);
1846	return;
1847      }
1848
1849  gcc_unreachable ();
1850}
1851
1852/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1853   return 1 if it is found.  A simple equality test is used to determine if
1854   NODE matches.  */
1855
1856int
1857in_expr_list_p (rtx listp, rtx node)
1858{
1859  rtx x;
1860
1861  for (x = listp; x; x = XEXP (x, 1))
1862    if (node == XEXP (x, 0))
1863      return 1;
1864
1865  return 0;
1866}
1867
1868/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1869   remove that entry from the list if it is found.
1870
1871   A simple equality test is used to determine if NODE matches.  */
1872
1873void
1874remove_node_from_expr_list (rtx node, rtx *listp)
1875{
1876  rtx temp = *listp;
1877  rtx prev = NULL_RTX;
1878
1879  while (temp)
1880    {
1881      if (node == XEXP (temp, 0))
1882	{
1883	  /* Splice the node out of the list.  */
1884	  if (prev)
1885	    XEXP (prev, 1) = XEXP (temp, 1);
1886	  else
1887	    *listp = XEXP (temp, 1);
1888
1889	  return;
1890	}
1891
1892      prev = temp;
1893      temp = XEXP (temp, 1);
1894    }
1895}
1896
1897/* Nonzero if X contains any volatile instructions.  These are instructions
1898   which may cause unpredictable machine state instructions, and thus no
1899   instructions should be moved or combined across them.  This includes
1900   only volatile asms and UNSPEC_VOLATILE instructions.  */
1901
1902int
1903volatile_insn_p (rtx x)
1904{
1905  RTX_CODE code;
1906
1907  code = GET_CODE (x);
1908  switch (code)
1909    {
1910    case LABEL_REF:
1911    case SYMBOL_REF:
1912    case CONST_INT:
1913    case CONST:
1914    case CONST_DOUBLE:
1915    case CONST_VECTOR:
1916    case CC0:
1917    case PC:
1918    case REG:
1919    case SCRATCH:
1920    case CLOBBER:
1921    case ADDR_VEC:
1922    case ADDR_DIFF_VEC:
1923    case CALL:
1924    case MEM:
1925      return 0;
1926
1927    case UNSPEC_VOLATILE:
1928 /* case TRAP_IF: This isn't clear yet.  */
1929      return 1;
1930
1931    case ASM_INPUT:
1932    case ASM_OPERANDS:
1933      if (MEM_VOLATILE_P (x))
1934	return 1;
1935
1936    default:
1937      break;
1938    }
1939
1940  /* Recursively scan the operands of this expression.  */
1941
1942  {
1943    const char *fmt = GET_RTX_FORMAT (code);
1944    int i;
1945
1946    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1947      {
1948	if (fmt[i] == 'e')
1949	  {
1950	    if (volatile_insn_p (XEXP (x, i)))
1951	      return 1;
1952	  }
1953	else if (fmt[i] == 'E')
1954	  {
1955	    int j;
1956	    for (j = 0; j < XVECLEN (x, i); j++)
1957	      if (volatile_insn_p (XVECEXP (x, i, j)))
1958		return 1;
1959	  }
1960      }
1961  }
1962  return 0;
1963}
1964
1965/* Nonzero if X contains any volatile memory references
1966   UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
1967
1968int
1969volatile_refs_p (rtx x)
1970{
1971  RTX_CODE code;
1972
1973  code = GET_CODE (x);
1974  switch (code)
1975    {
1976    case LABEL_REF:
1977    case SYMBOL_REF:
1978    case CONST_INT:
1979    case CONST:
1980    case CONST_DOUBLE:
1981    case CONST_VECTOR:
1982    case CC0:
1983    case PC:
1984    case REG:
1985    case SCRATCH:
1986    case CLOBBER:
1987    case ADDR_VEC:
1988    case ADDR_DIFF_VEC:
1989      return 0;
1990
1991    case UNSPEC_VOLATILE:
1992      return 1;
1993
1994    case MEM:
1995    case ASM_INPUT:
1996    case ASM_OPERANDS:
1997      if (MEM_VOLATILE_P (x))
1998	return 1;
1999
2000    default:
2001      break;
2002    }
2003
2004  /* Recursively scan the operands of this expression.  */
2005
2006  {
2007    const char *fmt = GET_RTX_FORMAT (code);
2008    int i;
2009
2010    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2011      {
2012	if (fmt[i] == 'e')
2013	  {
2014	    if (volatile_refs_p (XEXP (x, i)))
2015	      return 1;
2016	  }
2017	else if (fmt[i] == 'E')
2018	  {
2019	    int j;
2020	    for (j = 0; j < XVECLEN (x, i); j++)
2021	      if (volatile_refs_p (XVECEXP (x, i, j)))
2022		return 1;
2023	  }
2024      }
2025  }
2026  return 0;
2027}
2028
2029/* Similar to above, except that it also rejects register pre- and post-
2030   incrementing.  */
2031
2032int
2033side_effects_p (rtx x)
2034{
2035  RTX_CODE code;
2036
2037  code = GET_CODE (x);
2038  switch (code)
2039    {
2040    case LABEL_REF:
2041    case SYMBOL_REF:
2042    case CONST_INT:
2043    case CONST:
2044    case CONST_DOUBLE:
2045    case CONST_VECTOR:
2046    case CC0:
2047    case PC:
2048    case REG:
2049    case SCRATCH:
2050    case ADDR_VEC:
2051    case ADDR_DIFF_VEC:
2052      return 0;
2053
2054    case CLOBBER:
2055      /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2056	 when some combination can't be done.  If we see one, don't think
2057	 that we can simplify the expression.  */
2058      return (GET_MODE (x) != VOIDmode);
2059
2060    case PRE_INC:
2061    case PRE_DEC:
2062    case POST_INC:
2063    case POST_DEC:
2064    case PRE_MODIFY:
2065    case POST_MODIFY:
2066    case CALL:
2067    case UNSPEC_VOLATILE:
2068 /* case TRAP_IF: This isn't clear yet.  */
2069      return 1;
2070
2071    case MEM:
2072    case ASM_INPUT:
2073    case ASM_OPERANDS:
2074      if (MEM_VOLATILE_P (x))
2075	return 1;
2076
2077    default:
2078      break;
2079    }
2080
2081  /* Recursively scan the operands of this expression.  */
2082
2083  {
2084    const char *fmt = GET_RTX_FORMAT (code);
2085    int i;
2086
2087    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2088      {
2089	if (fmt[i] == 'e')
2090	  {
2091	    if (side_effects_p (XEXP (x, i)))
2092	      return 1;
2093	  }
2094	else if (fmt[i] == 'E')
2095	  {
2096	    int j;
2097	    for (j = 0; j < XVECLEN (x, i); j++)
2098	      if (side_effects_p (XVECEXP (x, i, j)))
2099		return 1;
2100	  }
2101      }
2102  }
2103  return 0;
2104}
2105
2106/* Return nonzero if evaluating rtx X might cause a trap.  UNALIGNED_MEMS
2107   controls whether nonzero is returned for unaligned memory accesses on
2108   strict alignment machines.  */
2109
2110static int
2111may_trap_p_1 (rtx x, bool unaligned_mems)
2112{
2113  int i;
2114  enum rtx_code code;
2115  const char *fmt;
2116
2117  if (x == 0)
2118    return 0;
2119  code = GET_CODE (x);
2120  switch (code)
2121    {
2122      /* Handle these cases quickly.  */
2123    case CONST_INT:
2124    case CONST_DOUBLE:
2125    case CONST_VECTOR:
2126    case SYMBOL_REF:
2127    case LABEL_REF:
2128    case CONST:
2129    case PC:
2130    case CC0:
2131    case REG:
2132    case SCRATCH:
2133      return 0;
2134
2135    case ASM_INPUT:
2136    case UNSPEC_VOLATILE:
2137    case TRAP_IF:
2138      return 1;
2139
2140    case ASM_OPERANDS:
2141      return MEM_VOLATILE_P (x);
2142
2143      /* Memory ref can trap unless it's a static var or a stack slot.  */
2144    case MEM:
2145      if (MEM_NOTRAP_P (x)
2146	  && (!STRICT_ALIGNMENT || !unaligned_mems))
2147	return 0;
2148      return
2149	rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2150
2151      /* Division by a non-constant might trap.  */
2152    case DIV:
2153    case MOD:
2154    case UDIV:
2155    case UMOD:
2156      if (HONOR_SNANS (GET_MODE (x)))
2157	return 1;
2158      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2159	return flag_trapping_math;
2160      if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2161	return 1;
2162      break;
2163
2164    case EXPR_LIST:
2165      /* An EXPR_LIST is used to represent a function call.  This
2166	 certainly may trap.  */
2167      return 1;
2168
2169    case GE:
2170    case GT:
2171    case LE:
2172    case LT:
2173    case LTGT:
2174    case COMPARE:
2175      /* Some floating point comparisons may trap.  */
2176      if (!flag_trapping_math)
2177	break;
2178      /* ??? There is no machine independent way to check for tests that trap
2179	 when COMPARE is used, though many targets do make this distinction.
2180	 For instance, sparc uses CCFPE for compares which generate exceptions
2181	 and CCFP for compares which do not generate exceptions.  */
2182      if (HONOR_NANS (GET_MODE (x)))
2183	return 1;
2184      /* But often the compare has some CC mode, so check operand
2185	 modes as well.  */
2186      if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2187	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2188	return 1;
2189      break;
2190
2191    case EQ:
2192    case NE:
2193      if (HONOR_SNANS (GET_MODE (x)))
2194	return 1;
2195      /* Often comparison is CC mode, so check operand modes.  */
2196      if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2197	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2198	return 1;
2199      break;
2200
2201    case FIX:
2202      /* Conversion of floating point might trap.  */
2203      if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2204	return 1;
2205      break;
2206
2207    case NEG:
2208    case ABS:
2209    case SUBREG:
2210      /* These operations don't trap even with floating point.  */
2211      break;
2212
2213    default:
2214      /* Any floating arithmetic may trap.  */
2215      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2216	  && flag_trapping_math)
2217	return 1;
2218    }
2219
2220  fmt = GET_RTX_FORMAT (code);
2221  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2222    {
2223      if (fmt[i] == 'e')
2224	{
2225	  if (may_trap_p_1 (XEXP (x, i), unaligned_mems))
2226	    return 1;
2227	}
2228      else if (fmt[i] == 'E')
2229	{
2230	  int j;
2231	  for (j = 0; j < XVECLEN (x, i); j++)
2232	    if (may_trap_p_1 (XVECEXP (x, i, j), unaligned_mems))
2233	      return 1;
2234	}
2235    }
2236  return 0;
2237}
2238
2239/* Return nonzero if evaluating rtx X might cause a trap.  */
2240
2241int
2242may_trap_p (rtx x)
2243{
2244  return may_trap_p_1 (x, false);
2245}
2246
2247/* Same as above, but additionally return non-zero if evaluating rtx X might
2248   cause a fault.  We define a fault for the purpose of this function as a
2249   erroneous execution condition that cannot be encountered during the normal
2250   execution of a valid program; the typical example is an unaligned memory
2251   access on a strict alignment machine.  The compiler guarantees that it
2252   doesn't generate code that will fault from a valid program, but this
2253   guarantee doesn't mean anything for individual instructions.  Consider
2254   the following example:
2255
2256      struct S { int d; union { char *cp; int *ip; }; };
2257
2258      int foo(struct S *s)
2259      {
2260	if (s->d == 1)
2261	  return *s->ip;
2262	else
2263	  return *s->cp;
2264      }
2265
2266   on a strict alignment machine.  In a valid program, foo will never be
2267   invoked on a structure for which d is equal to 1 and the underlying
2268   unique field of the union not aligned on a 4-byte boundary, but the
2269   expression *s->ip might cause a fault if considered individually.
