1/* More subroutines needed by GCC output code on some machines.  */
2/* Compile this one with gcc.  */
3/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4   2000, 2001, 2002, 2003, 2004, 2005  Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13In addition to the permissions in the GNU General Public License, the
14Free Software Foundation gives you unlimited permission to link the
15compiled version of this file into combinations with other programs,
16and to distribute those combinations without any restriction coming
17from the use of this file.  (The General Public License restrictions
18do apply in other respects; for example, they cover modification of
19the file, and distribution when not linked into a combine
20executable.)
21
22GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23WARRANTY; without even the implied warranty of MERCHANTABILITY or
24FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
25for more details.
26
27You should have received a copy of the GNU General Public License
28along with GCC; see the file COPYING.  If not, write to the Free
29Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
3002110-1301, USA.  */
31
32#include "tconfig.h"
33#include "tsystem.h"
34#include "coretypes.h"
35#include "tm.h"
36
37#ifdef HAVE_GAS_HIDDEN
38#define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
39#else
40#define ATTRIBUTE_HIDDEN
41#endif
42
43#ifndef MIN_UNITS_PER_WORD
44#define MIN_UNITS_PER_WORD UNITS_PER_WORD
45#endif
46
47/* Work out the largest "word" size that we can deal with on this target.  */
48#if MIN_UNITS_PER_WORD > 4
49# define LIBGCC2_MAX_UNITS_PER_WORD 8
50#elif (MIN_UNITS_PER_WORD > 2 \
51       || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52# define LIBGCC2_MAX_UNITS_PER_WORD 4
53#else
54# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55#endif
56
57/* Work out what word size we are using for this compilation.
58   The value can be set on the command line.  */
59#ifndef LIBGCC2_UNITS_PER_WORD
60#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61#endif
62
63#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
64
65#include "libgcc2.h"
66
67#ifdef DECLARE_LIBRARY_RENAMES
68  DECLARE_LIBRARY_RENAMES
69#endif
70
71#if defined (L_negdi2)
72DWtype
73__negdi2 (DWtype u)
74{
75  const DWunion uu = {.ll = u};
76  const DWunion w = { {.low = -uu.s.low,
77		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
78
79  return w.ll;
80}
81#endif
82
83#ifdef L_addvsi3
84Wtype
85__addvSI3 (Wtype a, Wtype b)
86{
87  const Wtype w = a + b;
88
89  if (b >= 0 ? w < a : w > a)
90    abort ();
91
92  return w;
93}
94#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95SItype
96__addvsi3 (SItype a, SItype b)
97{
98  const SItype w = a + b;
99
100  if (b >= 0 ? w < a : w > a)
101    abort ();
102
103  return w;
104}
105#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106#endif
107
108#ifdef L_addvdi3
109DWtype
110__addvDI3 (DWtype a, DWtype b)
111{
112  const DWtype w = a + b;
113
114  if (b >= 0 ? w < a : w > a)
115    abort ();
116
117  return w;
118}
119#endif
120
121#ifdef L_subvsi3
122Wtype
123__subvSI3 (Wtype a, Wtype b)
124{
125  const Wtype w = a - b;
126
127  if (b >= 0 ? w > a : w < a)
128    abort ();
129
130  return w;
131}
132#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133SItype
134__subvsi3 (SItype a, SItype b)
135{
136  const SItype w = a - b;
137
138  if (b >= 0 ? w > a : w < a)
139    abort ();
140
141  return w;
142}
143#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144#endif
145
146#ifdef L_subvdi3
147DWtype
148__subvDI3 (DWtype a, DWtype b)
149{
150  const DWtype w = a - b;
151
152  if (b >= 0 ? w > a : w < a)
153    abort ();
154
155  return w;
156}
157#endif
158
159#ifdef L_mulvsi3
160Wtype
161__mulvSI3 (Wtype a, Wtype b)
162{
163  const DWtype w = (DWtype) a * (DWtype) b;
164
165  if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166    abort ();
167
168  return w;
169}
170#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171#undef WORD_SIZE
172#define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173SItype
174__mulvsi3 (SItype a, SItype b)
175{
176  const DItype w = (DItype) a * (DItype) b;
177
178  if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179    abort ();
180
181  return w;
182}
183#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184#endif
185
186#ifdef L_negvsi2
187Wtype
188__negvSI2 (Wtype a)
189{
190  const Wtype w = -a;
191
192  if (a >= 0 ? w > 0 : w < 0)
193    abort ();
194
195   return w;
196}
197#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198SItype
199__negvsi2 (SItype a)
200{
201  const SItype w = -a;
202
203  if (a >= 0 ? w > 0 : w < 0)
204    abort ();
205
206   return w;
207}
208#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209#endif
210
211#ifdef L_negvdi2
212DWtype
213__negvDI2 (DWtype a)
214{
215  const DWtype w = -a;
216
217  if (a >= 0 ? w > 0 : w < 0)
218    abort ();
219
220  return w;
221}
222#endif
223
224#ifdef L_absvsi2
225Wtype
226__absvSI2 (Wtype a)
227{
228  Wtype w = a;
229
230  if (a < 0)
231#ifdef L_negvsi2
232    w = __negvSI2 (a);
233#else
234    w = -a;
235
236  if (w < 0)
237    abort ();
238#endif
239
240   return w;
241}
242#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243SItype
244__absvsi2 (SItype a)
245{
246  SItype w = a;
247
248  if (a < 0)
249#ifdef L_negvsi2
250    w = __negvsi2 (a);
251#else
252    w = -a;
253
254  if (w < 0)
255    abort ();
256#endif
257
258   return w;
259}
260#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261#endif
262
263#ifdef L_absvdi2
264DWtype
265__absvDI2 (DWtype a)
266{
267  DWtype w = a;
268
269  if (a < 0)
270#ifdef L_negvdi2
271    w = __negvDI2 (a);
272#else
273    w = -a;
274
275  if (w < 0)
276    abort ();
277#endif
278
279  return w;
280}
281#endif
282
283#ifdef L_mulvdi3
284DWtype
285__mulvDI3 (DWtype u, DWtype v)
286{
287  /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288     but the checked multiplication needs only two.  */
289  const DWunion uu = {.ll = u};
290  const DWunion vv = {.ll = v};
291
292  if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
293    {
294      /* u fits in a single Wtype.  */
295      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
296	{
297	  /* v fits in a single Wtype as well.  */
298	  /* A single multiplication.  No overflow risk.  */
299	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
300	}
301      else
302	{
303	  /* Two multiplications.  */
304	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305			* (UDWtype) (UWtype) vv.s.low};
306	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307			* (UDWtype) (UWtype) vv.s.high};
308
309	  if (vv.s.high < 0)
310	    w1.s.high -= uu.s.low;
311	  if (uu.s.low < 0)
312	    w1.ll -= vv.ll;
