1/* If-conversion support.
2   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3   Free Software Foundation, Inc.
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING.  If not, write to the Free
19   Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20   02110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26
27#include "rtl.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "recog.h"
33#include "except.h"
34#include "hard-reg-set.h"
35#include "basic-block.h"
36#include "expr.h"
37#include "real.h"
38#include "output.h"
39#include "optabs.h"
40#include "toplev.h"
41#include "tm_p.h"
42#include "cfgloop.h"
43#include "target.h"
44#include "timevar.h"
45#include "tree-pass.h"
46
47
48#ifndef HAVE_conditional_execution
49#define HAVE_conditional_execution 0
50#endif
51#ifndef HAVE_conditional_move
52#define HAVE_conditional_move 0
53#endif
54#ifndef HAVE_incscc
55#define HAVE_incscc 0
56#endif
57#ifndef HAVE_decscc
58#define HAVE_decscc 0
59#endif
60#ifndef HAVE_trap
61#define HAVE_trap 0
62#endif
63#ifndef HAVE_conditional_trap
64#define HAVE_conditional_trap 0
65#endif
66
67#ifndef MAX_CONDITIONAL_EXECUTE
68#define MAX_CONDITIONAL_EXECUTE   (BRANCH_COST + 1)
69#endif
70
71#define NULL_BLOCK	((basic_block) NULL)
72
73/* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
74static int num_possible_if_blocks;
75
76/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77   execution.  */
78static int num_updated_if_blocks;
79
80/* # of changes made which require life information to be updated.  */
81static int num_true_changes;
82
83/* Whether conditional execution changes were made.  */
84static int cond_exec_changed_p;
85
86/* True if life data ok at present.  */
87static bool life_data_ok;
88
89/* Forward references.  */
90static int count_bb_insns (basic_block);
91static bool cheap_bb_rtx_cost_p (basic_block, int);
92static rtx first_active_insn (basic_block);
93static rtx last_active_insn (basic_block, int);
94static basic_block block_fallthru (basic_block);
95static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96static rtx cond_exec_get_condition (rtx);
97static int cond_exec_process_if_block (ce_if_block_t *, int);
98static rtx noce_get_condition (rtx, rtx *);
99static int noce_operand_ok (rtx);
100static int noce_process_if_block (ce_if_block_t *);
101static int process_if_block (ce_if_block_t *);
102static void merge_if_block (ce_if_block_t *);
103static int find_cond_trap (basic_block, edge, edge);
104static basic_block find_if_header (basic_block, int);
105static int block_jumps_and_fallthru_p (basic_block, basic_block);
106static int find_if_block (ce_if_block_t *);
107static int find_if_case_1 (basic_block, edge, edge);
108static int find_if_case_2 (basic_block, edge, edge);
109static int find_memory (rtx *, void *);
110static int dead_or_predicable (basic_block, basic_block, basic_block,
111			       basic_block, int);
112static void noce_emit_move_insn (rtx, rtx);
113static rtx block_has_only_trap (basic_block);
114
115/* Count the number of non-jump active insns in BB.  */
116
117static int
118count_bb_insns (basic_block bb)
119{
120  int count = 0;
121  rtx insn = BB_HEAD (bb);
122
123  while (1)
124    {
125      if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126	count++;
127
128      if (insn == BB_END (bb))
129	break;
130      insn = NEXT_INSN (insn);
131    }
132
133  return count;
134}
135
136/* Determine whether the total insn_rtx_cost on non-jump insns in
137   basic block BB is less than MAX_COST.  This function returns
138   false if the cost of any instruction could not be estimated.  */
139
140static bool
141cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
142{
143  int count = 0;
144  rtx insn = BB_HEAD (bb);
145
146  while (1)
147    {
148      if (NONJUMP_INSN_P (insn))
149	{
150	  int cost = insn_rtx_cost (PATTERN (insn));
151	  if (cost == 0)
152	    return false;
153
154	  /* If this instruction is the load or set of a "stack" register,
155	     such as a floating point register on x87, then the cost of
156	     speculatively executing this instruction needs to include
157	     the additional cost of popping this register off of the
158	     register stack.  */
159#ifdef STACK_REGS
160	  {
161	    rtx set = single_set (insn);
162	    if (set && STACK_REG_P (SET_DEST (set)))
163	      cost += COSTS_N_INSNS (1);
164	  }
165#endif
166
167	  count += cost;
168	  if (count >= max_cost)
169	    return false;
170	}
171      else if (CALL_P (insn))
172	return false;
173
174      if (insn == BB_END (bb))
175	break;
176      insn = NEXT_INSN (insn);
177    }
178
179  return true;
180}
181
182/* Return the first non-jump active insn in the basic block.  */
183
184static rtx
185first_active_insn (basic_block bb)
186{
187  rtx insn = BB_HEAD (bb);
188
189  if (LABEL_P (insn))
190    {
191      if (insn == BB_END (bb))
192	return NULL_RTX;
193      insn = NEXT_INSN (insn);
194    }
195
196  while (NOTE_P (insn))
197    {
198      if (insn == BB_END (bb))
199	return NULL_RTX;
200      insn = NEXT_INSN (insn);
201    }
202
203  if (JUMP_P (insn))
204    return NULL_RTX;
205
206  return insn;
207}
208
209/* Return the last non-jump active (non-jump) insn in the basic block.  */
210
211static rtx
212last_active_insn (basic_block bb, int skip_use_p)
213{
214  rtx insn = BB_END (bb);
215  rtx head = BB_HEAD (bb);
216
217  while (NOTE_P (insn)
218	 || JUMP_P (insn)
219	 || (skip_use_p
220	     && NONJUMP_INSN_P (insn)
221	     && GET_CODE (PATTERN (insn)) == USE))
222    {
223      if (insn == head)
224	return NULL_RTX;
225      insn = PREV_INSN (insn);
226    }
227
228  if (LABEL_P (insn))
229    return NULL_RTX;
230
231  return insn;
232}
233
234/* Return the basic block reached by falling though the basic block BB.  */
235
236static basic_block
237block_fallthru (basic_block bb)
238{
239  edge e;
240  edge_iterator ei;
241
242  FOR_EACH_EDGE (e, ei, bb->succs)
243    if (e->flags & EDGE_FALLTHRU)
244      break;
245
246  return (e) ? e->dest : NULL_BLOCK;
247}
248
249/* Go through a bunch of insns, converting them to conditional
250   execution format if possible.  Return TRUE if all of the non-note
251   insns were processed.  */
252
253static int
254cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
255			 /* if block information */rtx start,
256			 /* first insn to look at */rtx end,
257			 /* last insn to look at */rtx test,
258			 /* conditional execution test */rtx prob_val,
259			 /* probability of branch taken. */int mod_ok)
260{
261  int must_be_last = FALSE;
262  rtx insn;
263  rtx xtest;
264  rtx pattern;
265
266  if (!start || !end)
267    return FALSE;
268
269  for (insn = start; ; insn = NEXT_INSN (insn))
270    {
271      if (NOTE_P (insn))
272	goto insn_done;
273
274      gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275
276      /* Remove USE insns that get in the way.  */
277      if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278	{
279	  /* ??? Ug.  Actually unlinking the thing is problematic,
280	     given what we'd have to coordinate with our callers.  */
281	  SET_INSN_DELETED (insn);
282	  goto insn_done;
283	}
284
285      /* Last insn wasn't last?  */
286      if (must_be_last)
287	return FALSE;
288
289      if (modified_in_p (test, insn))
290	{
291	  if (!mod_ok)
292	    return FALSE;
293	  must_be_last = TRUE;
294	}
295
296      /* Now build the conditional form of the instruction.  */
297      pattern = PATTERN (insn);
298      xtest = copy_rtx (test);
299
300      /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301         two conditions.  */
302      if (GET_CODE (pattern) == COND_EXEC)
303	{
304	  if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305	    return FALSE;
306
307	  xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308			       COND_EXEC_TEST (pattern));
309	  pattern = COND_EXEC_CODE (pattern);
310	}
311
312      pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313
314      /* If the machine needs to modify the insn being conditionally executed,
315         say for example to force a constant integer operand into a temp
316         register, do so here.  */
317#ifdef IFCVT_MODIFY_INSN
318      IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319      if (! pattern)
320	return FALSE;
321#endif
322
323      validate_change (insn, &PATTERN (insn), pattern, 1);
324
325      if (CALL_P (insn) && prob_val)
326	validate_change (insn, &REG_NOTES (insn),
327			 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328					  REG_NOTES (insn)), 1);
329
330    insn_done:
331      if (insn == end)
332	break;
333    }
334
335  return TRUE;
336}
337
338/* Return the condition for a jump.  Do not do any special processing.  */
339
340static rtx
341cond_exec_get_condition (rtx jump)
342{
343  rtx test_if, cond;
344
345  if (any_condjump_p (jump))
346    test_if = SET_SRC (pc_set (jump));
347  else
348    return NULL_RTX;
349  cond = XEXP (test_if, 0);
350
351  /* If this branches to JUMP_LABEL when the condition is false,
352     reverse the condition.  */
353  if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354      && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355    {
356      enum rtx_code rev = reversed_comparison_code (cond, jump);
357      if (rev == UNKNOWN)
358	return NULL_RTX;
359
360      cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361			     XEXP (cond, 1));
362    }
363
364  return cond;
365}
366
367/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368   to conditional execution.  Return TRUE if we were successful at
369   converting the block.  */
370
371static int
372cond_exec_process_if_block (ce_if_block_t * ce_info,
373			    /* if block information */int do_multiple_p)
374{
375  basic_block test_bb = ce_info->test_bb;	/* last test block */
376  basic_block then_bb = ce_info->then_bb;	/* THEN */
377  basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
378  rtx test_expr;		/* expression in IF_THEN_ELSE that is tested */
379  rtx then_start;		/* first insn in THEN block */
380  rtx then_end;			/* last insn + 1 in THEN block */
381  rtx else_start = NULL_RTX;	/* first insn in ELSE block or NULL */
382  rtx else_end = NULL_RTX;	/* last insn + 1 in ELSE block */
383  int max;			/* max # of insns to convert.  */
384  int then_mod_ok;		/* whether conditional mods are ok in THEN */
385  rtx true_expr;		/* test for else block insns */
386  rtx false_expr;		/* test for then block insns */
387  rtx true_prob_val;		/* probability of else block */
388  rtx false_prob_val;		/* probability of then block */
389  int n_insns;
390  enum rtx_code false_code;
391
392  /* If test is comprised of && or || elements, and we've failed at handling
393     all of them together, just use the last test if it is the special case of
394     && elements without an ELSE block.  */
395  if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396    {
397      if (else_bb || ! ce_info->and_and_p)
398	return FALSE;
399
400      ce_info->test_bb = test_bb = ce_info->last_test_bb;
401      ce_info->num_multiple_test_blocks = 0;
402      ce_info->num_and_and_blocks = 0;
403      ce_info->num_or_or_blocks = 0;
404    }
405
406  /* Find the conditional jump to the ELSE or JOIN part, and isolate
407     the test.  */
408  test_expr = cond_exec_get_condition (BB_END (test_bb));
409  if (! test_expr)
410    return FALSE;
411
412  /* If the conditional jump is more than just a conditional jump,
413     then we can not do conditional execution conversion on this block.  */
414  if (! onlyjump_p (BB_END (test_bb)))