2270
2271   At the RTL level, potentially problematic expressions will almost always
2272   verify may_trap_p; for example, the above dereference can be emitted as
2273   (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2274   However, suppose that foo is inlined in a caller that causes s->cp to
2275   point to a local character variable and guarantees that s->d is not set
2276   to 1; foo may have been effectively translated into pseudo-RTL as:
2277
2278      if ((reg:SI) == 1)
2279	(set (reg:SI) (mem:SI (%fp - 7)))
2280      else
2281	(set (reg:QI) (mem:QI (%fp - 7)))
2282
2283   Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2284   memory reference to a stack slot, but it will certainly cause a fault
2285   on a strict alignment machine.  */
2286
2287int
2288may_trap_or_fault_p (rtx x)
2289{
2290  return may_trap_p_1 (x, true);
2291}
2292
2293/* Return nonzero if X contains a comparison that is not either EQ or NE,
2294   i.e., an inequality.  */
2295
2296int
2297inequality_comparisons_p (rtx x)
2298{
2299  const char *fmt;
2300  int len, i;
2301  enum rtx_code code = GET_CODE (x);
2302
2303  switch (code)
2304    {
2305    case REG:
2306    case SCRATCH:
2307    case PC:
2308    case CC0:
2309    case CONST_INT:
2310    case CONST_DOUBLE:
2311    case CONST_VECTOR:
2312    case CONST:
2313    case LABEL_REF:
2314    case SYMBOL_REF:
2315      return 0;
2316
2317    case LT:
2318    case LTU:
2319    case GT:
2320    case GTU:
2321    case LE:
2322    case LEU:
2323    case GE:
2324    case GEU:
2325      return 1;
2326
2327    default:
2328      break;
2329    }
2330
2331  len = GET_RTX_LENGTH (code);
2332  fmt = GET_RTX_FORMAT (code);
2333
2334  for (i = 0; i < len; i++)
2335    {
2336      if (fmt[i] == 'e')
2337	{
2338	  if (inequality_comparisons_p (XEXP (x, i)))
2339	    return 1;
2340	}
2341      else if (fmt[i] == 'E')
2342	{
2343	  int j;
2344	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2345	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2346	      return 1;
2347	}
2348    }
2349
2350  return 0;
2351}
2352
2353/* Replace any occurrence of FROM in X with TO.  The function does
2354   not enter into CONST_DOUBLE for the replace.
2355
2356   Note that copying is not done so X must not be shared unless all copies
2357   are to be modified.  */
2358
2359rtx
2360replace_rtx (rtx x, rtx from, rtx to)
2361{
2362  int i, j;
2363  const char *fmt;
2364
2365  /* The following prevents loops occurrence when we change MEM in
2366     CONST_DOUBLE onto the same CONST_DOUBLE.  */
2367  if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2368    return x;
2369
2370  if (x == from)
2371    return to;
2372
2373  /* Allow this function to make replacements in EXPR_LISTs.  */
2374  if (x == 0)
2375    return 0;
2376
2377  if (GET_CODE (x) == SUBREG)
2378    {
2379      rtx new = replace_rtx (SUBREG_REG (x), from, to);
2380
2381      if (GET_CODE (new) == CONST_INT)
2382	{
2383	  x = simplify_subreg (GET_MODE (x), new,
2384			       GET_MODE (SUBREG_REG (x)),
2385			       SUBREG_BYTE (x));
2386	  gcc_assert (x);
2387	}
2388      else
2389	SUBREG_REG (x) = new;
2390
2391      return x;
2392    }
2393  else if (GET_CODE (x) == ZERO_EXTEND)
2394    {
2395      rtx new = replace_rtx (XEXP (x, 0), from, to);
2396
2397      if (GET_CODE (new) == CONST_INT)
2398	{
2399	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2400					new, GET_MODE (XEXP (x, 0)));
2401	  gcc_assert (x);
2402	}
2403      else
2404	XEXP (x, 0) = new;
2405
2406      return x;
2407    }
2408
2409  fmt = GET_RTX_FORMAT (GET_CODE (x));
2410  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2411    {
2412      if (fmt[i] == 'e')
2413	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2414      else if (fmt[i] == 'E')
2415	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2416	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2417    }
2418
2419  return x;
2420}
2421
2422/* Throughout the rtx X, replace many registers according to REG_MAP.
2423   Return the replacement for X (which may be X with altered contents).
2424   REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2425   NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2426
2427   We only support REG_MAP entries of REG or SUBREG.  Also, hard registers
2428   should not be mapped to pseudos or vice versa since validate_change
2429   is not called.
2430
2431   If REPLACE_DEST is 1, replacements are also done in destinations;
2432   otherwise, only sources are replaced.  */
2433
2434rtx
2435replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2436{
2437  enum rtx_code code;
2438  int i;
2439  const char *fmt;
2440
2441  if (x == 0)
2442    return x;
2443
2444  code = GET_CODE (x);
2445  switch (code)
2446    {
2447    case SCRATCH:
2448    case PC:
2449    case CC0:
2450    case CONST_INT:
2451    case CONST_DOUBLE:
2452    case CONST_VECTOR:
2453    case CONST:
2454    case SYMBOL_REF:
2455    case LABEL_REF:
2456      return x;
2457
2458    case REG:
2459      /* Verify that the register has an entry before trying to access it.  */
2460      if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2461	{
2462	  /* SUBREGs can't be shared.  Always return a copy to ensure that if
2463	     this replacement occurs more than once then each instance will
2464	     get distinct rtx.  */
2465	  if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2466	    return copy_rtx (reg_map[REGNO (x)]);
2467	  return reg_map[REGNO (x)];
2468	}
2469      return x;
2470
2471    case SUBREG:
2472      /* Prevent making nested SUBREGs.  */
2473      if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2474	  && reg_map[REGNO (SUBREG_REG (x))] != 0
2475	  && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2476	{
2477	  rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2478	  return simplify_gen_subreg (GET_MODE (x), map_val,
2479				      GET_MODE (SUBREG_REG (x)),
2480				      SUBREG_BYTE (x));
2481	}
2482      break;
2483
2484    case SET:
2485      if (replace_dest)
2486	SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2487
2488      else if (MEM_P (SET_DEST (x))
2489	       || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2490	/* Even if we are not to replace destinations, replace register if it
2491	   is CONTAINED in destination (destination is memory or
2492	   STRICT_LOW_PART).  */
2493	XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2494					       reg_map, nregs, 0);
2495      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2496	/* Similarly, for ZERO_EXTRACT we replace all operands.  */
2497	break;
2498
2499      SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2500      return x;
2501
2502    default:
2503      break;
2504    }
2505
2506  fmt = GET_RTX_FORMAT (code);
2507  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2508    {
2509      if (fmt[i] == 'e')
2510	XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2511      else if (fmt[i] == 'E')
2512	{
2513	  int j;
2514	  for (j = 0; j < XVECLEN (x, i); j++)
2515	    XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2516					      nregs, replace_dest);
2517	}
2518    }
2519  return x;
2520}
2521
2522/* Replace occurrences of the old label in *X with the new one.
2523   DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2524
2525int
2526replace_label (rtx *x, void *data)
2527{
2528  rtx l = *x;
2529  rtx old_label = ((replace_label_data *) data)->r1;
2530  rtx new_label = ((replace_label_data *) data)->r2;
2531  bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2532
2533  if (l == NULL_RTX)
2534    return 0;
2535
2536  if (GET_CODE (l) == SYMBOL_REF
2537      && CONSTANT_POOL_ADDRESS_P (l))
2538    {
2539      rtx c = get_pool_constant (l);
2540      if (rtx_referenced_p (old_label, c))
2541	{
2542	  rtx new_c, new_l;
2543	  replace_label_data *d = (replace_label_data *) data;
2544
2545	  /* Create a copy of constant C; replace the label inside
2546	     but do not update LABEL_NUSES because uses in constant pool
2547	     are not counted.  */
2548	  new_c = copy_rtx (c);
2549	  d->update_label_nuses = false;
2550	  for_each_rtx (&new_c, replace_label, data);
2551	  d->update_label_nuses = update_label_nuses;
2552
2553	  /* Add the new constant NEW_C to constant pool and replace
2554	     the old reference to constant by new reference.  */
2555	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2556	  *x = replace_rtx (l, l, new_l);
2557	}
2558      return 0;
2559    }
2560
2561  /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2562     field.  This is not handled by for_each_rtx because it doesn't
2563     handle unprinted ('0') fields.  */
2564  if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2565    JUMP_LABEL (l) = new_label;
2566
2567  if ((GET_CODE (l) == LABEL_REF
2568       || GET_CODE (l) == INSN_LIST)
2569      && XEXP (l, 0) == old_label)
2570    {
2571      XEXP (l, 0) = new_label;
2572      if (update_label_nuses)
2573	{
2574	  ++LABEL_NUSES (new_label);
2575	  --LABEL_NUSES (old_label);
2576	}
2577      return 0;
2578    }
2579
2580  return 0;
2581}
2582
2583/* When *BODY is equal to X or X is directly referenced by *BODY
2584   return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2585   too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2586
2587static int
2588rtx_referenced_p_1 (rtx *body, void *x)
2589{
2590  rtx y = (rtx) x;
2591
2592  if (*body == NULL_RTX)
2593    return y == NULL_RTX;
2594
2595  /* Return true if a label_ref *BODY refers to label Y.  */
2596  if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2597    return XEXP (*body, 0) == y;
2598
2599  /* If *BODY is a reference to pool constant traverse the constant.  */
2600  if (GET_CODE (*body) == SYMBOL_REF
2601      && CONSTANT_POOL_ADDRESS_P (*body))
2602    return rtx_referenced_p (y, get_pool_constant (*body));
2603
2604  /* By default, compare the RTL expressions.  */
2605  return rtx_equal_p (*body, y);
2606}
2607
2608/* Return true if X is referenced in BODY.  */
2609
2610int
2611rtx_referenced_p (rtx x, rtx body)
2612{
2613  return for_each_rtx (&body, rtx_referenced_p_1, x);
2614}
2615
2616/* If INSN is a tablejump return true and store the label (before jump table) to
2617   *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2618
2619bool
2620tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2621{
2622  rtx label, table;
2623
2624  if (JUMP_P (insn)
2625      && (label = JUMP_LABEL (insn)) != NULL_RTX
2626      && (table = next_active_insn (label)) != NULL_RTX
2627      && JUMP_P (table)
2628      && (GET_CODE (PATTERN (table)) == ADDR_VEC
2629	  || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2630    {
2631      if (labelp)
2632	*labelp = label;
2633      if (tablep)
2634	*tablep = table;
2635      return true;
2636    }
2637  return false;
2638}
2639
2640/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2641   constant that is not in the constant pool and not in the condition
2642   of an IF_THEN_ELSE.  */
2643
2644static int
2645computed_jump_p_1 (rtx x)
2646{
2647  enum rtx_code code = GET_CODE (x);
2648  int i, j;
2649  const char *fmt;
2650
2651  switch (code)
2652    {
2653    case LABEL_REF:
2654    case PC:
2655      return 0;
2656
2657    case CONST:
2658    case CONST_INT:
2659    case CONST_DOUBLE:
2660    case CONST_VECTOR:
2661    case SYMBOL_REF:
2662    case REG:
2663      return 1;
2664
2665    case MEM:
2666      return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2667		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2668
2669    case IF_THEN_ELSE:
2670      return (computed_jump_p_1 (XEXP (x, 1))
2671	      || computed_jump_p_1 (XEXP (x, 2)));
2672
2673    default:
2674      break;
2675    }
2676
2677  fmt = GET_RTX_FORMAT (code);
2678  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2679    {
2680      if (fmt[i] == 'e'
2681	  && computed_jump_p_1 (XEXP (x, i)))
2682	return 1;
2683
2684      else if (fmt[i] == 'E')
2685	for (j = 0; j < XVECLEN (x, i); j++)
2686	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2687	    return 1;
2688    }
2689
2690  return 0;
2691}
2692
2693/* Return nonzero if INSN is an indirect jump (aka computed jump).