313	  w1.ll += (UWtype) w0.s.high;
314	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
315	    {
316	      w0.s.high = w1.s.low;
317	      return w0.ll;
318	    }
319	}
320    }
321  else
322    {
323      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
324	{
325	  /* v fits into a single Wtype.  */
326	  /* Two multiplications.  */
327	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328			* (UDWtype) (UWtype) vv.s.low};
329	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330			* (UDWtype) (UWtype) vv.s.low};
331
332	  if (uu.s.high < 0)
333	    w1.s.high -= vv.s.low;
334	  if (vv.s.low < 0)
335	    w1.ll -= uu.ll;
336	  w1.ll += (UWtype) w0.s.high;
337	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
338	    {
339	      w0.s.high = w1.s.low;
340	      return w0.ll;
341	    }
342	}
343      else
344	{
345	  /* A few sign checks and a single multiplication.  */
346	  if (uu.s.high >= 0)
347	    {
348	      if (vv.s.high >= 0)
349		{
350		  if (uu.s.high == 0 && vv.s.high == 0)
351		    {
352		      const DWtype w = (UDWtype) (UWtype) uu.s.low
353			* (UDWtype) (UWtype) vv.s.low;
354		      if (__builtin_expect (w >= 0, 1))
355			return w;
356		    }
357		}
358	      else
359		{
360		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
361		    {
362		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363				    * (UDWtype) (UWtype) vv.s.low};
364
365		      ww.s.high -= uu.s.low;
366		      if (__builtin_expect (ww.s.high < 0, 1))
367			return ww.ll;
368		    }
369		}
370	    }
371	  else
372	    {
373	      if (vv.s.high >= 0)
374		{
375		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
376		    {
377		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378				    * (UDWtype) (UWtype) vv.s.low};
379
380		      ww.s.high -= vv.s.low;
381		      if (__builtin_expect (ww.s.high < 0, 1))
382			return ww.ll;
383		    }
384		}
385	      else
386		{
387		  if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
388		    {
389		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390				    * (UDWtype) (UWtype) vv.s.low};
391
392		      ww.s.high -= uu.s.low;
393		      ww.s.high -= vv.s.low;
394		      if (__builtin_expect (ww.s.high >= 0, 1))
395			return ww.ll;
396		    }
397		}
398	    }
399	}
400    }
401
402  /* Overflow.  */
403  abort ();
404}
405#endif
406
407
408/* Unless shift functions are defined with full ANSI prototypes,
409   parameter b will be promoted to int if word_type is smaller than an int.  */
410#ifdef L_lshrdi3
411DWtype
412__lshrdi3 (DWtype u, word_type b)
413{
414  if (b == 0)
415    return u;
416
417  const DWunion uu = {.ll = u};
418  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419  DWunion w;
420
421  if (bm <= 0)
422    {
423      w.s.high = 0;
424      w.s.low = (UWtype) uu.s.high >> -bm;
425    }
426  else
427    {
428      const UWtype carries = (UWtype) uu.s.high << bm;
429
430      w.s.high = (UWtype) uu.s.high >> b;
431      w.s.low = ((UWtype) uu.s.low >> b) | carries;
432    }
433
434  return w.ll;
435}
436#endif
437
438#ifdef L_ashldi3
439DWtype
440__ashldi3 (DWtype u, word_type b)
441{
442  if (b == 0)
443    return u;
444
445  const DWunion uu = {.ll = u};
446  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447  DWunion w;
448
449  if (bm <= 0)
450    {
451      w.s.low = 0;
452      w.s.high = (UWtype) uu.s.low << -bm;
453    }
454  else
455    {
456      const UWtype carries = (UWtype) uu.s.low >> bm;
457
458      w.s.low = (UWtype) uu.s.low << b;
459      w.s.high = ((UWtype) uu.s.high << b) | carries;
460    }
461
462  return w.ll;
463}
464#endif
465
466#ifdef L_ashrdi3
467DWtype
468__ashrdi3 (DWtype u, word_type b)
469{
470  if (b == 0)
471    return u;
472
473  const DWunion uu = {.ll = u};
474  const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475  DWunion w;
476
477  if (bm <= 0)
478    {
479      /* w.s.high = 1..1 or 0..0 */
480      w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481      w.s.low = uu.s.high >> -bm;
482    }
483  else
484    {
485      const UWtype carries = (UWtype) uu.s.high << bm;
486
487      w.s.high = uu.s.high >> b;
488      w.s.low = ((UWtype) uu.s.low >> b) | carries;
489    }
490
491  return w.ll;
492}
493#endif
494
495#ifdef L_ffssi2
496#undef int
497int
498__ffsSI2 (UWtype u)
499{
500  UWtype count;
501
502  if (u == 0)
503    return 0;
504
505  count_trailing_zeros (count, u);
506  return count + 1;
507}
508#endif
509
510#ifdef L_ffsdi2
511#undef int
512int
513__ffsDI2 (DWtype u)
514{
515  const DWunion uu = {.ll = u};
516  UWtype word, count, add;
517
518  if (uu.s.low != 0)
519    word = uu.s.low, add = 0;
520  else if (uu.s.high != 0)
521    word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
522  else
523    return 0;
524
525  count_trailing_zeros (count, word);
526  return count + add + 1;
527}
528#endif
529
530#ifdef L_muldi3
531DWtype
532__muldi3 (DWtype u, DWtype v)
533{
534  const DWunion uu = {.ll = u};
535  const DWunion vv = {.ll = v};
536  DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
537
538  w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
539	       + (UWtype) uu.s.high * (UWtype) vv.s.low);
540
541  return w.ll;
542}
543#endif
544
545#if (defined (L_udivdi3) || defined (L_divdi3) || \
546     defined (L_umoddi3) || defined (L_moddi3))
547#if defined (sdiv_qrnnd)
548#define L_udiv_w_sdiv
549#endif
550#endif
551
552#ifdef L_udiv_w_sdiv
553#if defined (sdiv_qrnnd)
554#if (defined (L_udivdi3) || defined (L_divdi3) || \
555     defined (L_umoddi3) || defined (L_moddi3))
556static inline __attribute__ ((__always_inline__))
557#endif
558UWtype
559__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
560{
561  UWtype q, r;
562  UWtype c0, c1, b1;
563
564  if ((Wtype) d >= 0)
565    {
566      if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
567	{
568	  /* Dividend, divisor, and quotient are nonnegative.  */
569	  sdiv_qrnnd (q, r, a1, a0, d);
570	}
571      else
572	{
573	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
574	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
575	  /* Divide (c1*2^32 + c0) by d.  */
576	  sdiv_qrnnd (q, r, c1, c0, d);
577	  /* Add 2^31 to quotient.  */
578	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
579	}
580    }
581  else
582    {
583      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
584      c1 = a1 >> 1;			/* A/2 */
585      c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
586
587      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
588	{
589	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
590
591	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
592	  if ((d & 1) != 0)
593	    {
594	      if (r >= q)
595		r = r - q;
596	      else if (q - r <= d)
597		{
598		  r = r - q + d;
599		  q--;
