1/* Definitions for computing resource usage of specific insns.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "toplev.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "hard-reg-set.h"
30#include "function.h"
31#include "regs.h"
32#include "flags.h"
33#include "output.h"
34#include "resource.h"
35#include "except.h"
36#include "insn-attr.h"
37#include "params.h"
38
39/* This structure is used to record liveness information at the targets or
40   fallthrough insns of branches.  We will most likely need the information
41   at targets again, so save them in a hash table rather than recomputing them
42   each time.  */
43
44struct target_info
45{
46  int uid;			/* INSN_UID of target.  */
47  struct target_info *next;	/* Next info for same hash bucket.  */
48  HARD_REG_SET live_regs;	/* Registers live at target.  */
49  int block;			/* Basic block number containing target.  */
50  int bb_tick;			/* Generation count of basic block info.  */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue.  */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end.  */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself.  */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65   block info, which is updated each time we move an insn from the
66   target of a jump.  This is the generation number indexed by block
67   number.  */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
72   mark_target_live_regs.  Also used by update_live_status.  */
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77   Also only used by the next two functions.  */
78
79static HARD_REG_SET pending_dead_regs;
80
81static void update_live_status (rtx, rtx, void *);
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85				       rtx*, int, struct resources,
86				       struct resources);
87
88/* Utility function called from mark_target_live_regs via note_stores.
89   It deadens any CLOBBERed registers and livens any SET registers.  */
90
91static void
92update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
93{
94  int first_regno, last_regno;
95  int i;
96
97  if (!REG_P (dest)
98      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99    return;
100
101  if (GET_CODE (dest) == SUBREG)
102    first_regno = subreg_regno (dest);
103  else
104    first_regno = REGNO (dest);
105
106  last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
107
108  if (GET_CODE (x) == CLOBBER)
109    for (i = first_regno; i < last_regno; i++)
110      CLEAR_HARD_REG_BIT (current_live_regs, i);
111  else
112    for (i = first_regno; i < last_regno; i++)
113      {
114	SET_HARD_REG_BIT (current_live_regs, i);
115	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116      }
117}
118
119/* Find the number of the basic block with correct live register
120   information that starts closest to INSN.  Return -1 if we couldn't
121   find such a basic block or the beginning is more than
122   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
123   an unlimited search.
124
125   The delay slot filling code destroys the control-flow graph so,
126   instead of finding the basic block containing INSN, we search
127   backwards toward a BARRIER where the live register information is
128   correct.  */
129
130static int
131find_basic_block (rtx insn, int search_limit)
132{
133  basic_block bb;
134
135  /* Scan backwards to the previous BARRIER.  Then see if we can find a
136     label that starts a basic block.  Return the basic block number.  */
137  for (insn = prev_nonnote_insn (insn);
138       insn && !BARRIER_P (insn) && search_limit != 0;
139       insn = prev_nonnote_insn (insn), --search_limit)
140    ;
141
142  /* The closest BARRIER is too far away.  */
143  if (search_limit == 0)
144    return -1;
145
146  /* The start of the function.  */
147  else if (insn == 0)
148    return ENTRY_BLOCK_PTR->next_bb->index;
149
150  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
151     anything other than a CODE_LABEL or note, we can't find this code.  */
152  for (insn = next_nonnote_insn (insn);
153       insn && LABEL_P (insn);
154       insn = next_nonnote_insn (insn))
155    {
156      FOR_EACH_BB (bb)
157	if (insn == BB_HEAD (bb))
158	  return bb->index;
159    }
160
161  return -1;
162}
163
164/* Similar to next_insn, but ignores insns in the delay slots of
165   an annulled branch.  */
166
167static rtx
168next_insn_no_annul (rtx insn)
169{
170  if (insn)
171    {
172      /* If INSN is an annulled branch, skip any insns from the target
173	 of the branch.  */
174      if (INSN_P (insn)
175	  && INSN_ANNULLED_BRANCH_P (insn)
176	  && NEXT_INSN (PREV_INSN (insn)) != insn)
177	{
178	  rtx next = NEXT_INSN (insn);
179	  enum rtx_code code = GET_CODE (next);
180
181	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182		 && INSN_FROM_TARGET_P (next))
183	    {
184	      insn = next;
185	      next = NEXT_INSN (insn);
186	      code = GET_CODE (next);
187	    }
188	}
189
190      insn = NEXT_INSN (insn);
191      if (insn && NONJUMP_INSN_P (insn)