2694
2695   Tablejumps and casesi insns are not considered indirect jumps;
2696   we can recognize them by a (use (label_ref)).  */
2697
2698int
2699computed_jump_p (rtx insn)
2700{
2701  int i;
2702  if (JUMP_P (insn))
2703    {
2704      rtx pat = PATTERN (insn);
2705
2706      if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2707	return 0;
2708      else if (GET_CODE (pat) == PARALLEL)
2709	{
2710	  int len = XVECLEN (pat, 0);
2711	  int has_use_labelref = 0;
2712
2713	  for (i = len - 1; i >= 0; i--)
2714	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2715		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2716		    == LABEL_REF))
2717	      has_use_labelref = 1;
2718
2719	  if (! has_use_labelref)
2720	    for (i = len - 1; i >= 0; i--)
2721	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2722		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2723		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2724		return 1;
2725	}
2726      else if (GET_CODE (pat) == SET
2727	       && SET_DEST (pat) == pc_rtx
2728	       && computed_jump_p_1 (SET_SRC (pat)))
2729	return 1;
2730    }
2731  return 0;
2732}
2733
2734/* Optimized loop of for_each_rtx, trying to avoid useless recursive
2735   calls.  Processes the subexpressions of EXP and passes them to F.  */
2736static int
2737for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2738{
2739  int result, i, j;
2740  const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2741  rtx *x;
2742
2743  for (; format[n] != '\0'; n++)
2744    {
2745      switch (format[n])
2746	{
2747	case 'e':
2748	  /* Call F on X.  */
2749	  x = &XEXP (exp, n);
2750	  result = (*f) (x, data);
2751	  if (result == -1)
2752	    /* Do not traverse sub-expressions.  */
2753	    continue;
2754	  else if (result != 0)
2755	    /* Stop the traversal.  */
2756	    return result;
2757
2758	  if (*x == NULL_RTX)
2759	    /* There are no sub-expressions.  */
2760	    continue;
2761
2762	  i = non_rtx_starting_operands[GET_CODE (*x)];
2763	  if (i >= 0)
2764	    {
2765	      result = for_each_rtx_1 (*x, i, f, data);
2766	      if (result != 0)
2767		return result;
2768	    }
2769	  break;
2770
2771	case 'V':
2772	case 'E':
2773	  if (XVEC (exp, n) == 0)
2774	    continue;
2775	  for (j = 0; j < XVECLEN (exp, n); ++j)
2776	    {
2777	      /* Call F on X.  */
2778	      x = &XVECEXP (exp, n, j);
2779	      result = (*f) (x, data);
2780	      if (result == -1)
2781		/* Do not traverse sub-expressions.  */
2782		continue;
2783	      else if (result != 0)
2784		/* Stop the traversal.  */
2785		return result;
2786
2787	      if (*x == NULL_RTX)
2788		/* There are no sub-expressions.  */
2789		continue;
2790
2791	      i = non_rtx_starting_operands[GET_CODE (*x)];
2792	      if (i >= 0)
2793		{
2794		  result = for_each_rtx_1 (*x, i, f, data);
2795		  if (result != 0)
2796		    return result;
2797	        }
2798	    }
2799	  break;
2800
2801	default:
2802	  /* Nothing to do.  */
2803	  break;
2804	}
2805    }
2806
2807  return 0;
2808}
2809
2810/* Traverse X via depth-first search, calling F for each
2811   sub-expression (including X itself).  F is also passed the DATA.
2812   If F returns -1, do not traverse sub-expressions, but continue
2813   traversing the rest of the tree.  If F ever returns any other
2814   nonzero value, stop the traversal, and return the value returned
2815   by F.  Otherwise, return 0.  This function does not traverse inside
2816   tree structure that contains RTX_EXPRs, or into sub-expressions
2817   whose format code is `0' since it is not known whether or not those
2818   codes are actually RTL.
2819
2820   This routine is very general, and could (should?) be used to
2821   implement many of the other routines in this file.  */
2822
2823int
2824for_each_rtx (rtx *x, rtx_function f, void *data)
2825{
2826  int result;
2827  int i;
2828
2829  /* Call F on X.  */
2830  result = (*f) (x, data);
2831  if (result == -1)
2832    /* Do not traverse sub-expressions.  */
2833    return 0;
2834  else if (result != 0)
2835    /* Stop the traversal.  */
2836    return result;
2837
2838  if (*x == NULL_RTX)
2839    /* There are no sub-expressions.  */
2840    return 0;
2841
2842  i = non_rtx_starting_operands[GET_CODE (*x)];
2843  if (i < 0)
2844    return 0;
2845
2846  return for_each_rtx_1 (*x, i, f, data);
2847}
2848
2849
2850/* Searches X for any reference to REGNO, returning the rtx of the
2851   reference found if any.  Otherwise, returns NULL_RTX.  */
2852
2853rtx
2854regno_use_in (unsigned int regno, rtx x)
2855{
2856  const char *fmt;
2857  int i, j;
2858  rtx tem;
2859
2860  if (REG_P (x) && REGNO (x) == regno)
2861    return x;
2862
2863  fmt = GET_RTX_FORMAT (GET_CODE (x));
2864  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2865    {
2866      if (fmt[i] == 'e')
2867	{
2868	  if ((tem = regno_use_in (regno, XEXP (x, i))))
2869	    return tem;
2870	}
2871      else if (fmt[i] == 'E')
2872	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2873	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2874	    return tem;
2875    }
2876
2877  return NULL_RTX;
2878}
2879
2880/* Return a value indicating whether OP, an operand of a commutative
2881   operation, is preferred as the first or second operand.  The higher
2882   the value, the stronger the preference for being the first operand.
2883   We use negative values to indicate a preference for the first operand
2884   and positive values for the second operand.  */
2885
2886int
2887commutative_operand_precedence (rtx op)
2888{
2889  enum rtx_code code = GET_CODE (op);
2890
2891  /* Constants always come the second operand.  Prefer "nice" constants.  */
2892  if (code == CONST_INT)
2893    return -7;
2894  if (code == CONST_DOUBLE)
2895    return -6;
2896  op = avoid_constant_pool_reference (op);
2897  code = GET_CODE (op);
2898
2899  switch (GET_RTX_CLASS (code))
2900    {
2901    case RTX_CONST_OBJ:
2902      if (code == CONST_INT)
2903        return -5;
2904      if (code == CONST_DOUBLE)
2905        return -4;
2906      return -3;
2907
2908    case RTX_EXTRA:
2909      /* SUBREGs of objects should come second.  */
2910      if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2911        return -2;
2912
2913      if (!CONSTANT_P (op))
2914        return 0;
2915      else
2916	/* As for RTX_CONST_OBJ.  */
2917	return -3;
2918
2919    case RTX_OBJ:
2920      /* Complex expressions should be the first, so decrease priority
2921         of objects.  */
2922      return -1;
2923
2924    case RTX_COMM_ARITH:
2925      /* Prefer operands that are themselves commutative to be first.
2926         This helps to make things linear.  In particular,
2927         (and (and (reg) (reg)) (not (reg))) is canonical.  */
2928      return 4;
2929
2930    case RTX_BIN_ARITH:
2931      /* If only one operand is a binary expression, it will be the first
2932         operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
2933         is canonical, although it will usually be further simplified.  */
2934      return 2;
2935
2936    case RTX_UNARY:
2937      /* Then prefer NEG and NOT.  */
2938      if (code == NEG || code == NOT)
2939        return 1;
2940
2941    default:
2942      return 0;
2943    }
2944}
2945
2946/* Return 1 iff it is necessary to swap operands of commutative operation
2947   in order to canonicalize expression.  */
2948
2949int
2950swap_commutative_operands_p (rtx x, rtx y)
2951{
2952  return (commutative_operand_precedence (x)
2953	  < commutative_operand_precedence (y));
2954}
2955
2956/* Return 1 if X is an autoincrement side effect and the register is
2957   not the stack pointer.  */
2958int
2959auto_inc_p (rtx x)
2960{
2961  switch (GET_CODE (x))
2962    {
2963    case PRE_INC:
2964    case POST_INC:
2965    case PRE_DEC:
2966    case POST_DEC:
2967    case PRE_MODIFY:
2968    case POST_MODIFY:
2969      /* There are no REG_INC notes for SP.  */
2970      if (XEXP (x, 0) != stack_pointer_rtx)
2971	return 1;
2972    default:
2973      break;
2974    }
2975  return 0;
2976}
2977
2978/* Return 1 if the sequence of instructions beginning with FROM and up
2979   to and including TO is safe to move.  If NEW_TO is non-NULL, and
2980   the sequence is not already safe to move, but can be easily
2981   extended to a sequence which is safe, then NEW_TO will point to the
2982   end of the extended sequence.