600		}
601	      else
602		{
603		  r = r - q + 2*d;
604		  q -= 2;
605		}
606	    }
607	}
608      else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
609	{
610	  c1 = (b1 - 1) - c1;
611	  c0 = ~c0;			/* logical NOT */
612
613	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
614
615	  q = ~q;			/* (A/2)/b1 */
616	  r = (b1 - 1) - r;
617
618	  r = 2*r + (a0 & 1);		/* A/(2*b1) */
619
620	  if ((d & 1) != 0)
621	    {
622	      if (r >= q)
623		r = r - q;
624	      else if (q - r <= d)
625		{
626		  r = r - q + d;
627		  q--;
628		}
629	      else
630		{
631		  r = r - q + 2*d;
632		  q -= 2;
633		}
634	    }
635	}
636      else				/* Implies c1 = b1 */
637	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
638	  if (a0 >= -d)
639	    {
640	      q = -1;
641	      r = a0 + d;
642	    }
643	  else
644	    {
645	      q = -2;
646	      r = a0 + 2*d;
647	    }
648	}
649    }
650
651  *rp = r;
652  return q;
653}
654#else
655/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
656UWtype
657__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
658	       UWtype a1 __attribute__ ((__unused__)),
659	       UWtype a0 __attribute__ ((__unused__)),
660	       UWtype d __attribute__ ((__unused__)))
661{
662  return 0;
663}
664#endif
665#endif
666
667#if (defined (L_udivdi3) || defined (L_divdi3) || \
668     defined (L_umoddi3) || defined (L_moddi3))
669#define L_udivmoddi4
670#endif
671
672#ifdef L_clz
673const UQItype __clz_tab[256] =
674{
675  0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
676  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
677  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
678  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
679  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
680  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
681  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
682  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
683};
684#endif
685
686#ifdef L_clzsi2
687#undef int
688int
689__clzSI2 (UWtype x)
690{
691  Wtype ret;
692
693  count_leading_zeros (ret, x);
694
695  return ret;
696}
697#endif
698
699#ifdef L_clzdi2
700#undef int
701int
702__clzDI2 (UDWtype x)
703{
704  const DWunion uu = {.ll = x};
705  UWtype word;
706  Wtype ret, add;
707
708  if (uu.s.high)
709    word = uu.s.high, add = 0;
710  else
711    word = uu.s.low, add = W_TYPE_SIZE;
712
713  count_leading_zeros (ret, word);
714  return ret + add;
715}
716#endif
717
718#ifdef L_ctzsi2
719#undef int
720int
721__ctzSI2 (UWtype x)
722{
723  Wtype ret;
724
725  count_trailing_zeros (ret, x);
726
727  return ret;
728}
729#endif
730
731#ifdef L_ctzdi2
732#undef int
733int
734__ctzDI2 (UDWtype x)
735{
736  const DWunion uu = {.ll = x};
737  UWtype word;
738  Wtype ret, add;
739
740  if (uu.s.low)
741    word = uu.s.low, add = 0;
742  else
743    word = uu.s.high, add = W_TYPE_SIZE;
744
745  count_trailing_zeros (ret, word);
746  return ret + add;
747}
748#endif
749
750#ifdef L_popcount_tab
751const UQItype __popcount_tab[256] =
752{
753    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
754    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
755    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
756    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
757    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
758    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
759    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
760    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
761};
762#endif
763
764#ifdef L_popcountsi2
765#undef int
766int
767__popcountSI2 (UWtype x)
768{
769  UWtype i, ret = 0;
770
771  for (i = 0; i < W_TYPE_SIZE; i += 8)
772    ret += __popcount_tab[(x >> i) & 0xff];
773
774  return ret;
775}
776#endif
777
778#ifdef L_popcountdi2
779#undef int
780int
781__popcountDI2 (UDWtype x)
782{
783  UWtype i, ret = 0;
784
785  for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
786    ret += __popcount_tab[(x >> i) & 0xff];
787
788  return ret;
789}
790#endif
791
792#ifdef L_paritysi2
793#undef int
794int
795__paritySI2 (UWtype x)
796{
797#if W_TYPE_SIZE > 64
798# error "fill out the table"
799#endif
800#if W_TYPE_SIZE > 32
801  x ^= x >> 32;
802#endif
803#if W_TYPE_SIZE > 16
804  x ^= x >> 16;
805#endif
806  x ^= x >> 8;
807  x ^= x >> 4;
808  x &= 0xf;
809  return (0x6996 >> x) & 1;
810}
811#endif
812
813#ifdef L_paritydi2
814#undef int
815int
816__parityDI2 (UDWtype x)
817{
818  const DWunion uu = {.ll = x};
819  UWtype nx = uu.s.low ^ uu.s.high;
820
821#if W_TYPE_SIZE > 64
822# error "fill out the table"
823#endif
824#if W_TYPE_SIZE > 32
825  nx ^= nx >> 32;
826#endif
827#if W_TYPE_SIZE > 16
828  nx ^= nx >> 16;
829#endif
830  nx ^= nx >> 8;
831  nx ^= nx >> 4;
832  nx &= 0xf;
833  return (0x6996 >> nx) & 1;
834}
835#endif
836
837#ifdef L_udivmoddi4
838
839#if (defined (L_udivdi3) || defined (L_divdi3) || \
840     defined (L_umoddi3) || defined (L_moddi3))
841static inline __attribute__ ((__always_inline__))
842#endif
843UDWtype
844__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
845{
846  const DWunion nn = {.ll = n};
847  const DWunion dd = {.ll = d};
848  DWunion rr;
849  UWtype d0, d1, n0, n1, n2;
850  UWtype q0, q1;
851  UWtype b, bm;
852
853  d0 = dd.s.low;
854  d1 = dd.s.high;
855  n0 = nn.s.low;
856  n1 = nn.s.high;
857
858#if !UDIV_NEEDS_NORMALIZATION
859  if (d1 == 0)
860    {
861      if (d0 > n1)
862	{
863	  /* 0q = nn / 0D */
864
865	  udiv_qrnnd (q0, n0, n1, n0, d0);
866	  q1 = 0;
867
868	  /* Remainder in n0.  */
869	}
870      else
871	{
872	  /* qq = NN / 0d */
873
874	  if (d0 == 0)
875	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
876
877	  udiv_qrnnd (q1, n1, 0, n1, d0);
878	  udiv_qrnnd (q0, n0, n1, n0, d0);
879
880	  /* Remainder in n0.  */
881	}
882
883      if (rp != 0)
884	{
885	  rr.s.low = n0;
886	  rr.s.high = 0;
887	  *rp = rr.ll;
888	}
889    }
890
891#else /* UDIV_NEEDS_NORMALIZATION */
892
893  if (d1 == 0)
894    {
895      if (d0 > n1)
896	{
897	  /* 0q = nn / 0D */
898
899	  count_leading_zeros (bm, d0);
900
901	  if (bm != 0)
902	    {
903	      /* Normalize, i.e. make the most significant bit of the
904		 denominator set.  */
905
906	      d0 = d0 << bm;
907	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
908	      n0 = n0 << bm;
909	    }
910
911	  udiv_qrnnd (q0, n0, n1, n0, d0);
912	  q1 = 0;
913
914	  /* Remainder in n0 >> bm.  */
915	}
916      else
917	{
918	  /* qq = NN / 0d */
919
920	  if (d0 == 0)
921	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
922
923	  count_leading_zeros (bm, d0);
924
925	  if (bm == 0)
926	    {
927	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
928		 conclude (the most significant bit of n1 is set) /\ (the
929		 leading quotient digit q1 = 1).