192	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
193	insn = XVECEXP (PATTERN (insn), 0, 0);
194    }
195
196  return insn;
197}
198
199/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201   is TRUE, resources used by the called routine will be included for
202   CALL_INSNs.  */
203
204void
205mark_referenced_resources (rtx x, struct resources *res,
206			   int include_delayed_effects)
207{
208  enum rtx_code code = GET_CODE (x);
209  int i, j;
210  unsigned int r;
211  const char *format_ptr;
212
213  /* Handle leaf items for which we set resource flags.  Also, special-case
214     CALL, SET and CLOBBER operators.  */
215  switch (code)
216    {
217    case CONST:
218    case CONST_INT:
219    case CONST_DOUBLE:
220    case CONST_VECTOR:
221    case PC:
222    case SYMBOL_REF:
223    case LABEL_REF:
224      return;
225
226    case SUBREG:
227      if (!REG_P (SUBREG_REG (x)))
228	mark_referenced_resources (SUBREG_REG (x), res, 0);
229      else
230	{
231	  unsigned int regno = subreg_regno (x);
232	  unsigned int last_regno
233	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
234
235	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236	  for (r = regno; r < last_regno; r++)
237	    SET_HARD_REG_BIT (res->regs, r);
238	}
239      return;
240
241    case REG:
242	{
243	  unsigned int regno = REGNO (x);
244	  unsigned int last_regno
245	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
246
247	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
248	  for (r = regno; r < last_regno; r++)
249	    SET_HARD_REG_BIT (res->regs, r);
250	}
251      return;
252
253    case MEM:
254      /* If this memory shouldn't change, it really isn't referencing
255	 memory.  */
256      if (MEM_READONLY_P (x))
257	res->unch_memory = 1;
258      else
259	res->memory = 1;
260      res->volatil |= MEM_VOLATILE_P (x);
261
262      /* Mark registers used to access memory.  */
263      mark_referenced_resources (XEXP (x, 0), res, 0);
264      return;
265
266    case CC0:
267      res->cc = 1;
268      return;
269
270    case UNSPEC_VOLATILE:
271    case ASM_INPUT:
272      /* Traditional asm's are always volatile.  */
273      res->volatil = 1;
274      return;
275
276    case TRAP_IF:
277      res->volatil = 1;
278      break;
279
280    case ASM_OPERANDS:
281      res->volatil |= MEM_VOLATILE_P (x);
282
283      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
284	 We can not just fall through here since then we would be confused
285	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
286	 traditional asms unlike their normal usage.  */
287
288      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
289	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
290      return;
291
292    case CALL:
293      /* The first operand will be a (MEM (xxx)) but doesn't really reference
294	 memory.  The second operand may be referenced, though.  */
295      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
296      mark_referenced_resources (XEXP (x, 1), res, 0);
297      return;
298
299    case SET:
300      /* Usually, the first operand of SET is set, not referenced.  But
301	 registers used to access memory are referenced.  SET_DEST is
302	 also referenced if it is a ZERO_EXTRACT.  */
303
304      mark_referenced_resources (SET_SRC (x), res, 0);
305
306      x = SET_DEST (x);
307      if (GET_CODE (x) == ZERO_EXTRACT
308	  || GET_CODE (x) == STRICT_LOW_PART)
309	mark_referenced_resources (x, res, 0);
310      else if (GET_CODE (x) == SUBREG)
311	x = SUBREG_REG (x);
312      if (MEM_P (x))
313	mark_referenced_resources (XEXP (x, 0), res, 0);
314      return;
315
316    case CLOBBER:
317      return;
318
319    case CALL_INSN:
320      if (include_delayed_effects)
321	{
322	  /* A CALL references memory, the frame pointer if it exists, the
323	     stack pointer, any global registers and any registers given in
324	     USE insns immediately in front of the CALL.
325
326	     However, we may have moved some of the parameter loading insns
327	     into the delay slot of this CALL.  If so, the USE's for them
328	     don't count and should be skipped.  */
329	  rtx insn = PREV_INSN (x);
330	  rtx sequence = 0;
331	  int seq_size = 0;
332	  int i;
333
334	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
335	  if (NEXT_INSN (insn) != x)
336	    {
337	      sequence = PATTERN (NEXT_INSN (insn));
338	      seq_size = XVECLEN (sequence, 0);
339	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
340	    }
341
342	  res->memory = 1;
343	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
344	  if (frame_pointer_needed)
345	    {
346	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
347#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
348	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
349#endif
350	    }
351
352	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
353	    if (global_regs[i])
354	      SET_HARD_REG_BIT (res->regs, i);
355
356	  /* Check for a REG_SETJMP.  If it exists, then we must
357	     assume that this call can need any register.