2983
2984   For now, this function only checks that the region contains whole
2985   exception regions, but it could be extended to check additional
2986   conditions as well.  */
2987
2988int
2989insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2990{
2991  int eh_region_count = 0;
2992  int past_to_p = 0;
2993  rtx r = from;
2994
2995  /* By default, assume the end of the region will be what was
2996     suggested.  */
2997  if (new_to)
2998    *new_to = to;
2999
3000  while (r)
3001    {
3002      if (NOTE_P (r))
3003	{
3004	  switch (NOTE_LINE_NUMBER (r))
3005	    {
3006	    case NOTE_INSN_EH_REGION_BEG:
3007	      ++eh_region_count;
3008	      break;
3009
3010	    case NOTE_INSN_EH_REGION_END:
3011	      if (eh_region_count == 0)
3012		/* This sequence of instructions contains the end of
3013		   an exception region, but not he beginning.  Moving
3014		   it will cause chaos.  */
3015		return 0;
3016
3017	      --eh_region_count;
3018	      break;
3019
3020	    default:
3021	      break;
3022	    }
3023	}
3024      else if (past_to_p)
3025	/* If we've passed TO, and we see a non-note instruction, we
3026	   can't extend the sequence to a movable sequence.  */
3027	return 0;
3028
3029      if (r == to)
3030	{
3031	  if (!new_to)
3032	    /* It's OK to move the sequence if there were matched sets of
3033	       exception region notes.  */
3034	    return eh_region_count == 0;
3035
3036	  past_to_p = 1;
3037	}
3038
3039      /* It's OK to move the sequence if there were matched sets of
3040	 exception region notes.  */
3041      if (past_to_p && eh_region_count == 0)
3042	{
3043	  *new_to = r;
3044	  return 1;
3045	}
3046
3047      /* Go to the next instruction.  */
3048      r = NEXT_INSN (r);
3049    }
3050
3051  return 0;
3052}
3053
3054/* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3055int
3056loc_mentioned_in_p (rtx *loc, rtx in)
3057{
3058  enum rtx_code code = GET_CODE (in);
3059  const char *fmt = GET_RTX_FORMAT (code);
3060  int i, j;
3061
3062  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3063    {
3064      if (loc == &in->u.fld[i].rt_rtx)
3065	return 1;
3066      if (fmt[i] == 'e')
3067	{
3068	  if (loc_mentioned_in_p (loc, XEXP (in, i)))
3069	    return 1;
3070	}
3071      else if (fmt[i] == 'E')
3072	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3073	  if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3074	    return 1;
3075    }
3076  return 0;
3077}
3078
3079/* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
3080   and SUBREG_BYTE, return the bit offset where the subreg begins
3081   (counting from the least significant bit of the operand).  */
3082
3083unsigned int
3084subreg_lsb_1 (enum machine_mode outer_mode,
3085	      enum machine_mode inner_mode,
3086	      unsigned int subreg_byte)
3087{
3088  unsigned int bitpos;
3089  unsigned int byte;
3090  unsigned int word;
3091
3092  /* A paradoxical subreg begins at bit position 0.  */
3093  if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3094    return 0;
3095
3096  if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3097    /* If the subreg crosses a word boundary ensure that
3098       it also begins and ends on a word boundary.  */
3099    gcc_assert (!((subreg_byte % UNITS_PER_WORD
3100		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3101		  && (subreg_byte % UNITS_PER_WORD
3102		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3103
3104  if (WORDS_BIG_ENDIAN)
3105    word = (GET_MODE_SIZE (inner_mode)
3106	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3107  else
3108    word = subreg_byte / UNITS_PER_WORD;
3109  bitpos = word * BITS_PER_WORD;
3110
3111  if (BYTES_BIG_ENDIAN)
3112    byte = (GET_MODE_SIZE (inner_mode)
3113	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3114  else
3115    byte = subreg_byte % UNITS_PER_WORD;
3116  bitpos += byte * BITS_PER_UNIT;
3117
3118  return bitpos;
3119}
3120
3121/* Given a subreg X, return the bit offset where the subreg begins
3122   (counting from the least significant bit of the reg).  */
3123
3124unsigned int
3125subreg_lsb (rtx x)
3126{
3127  return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3128		       SUBREG_BYTE (x));
3129}
3130
3131/* This function returns the regno offset of a subreg expression.
3132   xregno - A regno of an inner hard subreg_reg (or what will become one).
3133   xmode  - The mode of xregno.
3134   offset - The byte offset.
3135   ymode  - The mode of a top level SUBREG (or what may become one).
3136   RETURN - The regno offset which would be used.  */
3137unsigned int
3138subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3139		     unsigned int offset, enum machine_mode ymode)
3140{
3141  int nregs_xmode, nregs_ymode;
3142  int mode_multiple, nregs_multiple;
3143  int y_offset;
3144
3145  gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3146
3147  /* Adjust nregs_xmode to allow for 'holes'.  */
3148  if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3149    nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3150  else
3151    nregs_xmode = hard_regno_nregs[xregno][xmode];
3152
3153  nregs_ymode = hard_regno_nregs[xregno][ymode];
3154
3155  /* If this is a big endian paradoxical subreg, which uses more actual
3156     hard registers than the original register, we must return a negative
3157     offset so that we find the proper highpart of the register.  */
3158  if (offset == 0
3159      && nregs_ymode > nregs_xmode
3160      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3161	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3162    return nregs_xmode - nregs_ymode;
3163
3164  if (offset == 0 || nregs_xmode == nregs_ymode)
3165    return 0;
3166
3167  /* Size of ymode must not be greater than the size of xmode.  */
3168  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3169  gcc_assert (mode_multiple != 0);
3170
3171  y_offset = offset / GET_MODE_SIZE (ymode);
3172  nregs_multiple =  nregs_xmode / nregs_ymode;
3173  return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3174}
3175
3176/* This function returns true when the offset is representable via
3177   subreg_offset in the given regno.
3178   xregno - A regno of an inner hard subreg_reg (or what will become one).
3179   xmode  - The mode of xregno.
3180   offset - The byte offset.
3181   ymode  - The mode of a top level SUBREG (or what may become one).
3182   RETURN - Whether the offset is representable.  */
3183bool
3184subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3185			       unsigned int offset, enum machine_mode ymode)
3186{
3187  int nregs_xmode, nregs_ymode;
3188  int mode_multiple, nregs_multiple;
3189  int y_offset;
3190  int regsize_xmode, regsize_ymode;
3191
3192  gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3193
3194  /* If there are holes in a non-scalar mode in registers, we expect
3195     that it is made up of its units concatenated together.  */
3196  if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3197    {
3198      enum machine_mode xmode_unit;
3199
3200      nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3201      if (GET_MODE_INNER (xmode) == VOIDmode)
3202	xmode_unit = xmode;
3203      else
3204	xmode_unit = GET_MODE_INNER (xmode);
3205      gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3206      gcc_assert (nregs_xmode
3207		  == (GET_MODE_NUNITS (xmode)
3208		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3209      gcc_assert (hard_regno_nregs[xregno][xmode]
3210		  == (hard_regno_nregs[xregno][xmode_unit]
3211		      * GET_MODE_NUNITS (xmode)));
3212
3213      /* You can only ask for a SUBREG of a value with holes in the middle
3214	 if you don't cross the holes.  (Such a SUBREG should be done by
3215	 picking a different register class, or doing it in memory if
3216	 necessary.)  An example of a value with holes is XCmode on 32-bit
3217	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3218	 3 for each part, but in memory it's two 128-bit parts.
3219	 Padding is assumed to be at the end (not necessarily the 'high part')
3220	 of each unit.  */
3221      if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3222	   < GET_MODE_NUNITS (xmode))
3223	  && (offset / GET_MODE_SIZE (xmode_unit)
3224	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3225		  / GET_MODE_SIZE (xmode_unit))))
3226	return false;
3227    }
3228  else
3229    nregs_xmode = hard_regno_nregs[xregno][xmode];
3230
3231  nregs_ymode = hard_regno_nregs[xregno][ymode];
3232
3233  /* Paradoxical subregs are otherwise valid.  */
3234  if (offset == 0
3235      && nregs_ymode > nregs_xmode
3236      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3237	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3238    return true;
3239
3240  /* If registers store different numbers of bits in the different
3241     modes, we cannot generally form this subreg.  */
3242  regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3243  regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3244  if (regsize_xmode > regsize_ymode && nregs_ymode > 1)
3245    return false;
3246  if (regsize_ymode > regsize_xmode && nregs_xmode > 1)
3247    return false;
3248
3249  /* Lowpart subregs are otherwise valid.  */
3250  if (offset == subreg_lowpart_offset (ymode, xmode))
3251    return true;
3252
3253  /* This should always pass, otherwise we don't know how to verify
3254     the constraint.  These conditions may be relaxed but
3255     subreg_regno_offset would need to be redesigned.  */
3256  gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3257  gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3258
3259  /* The XMODE value can be seen as a vector of NREGS_XMODE
3260     values.  The subreg must represent a lowpart of given field.
3261     Compute what field it is.  */
3262  offset -= subreg_lowpart_offset (ymode,
3263				   mode_for_size (GET_MODE_BITSIZE (xmode)
3264						  / nregs_xmode,
3265						  MODE_INT, 0));
3266
3267  /* Size of ymode must not be greater than the size of xmode.  */
3268  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3269  gcc_assert (mode_multiple != 0);
3270
3271  y_offset = offset / GET_MODE_SIZE (ymode);
3272  nregs_multiple =  nregs_xmode / nregs_ymode;
3273
3274  gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3275  gcc_assert ((mode_multiple % nregs_multiple) == 0);
3276
3277  return (!(y_offset % (mode_multiple / nregs_multiple)));
3278}
3279
3280/* Return the final regno that a subreg expression refers to.  */
3281unsigned int
3282subreg_regno (rtx x)
3283{
3284  unsigned int ret;
3285  rtx subreg = SUBREG_REG (x);
3286  int regno = REGNO (subreg);
3287
3288  ret = regno + subreg_regno_offset (regno,
3289				     GET_MODE (subreg),
3290				     SUBREG_BYTE (x),
3291				     GET_MODE (x));
3292  return ret;
3293
3294}
3295struct parms_set_data
3296{
3297  int nregs;
3298  HARD_REG_SET regs;
3299};
3300
3301/* Helper function for noticing stores to parameter registers.  */
3302static void
3303parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3304{
3305  struct parms_set_data *d = data;
3306  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3307      && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3308    {
3309      CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3310      d->nregs--;
3311    }
3312}
3313
3314/* Look backward for first parameter to be loaded.
3315   Note that loads of all parameters will not necessarily be
3316   found if CSE has eliminated some of them (e.g., an argument
3317   to the outer function is passed down as a parameter).
3318   Do not skip BOUNDARY.  */
3319rtx
3320find_first_parameter_load (rtx call_insn, rtx boundary)
3321{
3322  struct parms_set_data parm;
3323  rtx p, before, first_set;
3324
3325  /* Since different machines initialize their parameter registers
3326     in different orders, assume nothing.  Collect the set of all
3327     parameter registers.  */
3328  CLEAR_HARD_REG_SET (parm.regs);
3329  parm.nregs = 0;
3330  for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3331    if (GET_CODE (XEXP (p, 0)) == USE
3332	&& REG_P (XEXP (XEXP (p, 0), 0)))
3333      {
3334	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3335
3336	/* We only care about registers which can hold function
3337	   arguments.  */
3338	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3339	  continue;
3340
3341	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3342	parm.nregs++;
3343      }
3344  before = call_insn;
3345  first_set = call_insn;
3346
3347  /* Search backward for the first set of a register in this set.  */
3348  while (parm.nregs && before != boundary)
3349    {
3350      before = PREV_INSN (before);
3351
3352      /* It is possible that some loads got CSEed from one call to
3353         another.  Stop in that case.  */
3354      if (CALL_P (before))
3355	break;
3356
3357      /* Our caller needs either ensure that we will find all sets
3358         (in case code has not been optimized yet), or take care
3359         for possible labels in a way by setting boundary to preceding
3360         CODE_LABEL.  */
3361      if (LABEL_P (before))
3362	{
3363	  gcc_assert (before == boundary);
3364	  break;
3365	}
3366
3367      if (INSN_P (before))
3368	{
3369	  int nregs_old = parm.nregs;
3370	  note_stores (PATTERN (before), parms_set, &parm);
3371	  /* If we found something that did not set a parameter reg,
3372	     we're done.  Do not keep going, as that might result
3373	     in hoisting an insn before the setting of a pseudo
3374	     that is used by the hoisted insn. */
3375	  if (nregs_old != parm.nregs)
3376	    first_set = before;
3377	  else
3378	    break;
3379	}
3380    }
3381  return first_set;
3382}
3383
3384/* Return true if we should avoid inserting code between INSN and preceding
3385   call instruction.  */
3386
3387bool
3388keep_with_call_p (rtx insn)
3389{
3390  rtx set;
3391
3392  if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3393    {
3394      if (REG_P (SET_DEST (set))
3395	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3396	  && fixed_regs[REGNO (SET_DEST (set))]
3397	  && general_operand (SET_SRC (set), VOIDmode))
3398	return true;
3399      if (REG_P (SET_SRC (set))
3400	  && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3401	  && REG_P (SET_DEST (set))
3402	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3403	return true;
3404      /* There may be a stack pop just after the call and before the store
3405	 of the return register.  Search for the actual store when deciding
3406	 if we can break or not.  */
3407      if (SET_DEST (set) == stack_pointer_rtx)
3408	{
3409	  rtx i2 = next_nonnote_insn (insn);
3410	  if (i2 && keep_with_call_p (i2))
3411	    return true;
3412	}
3413    }
3414  return false;
3415}
3416
3417/* Return true if LABEL is a target of JUMP_INSN.  This applies only
3418   to non-complex jumps.  That is, direct unconditional, conditional,
3419   and tablejumps, but not computed jumps or returns.  It also does
3420   not apply to the fallthru case of a conditional jump.  */
3421
3422bool
3423label_is_jump_target_p (rtx label, rtx jump_insn)
3424{
3425  rtx tmp = JUMP_LABEL (jump_insn);
3426
3427  if (label == tmp)
3428    return true;
3429
3430  if (tablejump_p (jump_insn, NULL, &tmp))
3431    {
3432      rtvec vec = XVEC (PATTERN (tmp),
3433			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3434      int i, veclen = GET_NUM_ELEM (vec);
3435
3436      for (i = 0; i < veclen; ++i)
3437	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3438	  return true;
3439    }
3440
3441  return false;
3442}
3443
3444
3445/* Return an estimate of the cost of computing rtx X.