930
931		 This special case is necessary, not an optimization.
932		 (Shifts counts of W_TYPE_SIZE are undefined.)  */
933
934	      n1 -= d0;
935	      q1 = 1;
936	    }
937	  else
938	    {
939	      /* Normalize.  */
940
941	      b = W_TYPE_SIZE - bm;
942
943	      d0 = d0 << bm;
944	      n2 = n1 >> b;
945	      n1 = (n1 << bm) | (n0 >> b);
946	      n0 = n0 << bm;
947
948	      udiv_qrnnd (q1, n1, n2, n1, d0);
949	    }
950
951	  /* n1 != d0...  */
952
953	  udiv_qrnnd (q0, n0, n1, n0, d0);
954
955	  /* Remainder in n0 >> bm.  */
956	}
957
958      if (rp != 0)
959	{
960	  rr.s.low = n0 >> bm;
961	  rr.s.high = 0;
962	  *rp = rr.ll;
963	}
964    }
965#endif /* UDIV_NEEDS_NORMALIZATION */
966
967  else
968    {
969      if (d1 > n1)
970	{
971	  /* 00 = nn / DD */
972
973	  q0 = 0;
974	  q1 = 0;
975
976	  /* Remainder in n1n0.  */
977	  if (rp != 0)
978	    {
979	      rr.s.low = n0;
980	      rr.s.high = n1;
981	      *rp = rr.ll;
982	    }
983	}
984      else
985	{
986	  /* 0q = NN / dd */
987
988	  count_leading_zeros (bm, d1);
989	  if (bm == 0)
990	    {
991	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
992		 conclude (the most significant bit of n1 is set) /\ (the
993		 quotient digit q0 = 0 or 1).
994
995		 This special case is necessary, not an optimization.  */
996
997	      /* The condition on the next line takes advantage of that
998		 n1 >= d1 (true due to program flow).  */
999	      if (n1 > d1 || n0 >= d0)
1000		{
1001		  q0 = 1;
1002		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
1003		}
1004	      else
1005		q0 = 0;
1006
1007	      q1 = 0;
1008
1009	      if (rp != 0)
1010		{
1011		  rr.s.low = n0;
1012		  rr.s.high = n1;
1013		  *rp = rr.ll;
1014		}
1015	    }
1016	  else
1017	    {
1018	      UWtype m1, m0;
1019	      /* Normalize.  */
1020
1021	      b = W_TYPE_SIZE - bm;
1022
1023	      d1 = (d1 << bm) | (d0 >> b);
1024	      d0 = d0 << bm;
1025	      n2 = n1 >> b;
1026	      n1 = (n1 << bm) | (n0 >> b);
1027	      n0 = n0 << bm;
1028
1029	      udiv_qrnnd (q0, n1, n2, n1, d1);
1030	      umul_ppmm (m1, m0, q0, d0);
1031
1032	      if (m1 > n1 || (m1 == n1 && m0 > n0))
1033		{
1034		  q0--;
1035		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
1036		}
1037
1038	      q1 = 0;
1039
1040	      /* Remainder in (n1n0 - m1m0) >> bm.  */
1041	      if (rp != 0)
1042		{
1043		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
1044		  rr.s.low = (n1 << b) | (n0 >> bm);
1045		  rr.s.high = n1 >> bm;
1046		  *rp = rr.ll;
1047		}
1048	    }
1049	}
1050    }
1051
1052  const DWunion ww = {{.low = q0, .high = q1}};
1053  return ww.ll;
1054}
1055#endif
1056
1057#ifdef L_divdi3
1058DWtype
1059__divdi3 (DWtype u, DWtype v)
1060{
1061  word_type c = 0;
1062  DWunion uu = {.ll = u};
1063  DWunion vv = {.ll = v};
1064  DWtype w;
1065
1066  if (uu.s.high < 0)
1067    c = ~c,
1068    uu.ll = -uu.ll;
1069  if (vv.s.high < 0)
1070    c = ~c,
1071    vv.ll = -vv.ll;
1072
1073  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1074  if (c)
1075    w = -w;
1076
1077  return w;
1078}
1079#endif
1080
1081#ifdef L_moddi3
1082DWtype
1083__moddi3 (DWtype u, DWtype v)
1084{
1085  word_type c = 0;
1086  DWunion uu = {.ll = u};
1087  DWunion vv = {.ll = v};
1088  DWtype w;
1089
1090  if (uu.s.high < 0)
1091    c = ~c,
1092    uu.ll = -uu.ll;
1093  if (vv.s.high < 0)
1094    vv.ll = -vv.ll;
1095
1096  (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1097  if (c)
1098    w = -w;
1099
1100  return w;
1101}
1102#endif
1103
1104#ifdef L_umoddi3
1105UDWtype
1106__umoddi3 (UDWtype u, UDWtype v)
1107{
1108  UDWtype w;
1109
1110  (void) __udivmoddi4 (u, v, &w);
1111
1112  return w;
1113}
1114#endif
1115
1116#ifdef L_udivdi3
1117UDWtype
1118__udivdi3 (UDWtype n, UDWtype d)
1119{
1120  return __udivmoddi4 (n, d, (UDWtype *) 0);
1121}
1122#endif
1123
1124#ifdef L_cmpdi2
1125word_type
1126__cmpdi2 (DWtype a, DWtype b)
1127{
1128  const DWunion au = {.ll = a};
1129  const DWunion bu = {.ll = b};
1130
1131  if (au.s.high < bu.s.high)
1132    return 0;
1133  else if (au.s.high > bu.s.high)
1134    return 2;
1135  if ((UWtype) au.s.low < (UWtype) bu.s.low)
1136    return 0;
1137  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1138    return 2;
1139  return 1;
1140}
1141#endif
1142
1143#ifdef L_ucmpdi2
1144word_type
1145__ucmpdi2 (DWtype a, DWtype b)
1146{
1147  const DWunion au = {.ll = a};
1148  const DWunion bu = {.ll = b};
1149
1150  if ((UWtype) au.s.high < (UWtype) bu.s.high)
1151    return 0;
1152  else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1153    return 2;
1154  if ((UWtype) au.s.low < (UWtype) bu.s.low)
1155    return 0;
1156  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1157    return 2;
1158  return 1;
1159}
1160#endif
1161
1162#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1163DWtype
1164__fixunstfDI (TFtype a)
1165{
1166  if (a < 0)
1167    return 0;
1168
1169  /* Compute high word of result, as a flonum.  */
1170  const TFtype b = (a / Wtype_MAXp1_F);
1171  /* Convert that to fixed (but not to DWtype!),
1172     and shift it into the high word.  */
1173  UDWtype v = (UWtype) b;
1174  v <<= W_TYPE_SIZE;
1175  /* Remove high part from the TFtype, leaving the low part as flonum.  */
1176  a -= (TFtype)v;
1177  /* Convert that to fixed (but not to DWtype!) and add it in.