415    return FALSE;
416
417  /* Collect the bounds of where we're to search, skipping any labels, jumps
418     and notes at the beginning and end of the block.  Then count the total
419     number of insns and see if it is small enough to convert.  */
420  then_start = first_active_insn (then_bb);
421  then_end = last_active_insn (then_bb, TRUE);
422  n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423  max = MAX_CONDITIONAL_EXECUTE;
424
425  if (else_bb)
426    {
427      max *= 2;
428      else_start = first_active_insn (else_bb);
429      else_end = last_active_insn (else_bb, TRUE);
430      n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
431    }
432
433  if (n_insns > max)
434    return FALSE;
435
436  /* Map test_expr/test_jump into the appropriate MD tests to use on
437     the conditionally executed code.  */
438
439  true_expr = test_expr;
440
441  false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442  if (false_code != UNKNOWN)
443    false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444				 XEXP (true_expr, 0), XEXP (true_expr, 1));
445  else
446    false_expr = NULL_RTX;
447
448#ifdef IFCVT_MODIFY_TESTS
449  /* If the machine description needs to modify the tests, such as setting a
450     conditional execution register from a comparison, it can do so here.  */
451  IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452
453  /* See if the conversion failed.  */
454  if (!true_expr || !false_expr)
455    goto fail;
456#endif
457
458  true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459  if (true_prob_val)
460    {
461      true_prob_val = XEXP (true_prob_val, 0);
462      false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463    }
464  else
465    false_prob_val = NULL_RTX;
466
467  /* If we have && or || tests, do them here.  These tests are in the adjacent
468     blocks after the first block containing the test.  */
469  if (ce_info->num_multiple_test_blocks > 0)
470    {
471      basic_block bb = test_bb;
472      basic_block last_test_bb = ce_info->last_test_bb;
473
474      if (! false_expr)
475	goto fail;
476
477      do
478	{
479	  rtx start, end;
480	  rtx t, f;
481	  enum rtx_code f_code;
482
483	  bb = block_fallthru (bb);
484	  start = first_active_insn (bb);
485	  end = last_active_insn (bb, TRUE);
486	  if (start
487	      && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488					    false_prob_val, FALSE))
489	    goto fail;
490
491	  /* If the conditional jump is more than just a conditional jump, then
492	     we can not do conditional execution conversion on this block.  */
493	  if (! onlyjump_p (BB_END (bb)))
494	    goto fail;
495
496	  /* Find the conditional jump and isolate the test.  */
497	  t = cond_exec_get_condition (BB_END (bb));
498	  if (! t)
499	    goto fail;
500
501	  f_code = reversed_comparison_code (t, BB_END (bb));
502	  if (f_code == UNKNOWN)
503	    goto fail;
504
505	  f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506	  if (ce_info->and_and_p)
507	    {
508	      t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509	      f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510	    }
511	  else
512	    {
513	      t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514	      f = gen_rtx_AND (GET_MODE (t), false_expr, f);
515	    }
516
517	  /* If the machine description needs to modify the tests, such as
518	     setting a conditional execution register from a comparison, it can
519	     do so here.  */
520#ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521	  IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522
523	  /* See if the conversion failed.  */
524	  if (!t || !f)
525	    goto fail;
526#endif
527
528	  true_expr = t;
529	  false_expr = f;
530	}
531      while (bb != last_test_bb);
532    }
533
534  /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535     on then THEN block.  */
536  then_mod_ok = (else_bb == NULL_BLOCK);
537
538  /* Go through the THEN and ELSE blocks converting the insns if possible
539     to conditional execution.  */
540
541  if (then_end
542      && (! false_expr
543	  || ! cond_exec_process_insns (ce_info, then_start, then_end,
544					false_expr, false_prob_val,
545					then_mod_ok)))
546    goto fail;
547
548  if (else_bb && else_end
549      && ! cond_exec_process_insns (ce_info, else_start, else_end,
550				    true_expr, true_prob_val, TRUE))
551    goto fail;
552
553  /* If we cannot apply the changes, fail.  Do not go through the normal fail
554     processing, since apply_change_group will call cancel_changes.  */
555  if (! apply_change_group ())
556    {
557#ifdef IFCVT_MODIFY_CANCEL
558      /* Cancel any machine dependent changes.  */
559      IFCVT_MODIFY_CANCEL (ce_info);
560#endif
561      return FALSE;
562    }
563
564#ifdef IFCVT_MODIFY_FINAL
565  /* Do any machine dependent final modifications.  */
566  IFCVT_MODIFY_FINAL (ce_info);
567#endif
568
569  /* Conversion succeeded.  */
570  if (dump_file)
571    fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572	     n_insns, (n_insns == 1) ? " was" : "s were");
573
574  /* Merge the blocks!  */
575  merge_if_block (ce_info);
576  cond_exec_changed_p = TRUE;
577  return TRUE;
578
579 fail:
580#ifdef IFCVT_MODIFY_CANCEL
581  /* Cancel any machine dependent changes.  */
582  IFCVT_MODIFY_CANCEL (ce_info);
583#endif
584
585  cancel_changes (0);
586  return FALSE;
587}
588
589/* Used by noce_process_if_block to communicate with its subroutines.
590
591   The subroutines know that A and B may be evaluated freely.  They
592   know that X is a register.  They should insert new instructions
593   before cond_earliest.  */
594
595struct noce_if_info
596{
597  basic_block test_bb;
598  rtx insn_a, insn_b;
599  rtx x, a, b;
600  rtx jump, cond, cond_earliest;
601  /* True if "b" was originally evaluated unconditionally.  */
602  bool b_unconditional;
603};
604
605static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
606static int noce_try_move (struct noce_if_info *);
607static int noce_try_store_flag (struct noce_if_info *);
608static int noce_try_addcc (struct noce_if_info *);
609static int noce_try_store_flag_constants (struct noce_if_info *);
610static int noce_try_store_flag_mask (struct noce_if_info *);
611static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
612			    rtx, rtx, rtx);
613static int noce_try_cmove (struct noce_if_info *);
614static int noce_try_cmove_arith (struct noce_if_info *);
615static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
616static int noce_try_minmax (struct noce_if_info *);
617static int noce_try_abs (struct noce_if_info *);
618static int noce_try_sign_mask (struct noce_if_info *);
619
620/* Helper function for noce_try_store_flag*.  */
621
622static rtx
623noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
624		      int normalize)
625{
626  rtx cond = if_info->cond;
627  int cond_complex;
628  enum rtx_code code;
629
630  cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
631		  || ! general_operand (XEXP (cond, 1), VOIDmode));
632
633  /* If earliest == jump, or when the condition is complex, try to
634     build the store_flag insn directly.  */
635
636  if (cond_complex)
637    cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
638
639  if (reversep)
640    code = reversed_comparison_code (cond, if_info->jump);
641  else
642    code = GET_CODE (cond);
643
644  if ((if_info->cond_earliest == if_info->jump || cond_complex)
645      && (normalize == 0 || STORE_FLAG_VALUE == normalize))
646    {
647      rtx tmp;
648
649      tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
650			    XEXP (cond, 1));
651      tmp = gen_rtx_SET (VOIDmode, x, tmp);
652
653      start_sequence ();
654      tmp = emit_insn (tmp);
655
656      if (recog_memoized (tmp) >= 0)
657	{
658	  tmp = get_insns ();
659	  end_sequence ();
660	  emit_insn (tmp);
661
662	  if_info->cond_earliest = if_info->jump;
663
664	  return x;
665	}
666
667      end_sequence ();
668    }
669
670  /* Don't even try if the comparison operands or the mode of X are weird.  */
671  if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
672    return NULL_RTX;
673
674  return emit_store_flag (x, code, XEXP (cond, 0),
675			  XEXP (cond, 1), VOIDmode,
676			  (code == LTU || code == LEU
677			   || code == GEU || code == GTU), normalize);
678}
679
680/* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
681   X is the destination/target and Y is the value to copy.  */
682
683static void
684noce_emit_move_insn (rtx x, rtx y)
685{
686  enum machine_mode outmode;
687  rtx outer, inner;
688  int bitpos;
689
690  if (GET_CODE (x) != STRICT_LOW_PART)
691    {
692      rtx seq, insn, target;
693      optab ot;
694
695      start_sequence ();
696      /* Check that the SET_SRC is reasonable before calling emit_move_insn,
697	 otherwise construct a suitable SET pattern ourselves.  */
698      insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
699	     ? emit_move_insn (x, y)
700	     : emit_insn (gen_rtx_SET (VOIDmode, x, y));
701      seq = get_insns ();
702      end_sequence();
703
704      if (recog_memoized (insn) <= 0)
705	{
706	  if (GET_CODE (x) == ZERO_EXTRACT)
707	    {
708	      rtx op = XEXP (x, 0);
709	      unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
710	      unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
711
712	      /* store_bit_field expects START to be relative to
713		 BYTES_BIG_ENDIAN and adjusts this value for machines with
714		 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
715		 invoke store_bit_field again it is necessary to have the START
716		 value from the first call.  */
717	      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
718		{
719		  if (MEM_P (op))
720		    start = BITS_PER_UNIT - start - size;
721		  else
722		    {
723		      gcc_assert (REG_P (op));
724		      start = BITS_PER_WORD - start - size;
725		    }
726		}
727
728	      gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
729	      store_bit_field (op, size, start, GET_MODE (x), y);
730	      return;
731	    }
732
733	  switch (GET_RTX_CLASS (GET_CODE (y)))
734	    {
735	    case RTX_UNARY:
736	      ot = code_to_optab[GET_CODE (y)];
737	      if (ot)
738		{
739		  start_sequence ();
740		  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
741		  if (target != NULL_RTX)
742		    {
743		      if (target != x)
744			emit_move_insn (x, target);
745		      seq = get_insns ();
746		    }
747		  end_sequence ();
748		}
749	      break;
750
751	    case RTX_BIN_ARITH:
752	    case RTX_COMM_ARITH:
753	      ot = code_to_optab[GET_CODE (y)];
754	      if (ot)
755		{
756		  start_sequence ();
757		  target = expand_binop (GET_MODE (y), ot,
758					 XEXP (y, 0), XEXP (y, 1),
759					 x, 0, OPTAB_DIRECT);
760		  if (target != NULL_RTX)
761		    {
762		      if (target != x)
763			  emit_move_insn (x, target);
764		      seq = get_insns ();
765		    }
766		  end_sequence ();
767		}
768	      break;
769
770	    default:
771	      break;
772	    }
773	}
774
775      emit_insn (seq);
776      return;
777    }
778
779  outer = XEXP (x, 0);
780  inner = XEXP (outer, 0);
781  outmode = GET_MODE (outer);
782  bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
783  store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
784}
785
786/* Return sequence of instructions generated by if conversion.  This
787   function calls end_sequence() to end the current stream, ensures
788   that are instructions are unshared, recognizable non-jump insns.