3446   One use is in cse, to decide which expression to keep in the hash table.
3447   Another is in rtl generation, to pick the cheapest way to multiply.
3448   Other uses like the latter are expected in the future.  */
3449
3450int
3451rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3452{
3453  int i, j;
3454  enum rtx_code code;
3455  const char *fmt;
3456  int total;
3457
3458  if (x == 0)
3459    return 0;
3460
3461  /* Compute the default costs of certain things.
3462     Note that targetm.rtx_costs can override the defaults.  */
3463
3464  code = GET_CODE (x);
3465  switch (code)
3466    {
3467    case MULT:
3468      total = COSTS_N_INSNS (5);
3469      break;
3470    case DIV:
3471    case UDIV:
3472    case MOD:
3473    case UMOD:
3474      total = COSTS_N_INSNS (7);
3475      break;
3476    case USE:
3477      /* Used in loop.c and combine.c as a marker.  */
3478      total = 0;
3479      break;
3480    default:
3481      total = COSTS_N_INSNS (1);
3482    }
3483
3484  switch (code)
3485    {
3486    case REG:
3487      return 0;
3488
3489    case SUBREG:
3490      total = 0;
3491      /* If we can't tie these modes, make this expensive.  The larger
3492	 the mode, the more expensive it is.  */
3493      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3494	return COSTS_N_INSNS (2
3495			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3496      break;
3497
3498    default:
3499      if (targetm.rtx_costs (x, code, outer_code, &total))
3500	return total;
3501      break;
3502    }
3503
3504  /* Sum the costs of the sub-rtx's, plus cost of this operation,
3505     which is already in total.  */
3506
3507  fmt = GET_RTX_FORMAT (code);
3508  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3509    if (fmt[i] == 'e')
3510      total += rtx_cost (XEXP (x, i), code);
3511    else if (fmt[i] == 'E')
3512      for (j = 0; j < XVECLEN (x, i); j++)
3513	total += rtx_cost (XVECEXP (x, i, j), code);
3514
3515  return total;
3516}
3517
3518/* Return cost of address expression X.
3519   Expect that X is properly formed address reference.  */
3520
3521int
3522address_cost (rtx x, enum machine_mode mode)
3523{
3524  /* We may be asked for cost of various unusual addresses, such as operands
3525     of push instruction.  It is not worthwhile to complicate writing
3526     of the target hook by such cases.  */
3527
3528  if (!memory_address_p (mode, x))
3529    return 1000;
3530
3531  return targetm.address_cost (x);
3532}
3533
3534/* If the target doesn't override, compute the cost as with arithmetic.  */
3535
3536int
3537default_address_cost (rtx x)
3538{
3539  return rtx_cost (x, MEM);
3540}
3541
3542
3543unsigned HOST_WIDE_INT
3544nonzero_bits (rtx x, enum machine_mode mode)
3545{
3546  return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3547}
3548
3549unsigned int
3550num_sign_bit_copies (rtx x, enum machine_mode mode)
3551{
3552  return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3553}
3554
3555/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3556   It avoids exponential behavior in nonzero_bits1 when X has
3557   identical subexpressions on the first or the second level.  */
3558
3559static unsigned HOST_WIDE_INT
3560cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3561		     enum machine_mode known_mode,
3562		     unsigned HOST_WIDE_INT known_ret)
3563{
3564  if (x == known_x && mode == known_mode)
3565    return known_ret;
3566
3567  /* Try to find identical subexpressions.  If found call
3568     nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3569     precomputed value for the subexpression as KNOWN_RET.  */
3570
3571  if (ARITHMETIC_P (x))
3572    {
3573      rtx x0 = XEXP (x, 0);
3574      rtx x1 = XEXP (x, 1);
3575
3576      /* Check the first level.  */
3577      if (x0 == x1)
3578	return nonzero_bits1 (x, mode, x0, mode,
3579			      cached_nonzero_bits (x0, mode, known_x,
3580						   known_mode, known_ret));
3581
3582      /* Check the second level.  */
3583      if (ARITHMETIC_P (x0)
3584	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3585	return nonzero_bits1 (x, mode, x1, mode,
3586			      cached_nonzero_bits (x1, mode, known_x,
3587						   known_mode, known_ret));
3588
3589      if (ARITHMETIC_P (x1)
3590	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3591	return nonzero_bits1 (x, mode, x0, mode,
3592			      cached_nonzero_bits (x0, mode, known_x,
3593						   known_mode, known_ret));
3594    }
3595
3596  return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3597}
3598
3599/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3600   We don't let nonzero_bits recur into num_sign_bit_copies, because that
3601   is less useful.  We can't allow both, because that results in exponential
3602   run time recursion.  There is a nullstone testcase that triggered
3603   this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3604#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3605
3606/* Given an expression, X, compute which bits in X can be nonzero.
3607   We don't care about bits outside of those defined in MODE.
3608
3609   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3610   an arithmetic operation, we can do better.  */
3611
3612static unsigned HOST_WIDE_INT
3613nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3614	       enum machine_mode known_mode,
3615	       unsigned HOST_WIDE_INT known_ret)
3616{
3617  unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3618  unsigned HOST_WIDE_INT inner_nz;
3619  enum rtx_code code;
3620  unsigned int mode_width = GET_MODE_BITSIZE (mode);
3621
3622  /* For floating-point values, assume all bits are needed.  */
3623  if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3624    return nonzero;
3625
3626  /* If X is wider than MODE, use its mode instead.  */
3627  if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3628    {
3629      mode = GET_MODE (x);
3630      nonzero = GET_MODE_MASK (mode);
3631      mode_width = GET_MODE_BITSIZE (mode);
3632    }
3633
3634  if (mode_width > HOST_BITS_PER_WIDE_INT)
3635    /* Our only callers in this case look for single bit values.  So
3636       just return the mode mask.  Those tests will then be false.  */
3637    return nonzero;
3638
3639#ifndef WORD_REGISTER_OPERATIONS
3640  /* If MODE is wider than X, but both are a single word for both the host
3641     and target machines, we can compute this from which bits of the
3642     object might be nonzero in its own mode, taking into account the fact
3643     that on many CISC machines, accessing an object in a wider mode
3644     causes the high-order bits to become undefined.  So they are
3645     not known to be zero.  */
3646
3647  if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3648      && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3649      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3650      && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3651    {
3652      nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3653				      known_x, known_mode, known_ret);
3654      nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3655      return nonzero;
3656    }
3657#endif
3658
3659  code = GET_CODE (x);
3660  switch (code)
3661    {
3662    case REG:
3663#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3664      /* If pointers extend unsigned and this is a pointer in Pmode, say that
3665	 all the bits above ptr_mode are known to be zero.  */
3666      if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3667	  && REG_POINTER (x))
3668	nonzero &= GET_MODE_MASK (ptr_mode);
3669#endif
3670
3671      /* Include declared information about alignment of pointers.  */
3672      /* ??? We don't properly preserve REG_POINTER changes across
3673	 pointer-to-integer casts, so we can't trust it except for
3674	 things that we know must be pointers.  See execute/960116-1.c.  */
3675      if ((x == stack_pointer_rtx
3676	   || x == frame_pointer_rtx
3677	   || x == arg_pointer_rtx)
3678	  && REGNO_POINTER_ALIGN (REGNO (x)))
3679	{
3680	  unsigned HOST_WIDE_INT alignment
3681	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3682
3683#ifdef PUSH_ROUNDING
3684	  /* If PUSH_ROUNDING is defined, it is possible for the
3685	     stack to be momentarily aligned only to that amount,
3686	     so we pick the least alignment.  */
3687	  if (x == stack_pointer_rtx && PUSH_ARGS)
3688	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3689			     alignment);
3690#endif
3691
3692	  nonzero &= ~(alignment - 1);
3693	}
3694
3695      {
3696	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3697	rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3698					      known_mode, known_ret,
3699					      &nonzero_for_hook);
3700
3701	if (new)
3702	  nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3703						   known_mode, known_ret);
3704
3705	return nonzero_for_hook;
3706      }
3707
3708    case CONST_INT:
3709#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3710      /* If X is negative in MODE, sign-extend the value.  */
3711      if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3712	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3713	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3714#endif
3715
3716      return INTVAL (x);
3717
3718    case MEM:
3719#ifdef LOAD_EXTEND_OP
3720      /* In many, if not most, RISC machines, reading a byte from memory
3721	 zeros the rest of the register.  Noticing that fact saves a lot
3722	 of extra zero-extends.  */
3723      if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3724	nonzero &= GET_MODE_MASK (GET_MODE (x));
3725#endif
3726      break;
3727
3728    case EQ:  case NE:
3729    case UNEQ:  case LTGT:
3730    case GT:  case GTU:  case UNGT:
3731    case LT:  case LTU:  case UNLT:
3732    case GE:  case GEU:  case UNGE:
3733    case LE:  case LEU:  case UNLE:
3734    case UNORDERED: case ORDERED:
3735      /* If this produces an integer result, we know which bits are set.