1178     Sometimes A comes out negative.  This is significant, since
1179     A has more bits than a long int does.  */
1180  if (a < 0)
1181    v -= (UWtype) (- a);
1182  else
1183    v += (UWtype) a;
1184  return v;
1185}
1186#endif
1187
1188#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1189DWtype
1190__fixtfdi (TFtype a)
1191{
1192  if (a < 0)
1193    return - __fixunstfDI (-a);
1194  return __fixunstfDI (a);
1195}
1196#endif
1197
1198#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1199DWtype
1200__fixunsxfDI (XFtype a)
1201{
1202  if (a < 0)
1203    return 0;
1204
1205  /* Compute high word of result, as a flonum.  */
1206  const XFtype b = (a / Wtype_MAXp1_F);
1207  /* Convert that to fixed (but not to DWtype!),
1208     and shift it into the high word.  */
1209  UDWtype v = (UWtype) b;
1210  v <<= W_TYPE_SIZE;
1211  /* Remove high part from the XFtype, leaving the low part as flonum.  */
1212  a -= (XFtype)v;
1213  /* Convert that to fixed (but not to DWtype!) and add it in.
1214     Sometimes A comes out negative.  This is significant, since
1215     A has more bits than a long int does.  */
1216  if (a < 0)
1217    v -= (UWtype) (- a);
1218  else
1219    v += (UWtype) a;
1220  return v;
1221}
1222#endif
1223
1224#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1225DWtype
1226__fixxfdi (XFtype a)
1227{
1228  if (a < 0)
1229    return - __fixunsxfDI (-a);
1230  return __fixunsxfDI (a);
1231}
1232#endif
1233
1234#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1235DWtype
1236__fixunsdfDI (DFtype a)
1237{
1238  /* Get high part of result.  The division here will just moves the radix
1239     point and will not cause any rounding.  Then the conversion to integral
1240     type chops result as desired.  */
1241  const UWtype hi = a / Wtype_MAXp1_F;
1242
1243  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1244     then subtract this from the number being converted.  This leaves the low
1245     part.  Convert that to integral type.  */
1246  const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1247
1248  /* Assemble result from the two parts.  */
1249  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1250}
1251#endif
1252
1253#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1254DWtype
1255__fixdfdi (DFtype a)
1256{
1257  if (a < 0)
1258    return - __fixunsdfDI (-a);
1259  return __fixunsdfDI (a);
1260}
1261#endif
1262
1263#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1264DWtype
1265__fixunssfDI (SFtype a)
1266{
1267#if LIBGCC2_HAS_DF_MODE
1268  /* Convert the SFtype to a DFtype, because that is surely not going
1269     to lose any bits.  Some day someone else can write a faster version
1270     that avoids converting to DFtype, and verify it really works right.  */
1271  const DFtype dfa = a;
1272
1273  /* Get high part of result.  The division here will just moves the radix
1274     point and will not cause any rounding.  Then the conversion to integral
1275     type chops result as desired.  */
1276  const UWtype hi = dfa / Wtype_MAXp1_F;
1277
1278  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1279     then subtract this from the number being converted.  This leaves the low
1280     part.  Convert that to integral type.  */
1281  const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1282
1283  /* Assemble result from the two parts.  */
1284  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1285#elif FLT_MANT_DIG < W_TYPE_SIZE
1286  if (a < 1)
1287    return 0;
1288  if (a < Wtype_MAXp1_F)
1289    return (UWtype)a;
1290  if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1291    {
1292      /* Since we know that there are fewer significant bits in the SFmode
1293	 quantity than in a word, we know that we can convert out all the
1294	 significant bits in one step, and thus avoid losing bits.  */
1295
1296      /* ??? This following loop essentially performs frexpf.  If we could
1297	 use the real libm function, or poke at the actual bits of the fp
1298	 format, it would be significantly faster.  */
1299
1300      UWtype shift = 0, counter;
1301      SFtype msb;
1302
1303      a /= Wtype_MAXp1_F;
1304      for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1305	{
1306	  SFtype counterf = (UWtype)1 << counter;
1307	  if (a >= counterf)
1308	    {
1309	      shift |= counter;
1310	      a /= counterf;
1311	    }
1312	}
1313
1314      /* Rescale into the range of one word, extract the bits of that
1315	 one word, and shift the result into position.  */
1316      a *= Wtype_MAXp1_F;
1317      counter = a;
1318      return (DWtype)counter << shift;
1319    }
1320  return -1;
1321#else
1322# error
1323#endif
1324}
1325#endif
1326
1327#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1328DWtype
1329__fixsfdi (SFtype a)
1330{
1331  if (a < 0)
1332    return - __fixunssfDI (-a);
1333  return __fixunssfDI (a);
1334}
1335#endif
1336
1337#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1338XFtype
1339__floatdixf (DWtype u)
1340{
1341  XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1342  d *= Wtype_MAXp1_F;
1343  d += (UWtype)u;
1344  return d;
1345}
1346#endif
1347
1348#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1349TFtype
1350__floatditf (DWtype u)
1351{
1352  TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1353  d *= Wtype_MAXp1_F;
1354  d += (UWtype)u;
1355  return d;
1356}
1357#endif
1358
1359#if defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE
1360DFtype
1361__floatdidf (DWtype u)
1362{
1363  DFtype d = (Wtype) (u >> W_TYPE_SIZE);
1364  d *= Wtype_MAXp1_F;
1365  d += (UWtype)u;
1366  return d;
1367}
1368#endif
1369
1370#if defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE
1371#define DI_SIZE (W_TYPE_SIZE * 2)
1372#define SF_SIZE FLT_MANT_DIG
1373
1374SFtype
1375__floatdisf (DWtype u)
1376{
1377#if SF_SIZE >= W_TYPE_SIZE
1378  /* When the word size is small, we never get any rounding error.  */
1379  SFtype f = (Wtype) (u >> W_TYPE_SIZE);
1380  f *= Wtype_MAXp1_F;
1381  f += (UWtype)u;
1382  return f;
1383#elif LIBGCC2_HAS_DF_MODE
1384
1385#if LIBGCC2_DOUBLE_TYPE_SIZE == 64
1386#define DF_SIZE DBL_MANT_DIG
1387#elif LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1388#define DF_SIZE LDBL_MANT_DIG
1389#else
1390# error
1391#endif
1392
1393#define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1394
1395  /* Protect against double-rounding error.