358
359	     This is done to be more conservative about how we handle setjmp.
360	     We assume that they both use and set all registers.  Using all
361	     registers ensures that a register will not be considered dead
362	     just because it crosses a setjmp call.  A register should be
363	     considered dead only if the setjmp call returns nonzero.  */
364	  if (find_reg_note (x, REG_SETJMP, NULL))
365	    SET_HARD_REG_SET (res->regs);
366
367	  {
368	    rtx link;
369
370	    for (link = CALL_INSN_FUNCTION_USAGE (x);
371		 link;
372		 link = XEXP (link, 1))
373	      if (GET_CODE (XEXP (link, 0)) == USE)
374		{
375		  for (i = 1; i < seq_size; i++)
376		    {
377		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
378		      if (GET_CODE (slot_pat) == SET
379			  && rtx_equal_p (SET_DEST (slot_pat),
380					  XEXP (XEXP (link, 0), 0)))
381			break;
382		    }
383		  if (i >= seq_size)
384		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
385					       res, 0);
386		}
387	  }
388	}
389
390      /* ... fall through to other INSN processing ...  */
391
392    case INSN:
393    case JUMP_INSN:
394
395#ifdef INSN_REFERENCES_ARE_DELAYED
396      if (! include_delayed_effects
397	  && INSN_REFERENCES_ARE_DELAYED (x))
398	return;
399#endif
400
401      /* No special processing, just speed up.  */
402      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
403      return;
404
405    default:
406      break;
407    }
408
409  /* Process each sub-expression and flag what it needs.  */
410  format_ptr = GET_RTX_FORMAT (code);
411  for (i = 0; i < GET_RTX_LENGTH (code); i++)
412    switch (*format_ptr++)
413      {
414      case 'e':
415	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
416	break;
417
418      case 'E':
419	for (j = 0; j < XVECLEN (x, i); j++)
420	  mark_referenced_resources (XVECEXP (x, i, j), res,
421				     include_delayed_effects);
422	break;
423      }
424}
425
426/* A subroutine of mark_target_live_regs.  Search forward from TARGET
427   looking for registers that are set before they are used.  These are dead.
428   Stop after passing a few conditional jumps, and/or a small
429   number of unconditional branches.  */
430
431static rtx
432find_dead_or_set_registers (rtx target, struct resources *res,
433			    rtx *jump_target, int jump_count,
434			    struct resources set, struct resources needed)
435{
436  HARD_REG_SET scratch;
437  rtx insn, next;
438  rtx jump_insn = 0;
439  int i;
440
441  for (insn = target; insn; insn = next)
442    {
443      rtx this_jump_insn = insn;
444
445      next = NEXT_INSN (insn);
446
447      /* If this instruction can throw an exception, then we don't
448	 know where we might end up next.  That means that we have to
449	 assume that whatever we have already marked as live really is
450	 live.  */
451      if (can_throw_internal (insn))
452	break;
453
454      switch (GET_CODE (insn))
455	{
456	case CODE_LABEL:
457	  /* After a label, any pending dead registers that weren't yet
458	     used can be made dead.  */
459	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
460	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
461	  CLEAR_HARD_REG_SET (pending_dead_regs);
462
463	  continue;
464
465	case BARRIER:
466	case NOTE:
467	  continue;
468
469	case INSN:
470	  if (GET_CODE (PATTERN (insn)) == USE)
471	    {
472	      /* If INSN is a USE made by update_block, we care about the
473		 underlying insn.  Any registers set by the underlying insn
474		 are live since the insn is being done somewhere else.  */
475	      if (INSN_P (XEXP (PATTERN (insn), 0)))
476		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
477				    MARK_SRC_DEST_CALL);
478
479	      /* All other USE insns are to be ignored.  */
480	      continue;
481	    }
482	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
483	    continue;
484	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
485	    {
486	      /* An unconditional jump can be used to fill the delay slot
487		 of a call, so search for a JUMP_INSN in any position.  */
488	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
489		{
490		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
491		  if (JUMP_P (this_jump_insn))
492		    break;
493		}
494	    }
495
496	default:
497	  break;
498	}
499
500      if (JUMP_P (this_jump_insn))
501	{
502	  if (jump_count++ < 10)
503	    {
504	      if (any_uncondjump_p (this_jump_insn)
505		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
506		{
507		  next = JUMP_LABEL (this_jump_insn);
508		  if (jump_insn == 0)
509		    {
510		      jump_insn = insn;
511		      if (jump_target)
512			*jump_target = JUMP_LABEL (this_jump_insn);
513		    }
514		}
515	      else if (any_condjump_p (this_jump_insn))
516		{
517		  struct resources target_set, target_res;
518		  struct resources fallthrough_res;
519
520		  /* We can handle conditional branches here by following
521		     both paths, and then IOR the results of the two paths
522		     together, which will give us registers that are dead
523		     on both paths.  Since this is expensive, we give it
524		     a much higher cost than unconditional branches.  The
525		     cost was chosen so that we will follow at most 1
526		     conditional branch.  */
527
528		  jump_count += 4;
529		  if (jump_count >= 10)
530		    break;
531