789   On failure, this function returns a NULL_RTX.  */
790
791static rtx
792end_ifcvt_sequence (struct noce_if_info *if_info)
793{
794  rtx insn;
795  rtx seq = get_insns ();
796
797  set_used_flags (if_info->x);
798  set_used_flags (if_info->cond);
799  unshare_all_rtl_in_chain (seq);
800  end_sequence ();
801
802  /* Make sure that all of the instructions emitted are recognizable,
803     and that we haven't introduced a new jump instruction.
804     As an exercise for the reader, build a general mechanism that
805     allows proper placement of required clobbers.  */
806  for (insn = seq; insn; insn = NEXT_INSN (insn))
807    if (JUMP_P (insn)
808	|| recog_memoized (insn) == -1)
809      return NULL_RTX;
810
811  return seq;
812}
813
814/* Convert "if (a != b) x = a; else x = b" into "x = a" and
815   "if (a == b) x = a; else x = b" into "x = b".  */
816
817static int
818noce_try_move (struct noce_if_info *if_info)
819{
820  rtx cond = if_info->cond;
821  enum rtx_code code = GET_CODE (cond);
822  rtx y, seq;
823
824  if (code != NE && code != EQ)
825    return FALSE;
826
827  /* This optimization isn't valid if either A or B could be a NaN
828     or a signed zero.  */
829  if (HONOR_NANS (GET_MODE (if_info->x))
830      || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
831    return FALSE;
832
833  /* Check whether the operands of the comparison are A and in
834     either order.  */
835  if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
836       && rtx_equal_p (if_info->b, XEXP (cond, 1)))
837      || (rtx_equal_p (if_info->a, XEXP (cond, 1))
838	  && rtx_equal_p (if_info->b, XEXP (cond, 0))))
839    {
840      y = (code == EQ) ? if_info->a : if_info->b;
841
842      /* Avoid generating the move if the source is the destination.  */
843      if (! rtx_equal_p (if_info->x, y))
844	{
845	  start_sequence ();
846	  noce_emit_move_insn (if_info->x, y);
847	  seq = end_ifcvt_sequence (if_info);
848	  if (!seq)
849	    return FALSE;
850
851	  emit_insn_before_setloc (seq, if_info->jump,
852				   INSN_LOCATOR (if_info->insn_a));
853	}
854      return TRUE;
855    }
856  return FALSE;
857}
858
859/* Convert "if (test) x = 1; else x = 0".
860
861   Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
862   tried in noce_try_store_flag_constants after noce_try_cmove has had
863   a go at the conversion.  */
864
865static int
866noce_try_store_flag (struct noce_if_info *if_info)
867{
868  int reversep;
869  rtx target, seq;
870
871  if (GET_CODE (if_info->b) == CONST_INT
872      && INTVAL (if_info->b) == STORE_FLAG_VALUE
873      && if_info->a == const0_rtx)
874    reversep = 0;
875  else if (if_info->b == const0_rtx
876	   && GET_CODE (if_info->a) == CONST_INT
877	   && INTVAL (if_info->a) == STORE_FLAG_VALUE
878	   && (reversed_comparison_code (if_info->cond, if_info->jump)
879	       != UNKNOWN))
880    reversep = 1;
881  else
882    return FALSE;
883
884  start_sequence ();
885
886  target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
887  if (target)
888    {
889      if (target != if_info->x)
890	noce_emit_move_insn (if_info->x, target);
891
892      seq = end_ifcvt_sequence (if_info);
893      if (! seq)
894	return FALSE;
895
896      emit_insn_before_setloc (seq, if_info->jump,
897			       INSN_LOCATOR (if_info->insn_a));
898      return TRUE;
899    }
900  else
901    {
902      end_sequence ();
903      return FALSE;
904    }
905}
906
907/* Convert "if (test) x = a; else x = b", for A and B constant.  */
908
909static int
910noce_try_store_flag_constants (struct noce_if_info *if_info)
911{
912  rtx target, seq;
913  int reversep;
914  HOST_WIDE_INT itrue, ifalse, diff, tmp;
915  int normalize, can_reverse;
916  enum machine_mode mode;
917
918  if (! no_new_pseudos
919      && GET_CODE (if_info->a) == CONST_INT
920      && GET_CODE (if_info->b) == CONST_INT)
921    {
922      mode = GET_MODE (if_info->x);
923      ifalse = INTVAL (if_info->a);
924      itrue = INTVAL (if_info->b);
925
926      /* Make sure we can represent the difference between the two values.  */
927      if ((itrue - ifalse > 0)
928	  != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
929	return FALSE;
930
931      diff = trunc_int_for_mode (itrue - ifalse, mode);
932
933      can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
934		     != UNKNOWN);
935
936      reversep = 0;
937      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
938	normalize = 0;
939      else if (ifalse == 0 && exact_log2 (itrue) >= 0
940	       && (STORE_FLAG_VALUE == 1
941		   || BRANCH_COST >= 2))
942	normalize = 1;
943      else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
944	       && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
945	normalize = 1, reversep = 1;
946      else if (itrue == -1
947	       && (STORE_FLAG_VALUE == -1
948		   || BRANCH_COST >= 2))
949	normalize = -1;
950      else if (ifalse == -1 && can_reverse
951	       && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
952	normalize = -1, reversep = 1;
953      else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
954	       || BRANCH_COST >= 3)
955	normalize = -1;
956      else
957	return FALSE;
958
959      if (reversep)
960	{
961	  tmp = itrue; itrue = ifalse; ifalse = tmp;
962	  diff = trunc_int_for_mode (-diff, mode);
963	}
964
965      start_sequence ();
966      target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
967      if (! target)
968	{
969	  end_sequence ();
970	  return FALSE;
971	}
972
973      /* if (test) x = 3; else x = 4;
974	 =>   x = 3 + (test == 0);  */
975      if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
976	{
977	  target = expand_simple_binop (mode,
978					(diff == STORE_FLAG_VALUE
979					 ? PLUS : MINUS),
980					GEN_INT (ifalse), target, if_info->x, 0,
981					OPTAB_WIDEN);
982	}
983
984      /* if (test) x = 8; else x = 0;
985	 =>   x = (test != 0) << 3;  */
986      else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
987	{
988	  target = expand_simple_binop (mode, ASHIFT,
989					target, GEN_INT (tmp), if_info->x, 0,
990					OPTAB_WIDEN);
991	}
992
993      /* if (test) x = -1; else x = b;
994	 =>   x = -(test != 0) | b;  */
995      else if (itrue == -1)
996	{
997	  target = expand_simple_binop (mode, IOR,
998					target, GEN_INT (ifalse), if_info->x, 0,
999					OPTAB_WIDEN);
1000	}
1001
1002      /* if (test) x = a; else x = b;
1003	 =>   x = (-(test != 0) & (b - a)) + a;  */
1004      else
1005	{
1006	  target = expand_simple_binop (mode, AND,
1007					target, GEN_INT (diff), if_info->x, 0,
1008					OPTAB_WIDEN);
1009	  if (target)
1010	    target = expand_simple_binop (mode, PLUS,
1011					  target, GEN_INT (ifalse),
1012					  if_info->x, 0, OPTAB_WIDEN);
1013	}
1014
1015      if (! target)
1016	{
1017	  end_sequence ();
1018	  return FALSE;
1019	}
1020
1021      if (target != if_info->x)
1022	noce_emit_move_insn (if_info->x, target);
1023
1024      seq = end_ifcvt_sequence (if_info);
1025      if (!seq)
1026	return FALSE;
1027
1028      emit_insn_before_setloc (seq, if_info->jump,
1029			       INSN_LOCATOR (if_info->insn_a));
1030      return TRUE;
1031    }
1032
1033  return FALSE;
1034}
1035
1036/* Convert "if (test) foo++" into "foo += (test != 0)", and
1037   similarly for "foo--".  */
1038
1039static int
1040noce_try_addcc (struct noce_if_info *if_info)
1041{
1042  rtx target, seq;
1043  int subtract, normalize;
1044
1045  if (! no_new_pseudos
1046      && GET_CODE (if_info->a) == PLUS
1047      && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1048      && (reversed_comparison_code (if_info->cond, if_info->jump)
1049	  != UNKNOWN))
1050    {
1051      rtx cond = if_info->cond;
1052      enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1053
1054      /* First try to use addcc pattern.  */
1055      if (general_operand (XEXP (cond, 0), VOIDmode)
1056	  && general_operand (XEXP (cond, 1), VOIDmode))
1057	{
1058	  start_sequence ();
1059	  target = emit_conditional_add (if_info->x, code,
1060					 XEXP (cond, 0),
1061					 XEXP (cond, 1),
1062					 VOIDmode,
1063					 if_info->b,
1064					 XEXP (if_info->a, 1),
1065					 GET_MODE (if_info->x),
1066					 (code == LTU || code == GEU
1067					  || code == LEU || code == GTU));
1068	  if (target)
1069	    {
1070	      if (target != if_info->x)
1071		noce_emit_move_insn (if_info->x, target);
1072
1073	      seq = end_ifcvt_sequence (if_info);
1074	      if (!seq)
1075		return FALSE;
1076
1077	      emit_insn_before_setloc (seq, if_info->jump,
1078				       INSN_LOCATOR (if_info->insn_a));
1079	      return TRUE;
1080	    }
1081	  end_sequence ();
1082	}
1083
1084      /* If that fails, construct conditional increment or decrement using
1085	 setcc.  */
1086      if (BRANCH_COST >= 2
1087	  && (XEXP (if_info->a, 1) == const1_rtx
1088	      || XEXP (if_info->a, 1) == constm1_rtx))
1089        {
1090	  start_sequence ();
1091	  if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1092	    subtract = 0, normalize = 0;
1093	  else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1094	    subtract = 1, normalize = 0;
1095	  else
1096	    subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1097
1098
1099	  target = noce_emit_store_flag (if_info,
1100					 gen_reg_rtx (GET_MODE (if_info->x)),
1101					 1, normalize);
1102
1103	  if (target)
1104	    target = expand_simple_binop (GET_MODE (if_info->x),
1105					  subtract ? MINUS : PLUS,
1106					  if_info->b, target, if_info->x,
1107					  0, OPTAB_WIDEN);
1108	  if (target)
1109	    {
1110	      if (target != if_info->x)
1111		noce_emit_move_insn (if_info->x, target);
1112
1113	      seq = end_ifcvt_sequence (if_info);
1114	      if (!seq)
1115		return FALSE;
1116
1117	      emit_insn_before_setloc (seq, if_info->jump,
1118				       INSN_LOCATOR (if_info->insn_a));
1119	      return TRUE;
1120	    }
1121	  end_sequence ();
1122	}
1123    }
1124
1125  return FALSE;
1126}
1127
1128/* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
1129
1130static int
1131noce_try_store_flag_mask (struct noce_if_info *if_info)
1132{
1133  rtx target, seq;
1134  int reversep;
1135
1136  reversep = 0;
1137  if (! no_new_pseudos
1138      && (BRANCH_COST >= 2
1139	  || STORE_FLAG_VALUE == -1)
1140      && ((if_info->a == const0_rtx
1141	   && rtx_equal_p (if_info->b, if_info->x))
1142	  || ((reversep = (reversed_comparison_code (if_info->cond,
1143						     if_info->jump)
1144			   != UNKNOWN))
1145	      && if_info->b == const0_rtx
1146	      && rtx_equal_p (if_info->a, if_info->x))))
1147    {
1148      start_sequence ();
1149      target = noce_emit_store_flag (if_info,
1150				     gen_reg_rtx (GET_MODE (if_info->x)),
1151				     reversep, -1);
1152      if (target)
1153        target = expand_simple_binop (GET_MODE (if_info->x), AND,
1154				      if_info->x,
1155				      target, if_info->x, 0,
1156				      OPTAB_WIDEN);
1157
1158      if (target)
1159	{
1160	  if (target != if_info->x)
1161	    noce_emit_move_insn (if_info->x, target);
1162
1163	  seq = end_ifcvt_sequence (if_info);
1164	  if (!seq)
1165	    return FALSE;
1166
1167	  emit_insn_before_setloc (seq, if_info->jump,
1168				   INSN_LOCATOR (if_info->insn_a));
1169	  return TRUE;
1170	}
1171
1172      end_sequence ();
1173    }
1174
1175  return FALSE;
1176}
1177
1178/* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
1179
1180static rtx
1181noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1182		 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1183{
1184  /* If earliest == jump, try to build the cmove insn directly.