1396     Represent any low-order bits, that might be truncated by a bit that
1397     won't be lost.  The bit can go in anywhere below the rounding position
1398     of the SFmode.  A fixed mask and bit position handles all usual
1399     configurations.  It doesn't handle the case of 128-bit DImode, however.  */
1400  if (DF_SIZE < DI_SIZE
1401      && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
1402    {
1403      if (! (- ((DWtype) 1 << DF_SIZE) < u
1404	     && u < ((DWtype) 1 << DF_SIZE)))
1405	{
1406	  if ((UDWtype) u & (REP_BIT - 1))
1407	    {
1408	      u &= ~ (REP_BIT - 1);
1409	      u |= REP_BIT;
1410	    }
1411	}
1412    }
1413
1414  /* Do the calculation in DFmode so that we don't lose any of the
1415     precision of the high word while multiplying it.  */
1416  DFtype f = (Wtype) (u >> W_TYPE_SIZE);
1417  f *= Wtype_MAXp1_F;
1418  f += (UWtype)u;
1419  return (SFtype) f;
1420#else
1421  /* Finally, the word size is larger than the number of bits in SFmode,
1422     and we've got no DFmode.  The only way to avoid double rounding is
1423     to special case the extraction.  */
1424
1425  /* If there are no high bits set, fall back to one conversion.  */
1426  if ((Wtype)u == u)
1427    return (SFtype)(Wtype)u;
1428
1429  /* Otherwise, find the power of two.  */
1430  Wtype hi = u >> W_TYPE_SIZE;
1431  if (hi < 0)
1432    hi = -hi;
1433
1434  UWtype count, shift;
1435  count_leading_zeros (count, hi);
1436
1437  /* No leading bits means u == minimum.  */
1438  if (count == 0)
1439    return -(Wtype_MAXp1_F * Wtype_MAXp1_F / 2);
1440
1441  shift = W_TYPE_SIZE - count;
1442
1443  /* Shift down the most significant bits.  */
1444  hi = u >> shift;
1445
1446  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1447  if (u & ((1 << shift) - 1))
1448    hi |= 1;
1449
1450  /* Convert the one word of data, and rescale.  */
1451  SFtype f = hi;
1452  f *= (UWtype)1 << shift;
1453  return f;
1454#endif
1455}
1456#endif
1457
1458#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1459/* Reenable the normal types, in case limits.h needs them.  */
1460#undef char
1461#undef short
1462#undef int
1463#undef long
1464#undef unsigned
1465#undef float
1466#undef double
1467#undef MIN
1468#undef MAX
1469#include <limits.h>
1470
1471UWtype
1472__fixunsxfSI (XFtype a)
1473{
1474  if (a >= - (DFtype) Wtype_MIN)
1475    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1476  return (Wtype) a;
1477}
1478#endif
1479
1480#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1481/* Reenable the normal types, in case limits.h needs them.  */
1482#undef char
1483#undef short
1484#undef int
1485#undef long
1486#undef unsigned
1487#undef float
1488#undef double
1489#undef MIN
1490#undef MAX
1491#include <limits.h>
1492
1493UWtype
1494__fixunsdfSI (DFtype a)
1495{
1496  if (a >= - (DFtype) Wtype_MIN)
1497    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1498  return (Wtype) a;
1499}
1500#endif
1501
1502#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1503/* Reenable the normal types, in case limits.h needs them.  */
1504#undef char
1505#undef short
1506#undef int
1507#undef long
1508#undef unsigned
1509#undef float
1510#undef double
1511#undef MIN
1512#undef MAX
1513#include <limits.h>
1514
1515UWtype
1516__fixunssfSI (SFtype a)
1517{
1518  if (a >= - (SFtype) Wtype_MIN)
1519    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1520  return (Wtype) a;
1521}
1522#endif
1523
1524/* Integer power helper used from __builtin_powi for non-constant
1525   exponents.  */
1526
1527#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1528    || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1529    || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1530    || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1531# if defined(L_powisf2)
1532#  define TYPE SFtype
1533#  define NAME __powisf2
1534# elif defined(L_powidf2)
1535#  define TYPE DFtype
1536#  define NAME __powidf2
1537# elif defined(L_powixf2)
1538#  define TYPE XFtype
1539#  define NAME __powixf2
1540# elif defined(L_powitf2)
1541#  define TYPE TFtype
1542#  define NAME __powitf2
1543# endif
1544
1545#undef int
1546#undef unsigned
1547TYPE
1548NAME (TYPE x, int m)
1549{
1550  unsigned int n = m < 0 ? -m : m;
1551  TYPE y = n % 2 ? x : 1;
1552  while (n >>= 1)
1553    {
1554      x = x * x;
1555      if (n % 2)
1556	y = y * x;
1557    }
1558  return m < 0 ? 1/y : y;
1559}
1560
1561#endif
1562
1563#if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1564    || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1565    || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1566    || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1567
1568#undef float
1569#undef double
1570#undef long
1571
1572#if defined(L_mulsc3) || defined(L_divsc3)
1573# define MTYPE	SFtype
1574# define CTYPE	SCtype
1575# define MODE	sc
1576# define CEXT	f
1577# define NOTRUNC __FLT_EVAL_METHOD__ == 0
1578#elif defined(L_muldc3) || defined(L_divdc3)
1579# define MTYPE	DFtype
1580# define CTYPE	DCtype
1581# define MODE	dc
1582# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1583#  define CEXT	l
1584#  define NOTRUNC 1
1585# else
1586#  define CEXT
1587#  define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1588# endif
1589#elif defined(L_mulxc3) || defined(L_divxc3)
1590# define MTYPE	XFtype
1591# define CTYPE	XCtype
1592# define MODE	xc
1593# define CEXT	l
1594# define NOTRUNC 1
1595#elif defined(L_multc3) || defined(L_divtc3)
1596# define MTYPE	TFtype
1597# define CTYPE	TCtype
1598# define MODE	tc
1599# define CEXT	l
1600# define NOTRUNC 1
1601#else
1602# error
1603#endif
1604
1605#define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
1606#define _CONCAT3(A,B,C)	A##B##C
1607
1608#define CONCAT2(A,B)	_CONCAT2(A,B)
1609#define _CONCAT2(A,B)	A##B
1610
1611/* All of these would be present in a full C99 implementation of <math.h>
1612   and <complex.h>.  Our problem is that only a few systems have such full