3736	 Code here used to clear bits outside the mode of X, but that is
3737	 now done above.  */
3738      /* Mind that MODE is the mode the caller wants to look at this
3739	 operation in, and not the actual operation mode.  We can wind
3740	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3741	 that describes the results of a vector compare.  */
3742      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3743	  && mode_width <= HOST_BITS_PER_WIDE_INT)
3744	nonzero = STORE_FLAG_VALUE;
3745      break;
3746
3747    case NEG:
3748#if 0
3749      /* Disabled to avoid exponential mutual recursion between nonzero_bits
3750	 and num_sign_bit_copies.  */
3751      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3752	  == GET_MODE_BITSIZE (GET_MODE (x)))
3753	nonzero = 1;
3754#endif
3755
3756      if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3757	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3758      break;
3759
3760    case ABS:
3761#if 0
3762      /* Disabled to avoid exponential mutual recursion between nonzero_bits
3763	 and num_sign_bit_copies.  */
3764      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3765	  == GET_MODE_BITSIZE (GET_MODE (x)))
3766	nonzero = 1;
3767#endif
3768      break;
3769
3770    case TRUNCATE:
3771      nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3772				       known_x, known_mode, known_ret)
3773		  & GET_MODE_MASK (mode));
3774      break;
3775
3776    case ZERO_EXTEND:
3777      nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3778				      known_x, known_mode, known_ret);
3779      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3780	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3781      break;
3782
3783    case SIGN_EXTEND:
3784      /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3785	 Otherwise, show all the bits in the outer mode but not the inner
3786	 may be nonzero.  */
3787      inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3788				      known_x, known_mode, known_ret);
3789      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3790	{
3791	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3792	  if (inner_nz
3793	      & (((HOST_WIDE_INT) 1
3794		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3795	    inner_nz |= (GET_MODE_MASK (mode)
3796			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3797	}
3798
3799      nonzero &= inner_nz;
3800      break;
3801
3802    case AND:
3803      nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3804				       known_x, known_mode, known_ret)
3805      		 & cached_nonzero_bits (XEXP (x, 1), mode,
3806					known_x, known_mode, known_ret);
3807      break;
3808
3809    case XOR:   case IOR:
3810    case UMIN:  case UMAX:  case SMIN:  case SMAX:
3811      {
3812	unsigned HOST_WIDE_INT nonzero0 =
3813	  cached_nonzero_bits (XEXP (x, 0), mode,
3814			       known_x, known_mode, known_ret);
3815
3816	/* Don't call nonzero_bits for the second time if it cannot change
3817	   anything.  */
3818	if ((nonzero & nonzero0) != nonzero)
3819	  nonzero &= nonzero0
3820      		     | cached_nonzero_bits (XEXP (x, 1), mode,
3821					    known_x, known_mode, known_ret);
3822      }
3823      break;
3824
3825    case PLUS:  case MINUS:
3826    case MULT:
3827    case DIV:   case UDIV:
3828    case MOD:   case UMOD:
3829      /* We can apply the rules of arithmetic to compute the number of
3830	 high- and low-order zero bits of these operations.  We start by
3831	 computing the width (position of the highest-order nonzero bit)
3832	 and the number of low-order zero bits for each value.  */
3833      {
3834	unsigned HOST_WIDE_INT nz0 =
3835	  cached_nonzero_bits (XEXP (x, 0), mode,
3836			       known_x, known_mode, known_ret);
3837	unsigned HOST_WIDE_INT nz1 =
3838	  cached_nonzero_bits (XEXP (x, 1), mode,
3839			       known_x, known_mode, known_ret);
3840	int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3841	int width0 = floor_log2 (nz0) + 1;
3842	int width1 = floor_log2 (nz1) + 1;
3843	int low0 = floor_log2 (nz0 & -nz0);
3844	int low1 = floor_log2 (nz1 & -nz1);
3845	HOST_WIDE_INT op0_maybe_minusp
3846	  = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3847	HOST_WIDE_INT op1_maybe_minusp
3848	  = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3849	unsigned int result_width = mode_width;
3850	int result_low = 0;
3851
3852	switch (code)
3853	  {
3854	  case PLUS:
3855	    result_width = MAX (width0, width1) + 1;
3856	    result_low = MIN (low0, low1);
3857	    break;
3858	  case MINUS:
3859	    result_low = MIN (low0, low1);
3860	    break;
3861	  case MULT:
3862	    result_width = width0 + width1;
3863	    result_low = low0 + low1;
3864	    break;
3865	  case DIV:
3866	    if (width1 == 0)
3867	      break;
3868	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3869	      result_width = width0;
3870	    break;
3871	  case UDIV:
3872	    if (width1 == 0)
3873	      break;
3874	    result_width = width0;
3875	    break;
3876	  case MOD:
3877	    if (width1 == 0)
3878	      break;
3879	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3880	      result_width = MIN (width0, width1);
3881	    result_low = MIN (low0, low1);
3882	    break;
3883	  case UMOD:
3884	    if (width1 == 0)
3885	      break;
3886	    result_width = MIN (width0, width1);
3887	    result_low = MIN (low0, low1);
3888	    break;
3889	  default:
3890	    gcc_unreachable ();
3891	  }
3892
3893	if (result_width < mode_width)
3894	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3895
3896	if (result_low > 0)
3897	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3898
3899#ifdef POINTERS_EXTEND_UNSIGNED
3900	/* If pointers extend unsigned and this is an addition or subtraction
3901	   to a pointer in Pmode, all the bits above ptr_mode are known to be
3902	   zero.  */
3903	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3904	    && (code == PLUS || code == MINUS)
3905	    && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3906	  nonzero &= GET_MODE_MASK (ptr_mode);
3907#endif
3908      }
3909      break;
3910
3911    case ZERO_EXTRACT:
3912      if (GET_CODE (XEXP (x, 1)) == CONST_INT
3913	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3914	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3915      break;
3916
3917    case SUBREG:
3918      /* If this is a SUBREG formed for a promoted variable that has
3919	 been zero-extended, we know that at least the high-order bits
3920	 are zero, though others might be too.  */
3921
3922      if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3923	nonzero = GET_MODE_MASK (GET_MODE (x))
3924		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3925					 known_x, known_mode, known_ret);
3926
3927      /* If the inner mode is a single word for both the host and target
3928	 machines, we can compute this from which bits of the inner
3929	 object might be nonzero.  */
3930      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3931	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3932	      <= HOST_BITS_PER_WIDE_INT))
3933	{
3934	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3935					  known_x, known_mode, known_ret);
3936
3937#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3938	  /* If this is a typical RISC machine, we only have to worry
3939	     about the way loads are extended.  */
3940	  if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3941	       ? (((nonzero
3942		    & (((unsigned HOST_WIDE_INT) 1
3943			<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3944		   != 0))
3945	       : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3946	      || !MEM_P (SUBREG_REG (x)))
3947#endif
3948	    {
3949	      /* On many CISC machines, accessing an object in a wider mode
3950		 causes the high-order bits to become undefined.  So they are
3951		 not known to be zero.  */
3952	      if (GET_MODE_SIZE (GET_MODE (x))
3953		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3954		nonzero |= (GET_MODE_MASK (GET_MODE (x))
3955			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3956	    }
3957	}
3958      break;
3959
3960    case ASHIFTRT:
3961    case LSHIFTRT:
3962    case ASHIFT:
3963    case ROTATE:
3964      /* The nonzero bits are in two classes: any bits within MODE
3965	 that aren't in GET_MODE (x) are always significant.  The rest of the
3966	 nonzero bits are those that are significant in the operand of
3967	 the shift when shifted the appropriate number of bits.  This
3968	 shows that high-order bits are cleared by the right shift and
3969	 low-order bits by left shifts.  */
3970      if (GET_CODE (XEXP (x, 1)) == CONST_INT
3971	  && INTVAL (XEXP (x, 1)) >= 0
3972	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3973	{
3974	  enum machine_mode inner_mode = GET_MODE (x);
3975	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
3976	  int count = INTVAL (XEXP (x, 1));
3977	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3978	  unsigned HOST_WIDE_INT op_nonzero =
3979	    cached_nonzero_bits (XEXP (x, 0), mode,
3980				 known_x, known_mode, known_ret);
3981	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3982	  unsigned HOST_WIDE_INT outer = 0;
3983
3984	  if (mode_width > width)
3985	    outer = (op_nonzero & nonzero & ~mode_mask);
3986
3987	  if (code == LSHIFTRT)
3988	    inner >>= count;
3989	  else if (code == ASHIFTRT)
3990	    {
3991	      inner >>= count;
3992
3993	      /* If the sign bit may have been nonzero before the shift, we
3994		 need to mark all the places it could have been copied to
3995		 by the shift as possibly nonzero.  */
3996	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3997		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3998	    }
3999	  else if (code == ASHIFT)
4000	    inner <<= count;
4001	  else
4002	    inner = ((inner << (count % width)
4003		      | (inner >> (width - (count % width)))) & mode_mask);
4004
4005	  nonzero &= (outer | inner);
4006	}
4007      break;
4008
4009    case FFS:
4010    case POPCOUNT:
4011      /* This is at most the number of bits in the mode.  */
4012      nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4013      break;
4014
4015    case CLZ:
4016      /* If CLZ has a known value at zero, then the nonzero bits are
4017	 that value, plus the number of bits in the mode minus one.  */
4018      if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4019	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4020      else
4021	nonzero = -1;
4022      break;
4023
4024    case CTZ:
4025      /* If CTZ has a known value at zero, then the nonzero bits are
4026	 that value, plus the number of bits in the mode minus one.  */
4027      if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4028	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4029      else
4030	nonzero = -1;
4031      break;
4032
4033    case PARITY:
4034      nonzero = 1;
4035      break;
4036
4037    case IF_THEN_ELSE:
4038      {
4039	unsigned HOST_WIDE_INT nonzero_true =
4040	  cached_nonzero_bits (XEXP (x, 1), mode,
4041			       known_x, known_mode, known_ret);
4042
4043	/* Don't call nonzero_bits for the second time if it cannot change
4044	   anything.  */
4045	if ((nonzero & nonzero_true) != nonzero)
4046	  nonzero &= nonzero_true
4047      		     | cached_nonzero_bits (XEXP (x, 2), mode,
4048					    known_x, known_mode, known_ret);
4049      }
4050      break;
4051
4052    default:
4053      break;
4054    }
4055
4056  return nonzero;
4057}
4058
4059/* See the macro definition above.  */
4060#undef cached_num_sign_bit_copies
4061
4062
4063/* The function cached_num_sign_bit_copies is a wrapper around
4064   num_sign_bit_copies1.  It avoids exponential behavior in
4065   num_sign_bit_copies1 when X has identical subexpressions on the
4066   first or the second level.  */
4067
4068static unsigned int
4069cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4070			    enum machine_mode known_mode,
4071			    unsigned int known_ret)
4072{
4073  if (x == known_x && mode == known_mode)
4074    return known_ret;
4075
4076  /* Try to find identical subexpressions.  If found call
4077     num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4078     the precomputed value for the subexpression as KNOWN_RET.  */
4079
4080  if (ARITHMETIC_P (x))
4081    {
4082      rtx x0 = XEXP (x, 0);
4083      rtx x1 = XEXP (x, 1);
4084
4085      /* Check the first level.  */
4086      if (x0 == x1)
4087	return
4088	  num_sign_bit_copies1 (x, mode, x0, mode,
4089				cached_num_sign_bit_copies (x0, mode, known_x,
4090							    known_mode,
4091							    known_ret));
4092
4093      /* Check the second level.  */
4094      if (ARITHMETIC_P (x0)
4095	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4096	return
4097	  num_sign_bit_copies1 (x, mode, x1, mode,
4098				cached_num_sign_bit_copies (x1, mode, known_x,
4099							    known_mode,
4100							    known_ret));
4101
4102      if (ARITHMETIC_P (x1)
4103	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4104	return
4105	  num_sign_bit_copies1 (x, mode, x0, mode,
4106				cached_num_sign_bit_copies (x0, mode, known_x,
4107							    known_mode,
4108							    known_ret));
4109    }
4110
4111  return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4112}
4113
4114/* Return the number of bits at the high-order end of X that are known to
4115   be equal to the sign bit.  X will be used in mode MODE; if MODE is
4116   VOIDmode, X will be used in its own mode.  The returned value  will always
4117   be between 1 and the number of bits in MODE.  */
4118
4119static unsigned int
4120num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4121		      enum machine_mode known_mode,
4122		      unsigned int known_ret)
4123{
4124  enum rtx_code code = GET_CODE (x);
4125  unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4126  int num0, num1, result;
4127  unsigned HOST_WIDE_INT nonzero;
4128
4129  /* If we weren't given a mode, use the mode of X.  If the mode is still
4130     VOIDmode, we don't know anything.  Likewise if one of the modes is
4131     floating-point.  */
4132
4133  if (mode == VOIDmode)
4134    mode = GET_MODE (x);
4135
4136  if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4137    return 1;
4138
4139  /* For a smaller object, just ignore the high bits.  */
4140  if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4141    {
4142      num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4143					 known_x, known_mode, known_ret);
4144      return MAX (1,
4145		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4146    }
4147
4148  if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4149    {
4150#ifndef WORD_REGISTER_OPERATIONS
4151  /* If this machine does not do all register operations on the entire
4152     register and MODE is wider than the mode of X, we can say nothing
4153     at all about the high-order bits.  */
4154      return 1;
4155#else
4156      /* Likewise on machines that do, if the mode of the object is smaller
4157	 than a word and loads of that size don't sign extend, we can say
4158	 nothing about the high order bits.  */
4159      if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4160#ifdef LOAD_EXTEND_OP
4161	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4162#endif
4163	  )
4164	return 1;
4165#endif
4166    }
4167
4168  switch (code)
4169    {
4170    case REG:
4171
4172#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4173      /* If pointers extend signed and this is a pointer in Pmode, say that
4174	 all the bits above ptr_mode are known to be sign bit copies.  */
4175      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4176	  && REG_POINTER (x))
4177	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4178#endif
4179
4180      {
4181	unsigned int copies_for_hook = 1, copies = 1;
4182	rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4183						     known_mode, known_ret,
4184						     &copies_for_hook);
4185
4186	if (new)
4187	  copies = cached_num_sign_bit_copies (new, mode, known_x,
4188					       known_mode, known_ret);
4189
4190	if (copies > 1 || copies_for_hook > 1)
4191	  return MAX (copies, copies_for_hook);
4192
4193	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
4194      }
4195      break;
4196
4197    case MEM:
4198#ifdef LOAD_EXTEND_OP
4199      /* Some RISC machines sign-extend all loads of smaller than a word.  */
4200      if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4201	return MAX (1, ((int) bitwidth
4202			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4203#endif
4204      break;
4205
4206    case CONST_INT:
4207      /* If the constant is negative, take its 1's complement and remask.