1185     This is helpful when combine has created some complex condition
1186     (like for alpha's cmovlbs) that we can't hope to regenerate
1187     through the normal interface.  */
1188
1189  if (if_info->cond_earliest == if_info->jump)
1190    {
1191      rtx tmp;
1192
1193      tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1194      tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1195      tmp = gen_rtx_SET (VOIDmode, x, tmp);
1196
1197      start_sequence ();
1198      tmp = emit_insn (tmp);
1199
1200      if (recog_memoized (tmp) >= 0)
1201	{
1202	  tmp = get_insns ();
1203	  end_sequence ();
1204	  emit_insn (tmp);
1205
1206	  return x;
1207	}
1208
1209      end_sequence ();
1210    }
1211
1212  /* Don't even try if the comparison operands are weird.  */
1213  if (! general_operand (cmp_a, GET_MODE (cmp_a))
1214      || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1215    return NULL_RTX;
1216
1217#if HAVE_conditional_move
1218  return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1219				vtrue, vfalse, GET_MODE (x),
1220			        (code == LTU || code == GEU
1221				 || code == LEU || code == GTU));
1222#else
1223  /* We'll never get here, as noce_process_if_block doesn't call the
1224     functions involved.  Ifdef code, however, should be discouraged
1225     because it leads to typos in the code not selected.  However,
1226     emit_conditional_move won't exist either.  */
1227  return NULL_RTX;
1228#endif
1229}
1230
1231/* Try only simple constants and registers here.  More complex cases
1232   are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1233   has had a go at it.  */
1234
1235static int
1236noce_try_cmove (struct noce_if_info *if_info)
1237{
1238  enum rtx_code code;
1239  rtx target, seq;
1240
1241  if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1242      && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1243    {
1244      start_sequence ();
1245
1246      code = GET_CODE (if_info->cond);
1247      target = noce_emit_cmove (if_info, if_info->x, code,
1248				XEXP (if_info->cond, 0),
1249				XEXP (if_info->cond, 1),
1250				if_info->a, if_info->b);
1251
1252      if (target)
1253	{
1254	  if (target != if_info->x)
1255	    noce_emit_move_insn (if_info->x, target);
1256
1257	  seq = end_ifcvt_sequence (if_info);
1258	  if (!seq)
1259	    return FALSE;
1260
1261	  emit_insn_before_setloc (seq, if_info->jump,
1262				   INSN_LOCATOR (if_info->insn_a));
1263	  return TRUE;
1264	}
1265      else
1266	{
1267	  end_sequence ();
1268	  return FALSE;
1269	}
1270    }
1271
1272  return FALSE;
1273}
1274
1275/* Try more complex cases involving conditional_move.  */
1276
1277static int
1278noce_try_cmove_arith (struct noce_if_info *if_info)
1279{
1280  rtx a = if_info->a;
1281  rtx b = if_info->b;
1282  rtx x = if_info->x;
1283  rtx orig_a, orig_b;
1284  rtx insn_a, insn_b;
1285  rtx tmp, target;
1286  int is_mem = 0;
1287  int insn_cost;
1288  enum rtx_code code;
1289
1290  /* A conditional move from two memory sources is equivalent to a
1291     conditional on their addresses followed by a load.  Don't do this
1292     early because it'll screw alias analysis.  Note that we've
1293     already checked for no side effects.  */
1294  if (! no_new_pseudos && cse_not_expected
1295      && MEM_P (a) && MEM_P (b)
1296      && BRANCH_COST >= 5)
1297    {
1298      a = XEXP (a, 0);
1299      b = XEXP (b, 0);
1300      x = gen_reg_rtx (Pmode);
1301      is_mem = 1;
1302    }
1303
1304  /* ??? We could handle this if we knew that a load from A or B could
1305     not fault.  This is also true if we've already loaded
1306     from the address along the path from ENTRY.  */
1307  else if (may_trap_p (a) || may_trap_p (b))
1308    return FALSE;
1309
1310  /* if (test) x = a + b; else x = c - d;
1311     => y = a + b;
1312        x = c - d;
1313	if (test)
1314	  x = y;
1315  */
1316
1317  code = GET_CODE (if_info->cond);
1318  insn_a = if_info->insn_a;
1319  insn_b = if_info->insn_b;
1320
1321  /* Total insn_rtx_cost should be smaller than branch cost.  Exit
1322     if insn_rtx_cost can't be estimated.  */
1323  if (insn_a)
1324    {
1325      insn_cost = insn_rtx_cost (PATTERN (insn_a));
1326      if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1327	return FALSE;
1328    }
1329  else
1330    {
1331      insn_cost = 0;
1332    }
1333
1334  if (insn_b) {
1335    insn_cost += insn_rtx_cost (PATTERN (insn_b));
1336    if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1337      return FALSE;
1338  }
1339
1340  /* Possibly rearrange operands to make things come out more natural.  */
1341  if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1342    {
1343      int reversep = 0;
1344      if (rtx_equal_p (b, x))
1345	reversep = 1;
1346      else if (general_operand (b, GET_MODE (b)))
1347	reversep = 1;
1348
1349      if (reversep)
1350	{
1351	  code = reversed_comparison_code (if_info->cond, if_info->jump);
1352	  tmp = a, a = b, b = tmp;
1353	  tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1354	}
1355    }
1356
1357  start_sequence ();
1358
1359  orig_a = a;
1360  orig_b = b;
1361
1362  /* If either operand is complex, load it into a register first.
1363     The best way to do this is to copy the original insn.  In this
1364     way we preserve any clobbers etc that the insn may have had.
1365     This is of course not possible in the IS_MEM case.  */
1366  if (! general_operand (a, GET_MODE (a)))
1367    {
1368      rtx set;
1369
1370      if (no_new_pseudos)
1371	goto end_seq_and_fail;
1372
1373      if (is_mem)
1374	{
1375	  tmp = gen_reg_rtx (GET_MODE (a));
1376	  tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1377	}
1378      else if (! insn_a)
1379	goto end_seq_and_fail;
1380      else
1381	{
1382	  a = gen_reg_rtx (GET_MODE (a));
1383	  tmp = copy_rtx (insn_a);
1384	  set = single_set (tmp);
1385	  SET_DEST (set) = a;
1386	  tmp = emit_insn (PATTERN (tmp));
1387	}
1388      if (recog_memoized (tmp) < 0)
1389	goto end_seq_and_fail;
1390    }
1391  if (! general_operand (b, GET_MODE (b)))
1392    {
1393      rtx set, last;
1394
1395      if (no_new_pseudos)
1396	goto end_seq_and_fail;
1397
1398      if (is_mem)
1399	{
1400          tmp = gen_reg_rtx (GET_MODE (b));
1401	  tmp = gen_rtx_SET (VOIDmode, tmp, b);
1402	}
1403      else if (! insn_b)
1404	goto end_seq_and_fail;
1405      else
1406	{
1407          b = gen_reg_rtx (GET_MODE (b));
1408	  tmp = copy_rtx (insn_b);
1409	  set = single_set (tmp);
1410	  SET_DEST (set) = b;
1411	  tmp = PATTERN (tmp);
1412	}
1413
1414      /* If insn to set up A clobbers any registers B depends on, try to
1415	 swap insn that sets up A with the one that sets up B.  If even
1416	 that doesn't help, punt.  */
1417      last = get_last_insn ();
1418      if (last && modified_in_p (orig_b, last))
1419	{
1420	  tmp = emit_insn_before (tmp, get_insns ());
1421	  if (modified_in_p (orig_a, tmp))
1422	    goto end_seq_and_fail;
1423	}
1424      else
1425	tmp = emit_insn (tmp);
1426
1427      if (recog_memoized (tmp) < 0)
1428	goto end_seq_and_fail;
1429    }
1430
1431  target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1432			    XEXP (if_info->cond, 1), a, b);
1433
1434  if (! target)
1435    goto end_seq_and_fail;
1436
1437  /* If we're handling a memory for above, emit the load now.  */
1438  if (is_mem)
1439    {
1440      tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1441
1442      /* Copy over flags as appropriate.  */
1443      if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1444	MEM_VOLATILE_P (tmp) = 1;
1445      if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1446	MEM_IN_STRUCT_P (tmp) = 1;
1447      if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1448	MEM_SCALAR_P (tmp) = 1;
1449      if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1450	set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1451      set_mem_align (tmp,
1452		     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1453
1454      noce_emit_move_insn (if_info->x, tmp);
1455    }
1456  else if (target != x)
1457    noce_emit_move_insn (x, target);
1458
1459  tmp = end_ifcvt_sequence (if_info);
1460  if (!tmp)
1461    return FALSE;
1462
1463  emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1464  return TRUE;
1465
1466 end_seq_and_fail:
1467  end_sequence ();
1468  return FALSE;
1469}
1470
1471/* For most cases, the simplified condition we found is the best
1472   choice, but this is not the case for the min/max/abs transforms.