1613   implementations.  Further, libgcc_s.so isn't currently linked against
1614   libm.so, and even for systems that do provide full C99, the extra overhead
1615   of all programs using libgcc having to link against libm.  So avoid it.  */
1616
1617#define isnan(x)	__builtin_expect ((x) != (x), 0)
1618#define isfinite(x)	__builtin_expect (!isnan((x) - (x)), 1)
1619#define isinf(x)	__builtin_expect (!isnan(x) & !isfinite(x), 0)
1620
1621#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1622#define INFINITY	CONCAT2(__builtin_inf, CEXT) ()
1623#endif
1624#define I		1i
1625
1626/* Helpers to make the following code slightly less gross.  */
1627#define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
1628#define FABS		CONCAT2(__builtin_fabs, CEXT)
1629
1630/* Verify that MTYPE matches up with CEXT.  */
1631#ifdef INFINITY
1632extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1633#endif
1634
1635/* Ensure that we've lost any extra precision.  */
1636#if NOTRUNC
1637# define TRUNC(x)
1638#else
1639# define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
1640#endif
1641
1642#if defined(L_mulsc3) || defined(L_muldc3) \
1643    || defined(L_mulxc3) || defined(L_multc3)
1644
1645CTYPE
1646CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1647{
1648  MTYPE ac, bd, ad, bc, x, y;
1649
1650  ac = a * c;
1651  bd = b * d;
1652  ad = a * d;
1653  bc = b * c;
1654
1655  TRUNC (ac);
1656  TRUNC (bd);
1657  TRUNC (ad);
1658  TRUNC (bc);
1659
1660  x = ac - bd;
1661  y = ad + bc;
1662
1663#ifdef INFINITY
1664  if (isnan (x) && isnan (y))
1665    {
1666      /* Recover infinities that computed as NaN + iNaN.  */
1667      _Bool recalc = 0;
1668      if (isinf (a) || isinf (b))
1669	{
1670	  /* z is infinite.  "Box" the infinity and change NaNs in
1671	     the other factor to 0.  */
1672	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1673	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1674	  if (isnan (c)) c = COPYSIGN (0, c);
1675	  if (isnan (d)) d = COPYSIGN (0, d);
1676          recalc = 1;
1677	}
1678     if (isinf (c) || isinf (d))
1679	{
1680	  /* w is infinite.  "Box" the infinity and change NaNs in
1681	     the other factor to 0.  */
1682	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1683	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1684	  if (isnan (a)) a = COPYSIGN (0, a);
1685	  if (isnan (b)) b = COPYSIGN (0, b);
1686	  recalc = 1;
1687	}
1688     if (!recalc
1689	  && (isinf (ac) || isinf (bd)
1690	      || isinf (ad) || isinf (bc)))
1691	{
1692	  /* Recover infinities from overflow by changing NaNs to 0.  */
1693	  if (isnan (a)) a = COPYSIGN (0, a);
1694	  if (isnan (b)) b = COPYSIGN (0, b);
1695	  if (isnan (c)) c = COPYSIGN (0, c);
1696	  if (isnan (d)) d = COPYSIGN (0, d);
1697	  recalc = 1;
1698	}
1699      if (recalc)
1700	{
1701	  x = INFINITY * (a * c - b * d);
1702	  y = INFINITY * (a * d + b * c);
1703	}
1704    }
1705#endif
1706
1707  return x + I * y;
1708}
1709#endif /* complex multiply */
1710
1711#if defined(L_divsc3) || defined(L_divdc3) \
1712    || defined(L_divxc3) || defined(L_divtc3)
1713
1714CTYPE
1715CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1716{
1717  MTYPE denom, ratio, x, y;
1718
1719  /* ??? We can get better behavior from logarithmic scaling instead of
1720     the division.  But that would mean starting to link libgcc against
1721     libm.  We could implement something akin to ldexp/frexp as gcc builtins
1722     fairly easily...  */
1723  if (FABS (c) < FABS (d))
1724    {
1725      ratio = c / d;
1726      denom = (c * ratio) + d;
1727      x = ((a * ratio) + b) / denom;
1728      y = ((b * ratio) - a) / denom;
1729    }
1730  else
1731    {
1732      ratio = d / c;
1733      denom = (d * ratio) + c;
1734      x = ((b * ratio) + a) / denom;
1735      y = (b - (a * ratio)) / denom;
1736    }
1737
1738  /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1739     are nonzero/zero, infinite/finite, and finite/infinite.  */
1740#ifdef INFINITY
1741  if (isnan (x) && isnan (y))
1742    {
1743      if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1744	{
1745	  x = COPYSIGN (INFINITY, c) * a;
1746	  y = COPYSIGN (INFINITY, c) * b;
1747	}
1748      else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1749	{
1750	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1751	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1752	  x = INFINITY * (a * c + b * d);
1753	  y = INFINITY * (b * c - a * d);
1754	}
1755      else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1756	{
1757	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1758	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1759	  x = 0.0 * (a * c + b * d);
1760	  y = 0.0 * (b * c - a * d);
1761	}
1762    }
1763#endif
1764
1765  return x + I * y;
1766}
1767#endif /* complex divide */
1768#undef INFINITY
1769#endif /* all complex float routines */
1770
1771/* From here on down, the routines use normal data types.  */
1772
1773#define SItype bogus_type
1774#define USItype bogus_type
1775#define DItype bogus_type
1776#define UDItype bogus_type
1777#define SFtype bogus_type
1778#define DFtype bogus_type
1779#undef Wtype
1780#undef UWtype
1781#undef HWtype
1782#undef UHWtype
1783#undef DWtype
1784#undef UDWtype
1785
1786#undef char
1787#undef short
1788#undef int
1789#undef long
1790#undef unsigned
1791#undef float
1792#undef double
1793
1794#ifdef L__gcc_bcmp
1795
1796/* Like bcmp except the sign is meaningful.
1797   Result is negative if S1 is less than S2,
1798   positive if S1 is greater, 0 if S1 and S2 are equal.  */
1799
1800int
1801__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1802{
1803  while (size > 0)
1804    {
1805      const unsigned char c1 = *s1++, c2 = *s2++;
1806      if (c1 != c2)
1807	return c1 - c2;
1808      size--;
1809    }
1810  return 0;
1811}
1812
1813#endif
1814
1815/* __eprintf used to be used by GCC's private version of <assert.h>.