532		  mark_referenced_resources (insn, &needed, 1);
533
534		  /* For an annulled branch, mark_set_resources ignores slots
535		     filled by instructions from the target.  This is correct
536		     if the branch is not taken.  Since we are following both
537		     paths from the branch, we must also compute correct info
538		     if the branch is taken.  We do this by inverting all of
539		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
540		     and then inverting the INSN_FROM_TARGET_P bits again.  */
541
542		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
543		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
544		    {
545		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
548
549		      target_set = set;
550		      mark_set_resources (insn, &target_set, 0,
551					  MARK_SRC_DEST_CALL);
552
553		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
554			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
555			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
556
557		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
558		    }
559		  else
560		    {
561		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
562		      target_set = set;
563		    }
564
565		  target_res = *res;
566		  COPY_HARD_REG_SET (scratch, target_set.regs);
567		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
569
570		  fallthrough_res = *res;
571		  COPY_HARD_REG_SET (scratch, set.regs);
572		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
573		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
574
575		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
576					      &target_res, 0, jump_count,
577					      target_set, needed);
578		  find_dead_or_set_registers (next,
579					      &fallthrough_res, 0, jump_count,
580					      set, needed);
581		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583		  break;
584		}
585	      else
586		break;
587	    }
588	  else
589	    {
590	      /* Don't try this optimization if we expired our jump count
591		 above, since that would mean there may be an infinite loop
592		 in the function being compiled.  */
593	      jump_insn = 0;
594	      break;
595	    }
596	}
597
598      mark_referenced_resources (insn, &needed, 1);
599      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
600
601      COPY_HARD_REG_SET (scratch, set.regs);
602      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603      AND_COMPL_HARD_REG_SET (res->regs, scratch);
604    }
605
606  return jump_insn;
607}
608
609/* Given X, a part of an insn, and a pointer to a `struct resource',
610   RES, indicate which resources are modified by the insn. If
611   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
612   set by the called routine.
613
614   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
615   objects are being referenced instead of set.
616
617   We never mark the insn as modifying the condition code unless it explicitly
618   SETs CC0 even though this is not totally correct.  The reason for this is
619   that we require a SET of CC0 to immediately precede the reference to CC0.
620   So if some other insn sets CC0 as a side-effect, we know it cannot affect
621   our computation and thus may be placed in a delay slot.  */
622
623void
624mark_set_resources (rtx x, struct resources *res, int in_dest,
625		    enum mark_resource_type mark_type)
626{
627  enum rtx_code code;
628  int i, j;
629  unsigned int r;
630  const char *format_ptr;
631
632 restart:
633
634  code = GET_CODE (x);
635
636  switch (code)
637    {
638    case NOTE:
639    case BARRIER:
640    case CODE_LABEL:
641    case USE:
642    case CONST_INT:
643    case CONST_DOUBLE:
644    case CONST_VECTOR:
645    case LABEL_REF:
646    case SYMBOL_REF:
647    case CONST:
648    case PC:
649      /* These don't set any resources.  */
650      return;
651
652    case CC0:
653      if (in_dest)
654	res->cc = 1;
655      return;
656
657    case CALL_INSN:
658      /* Called routine modifies the condition code, memory, any registers
659	 that aren't saved across calls, global registers and anything
660	 explicitly CLOBBERed immediately after the CALL_INSN.  */
661
662      if (mark_type == MARK_SRC_DEST_CALL)
663	{
664	  rtx link;
665
666	  res->cc = res->memory = 1;
667
668	  IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
669
670	  for (link = CALL_INSN_FUNCTION_USAGE (x);
671	       link; link = XEXP (link, 1))
672	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
673	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
674				  MARK_SRC_DEST);
675
676	  /* Check for a REG_SETJMP.  If it exists, then we must
677	     assume that this call can clobber any register.  */
678	  if (find_reg_note (x, REG_SETJMP, NULL))
679	    SET_HARD_REG_SET (res->regs);
680	}
681
682      /* ... and also what its RTL says it modifies, if anything.  */
683
684    case JUMP_INSN:
685    case INSN:
686
687	/* An insn consisting of just a CLOBBER (or USE) is just for flow
688	   and doesn't actually do anything, so we ignore it.  */
689
690#ifdef INSN_SETS_ARE_DELAYED
691      if (mark_type != MARK_SRC_DEST_CALL
692	  && INSN_SETS_ARE_DELAYED (x))
693	return;
694#endif
695
696      x = PATTERN (x);
697      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
698	goto restart;
699      return;
700
701    case SET:
702      /* If the source of a SET is a CALL, this is actually done by
703	 the called routine.  So only include it if we are to include the
704	 effects of the calling routine.  */
705
706      mark_set_resources (SET_DEST (x), res,
707			  (mark_type == MARK_SRC_DEST_CALL
708			   || GET_CODE (SET_SRC (x)) != CALL),
709			  mark_type);
710
711      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
712      return;
713
714    case CLOBBER:
715      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
716      return;
717
718    case SEQUENCE:
719      for (i = 0; i < XVECLEN (x, 0); i++)
720	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
721	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
722	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
723      return;
724
725    case POST_INC:
726    case PRE_INC:
727    case POST_DEC:
728    case PRE_DEC:
729      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
730      return;
731
732    case PRE_MODIFY:
733    case POST_MODIFY:
734      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
735      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
736      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
737      return;
738
739    case SIGN_EXTRACT:
740    case ZERO_EXTRACT:
741      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
742      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
743      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
744      return;
745
746    case MEM:
747      if (in_dest)
748	{
749	  res->memory = 1;
750	  res->unch_memory |= MEM_READONLY_P (x);
751	  res->volatil |= MEM_VOLATILE_P (x);
752	}
753
754      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
755      return;
756
757    case SUBREG:
758      if (in_dest)
759	{
760	  if (!REG_P (SUBREG_REG (x)))
761	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
762	  else
763	    {
764	      unsigned int regno = subreg_regno (x);
765	      unsigned int last_regno
766		= regno + hard_regno_nregs[regno][GET_MODE (x)];
767
768	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
769	      for (r = regno; r < last_regno; r++)
770		SET_HARD_REG_BIT (res->regs, r);
771	    }
772	}
773      return;
774
775    case REG:
776      if (in_dest)
777	{
778	  unsigned int regno = REGNO (x);
779	  unsigned int last_regno
780	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
781
782	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
783	  for (r = regno; r < last_regno; r++)
784	    SET_HARD_REG_BIT (res->regs, r);
785	}
786      return;
787
788    case UNSPEC_VOLATILE:
789    case ASM_INPUT:
790      /* Traditional asm's are always volatile.  */
791      res->volatil = 1;
792      return;
793
794    case TRAP_IF:
795      res->volatil = 1;
796      break;
797
798    case ASM_OPERANDS:
799      res->volatil |= MEM_VOLATILE_P (x);
800
801      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
802	 We can not just fall through here since then we would be confused
803	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
804	 traditional asms unlike their normal usage.  */
805
806      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
807	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
808			    MARK_SRC_DEST);
809      return;
810
811    default:
812      break;
813    }
814
815  /* Process each sub-expression and flag what it needs.  */
816  format_ptr = GET_RTX_FORMAT (code);
817  for (i = 0; i < GET_RTX_LENGTH (code); i++)
818    switch (*format_ptr++)
819      {
820      case 'e':
821	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
822	break;
823
824      case 'E':
825	for (j = 0; j < XVECLEN (x, i); j++)
826	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
827	break;
828      }
829}
830
831/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
832
833static bool
834return_insn_p (rtx insn)
835{
836  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
837    return true;
838
839  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
840    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
841
842  return false;
843}
844
845/* Set the resources that are live at TARGET.
846
847   If TARGET is zero, we refer to the end of the current function and can
848   return our precomputed value.
849
850   Otherwise, we try to find out what is live by consulting the basic block
851   information.  This is tricky, because we must consider the actions of
852   reload and jump optimization, which occur after the basic block information
853   has been computed.
854
855   Accordingly, we proceed as follows::
856
857   We find the previous BARRIER and look at all immediately following labels
858   (with no intervening active insns) to see if any of them start a basic
859   block.  If we hit the start of the function first, we use block 0.
860
861   Once we have found a basic block and a corresponding first insns, we can
862   accurately compute the live status from basic_block_live_regs and
863   reg_renumber.  (By starting at a label following a BARRIER, we are immune
864   to actions taken by reload and jump.)  Then we scan all insns between
865   that point and our target.  For each CLOBBER (or for call-clobbered regs
866   when we pass a CALL_INSN), mark the appropriate registers are dead.  For
867   a SET, mark them as live.