1473   For these we wish to know that it is A or B in the condition.  */
1474
1475static rtx
1476noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1477			rtx *earliest)
1478{
1479  rtx cond, set, insn;
1480  int reverse;
1481
1482  /* If target is already mentioned in the known condition, return it.  */
1483  if (reg_mentioned_p (target, if_info->cond))
1484    {
1485      *earliest = if_info->cond_earliest;
1486      return if_info->cond;
1487    }
1488
1489  set = pc_set (if_info->jump);
1490  cond = XEXP (SET_SRC (set), 0);
1491  reverse
1492    = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1493      && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1494
1495  /* If we're looking for a constant, try to make the conditional
1496     have that constant in it.  There are two reasons why it may
1497     not have the constant we want:
1498
1499     1. GCC may have needed to put the constant in a register, because
1500        the target can't compare directly against that constant.  For
1501        this case, we look for a SET immediately before the comparison
1502        that puts a constant in that register.
1503
1504     2. GCC may have canonicalized the conditional, for example
1505	replacing "if x < 4" with "if x <= 3".  We can undo that (or
1506	make equivalent types of changes) to get the constants we need
1507	if they're off by one in the right direction.  */
1508
1509  if (GET_CODE (target) == CONST_INT)
1510    {
1511      enum rtx_code code = GET_CODE (if_info->cond);
1512      rtx op_a = XEXP (if_info->cond, 0);
1513      rtx op_b = XEXP (if_info->cond, 1);
1514      rtx prev_insn;
1515
1516      /* First, look to see if we put a constant in a register.  */
1517      prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1518      if (prev_insn
1519	  && INSN_P (prev_insn)
1520	  && GET_CODE (PATTERN (prev_insn)) == SET)
1521	{
1522	  rtx src = find_reg_equal_equiv_note (prev_insn);
1523	  if (!src)
1524	    src = SET_SRC (PATTERN (prev_insn));
1525	  if (GET_CODE (src) == CONST_INT)
1526	    {
1527	      if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1528		op_a = src;
1529	      else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1530		op_b = src;
1531
1532	      if (GET_CODE (op_a) == CONST_INT)
1533		{
1534		  rtx tmp = op_a;
1535		  op_a = op_b;
1536		  op_b = tmp;
1537		  code = swap_condition (code);
1538		}
1539	    }
1540	}
1541
1542      /* Now, look to see if we can get the right constant by
1543	 adjusting the conditional.  */
1544      if (GET_CODE (op_b) == CONST_INT)
1545	{
1546	  HOST_WIDE_INT desired_val = INTVAL (target);
1547	  HOST_WIDE_INT actual_val = INTVAL (op_b);
1548
1549	  switch (code)
1550	    {
1551	    case LT:
1552	      if (actual_val == desired_val + 1)
1553		{
1554		  code = LE;
1555		  op_b = GEN_INT (desired_val);
1556		}
1557	      break;
1558	    case LE:
1559	      if (actual_val == desired_val - 1)
1560		{
1561		  code = LT;
1562		  op_b = GEN_INT (desired_val);
1563		}
1564	      break;
1565	    case GT:
1566	      if (actual_val == desired_val - 1)
1567		{
1568		  code = GE;
1569		  op_b = GEN_INT (desired_val);
1570		}
1571	      break;
1572	    case GE:
1573	      if (actual_val == desired_val + 1)
1574		{
1575		  code = GT;
1576		  op_b = GEN_INT (desired_val);
1577		}
1578	      break;
1579	    default:
1580	      break;
1581	    }
1582	}
1583
1584      /* If we made any changes, generate a new conditional that is
1585	 equivalent to what we started with, but has the right
1586	 constants in it.  */
1587      if (code != GET_CODE (if_info->cond)
1588	  || op_a != XEXP (if_info->cond, 0)
1589	  || op_b != XEXP (if_info->cond, 1))
1590	{
1591	  cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1592	  *earliest = if_info->cond_earliest;
1593	  return cond;
1594	}
1595    }
1596
1597  cond = canonicalize_condition (if_info->jump, cond, reverse,
1598				 earliest, target, false, true);
1599  if (! cond || ! reg_mentioned_p (target, cond))
1600    return NULL;
1601
1602  /* We almost certainly searched back to a different place.
1603     Need to re-verify correct lifetimes.  */
1604
1605  /* X may not be mentioned in the range (cond_earliest, jump].  */
1606  for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1607    if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1608      return NULL;
1609
1610  /* A and B may not be modified in the range [cond_earliest, jump).  */
1611  for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1612    if (INSN_P (insn)
1613	&& (modified_in_p (if_info->a, insn)
1614	    || modified_in_p (if_info->b, insn)))
1615      return NULL;
1616
1617  return cond;
1618}
1619
1620/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
1621
1622static int
1623noce_try_minmax (struct noce_if_info *if_info)
1624{
1625  rtx cond, earliest, target, seq;
1626  enum rtx_code code, op;
1627  int unsignedp;
1628
1629  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
1630  if (no_new_pseudos)
1631    return FALSE;
1632
1633  /* ??? Reject modes with NaNs or signed zeros since we don't know how
1634     they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
1635     to get the target to tell us...  */
1636  if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1637      || HONOR_NANS (GET_MODE (if_info->x)))
1638    return FALSE;
1639
1640  cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1641  if (!cond)
1642    return FALSE;
1643
1644  /* Verify the condition is of the form we expect, and canonicalize
1645     the comparison code.  */
1646  code = GET_CODE (cond);
1647  if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1648    {
1649      if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1650	return FALSE;
1651    }
1652  else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1653    {
1654      if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1655	return FALSE;
1656      code = swap_condition (code);
1657    }
1658  else
1659    return FALSE;
1660
1661  /* Determine what sort of operation this is.  Note that the code is for
1662     a taken branch, so the code->operation mapping appears backwards.  */
1663  switch (code)
1664    {
1665    case LT:
1666    case LE:
1667    case UNLT:
1668    case UNLE:
1669      op = SMAX;
1670      unsignedp = 0;
1671      break;
1672    case GT:
1673    case GE:
1674    case UNGT:
1675    case UNGE:
1676      op = SMIN;
1677      unsignedp = 0;
1678      break;
1679    case LTU:
1680    case LEU:
1681      op = UMAX;
1682      unsignedp = 1;
1683      break;
1684    case GTU:
1685    case GEU:
1686      op = UMIN;
1687      unsignedp = 1;
1688      break;
1689    default:
1690      return FALSE;
1691    }
1692
1693  start_sequence ();
1694
1695  target = expand_simple_binop (GET_MODE (if_info->x), op,
1696				if_info->a, if_info->b,
1697				if_info->x, unsignedp, OPTAB_WIDEN);
1698  if (! target)
1699    {
1700      end_sequence ();
1701      return FALSE;
1702    }
1703  if (target != if_info->x)
1704    noce_emit_move_insn (if_info->x, target);
1705
1706  seq = end_ifcvt_sequence (if_info);
1707  if (!seq)
1708    return FALSE;
1709
1710  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1711  if_info->cond = cond;
1712  if_info->cond_earliest = earliest;
1713
1714  return TRUE;
1715}
1716
1717/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc.  */
1718
1719static int
1720noce_try_abs (struct noce_if_info *if_info)
1721{
1722  rtx cond, earliest, target, seq, a, b, c;
1723  int negate;
1724
1725  /* ??? Can't guarantee that expand_binop won't create pseudos.  */
1726  if (no_new_pseudos)
1727    return FALSE;
1728
1729  /* Recognize A and B as constituting an ABS or NABS.  The canonical
1730     form is a branch around the negation, taken when the object is the
1731     first operand of a comparison against 0 that evaluates to true.  */
1732  a = if_info->a;
1733  b = if_info->b;
1734  if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1735    negate = 0;
1736  else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1737    {
1738      c = a; a = b; b = c;
1739      negate = 1;
1740    }
1741  else
1742    return FALSE;
1743
1744  cond = noce_get_alt_condition (if_info, b, &earliest);
1745  if (!cond)
1746    return FALSE;
1747
1748  /* Verify the condition is of the form we expect.  */
1749  if (rtx_equal_p (XEXP (cond, 0), b))
1750    c = XEXP (cond, 1);
1751  else if (rtx_equal_p (XEXP (cond, 1), b))
1752    {
1753      c = XEXP (cond, 0);
1754      negate = !negate;
1755    }
1756  else
1757    return FALSE;
1758
1759  /* Verify that C is zero.  Search one step backward for a
1760     REG_EQUAL note or a simple source if necessary.  */
1761  if (REG_P (c))
1762    {
1763      rtx set, insn = prev_nonnote_insn (earliest);
1764      if (insn
1765	  && (set = single_set (insn))
1766	  && rtx_equal_p (SET_DEST (set), c))
1767	{
1768	  rtx note = find_reg_equal_equiv_note (insn);
1769	  if (note)
1770	    c = XEXP (note, 0);
1771	  else
1772	    c = SET_SRC (set);
1773	}
1774      else
1775	return FALSE;
1776    }
1777  if (MEM_P (c)
1778      && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1779      && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1780    c = get_pool_constant (XEXP (c, 0));
1781
1782  /* Work around funny ideas get_condition has wrt canonicalization.