1816   We no longer provide that header, but this routine remains in libgcc.a
1817   for binary backward compatibility.  Note that it is not included in
1818   the shared version of libgcc.  */
1819#ifdef L_eprintf
1820#ifndef inhibit_libc
1821
1822#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
1823#include <stdio.h>
1824
1825void
1826__eprintf (const char *string, const char *expression,
1827	   unsigned int line, const char *filename)
1828{
1829  fprintf (stderr, string, expression, line, filename);
1830  fflush (stderr);
1831  abort ();
1832}
1833
1834#endif
1835#endif
1836
1837
1838#ifdef L_clear_cache
1839/* Clear part of an instruction cache.  */
1840
1841void
1842__clear_cache (char *beg __attribute__((__unused__)),
1843	       char *end __attribute__((__unused__)))
1844{
1845#ifdef CLEAR_INSN_CACHE
1846  CLEAR_INSN_CACHE (beg, end);
1847#endif /* CLEAR_INSN_CACHE */
1848}
1849
1850#endif /* L_clear_cache */
1851
1852#ifdef L_enable_execute_stack
1853/* Attempt to turn on execute permission for the stack.  */
1854
1855#ifdef ENABLE_EXECUTE_STACK
1856  ENABLE_EXECUTE_STACK
1857#else
1858void
1859__enable_execute_stack (void *addr __attribute__((__unused__)))
1860{}
1861#endif /* ENABLE_EXECUTE_STACK */
1862
1863#endif /* L_enable_execute_stack */
1864
1865#ifdef L_trampoline
1866
1867/* Jump to a trampoline, loading the static chain address.  */
1868
1869#if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1870
1871int
1872getpagesize (void)
1873{
1874#ifdef _ALPHA_
1875  return 8192;
1876#else
1877  return 4096;
1878#endif
1879}
1880
1881#ifdef __i386__
1882extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1883#endif
1884
1885int
1886mprotect (char *addr, int len, int prot)
1887{
1888  int np, op;
1889
1890  if (prot == 7)
1891    np = 0x40;
1892  else if (prot == 5)
1893    np = 0x20;
1894  else if (prot == 4)
1895    np = 0x10;
1896  else if (prot == 3)
1897    np = 0x04;
1898  else if (prot == 1)
1899    np = 0x02;
1900  else if (prot == 0)
1901    np = 0x01;
1902
1903  if (VirtualProtect (addr, len, np, &op))
1904    return 0;
1905  else
1906    return -1;
1907}
1908
1909#endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
1910
1911#ifdef TRANSFER_FROM_TRAMPOLINE
1912TRANSFER_FROM_TRAMPOLINE
1913#endif
1914#endif /* L_trampoline */
1915
1916#ifndef __CYGWIN__
1917#ifdef L__main
1918
1919#include "gbl-ctors.h"
1920
1921/* Some systems use __main in a way incompatible with its use in gcc, in these
1922   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
1923   give the same symbol without quotes for an alternative entry point.  You
1924   must define both, or neither.  */
1925#ifndef NAME__MAIN
1926#define NAME__MAIN "__main"
1927#define SYMBOL__MAIN __main
1928#endif
1929
1930#if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
1931#undef HAS_INIT_SECTION
1932#define HAS_INIT_SECTION
1933#endif
1934
1935#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
1936
1937/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
1938   code to run constructors.  In that case, we need to handle EH here, too.  */
1939
1940#ifdef EH_FRAME_SECTION_NAME
1941#include "unwind-dw2-fde.h"
1942extern unsigned char __EH_FRAME_BEGIN__[];
1943#endif
1944
1945/* Run all the global destructors on exit from the program.  */
1946
1947void
1948__do_global_dtors (void)
1949{
1950#ifdef DO_GLOBAL_DTORS_BODY
1951  DO_GLOBAL_DTORS_BODY;
1952#else
1953  static func_ptr *p = __DTOR_LIST__ + 1;
1954  while (*p)
1955    {
1956      p++;
1957      (*(p-1)) ();
1958    }
1959#endif
1960#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
1961  {
1962    static int completed = 0;
1963    if (! completed)
1964      {
1965	completed = 1;
1966	__deregister_frame_info (__EH_FRAME_BEGIN__);
1967      }
1968  }
1969#endif
1970}
1971#endif
1972
1973#ifndef HAS_INIT_SECTION
1974/* Run all the global constructors on entry to the program.  */
1975
1976void
1977__do_global_ctors (void)
1978{
1979#ifdef EH_FRAME_SECTION_NAME
1980  {
1981    static struct object object;
1982    __register_frame_info (__EH_FRAME_BEGIN__, &object);
1983  }
1984#endif
1985  DO_GLOBAL_CTORS_BODY;
1986  atexit (__do_global_dtors);
1987}
1988#endif /* no HAS_INIT_SECTION */
1989
1990#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
1991/* Subroutine called automatically by `main'.
1992   Compiling a global function named `main'
1993   produces an automatic call to this function at the beginning.
1994
1995   For many systems, this routine calls __do_global_ctors.
1996   For systems which support a .init section we use the .init section
1997   to run __do_global_ctors, so we need not do anything here.  */
1998
1999extern void SYMBOL__MAIN (void);
2000void
2001SYMBOL__MAIN (void)
2002{
2003  /* Support recursive calls to `main': run initializers just once.  */
2004  static int initialized;
2005  if (! initialized)
2006    {
2007      initialized = 1;
2008      __do_global_ctors ();
2009    }
2010}
2011#endif /* no HAS_INIT_SECTION or INVOKE__main */
2012
2013#endif /* L__main */
2014#endif /* __CYGWIN__ */
2015
2016#ifdef L_ctors
2017
2018#include "gbl-ctors.h"
2019
2020/* Provide default definitions for the lists of constructors and
2021   destructors, so that we don't get linker errors.  These symbols are
2022   intentionally bss symbols, so that gld and/or collect will provide
2023   the right values.  */
2024
2025/* We declare the lists here with two elements each,
2026   so that they are valid empty lists if no other definition is loaded.
2027
2028   If we are using the old "set" extensions to have the gnu linker
2029   collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2030   must be in the bss/common section.
2031
2032   Long term no port should use those extensions.  But many still do.  */
2033#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2034#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2035func_ptr __CTOR_LIST__[2] = {0, 0};
2036func_ptr __DTOR_LIST__[2] = {0, 0};
2037#else
2038func_ptr __CTOR_LIST__[2];
2039func_ptr __DTOR_LIST__[2];
2040#endif
2041#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2042#endif /* L_ctors */
2043#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
2044