868
869   We have to be careful when using REG_DEAD notes because they are not
870   updated by such things as find_equiv_reg.  So keep track of registers
871   marked as dead that haven't been assigned to, and mark them dead at the
872   next CODE_LABEL since reload and jump won't propagate values across labels.
873
874   If we cannot find the start of a basic block (should be a very rare
875   case, if it can happen at all), mark everything as potentially live.
876
877   Next, scan forward from TARGET looking for things set or clobbered
878   before they are used.  These are not live.
879
880   Because we can be called many times on the same target, save our results
881   in a hash table indexed by INSN_UID.  This is only done if the function
882   init_resource_info () was invoked before we are called.  */
883
884void
885mark_target_live_regs (rtx insns, rtx target, struct resources *res)
886{
887  int b = -1;
888  unsigned int i;
889  struct target_info *tinfo = NULL;
890  rtx insn;
891  rtx jump_insn = 0;
892  rtx jump_target;
893  HARD_REG_SET scratch;
894  struct resources set, needed;
895
896  /* Handle end of function.  */
897  if (target == 0)
898    {
899      *res = end_of_function_needs;
900      return;
901    }
902
903  /* Handle return insn.  */
904  else if (return_insn_p (target))
905    {
906      *res = end_of_function_needs;
907      mark_referenced_resources (target, res, 0);
908      return;
909    }
910
911  /* We have to assume memory is needed, but the CC isn't.  */
912  res->memory = 1;
913  res->volatil = res->unch_memory = 0;
914  res->cc = 0;
915
916  /* See if we have computed this value already.  */
917  if (target_hash_table != NULL)
918    {
919      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
920	   tinfo; tinfo = tinfo->next)
921	if (tinfo->uid == INSN_UID (target))
922	  break;
923
924      /* Start by getting the basic block number.  If we have saved
925	 information, we can get it from there unless the insn at the
926	 start of the basic block has been deleted.  */
927      if (tinfo && tinfo->block != -1
928	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
929	b = tinfo->block;
930    }
931
932  if (b == -1)
933    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
934
935  if (target_hash_table != NULL)
936    {
937      if (tinfo)
938	{
939	  /* If the information is up-to-date, use it.  Otherwise, we will
940	     update it below.  */
941	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
942	    {
943	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
944	      return;
945	    }
946	}
947      else
948	{
949	  /* Allocate a place to put our results and chain it into the
950	     hash table.  */
951	  tinfo = xmalloc (sizeof (struct target_info));
952	  tinfo->uid = INSN_UID (target);
953	  tinfo->block = b;
954	  tinfo->next
955	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
956	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
957	}
958    }
959
960  CLEAR_HARD_REG_SET (pending_dead_regs);
961
962  /* If we found a basic block, get the live registers from it and update
963     them with anything set or killed between its start and the insn before
964     TARGET.  Otherwise, we must assume everything is live.  */
965  if (b != -1)
966    {
967      regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
968      unsigned int j;
969      unsigned int regno;
970      rtx start_insn, stop_insn;
971      reg_set_iterator rsi;
972
973      /* Compute hard regs live at start of block -- this is the real hard regs
974	 marked live, plus live pseudo regs that have been renumbered to
975	 hard regs.  */
976
977      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
978
979      EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
980	{
981	  if (reg_renumber[i] >= 0)
982	    {
983	      regno = reg_renumber[i];
984	      for (j = regno;
985		   j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
986		   j++)
987		SET_HARD_REG_BIT (current_live_regs, j);
988	    }
989	}
990
991      /* Get starting and ending insn, handling the case where each might
992	 be a SEQUENCE.  */
993      start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
994      stop_insn = target;
995
996      if (NONJUMP_INSN_P (start_insn)
997	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
998	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
999
1000      if (NONJUMP_INSN_P (stop_insn)
1001	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1002	stop_insn = next_insn (PREV_INSN (stop_insn));
1003
1004      for (insn = start_insn; insn != stop_insn;
1005	   insn = next_insn_no_annul (insn))
1006	{
1007	  rtx link;
1008	  rtx real_insn = insn;
1009	  enum rtx_code code = GET_CODE (insn);
1010
1011	  /* If this insn is from the target of a branch, it isn't going to
1012	     be used in the sequel.  If it is used in both cases, this
1013	     test will not be true.  */
1014	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1015	      && INSN_FROM_TARGET_P (insn))
1016	    continue;
1017
1018	  /* If this insn is a USE made by update_block, we care about the