4208	 Then see how many zero bits we have.  */
4209      nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4210      if (bitwidth <= HOST_BITS_PER_WIDE_INT
4211	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4212	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4213
4214      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4215
4216    case SUBREG:
4217      /* If this is a SUBREG for a promoted object that is sign-extended
4218	 and we are looking at it in a wider mode, we know that at least the
4219	 high-order bits are known to be sign bit copies.  */
4220
4221      if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4222	{
4223	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4224					     known_x, known_mode, known_ret);
4225	  return MAX ((int) bitwidth
4226		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4227		      num0);
4228	}
4229
4230      /* For a smaller object, just ignore the high bits.  */
4231      if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4232	{
4233	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4234					     known_x, known_mode, known_ret);
4235	  return MAX (1, (num0
4236			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4237				   - bitwidth)));
4238	}
4239
4240#ifdef WORD_REGISTER_OPERATIONS
4241#ifdef LOAD_EXTEND_OP
4242      /* For paradoxical SUBREGs on machines where all register operations
4243	 affect the entire register, just look inside.  Note that we are
4244	 passing MODE to the recursive call, so the number of sign bit copies
4245	 will remain relative to that mode, not the inner mode.  */
4246
4247      /* This works only if loads sign extend.  Otherwise, if we get a
4248	 reload for the inner part, it may be loaded from the stack, and
4249	 then we lose all sign bit copies that existed before the store
4250	 to the stack.  */
4251
4252      if ((GET_MODE_SIZE (GET_MODE (x))
4253	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4254	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4255	  && MEM_P (SUBREG_REG (x)))
4256	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4257					   known_x, known_mode, known_ret);
4258#endif
4259#endif
4260      break;
4261
4262    case SIGN_EXTRACT:
4263      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4264	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4265      break;
4266
4267    case SIGN_EXTEND:
4268      return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4269	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4270					    known_x, known_mode, known_ret));
4271
4272    case TRUNCATE:
4273      /* For a smaller object, just ignore the high bits.  */
4274      num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4275					 known_x, known_mode, known_ret);
4276      return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4277				    - bitwidth)));
4278
4279    case NOT:
4280      return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4281					 known_x, known_mode, known_ret);
4282
4283    case ROTATE:       case ROTATERT:
4284      /* If we are rotating left by a number of bits less than the number
4285	 of sign bit copies, we can just subtract that amount from the
4286	 number.  */
4287      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4288	  && INTVAL (XEXP (x, 1)) >= 0
4289	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4290	{
4291	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4292					     known_x, known_mode, known_ret);
4293	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4294				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4295	}
4296      break;
4297
4298    case NEG:
4299      /* In general, this subtracts one sign bit copy.  But if the value
4300	 is known to be positive, the number of sign bit copies is the
4301	 same as that of the input.  Finally, if the input has just one bit
4302	 that might be nonzero, all the bits are copies of the sign bit.  */
4303      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4304					 known_x, known_mode, known_ret);
4305      if (bitwidth > HOST_BITS_PER_WIDE_INT)
4306	return num0 > 1 ? num0 - 1 : 1;
4307
4308      nonzero = nonzero_bits (XEXP (x, 0), mode);
4309      if (nonzero == 1)
4310	return bitwidth;
4311
4312      if (num0 > 1
4313	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4314	num0--;
4315
4316      return num0;
4317
4318    case IOR:   case AND:   case XOR:
4319    case SMIN:  case SMAX:  case UMIN:  case UMAX:
4320      /* Logical operations will preserve the number of sign-bit copies.
4321	 MIN and MAX operations always return one of the operands.  */
4322      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4323					 known_x, known_mode, known_ret);
4324      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4325					 known_x, known_mode, known_ret);
4326      return MIN (num0, num1);
4327
4328    case PLUS:  case MINUS:
4329      /* For addition and subtraction, we can have a 1-bit carry.  However,
4330	 if we are subtracting 1 from a positive number, there will not
4331	 be such a carry.  Furthermore, if the positive number is known to
4332	 be 0 or 1, we know the result is either -1 or 0.  */
4333
4334      if (code == PLUS && XEXP (x, 1) == constm1_rtx
4335	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4336	{
4337	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4338	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4339	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4340		    : bitwidth - floor_log2 (nonzero) - 1);
4341	}
4342
4343      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4344					 known_x, known_mode, known_ret);
4345      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4346					 known_x, known_mode, known_ret);
4347      result = MAX (1, MIN (num0, num1) - 1);
4348
4349#ifdef POINTERS_EXTEND_UNSIGNED
4350      /* If pointers extend signed and this is an addition or subtraction
4351	 to a pointer in Pmode, all the bits above ptr_mode are known to be
4352	 sign bit copies.  */
4353      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4354	  && (code == PLUS || code == MINUS)
4355	  && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4356	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4357			     - GET_MODE_BITSIZE (ptr_mode) + 1),
4358		      result);
4359#endif
4360      return result;
4361
4362    case MULT:
4363      /* The number of bits of the product is the sum of the number of
4364	 bits of both terms.  However, unless one of the terms if known
4365	 to be positive, we must allow for an additional bit since negating
4366	 a negative number can remove one sign bit copy.  */
4367
4368      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4369					 known_x, known_mode, known_ret);
4370      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4371					 known_x, known_mode, known_ret);
4372
4373      result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4374      if (result > 0
4375	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4376	      || (((nonzero_bits (XEXP (x, 0), mode)
4377		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4378		  && ((nonzero_bits (XEXP (x, 1), mode)
4379		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4380	result--;
4381
4382      return MAX (1, result);
4383
4384    case UDIV:
4385      /* The result must be <= the first operand.  If the first operand
4386	 has the high bit set, we know nothing about the number of sign
4387	 bit copies.  */
4388      if (bitwidth > HOST_BITS_PER_WIDE_INT)
4389	return 1;
4390      else if ((nonzero_bits (XEXP (x, 0), mode)
4391		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4392	return 1;
4393      else
4394	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4395					   known_x, known_mode, known_ret);
4396
4397    case UMOD:
4398      /* The result must be <= the second operand.  */
4399      return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4400					   known_x, known_mode, known_ret);
4401
4402    case DIV:
4403      /* Similar to unsigned division, except that we have to worry about
4404	 the case where the divisor is negative, in which case we have
4405	 to add 1.  */
4406      result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4407					   known_x, known_mode, known_ret);
4408      if (result > 1
4409	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4410	      || (nonzero_bits (XEXP (x, 1), mode)
4411		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4412	result--;
4413
4414      return result;
4415
4416    case MOD:
4417      result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4418					   known_x, known_mode, known_ret);
4419      if (result > 1
4420	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4421	      || (nonzero_bits (XEXP (x, 1), mode)
4422		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4423	result--;
4424
4425      return result;
4426
4427    case ASHIFTRT:
4428      /* Shifts by a constant add to the number of bits equal to the
4429	 sign bit.  */
4430      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4431					 known_x, known_mode, known_ret);
4432      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4433	  && INTVAL (XEXP (x, 1)) > 0)
4434	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4435
4436      return num0;
4437
4438    case ASHIFT:
4439      /* Left shifts destroy copies.  */
4440      if (GET_CODE (XEXP (x, 1)) != CONST_INT
4441	  || INTVAL (XEXP (x, 1)) < 0
4442	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4443	return 1;
4444
4445      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4446					 known_x, known_mode, known_ret);
4447      return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4448
4449    case IF_THEN_ELSE:
4450      num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4451					 known_x, known_mode, known_ret);
4452      num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4453					 known_x, known_mode, known_ret);
4454      return MIN (num0, num1);
4455
4456    case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4457    case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4458    case GEU: case GTU: case LEU: case LTU:
4459    case UNORDERED: case ORDERED:
4460      /* If the constant is negative, take its 1's complement and remask.
4461	 Then see how many zero bits we have.  */
4462      nonzero = STORE_FLAG_VALUE;
4463      if (bitwidth <= HOST_BITS_PER_WIDE_INT
4464	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4465	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4466
4467      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4468
4469    default:
4470      break;
4471    }
4472
4473  /* If we haven't been able to figure it out by one of the above rules,
4474     see if some of the high-order bits are known to be zero.  If so,
4475     count those bits and return one less than that amount.  If we can't
4476     safely compute the mask for this mode, always return BITWIDTH.  */
4477
4478  bitwidth = GET_MODE_BITSIZE (mode);
4479  if (bitwidth > HOST_BITS_PER_WIDE_INT)
4480    return 1;
4481
4482  nonzero = nonzero_bits (x, mode);
4483  return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4484	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4485}
4486
4487/* Calculate the rtx_cost of a single instruction.  A return value of
4488   zero indicates an instruction pattern without a known cost.  */
4489
4490int
4491insn_rtx_cost (rtx pat)
4492{
4493  int i, cost;
4494  rtx set;
4495
4496  /* Extract the single set rtx from the instruction pattern.