1783     Note that these rtx constants are known to be CONST_INT, and
1784     therefore imply integer comparisons.  */
1785  if (c == constm1_rtx && GET_CODE (cond) == GT)
1786    ;
1787  else if (c == const1_rtx && GET_CODE (cond) == LT)
1788    ;
1789  else if (c != CONST0_RTX (GET_MODE (b)))
1790    return FALSE;
1791
1792  /* Determine what sort of operation this is.  */
1793  switch (GET_CODE (cond))
1794    {
1795    case LT:
1796    case LE:
1797    case UNLT:
1798    case UNLE:
1799      negate = !negate;
1800      break;
1801    case GT:
1802    case GE:
1803    case UNGT:
1804    case UNGE:
1805      break;
1806    default:
1807      return FALSE;
1808    }
1809
1810  start_sequence ();
1811
1812  target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1813
1814  /* ??? It's a quandary whether cmove would be better here, especially
1815     for integers.  Perhaps combine will clean things up.  */
1816  if (target && negate)
1817    target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1818
1819  if (! target)
1820    {
1821      end_sequence ();
1822      return FALSE;
1823    }
1824
1825  if (target != if_info->x)
1826    noce_emit_move_insn (if_info->x, target);
1827
1828  seq = end_ifcvt_sequence (if_info);
1829  if (!seq)
1830    return FALSE;
1831
1832  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1833  if_info->cond = cond;
1834  if_info->cond_earliest = earliest;
1835
1836  return TRUE;
1837}
1838
1839/* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
1840
1841static int
1842noce_try_sign_mask (struct noce_if_info *if_info)
1843{
1844  rtx cond, t, m, c, seq;
1845  enum machine_mode mode;
1846  enum rtx_code code;
1847
1848  if (no_new_pseudos)
1849    return FALSE;
1850
1851  cond = if_info->cond;
1852  code = GET_CODE (cond);
1853  m = XEXP (cond, 0);
1854  c = XEXP (cond, 1);
1855
1856  t = NULL_RTX;
1857  if (if_info->a == const0_rtx)
1858    {
1859      if ((code == LT && c == const0_rtx)
1860	  || (code == LE && c == constm1_rtx))
1861	t = if_info->b;
1862    }
1863  else if (if_info->b == const0_rtx)
1864    {
1865      if ((code == GE && c == const0_rtx)
1866	  || (code == GT && c == constm1_rtx))
1867	t = if_info->a;
1868    }
1869
1870  if (! t || side_effects_p (t))
1871    return FALSE;
1872
1873  /* We currently don't handle different modes.  */
1874  mode = GET_MODE (t);
1875  if (GET_MODE (m) != mode)
1876    return FALSE;
1877
1878  /* This is only profitable if T is cheap, or T is unconditionally
1879     executed/evaluated in the original insn sequence.  */
1880  if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1881      && (!if_info->b_unconditional
1882          || t != if_info->b))
1883    return FALSE;
1884
1885  start_sequence ();
1886  /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1887     "(signed) m >> 31" directly.  This benefits targets with specialized
1888     insns to obtain the signmask, but still uses ashr_optab otherwise.  */
1889  m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1890  t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1891	: NULL_RTX;
1892
1893  if (!t)
1894    {
1895      end_sequence ();
1896      return FALSE;
1897    }
1898
1899  noce_emit_move_insn (if_info->x, t);
1900
1901  seq = end_ifcvt_sequence (if_info);
1902  if (!seq)
1903    return FALSE;
1904
1905  emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1906  return TRUE;
1907}
1908
1909
1910/* Optimize away "if (x & C) x |= C" and similar bit manipulation
1911   transformations.  */
1912
1913static int
1914noce_try_bitop (struct noce_if_info *if_info)
1915{
1916  rtx cond, x, a, result, seq;
1917  enum machine_mode mode;
1918  enum rtx_code code;
1919  int bitnum;
1920
1921  x = if_info->x;
1922  cond = if_info->cond;
1923  code = GET_CODE (cond);
1924
1925  /* Check for no else condition.  */
1926  if (! rtx_equal_p (x, if_info->b))
1927    return FALSE;
1928
1929  /* Check for a suitable condition.  */
1930  if (code != NE && code != EQ)
1931    return FALSE;
1932  if (XEXP (cond, 1) != const0_rtx)
1933    return FALSE;
1934  cond = XEXP (cond, 0);
1935
1936  /* ??? We could also handle AND here.  */
1937  if (GET_CODE (cond) == ZERO_EXTRACT)
1938    {
1939      if (XEXP (cond, 1) != const1_rtx
1940	  || GET_CODE (XEXP (cond, 2)) != CONST_INT
1941	  || ! rtx_equal_p (x, XEXP (cond, 0)))
1942	return FALSE;
1943      bitnum = INTVAL (XEXP (cond, 2));
1944      mode = GET_MODE (x);
1945      if (BITS_BIG_ENDIAN)
1946	bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1947      if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1948	return FALSE;
1949    }
1950  else
1951    return FALSE;
1952
1953  a = if_info->a;
1954  if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1955    {
1956      /* Check for "if (X & C) x = x op C".  */
1957      if (! rtx_equal_p (x, XEXP (a, 0))
1958          || GET_CODE (XEXP (a, 1)) != CONST_INT
1959	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1960	     != (unsigned HOST_WIDE_INT) 1 << bitnum)
1961        return FALSE;
1962
1963      /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
1964      /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
1965      if (GET_CODE (a) == IOR)
1966	result = (code == NE) ? a : NULL_RTX;
1967      else if (code == NE)
1968	{
1969	  /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
1970	  result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1971	  result = simplify_gen_binary (IOR, mode, x, result);
1972	}
1973      else
1974	{
1975	  /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
1976	  result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1977	  result = simplify_gen_binary (AND, mode, x, result);
1978	}
1979    }
1980  else if (GET_CODE (a) == AND)
1981    {
1982      /* Check for "if (X & C) x &= ~C".  */
1983      if (! rtx_equal_p (x, XEXP (a, 0))
1984	  || GET_CODE (XEXP (a, 1)) != CONST_INT
1985	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1986	     != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1987        return FALSE;
1988
1989      /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
1990      /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
1991      result = (code == EQ) ? a : NULL_RTX;
1992    }
1993  else
1994    return FALSE;
1995
1996  if (result)
1997    {
1998      start_sequence ();
1999      noce_emit_move_insn (x, result);
2000      seq = end_ifcvt_sequence (if_info);
2001      if (!seq)
2002	return FALSE;
2003
2004      emit_insn_before_setloc (seq, if_info->jump,
2005			       INSN_LOCATOR (if_info->insn_a));
2006    }
2007  return TRUE;
2008}
2009
2010
2011/* Similar to get_condition, only the resulting condition must be
2012   valid at JUMP, instead of at EARLIEST.  */
2013
2014static rtx
2015noce_get_condition (rtx jump, rtx *earliest)
2016{
2017  rtx cond, set, tmp;
2018  bool reverse;
2019
2020  if (! any_condjump_p (jump))
2021    return NULL_RTX;
2022
2023  set = pc_set (jump);
2024
2025  /* If this branches to JUMP_LABEL when the condition is false,
2026     reverse the condition.  */
2027  reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2028	     && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2029
2030  /* If the condition variable is a register and is MODE_INT, accept it.  */
2031
2032  cond = XEXP (SET_SRC (set), 0);
2033  tmp = XEXP (cond, 0);
2034  if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2035    {
2036      *earliest = jump;
2037
2038      if (reverse)
2039	cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2040			       GET_MODE (cond), tmp, XEXP (cond, 1));
2041      return cond;
2042    }
2043
2044  /* Otherwise, fall back on canonicalize_condition to do the dirty
2045     work of manipulating MODE_CC values and COMPARE rtx codes.  */
2046  return canonicalize_condition (jump, cond, reverse, earliest,
2047				 NULL_RTX, false, true);
2048}
2049
2050/* Return true if OP is ok for if-then-else processing.  */
2051
2052static int
2053noce_operand_ok (rtx op)
2054{
2055  /* We special-case memories, so handle any of them with
2056     no address side effects.  */
2057  if (MEM_P (op))
2058    return ! side_effects_p (XEXP (op, 0));
2059
2060  if (side_effects_p (op))
2061    return FALSE;
2062
2063  return ! may_trap_p (op);
2064}
2065
2066/* Return true if a write into MEM may trap or fault.  */
2067
2068static bool
2069noce_mem_write_may_trap_or_fault_p (rtx mem)
2070{
2071  rtx addr;
2072
2073  if (MEM_READONLY_P (mem))
2074    return true;
2075
2076  if (may_trap_or_fault_p (mem))
2077    return true;
2078
2079  addr = XEXP (mem, 0);
2080
2081  /* Call target hook to avoid the effects of -fpic etc....  */
2082  addr = targetm.delegitimize_address (addr);
2083
2084  while (addr)
2085    switch (GET_CODE (addr))
2086      {
2087      case CONST:
2088      case PRE_DEC:
2089      case PRE_INC:
2090      case POST_DEC:
2091      case POST_INC:
2092      case POST_MODIFY:
2093	addr = XEXP (addr, 0);
2094	break;
2095      case LO_SUM:
2096      case PRE_MODIFY:
2097	addr = XEXP (addr, 1);
2098	break;
2099      case PLUS:
2100	if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2101	  addr = XEXP (addr, 0);
2102	else
2103	  return false;
2104	break;
2105      case LABEL_REF:
2106	return true;
2107      case SYMBOL_REF:
2108	if (SYMBOL_REF_DECL (addr)
2109	    && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2110	  return true;
2111	return false;
2112      default:
2113	return false;
2114      }
2115
2116  return false;
2117}
2118
2119/* Return whether we can use store speculation for MEM.  TOP_BB is the
2120   basic block above the conditional block where we are considering
2121   doing the speculative store.  We look for whether MEM is set
2122   unconditionally later in the function.  */
2123
2124static bool
2125noce_can_store_speculate_p (basic_block top_bb, rtx mem)
2126{
2127  basic_block dominator;
2128
2129  for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2130       dominator != NULL && dominator != EXIT_BLOCK_PTR;
2131       dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2132    {
2133      rtx insn;
2134
2135      FOR_BB_INSNS (dominator, insn)
2136	{
2137	  /* If we see something that might be a memory barrier, we
2138	     have to stop looking.  Even if the MEM is set later in
2139	     the function, we still don't want to set it
2140	     unconditionally before the barrier.  */
2141	  if (INSN_P (insn)
2142	      && (volatile_insn_p (PATTERN (insn))
2143		  || (CALL_P (insn)
2144		      && (!CONST_OR_PURE_CALL_P (insn)
2145			  || pure_call_p (insn)))))
2146	    return false;
2147
2148	  if (memory_modified_in_insn_p (mem, insn))
2149	    return true;
2150	  if (modified_in_p (XEXP (mem, 0), insn))
2151	    return false;
2152
2153	}
2154    }
2155
2156  return false;
2157}
2158
2159/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2160   without using conditional execution.  Return TRUE if we were
2161   successful at converting the block.  */
2162
2163static int
2164noce_process_if_block (struct ce_if_block * ce_info)
2165{
2166  basic_block test_bb = ce_info->test_bb;	/* test block */
2167  basic_block then_bb = ce_info->then_bb;	/* THEN */
2168  basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
2169  struct noce_if_info if_info;
2170  rtx insn_a, insn_b;
2171  rtx set_a, set_b;
2172  rtx orig_x, x, a, b;
2173  rtx jump, cond;
2174
2175  /* We're looking for patterns of the form
2176
2177     (1) if (...) x = a; else x = b;
2178     (2) x = b; if (...) x = a;
2179     (3) if (...) x = a;   // as if with an initial x = x.