1019	     underlying insn.  */
1020	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1021	      && INSN_P (XEXP (PATTERN (insn), 0)))
1022	      real_insn = XEXP (PATTERN (insn), 0);
1023
1024	  if (CALL_P (real_insn))
1025	    {
1026	      /* CALL clobbers all call-used regs that aren't fixed except
1027		 sp, ap, and fp.  Do this before setting the result of the
1028		 call live.  */
1029	      AND_COMPL_HARD_REG_SET (current_live_regs,
1030				      regs_invalidated_by_call);
1031
1032	      /* A CALL_INSN sets any global register live, since it may
1033		 have been modified by the call.  */
1034	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1035		if (global_regs[i])
1036		  SET_HARD_REG_BIT (current_live_regs, i);
1037	    }
1038
1039	  /* Mark anything killed in an insn to be deadened at the next
1040	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1041	     parameters.  But they might be early.  A CALL_INSN will usually
1042	     clobber registers used for parameters.  It isn't worth bothering
1043	     with the unlikely case when it won't.  */
1044	  if ((NONJUMP_INSN_P (real_insn)
1045	       && GET_CODE (PATTERN (real_insn)) != USE
1046	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1047	      || JUMP_P (real_insn)
1048	      || CALL_P (real_insn))
1049	    {
1050	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1051		if (REG_NOTE_KIND (link) == REG_DEAD
1052		    && REG_P (XEXP (link, 0))
1053		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1054		  {
1055		    unsigned int first_regno = REGNO (XEXP (link, 0));
1056		    unsigned int last_regno
1057		      = (first_regno
1058			 + hard_regno_nregs[first_regno]
1059					   [GET_MODE (XEXP (link, 0))]);
1060
1061		    for (i = first_regno; i < last_regno; i++)
1062		      SET_HARD_REG_BIT (pending_dead_regs, i);
1063		  }
1064
1065	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1066
1067	      /* If any registers were unused after this insn, kill them.
1068		 These notes will always be accurate.  */
1069	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1070		if (REG_NOTE_KIND (link) == REG_UNUSED
1071		    && REG_P (XEXP (link, 0))
1072		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1073		  {
1074		    unsigned int first_regno = REGNO (XEXP (link, 0));
1075		    unsigned int last_regno
1076		      = (first_regno
1077			 + hard_regno_nregs[first_regno]
1078					   [GET_MODE (XEXP (link, 0))]);
1079
1080		    for (i = first_regno; i < last_regno; i++)
1081		      CLEAR_HARD_REG_BIT (current_live_regs, i);
1082		  }
1083	    }
1084
1085	  else if (LABEL_P (real_insn))
1086	    {
1087	      /* A label clobbers the pending dead registers since neither
1088		 reload nor jump will propagate a value across a label.  */
1089	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1090	      CLEAR_HARD_REG_SET (pending_dead_regs);
1091	    }
1092
1093	  /* The beginning of the epilogue corresponds to the end of the
1094	     RTL chain when there are no epilogue insns.  Certain resources
1095	     are implicitly required at that point.  */
1096	  else if (NOTE_P (real_insn)
1097		   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1098	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1099	}
1100
1101      COPY_HARD_REG_SET (res->regs, current_live_regs);
1102      if (tinfo != NULL)
1103	{
1104	  tinfo->block = b;
1105	  tinfo->bb_tick = bb_ticks[b];
1106	}
1107    }
1108  else
1109    /* We didn't find the start of a basic block.  Assume everything
1110       in use.  This should happen only extremely rarely.  */
1111    SET_HARD_REG_SET (res->regs);
1112
1113  CLEAR_RESOURCE (&set);
1114  CLEAR_RESOURCE (&needed);
1115
1116  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1117					  set, needed);
1118
1119  /* If we hit an unconditional branch, we have another way of finding out
1120     what is live: we can see what is live at the branch target and include
1121     anything used but not set before the branch.  We add the live
1122     resources found using the test below to those found until now.  */
1123
1124  if (jump_insn)
1125    {
1126      struct resources new_resources;
1127      rtx stop_insn = next_active_insn (jump_insn);
1128
1129      mark_target_live_regs (insns, next_active_insn (jump_target),
1130			     &new_resources);
1131      CLEAR_RESOURCE (&set);
1132      CLEAR_RESOURCE (&needed);
1133
1134      /* Include JUMP_INSN in the needed registers.  */
1135      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1136	{
1137	  mark_referenced_resources (insn, &needed, 1);
1138
1139	  COPY_HARD_REG_SET (scratch, needed.regs);
1140	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1141	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1142
1143	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1144	}
1145
1146      IOR_HARD_REG_SET (res->regs, new_resources.regs);
1147    }
1148
1149  if (tinfo != NULL)
1150    {
1151      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1152    }
1153}
1154
1155/* Initialize the resources required by mark_target_live_regs ().