4497     We can't use single_set since we only have the pattern.  */
4498  if (GET_CODE (pat) == SET)
4499    set = pat;
4500  else if (GET_CODE (pat) == PARALLEL)
4501    {
4502      set = NULL_RTX;
4503      for (i = 0; i < XVECLEN (pat, 0); i++)
4504	{
4505	  rtx x = XVECEXP (pat, 0, i);
4506	  if (GET_CODE (x) == SET)
4507	    {
4508	      if (set)
4509		return 0;
4510	      set = x;
4511	    }
4512	}
4513      if (!set)
4514	return 0;
4515    }
4516  else
4517    return 0;
4518
4519  cost = rtx_cost (SET_SRC (set), SET);
4520  return cost > 0 ? cost : COSTS_N_INSNS (1);
4521}
4522
4523/* Given an insn INSN and condition COND, return the condition in a
4524   canonical form to simplify testing by callers.  Specifically:
4525
4526   (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4527   (2) Both operands will be machine operands; (cc0) will have been replaced.
4528   (3) If an operand is a constant, it will be the second operand.
4529   (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4530       for GE, GEU, and LEU.
4531
4532   If the condition cannot be understood, or is an inequality floating-point
4533   comparison which needs to be reversed, 0 will be returned.
4534
4535   If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4536
4537   If EARLIEST is nonzero, it is a pointer to a place where the earliest
4538   insn used in locating the condition was found.  If a replacement test
4539   of the condition is desired, it should be placed in front of that
4540   insn and we will be sure that the inputs are still valid.
4541
4542   If WANT_REG is nonzero, we wish the condition to be relative to that
4543   register, if possible.  Therefore, do not canonicalize the condition
4544   further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4545   to be a compare to a CC mode register.
4546
4547   If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4548   and at INSN.  */
4549
4550rtx
4551canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4552			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4553{
4554  enum rtx_code code;
4555  rtx prev = insn;
4556  rtx set;
4557  rtx tem;
4558  rtx op0, op1;
4559  int reverse_code = 0;
4560  enum machine_mode mode;
4561
4562  code = GET_CODE (cond);
4563  mode = GET_MODE (cond);
4564  op0 = XEXP (cond, 0);
4565  op1 = XEXP (cond, 1);
4566
4567  if (reverse)
4568    code = reversed_comparison_code (cond, insn);
4569  if (code == UNKNOWN)
4570    return 0;
4571
4572  if (earliest)
4573    *earliest = insn;
4574
4575  /* If we are comparing a register with zero, see if the register is set
4576     in the previous insn to a COMPARE or a comparison operation.  Perform
4577     the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4578     in cse.c  */
4579
4580  while ((GET_RTX_CLASS (code) == RTX_COMPARE
4581	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4582	 && op1 == CONST0_RTX (GET_MODE (op0))
4583	 && op0 != want_reg)
4584    {
4585      /* Set nonzero when we find something of interest.  */
4586      rtx x = 0;
4587
4588#ifdef HAVE_cc0
4589      /* If comparison with cc0, import actual comparison from compare
4590	 insn.  */
4591      if (op0 == cc0_rtx)
4592	{
4593	  if ((prev = prev_nonnote_insn (prev)) == 0
4594	      || !NONJUMP_INSN_P (prev)
4595	      || (set = single_set (prev)) == 0
4596	      || SET_DEST (set) != cc0_rtx)
4597	    return 0;
4598
4599	  op0 = SET_SRC (set);
4600	  op1 = CONST0_RTX (GET_MODE (op0));
4601	  if (earliest)
4602	    *earliest = prev;
4603	}
4604#endif
4605
4606      /* If this is a COMPARE, pick up the two things being compared.  */
4607      if (GET_CODE (op0) == COMPARE)
4608	{
4609	  op1 = XEXP (op0, 1);
4610	  op0 = XEXP (op0, 0);
4611	  continue;
4612	}
4613      else if (!REG_P (op0))
4614	break;
4615
4616      /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4617	 stop if it isn't a single set or if it has a REG_INC note because
4618	 we don't want to bother dealing with it.  */
4619
4620      if ((prev = prev_nonnote_insn (prev)) == 0
4621	  || !NONJUMP_INSN_P (prev)
4622	  || FIND_REG_INC_NOTE (prev, NULL_RTX))
4623	break;
4624
4625      set = set_of (op0, prev);
4626
4627      if (set
4628	  && (GET_CODE (set) != SET
4629	      || !rtx_equal_p (SET_DEST (set), op0)))
4630	break;
4631
4632      /* If this is setting OP0, get what it sets it to if it looks
4633	 relevant.  */
4634      if (set)
4635	{
4636	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4637#ifdef FLOAT_STORE_FLAG_VALUE
4638	  REAL_VALUE_TYPE fsfv;
4639#endif
4640
4641	  /* ??? We may not combine comparisons done in a CCmode with
4642	     comparisons not done in a CCmode.  This is to aid targets
4643	     like Alpha that have an IEEE compliant EQ instruction, and
4644	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
4645	     actually artificial, simply to prevent the combination, but
4646	     should not affect other platforms.
4647
4648	     However, we must allow VOIDmode comparisons to match either
4649	     CCmode or non-CCmode comparison, because some ports have
4650	     modeless comparisons inside branch patterns.
4651
4652	     ??? This mode check should perhaps look more like the mode check
4653	     in simplify_comparison in combine.  */
4654
4655	  if ((GET_CODE (SET_SRC (set)) == COMPARE
4656	       || (((code == NE
4657		     || (code == LT
4658			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4659			 && (GET_MODE_BITSIZE (inner_mode)
4660			     <= HOST_BITS_PER_WIDE_INT)
4661			 && (STORE_FLAG_VALUE
4662			     & ((HOST_WIDE_INT) 1
4663				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4664#ifdef FLOAT_STORE_FLAG_VALUE
4665		     || (code == LT
4666			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4667			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4668			     REAL_VALUE_NEGATIVE (fsfv)))
4669#endif
4670		     ))
4671		   && COMPARISON_P (SET_SRC (set))))
4672	      && (((GET_MODE_CLASS (mode) == MODE_CC)
4673		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4674		  || mode == VOIDmode || inner_mode == VOIDmode))
4675	    x = SET_SRC (set);
4676	  else if (((code == EQ
4677		     || (code == GE
4678			 && (GET_MODE_BITSIZE (inner_mode)
4679			     <= HOST_BITS_PER_WIDE_INT)
4680			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4681			 && (STORE_FLAG_VALUE
4682			     & ((HOST_WIDE_INT) 1
4683				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4684#ifdef FLOAT_STORE_FLAG_VALUE
4685		     || (code == GE
4686			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4687			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4688			     REAL_VALUE_NEGATIVE (fsfv)))
4689#endif
4690		     ))
4691		   && COMPARISON_P (SET_SRC (set))
4692		   && (((GET_MODE_CLASS (mode) == MODE_CC)
4693			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
4694		       || mode == VOIDmode || inner_mode == VOIDmode))
4695
4696	    {
4697	      reverse_code = 1;
4698	      x = SET_SRC (set);
4699	    }
4700	  else
4701	    break;
4702	}
4703
4704      else if (reg_set_p (op0, prev))
4705	/* If this sets OP0, but not directly, we have to give up.  */
4706	break;
4707
4708      if (x)
4709	{
4710	  /* If the caller is expecting the condition to be valid at INSN,
4711	     make sure X doesn't change before INSN.  */
4712	  if (valid_at_insn_p)
4713	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4714	      break;
4715	  if (COMPARISON_P (x))
4716	    code = GET_CODE (x);
4717	  if (reverse_code)
4718	    {
4719	      code = reversed_comparison_code (x, prev);
4720	      if (code == UNKNOWN)
4721		return 0;
4722	      reverse_code = 0;
4723	    }
4724
4725	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4726	  if (earliest)
4727	    *earliest = prev;
4728	}
4729    }
4730
4731  /* If constant is first, put it last.  */
4732  if (CONSTANT_P (op0))
4733    code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4734
4735  /* If OP0 is the result of a comparison, we weren't able to find what
4736     was really being compared, so fail.  */
4737  if (!allow_cc_mode
4738      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4739    return 0;
4740
4741  /* Canonicalize any ordered comparison with integers involving equality
4742     if we can do computations in the relevant mode and we do not
4743     overflow.  */
4744
4745  if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4746      && GET_CODE (op1) == CONST_INT
4747      && GET_MODE (op0) != VOIDmode
4748      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4749    {
4750      HOST_WIDE_INT const_val = INTVAL (op1);
4751      unsigned HOST_WIDE_INT uconst_val = const_val;
4752      unsigned HOST_WIDE_INT max_val
4753	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4754
4755      switch (code)
4756	{
4757	case LE:
4758	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4759	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4760	  break;
4761
4762	/* When cross-compiling, const_val might be sign-extended from
4763	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4764	case GE:
4765	  if ((HOST_WIDE_INT) (const_val & max_val)
4766	      != (((HOST_WIDE_INT) 1
4767		   << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4768	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4769	  break;
4770
4771	case LEU:
4772	  if (uconst_val < max_val)
4773	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4774	  break;
4775
4776	case GEU:
4777	  if (uconst_val != 0)
4778	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4779	  break;
4780
4781	default:
4782	  break;
4783	}
4784    }
4785
4786  /* Never return CC0; return zero instead.  */
4787  if (CC0_P (op0))
4788    return 0;
4789
4790  return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4791}
4792
4793/* Given a jump insn JUMP, return the condition that will cause it to branch
4794   to its JUMP_LABEL.  If the condition cannot be understood, or is an
4795   inequality floating-point comparison which needs to be reversed, 0 will
4796   be returned.
4797
4798   If EARLIEST is nonzero, it is a pointer to a place where the earliest
4799   insn used in locating the condition was found.  If a replacement test
4800   of the condition is desired, it should be placed in front of that
4801   insn and we will be sure that the inputs are still valid.  If EARLIEST
4802   is null, the returned condition will be valid at INSN.
4803
4804   If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4805   compare CC mode register.
4806
4807   VALID_AT_INSN_P is the same as for canonicalize_condition.  */
4808
4809rtx
4810get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4811{
4812  rtx cond;
4813  int reverse;
4814  rtx set;
4815
4816  /* If this is not a standard conditional jump, we can't parse it.  */
4817  if (!JUMP_P (jump)
4818      || ! any_condjump_p (jump))
4819    return 0;
4820  set = pc_set (jump);
4821
4822  cond = XEXP (SET_SRC (set), 0);
4823
4824  /* If this branches to JUMP_LABEL when the condition is false, reverse
4825     the condition.  */
4826  reverse
4827    = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4828      && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4829
4830  return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4831				 allow_cc_mode, valid_at_insn_p);
4832}
4833
4834
4835/* Initialize non_rtx_starting_operands, which is used to speed up
4836   for_each_rtx.  */
4837void
4838init_rtlanal (void)
4839{
4840  int i;
4841  for (i = 0; i < NUM_RTX_CODE; i++)
4842    {
4843      const char *format = GET_RTX_FORMAT (i);
4844      const char *first = strpbrk (format, "eEV");
4845      non_rtx_starting_operands[i] = first ? first - format : -1;
4846    }
4847}
4848