2180
2181     The later patterns require jumps to be more expensive.
2182
2183     ??? For future expansion, look for multiple X in such patterns.  */
2184
2185  /* If test is comprised of && or || elements, don't handle it unless it is
2186     the special case of && elements without an ELSE block.  */
2187  if (ce_info->num_multiple_test_blocks)
2188    {
2189      if (else_bb || ! ce_info->and_and_p)
2190	return FALSE;
2191
2192      ce_info->test_bb = test_bb = ce_info->last_test_bb;
2193      ce_info->num_multiple_test_blocks = 0;
2194      ce_info->num_and_and_blocks = 0;
2195      ce_info->num_or_or_blocks = 0;
2196    }
2197
2198  /* If this is not a standard conditional jump, we can't parse it.  */
2199  jump = BB_END (test_bb);
2200  cond = noce_get_condition (jump, &if_info.cond_earliest);
2201  if (! cond)
2202    return FALSE;
2203
2204  /* If the conditional jump is more than just a conditional
2205     jump, then we can not do if-conversion on this block.  */
2206  if (! onlyjump_p (jump))
2207    return FALSE;
2208
2209  /* We must be comparing objects whose modes imply the size.  */
2210  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2211    return FALSE;
2212
2213  /* Look for one of the potential sets.  */
2214  insn_a = first_active_insn (then_bb);
2215  if (! insn_a
2216      || insn_a != last_active_insn (then_bb, FALSE)
2217      || (set_a = single_set (insn_a)) == NULL_RTX)
2218    return FALSE;
2219
2220  x = SET_DEST (set_a);
2221  a = SET_SRC (set_a);
2222
2223  /* Look for the other potential set.  Make sure we've got equivalent
2224     destinations.  */
2225  /* ??? This is overconservative.  Storing to two different mems is
2226     as easy as conditionally computing the address.  Storing to a
2227     single mem merely requires a scratch memory to use as one of the
2228     destination addresses; often the memory immediately below the
2229     stack pointer is available for this.  */
2230  set_b = NULL_RTX;
2231  if (else_bb)
2232    {
2233      insn_b = first_active_insn (else_bb);
2234      if (! insn_b
2235	  || insn_b != last_active_insn (else_bb, FALSE)
2236	  || (set_b = single_set (insn_b)) == NULL_RTX
2237	  || ! rtx_equal_p (x, SET_DEST (set_b)))
2238	return FALSE;
2239    }
2240  else
2241    {
2242      insn_b = prev_nonnote_insn (if_info.cond_earliest);
2243      /* We're going to be moving the evaluation of B down from above
2244	 COND_EARLIEST to JUMP.  Make sure the relevant data is still
2245	 intact.  */
2246      if (! insn_b
2247	  || !NONJUMP_INSN_P (insn_b)
2248	  || (set_b = single_set (insn_b)) == NULL_RTX
2249	  || ! rtx_equal_p (x, SET_DEST (set_b))
2250	  || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2251	  || modified_between_p (SET_SRC (set_b),
2252				 PREV_INSN (if_info.cond_earliest), jump)
2253	  /* Likewise with X.  In particular this can happen when
2254	     noce_get_condition looks farther back in the instruction
2255	     stream than one might expect.  */
2256	  || reg_overlap_mentioned_p (x, cond)
2257	  || reg_overlap_mentioned_p (x, a)
2258	  || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2259	insn_b = set_b = NULL_RTX;
2260    }
2261
2262  /* If x has side effects then only the if-then-else form is safe to
2263     convert.  But even in that case we would need to restore any notes
2264     (such as REG_INC) at then end.  That can be tricky if
2265     noce_emit_move_insn expands to more than one insn, so disable the
2266     optimization entirely for now if there are side effects.  */
2267  if (side_effects_p (x))
2268    return FALSE;
2269
2270  b = (set_b ? SET_SRC (set_b) : x);
2271
2272  /* Only operate on register destinations, and even then avoid extending
2273     the lifetime of hard registers on small register class machines.  */
2274  orig_x = x;
2275  if (!REG_P (x)
2276      || (SMALL_REGISTER_CLASSES
2277	  && REGNO (x) < FIRST_PSEUDO_REGISTER))
2278    {
2279      if (no_new_pseudos || GET_MODE (x) == BLKmode)
2280	return FALSE;
2281
2282      if (GET_MODE (x) == ZERO_EXTRACT
2283	  && (GET_CODE (XEXP (x, 1)) != CONST_INT
2284	      || GET_CODE (XEXP (x, 2)) != CONST_INT))
2285	return FALSE;
2286
2287      x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2288				 ? XEXP (x, 0) : x));
2289    }
2290
2291  /* Don't operate on sources that may trap or are volatile.  */
2292  if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2293    return FALSE;
2294
2295  /* Set up the info block for our subroutines.  */
2296  if_info.test_bb = test_bb;
2297  if_info.cond = cond;
2298  if_info.jump = jump;
2299  if_info.insn_a = insn_a;
2300  if_info.insn_b = insn_b;
2301  if_info.x = x;
2302  if_info.a = a;
2303  if_info.b = b;
2304  if_info.b_unconditional = else_bb == 0;
2305
2306  /* Try optimizations in some approximation of a useful order.  */
2307  /* ??? Should first look to see if X is live incoming at all.  If it
2308     isn't, we don't need anything but an unconditional set.  */
2309
2310  /* Look and see if A and B are really the same.  Avoid creating silly
2311     cmove constructs that no one will fix up later.  */
2312  if (rtx_equal_p (a, b))
2313    {
2314      /* If we have an INSN_B, we don't have to create any new rtl.  Just
2315	 move the instruction that we already have.  If we don't have an
2316	 INSN_B, that means that A == X, and we've got a noop move.  In
2317	 that case don't do anything and let the code below delete INSN_A.  */
2318      if (insn_b && else_bb)
2319	{
2320	  rtx note;
2321
2322	  if (else_bb && insn_b == BB_END (else_bb))
2323	    BB_END (else_bb) = PREV_INSN (insn_b);
2324	  reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2325
2326	  /* If there was a REG_EQUAL note, delete it since it may have been
2327	     true due to this insn being after a jump.  */
2328	  if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2329	    remove_note (insn_b, note);
2330
2331	  insn_b = NULL_RTX;
2332	}
2333      /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2334	 x must be executed twice.  */
2335      else if (insn_b && side_effects_p (orig_x))
2336	return FALSE;
2337
2338      x = orig_x;
2339      goto success;
2340    }
2341
2342  if (!set_b && MEM_P (orig_x))
2343    {
2344      /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2345	 for optimizations if writing to x may trap or fault,
2346	 i.e. it's a memory other than a static var or a stack slot,
2347	 is misaligned on strict aligned machines or is read-only.  If
2348	 x is a read-only memory, then the program is valid only if we
2349	 avoid the store into it.  If there are stores on both the
2350	 THEN and ELSE arms, then we can go ahead with the conversion;
2351	 either the program is broken, or the condition is always
2352	 false such that the other memory is selected.  */
2353      if (noce_mem_write_may_trap_or_fault_p (orig_x))
2354	return FALSE;
2355
2356      /* Avoid store speculation: given "if (...) x = a" where x is a
2357	 MEM, we only want to do the store if x is always set
2358	 somewhere in the function.  This avoids cases like
2359	   if (pthread_mutex_trylock(mutex))
2360	     ++global_variable;
2361	 where we only want global_variable to be changed if the mutex
2362	 is held.  FIXME: This should ideally be expressed directly in
2363	 RTL somehow.  */
2364      if (!noce_can_store_speculate_p (test_bb, orig_x))
2365	return FALSE;
2366    }
2367
2368  if (noce_try_move (&if_info))
2369    goto success;
2370  if (noce_try_store_flag (&if_info))
2371    goto success;
2372  if (noce_try_bitop (&if_info))
2373    goto success;
2374  if (noce_try_minmax (&if_info))
2375    goto success;
2376  if (noce_try_abs (&if_info))
2377    goto success;
2378  if (HAVE_conditional_move
2379      && noce_try_cmove (&if_info))
2380    goto success;
2381  if (! HAVE_conditional_execution)
2382    {
2383      if (noce_try_store_flag_constants (&if_info))
2384	goto success;
2385      if (noce_try_addcc (&if_info))
2386	goto success;
2387      if (noce_try_store_flag_mask (&if_info))
2388	goto success;
2389      if (HAVE_conditional_move
2390	  && noce_try_cmove_arith (&if_info))
2391	goto success;
2392      if (noce_try_sign_mask (&if_info))
2393	goto success;
2394    }
2395
2396  return FALSE;
2397
2398 success:
2399  /* The original sets may now be killed.  */
2400  delete_insn (insn_a);
2401
2402  /* Several special cases here: First, we may have reused insn_b above,
2403     in which case insn_b is now NULL.  Second, we want to delete insn_b
2404     if it came from the ELSE block, because follows the now correct
2405     write that appears in the TEST block.  However, if we got insn_b from
2406     the TEST block, it may in fact be loading data needed for the comparison.