1156   This should be invoked before the first call to mark_target_live_regs.  */
1157
1158void
1159init_resource_info (rtx epilogue_insn)
1160{
1161  int i;
1162
1163  /* Indicate what resources are required to be valid at the end of the current
1164     function.  The condition code never is and memory always is.  If the
1165     frame pointer is needed, it is and so is the stack pointer unless
1166     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1167     stack pointer is.  Registers used to return the function value are
1168     needed.  Registers holding global variables are needed.  */
1169
1170  end_of_function_needs.cc = 0;
1171  end_of_function_needs.memory = 1;
1172  end_of_function_needs.unch_memory = 0;
1173  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1174
1175  if (frame_pointer_needed)
1176    {
1177      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1178#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1179      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1180#endif
1181      if (! EXIT_IGNORE_STACK
1182	  || current_function_sp_is_unchanging)
1183	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1184    }
1185  else
1186    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1187
1188  if (current_function_return_rtx != 0)
1189    mark_referenced_resources (current_function_return_rtx,
1190			       &end_of_function_needs, 1);
1191
1192  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193    if (global_regs[i]
1194#ifdef EPILOGUE_USES
1195	|| EPILOGUE_USES (i)
1196#endif
1197	)
1198      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1199
1200  /* The registers required to be live at the end of the function are
1201     represented in the flow information as being dead just prior to
1202     reaching the end of the function.  For example, the return of a value
1203     might be represented by a USE of the return register immediately
1204     followed by an unconditional jump to the return label where the
1205     return label is the end of the RTL chain.  The end of the RTL chain
1206     is then taken to mean that the return register is live.
1207
1208     This sequence is no longer maintained when epilogue instructions are
1209     added to the RTL chain.  To reconstruct the original meaning, the
1210     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1211     point where these registers become live (start_of_epilogue_needs).
1212     If epilogue instructions are present, the registers set by those
1213     instructions won't have been processed by flow.  Thus, those
1214     registers are additionally required at the end of the RTL chain
1215     (end_of_function_needs).  */
1216
1217  start_of_epilogue_needs = end_of_function_needs;
1218
1219  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1220    {
1221      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1222			  MARK_SRC_DEST_CALL);
1223      if (return_insn_p (epilogue_insn))
1224	break;
1225    }
1226
1227  /* Allocate and initialize the tables used by mark_target_live_regs.  */
1228  target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1229  bb_ticks = xcalloc (last_basic_block, sizeof (int));
1230}
1231
1232/* Free up the resources allocated to mark_target_live_regs ().  This
1233   should be invoked after the last call to mark_target_live_regs ().  */
1234
1235void
1236free_resource_info (void)
1237{
1238  if (target_hash_table != NULL)
1239    {
1240      int i;
1241
1242      for (i = 0; i < TARGET_HASH_PRIME; ++i)
1243	{
1244	  struct target_info *ti = target_hash_table[i];
1245
1246	  while (ti)
1247	    {
1248	      struct target_info *next = ti->next;
1249	      free (ti);
1250	      ti = next;
1251	    }
1252	}
1253
1254      free (target_hash_table);
1255      target_hash_table = NULL;
1256    }
1257
1258  if (bb_ticks != NULL)
1259    {
1260      free (bb_ticks);
1261      bb_ticks = NULL;
1262    }
1263}
1264
1265/* Clear any hashed information that we have stored for INSN.  */
1266
1267void
1268clear_hashed_info_for_insn (rtx insn)
1269{
1270  struct target_info *tinfo;
1271
1272  if (target_hash_table != NULL)
1273    {
1274      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1275	   tinfo; tinfo = tinfo->next)
1276	if (tinfo->uid == INSN_UID (insn))
1277	  break;
1278
1279      if (tinfo)
1280	tinfo->block = -1;
1281    }
1282}
1283
1284/* Increment the tick count for the basic block that contains INSN.  */
1285
1286void
1287incr_ticks_for_insn (rtx insn)
1288{
1289  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1290
1291  if (b != -1)
1292    bb_ticks[b]++;
1293}
1294
1295/* Add TRIAL to the set of resources used at the end of the current
1296   function.  */
1297void
1298mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1299{
1300  mark_referenced_resources (trial, &end_of_function_needs,
1301			     include_delayed_effects);
1302}
1303