2407     We'll let life_analysis remove the insn if it's really dead.  */
2408  if (insn_b && else_bb)
2409    delete_insn (insn_b);
2410
2411  /* The new insns will have been inserted immediately before the jump.  We
2412     should be able to remove the jump with impunity, but the condition itself
2413     may have been modified by gcse to be shared across basic blocks.  */
2414  delete_insn (jump);
2415
2416  /* If we used a temporary, fix it up now.  */
2417  if (orig_x != x)
2418    {
2419      start_sequence ();
2420      noce_emit_move_insn (orig_x, x);
2421      insn_b = get_insns ();
2422      set_used_flags (orig_x);
2423      unshare_all_rtl_in_chain (insn_b);
2424      end_sequence ();
2425
2426      emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2427    }
2428
2429  /* Merge the blocks!  */
2430  merge_if_block (ce_info);
2431
2432  return TRUE;
2433}
2434
2435/* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2436   straight line code.  Return true if successful.  */
2437
2438static int
2439process_if_block (struct ce_if_block * ce_info)
2440{
2441  if (! reload_completed
2442      && noce_process_if_block (ce_info))
2443    return TRUE;
2444
2445  if (HAVE_conditional_execution && reload_completed)
2446    {
2447      /* If we have && and || tests, try to first handle combining the && and
2448         || tests into the conditional code, and if that fails, go back and
2449         handle it without the && and ||, which at present handles the && case
2450         if there was no ELSE block.  */
2451      if (cond_exec_process_if_block (ce_info, TRUE))
2452	return TRUE;
2453
2454      if (ce_info->num_multiple_test_blocks)
2455	{
2456	  cancel_changes (0);
2457
2458	  if (cond_exec_process_if_block (ce_info, FALSE))
2459	    return TRUE;
2460	}
2461    }
2462
2463  return FALSE;
2464}
2465
2466/* Merge the blocks and mark for local life update.  */
2467
2468static void
2469merge_if_block (struct ce_if_block * ce_info)
2470{
2471  basic_block test_bb = ce_info->test_bb;	/* last test block */
2472  basic_block then_bb = ce_info->then_bb;	/* THEN */
2473  basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
2474  basic_block join_bb = ce_info->join_bb;	/* join block */
2475  basic_block combo_bb;
2476
2477  /* All block merging is done into the lower block numbers.  */
2478
2479  combo_bb = test_bb;
2480
2481  /* Merge any basic blocks to handle && and || subtests.  Each of
2482     the blocks are on the fallthru path from the predecessor block.  */
2483  if (ce_info->num_multiple_test_blocks > 0)
2484    {
2485      basic_block bb = test_bb;
2486      basic_block last_test_bb = ce_info->last_test_bb;
2487      basic_block fallthru = block_fallthru (bb);
2488
2489      do
2490	{
2491	  bb = fallthru;
2492	  fallthru = block_fallthru (bb);
2493	  merge_blocks (combo_bb, bb);
2494	  num_true_changes++;
2495	}
2496      while (bb != last_test_bb);
2497    }
2498
2499  /* Merge TEST block into THEN block.  Normally the THEN block won't have a
2500     label, but it might if there were || tests.  That label's count should be
2501     zero, and it normally should be removed.  */
2502
2503  if (then_bb)
2504    {
2505      if (combo_bb->il.rtl->global_live_at_end)
2506	COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2507		      then_bb->il.rtl->global_live_at_end);
2508      merge_blocks (combo_bb, then_bb);
2509      num_true_changes++;
2510    }
2511
2512  /* The ELSE block, if it existed, had a label.  That label count
2513     will almost always be zero, but odd things can happen when labels
2514     get their addresses taken.  */
2515  if (else_bb)
2516    {
2517      merge_blocks (combo_bb, else_bb);
2518      num_true_changes++;
2519    }
2520
2521  /* If there was no join block reported, that means it was not adjacent
2522     to the others, and so we cannot merge them.  */
2523
2524  if (! join_bb)
2525    {
2526      rtx last = BB_END (combo_bb);
2527
2528      /* The outgoing edge for the current COMBO block should already
2529	 be correct.  Verify this.  */
2530      if (EDGE_COUNT (combo_bb->succs) == 0)
2531	gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2532		    || (NONJUMP_INSN_P (last)
2533			&& GET_CODE (PATTERN (last)) == TRAP_IF
2534			&& (TRAP_CONDITION (PATTERN (last))
2535			    == const_true_rtx)));
2536
2537      else
2538      /* There should still be something at the end of the THEN or ELSE
2539         blocks taking us to our final destination.  */
2540	gcc_assert (JUMP_P (last)
2541		    || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2542			&& CALL_P (last)
2543			&& SIBLING_CALL_P (last))
2544		    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2545			&& can_throw_internal (last)));
2546    }
2547
2548  /* The JOIN block may have had quite a number of other predecessors too.
2549     Since we've already merged the TEST, THEN and ELSE blocks, we should
2550     have only one remaining edge from our if-then-else diamond.  If there
2551     is more than one remaining edge, it must come from elsewhere.  There
2552     may be zero incoming edges if the THEN block didn't actually join
2553     back up (as with a call to a non-return function).  */
2554  else if (EDGE_COUNT (join_bb->preds) < 2
2555	   && join_bb != EXIT_BLOCK_PTR)
2556    {
2557      /* We can merge the JOIN.  */
2558      if (combo_bb->il.rtl->global_live_at_end)
2559	COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2560		      join_bb->il.rtl->global_live_at_end);
2561
2562      merge_blocks (combo_bb, join_bb);
2563      num_true_changes++;
2564    }
2565  else
2566    {
2567      /* We cannot merge the JOIN.  */
2568
2569      /* The outgoing edge for the current COMBO block should already
2570	 be correct.  Verify this.  */
2571      gcc_assert (single_succ_p (combo_bb)
2572		  && single_succ (combo_bb) == join_bb);
2573
2574      /* Remove the jump and cruft from the end of the COMBO block.  */
2575      if (join_bb != EXIT_BLOCK_PTR)
2576	tidy_fallthru_edge (single_succ_edge (combo_bb));
2577    }
2578
2579  num_updated_if_blocks++;
2580}
2581
2582/* Find a block ending in a simple IF condition and try to transform it
2583   in some way.  When converting a multi-block condition, put the new code
2584   in the first such block and delete the rest.  Return a pointer to this
2585   first block if some transformation was done.  Return NULL otherwise.  */
2586
2587static basic_block
2588find_if_header (basic_block test_bb, int pass)
2589{
2590  ce_if_block_t ce_info;
2591  edge then_edge;
2592  edge else_edge;
2593
2594  /* The kind of block we're looking for has exactly two successors.  */
2595  if (EDGE_COUNT (test_bb->succs) != 2)
2596    return NULL;
2597
2598  then_edge = EDGE_SUCC (test_bb, 0);
2599  else_edge = EDGE_SUCC (test_bb, 1);
2600
2601  /* Neither edge should be abnormal.  */
2602  if ((then_edge->flags & EDGE_COMPLEX)
2603      || (else_edge->flags & EDGE_COMPLEX))
2604    return NULL;
2605
2606  /* Nor exit the loop.  */
2607  if ((then_edge->flags & EDGE_LOOP_EXIT)
2608      || (else_edge->flags & EDGE_LOOP_EXIT))
2609    return NULL;
2610
2611  /* The THEN edge is canonically the one that falls through.  */
2612  if (then_edge->flags & EDGE_FALLTHRU)
2613    ;
2614  else if (else_edge->flags & EDGE_FALLTHRU)
2615    {
2616      edge e = else_edge;
2617      else_edge = then_edge;
2618      then_edge = e;
2619    }
2620  else
2621    /* Otherwise this must be a multiway branch of some sort.  */
2622    return NULL;
2623
2624  memset (&ce_info, '\0', sizeof (ce_info));
2625  ce_info.test_bb = test_bb;
2626  ce_info.then_bb = then_edge->dest;
2627  ce_info.else_bb = else_edge->dest;
2628  ce_info.pass = pass;
2629
2630#ifdef IFCVT_INIT_EXTRA_FIELDS
2631  IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2632#endif
2633
2634  if (find_if_block (&ce_info))
2635    goto success;
2636
2637  if (HAVE_trap && HAVE_conditional_trap
2638      && find_cond_trap (test_bb, then_edge, else_edge))
2639    goto success;
2640
2641  if (life_data_ok
2642      && dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2643      && (! HAVE_conditional_execution || reload_completed))
2644    {
2645      if (find_if_case_1 (test_bb, then_edge, else_edge))
2646	goto success;
2647      if (find_if_case_2 (test_bb, then_edge, else_edge))
2648	goto success;
2649    }
2650
2651  return NULL;
2652
2653 success:
2654  if (dump_file)
2655    fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2656  return ce_info.test_bb;
2657}
2658
2659/* Return true if a block has two edges, one of which falls through to the next
2660   block, and the other jumps to a specific block, so that we can tell if the
2661   block is part of an && test or an || test.  Returns either -1 or the number
2662   of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
2663
2664static int
2665block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2666{
2667  edge cur_edge;
2668  int fallthru_p = FALSE;
2669  int jump_p = FALSE;
2670  rtx insn;
2671  rtx end;
2672  int n_insns = 0;
2673  edge_iterator ei;
2674
2675  if (!cur_bb || !target_bb)
2676    return -1;
2677
2678  /* If no edges, obviously it doesn't jump or fallthru.  */
2679  if (EDGE_COUNT (cur_bb->succs) == 0)
2680    return FALSE;
2681
2682  FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2683    {
2684      if (cur_edge->flags & EDGE_COMPLEX)
2685	/* Anything complex isn't what we want.  */
2686	return -1;
2687
2688      else if (cur_edge->flags & EDGE_FALLTHRU)
2689	fallthru_p = TRUE;
2690
2691      else if (cur_edge->dest == target_bb)
2692	jump_p = TRUE;
2693
2694      else
2695	return -1;
2696    }
2697
2698  if ((jump_p & fallthru_p) == 0)
2699    return -1;
2700
2701  /* Don't allow calls in the block, since this is used to group && and ||
2702     together for conditional execution support.  ??? we should support
2703     conditional execution support across calls for IA-64 some day, but
2704     for now it makes the code simpler.  */
2705  end = BB_END (cur_bb);
2706  insn = BB_HEAD (cur_bb);
2707
2708  while (insn != NULL_RTX)
2709    {
2710      if (CALL_P (insn))
2711	return -1;
2712
2713      if (INSN_P (insn)
2714	  && !JUMP_P (insn)
2715	  && GET_CODE (PATTERN (insn)) != USE
2716	  && GET_CODE (PATTERN (insn)) != CLOBBER)
2717	n_insns++;
2718
2719      if (insn == end)
2720	break;
2721
2722      insn = NEXT_INSN (insn);
2723    }
2724
2725  return n_insns;
2726}
2727
2728/* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2729   block.  If so, we'll try to convert the insns to not require the branch.
2730   Return TRUE if we were successful at converting the block.  */
2731
2732static int
2733find_if_block (struct ce_if_block * ce_info)
2734{
2735  basic_block test_bb = ce_info->test_bb;
2736  basic_block then_bb = ce_info->then_bb;
2737  basic_block else_bb = ce_info->else_bb;
2738  basic_block join_bb = NULL_BLOCK;
2739  edge cur_edge;
2740  basic_block next;
2741  edge_iterator ei;
2742
2743  ce_info->last_test_bb = test_bb;
2744
2745  /* Discover if any fall through predecessors of the current test basic block
2746     were && tests (which jump to the else block) or || tests (which jump to
2747     the then block).  */
2748  if (HAVE_conditional_execution && reload_completed
2749      && single_pred_p (test_bb)
2750      && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2751    {
2752      basic_block bb = single_pred (test_bb);
2753      basic_block target_bb;
2754      int max_insns = MAX_CONDITIONAL_EXECUTE;
2755      int n_insns;
2756
2757      /* Determine if the preceding block is an && or || block.  */
2758      if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2759	{
2760	  ce_info->and_and_p = TRUE;
2761	  target_bb = else_bb;
2762	}
2763      else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2764	{
2765	  ce_info->and_and_p = FALSE;
2766	  target_bb = then_bb;
2767	}
2768      else
2769	target_bb = NULL_BLOCK;
2770
2771      if (target_bb && n_insns <= max_insns)
2772	{
2773	  int total_insns = 0;
2774	  int blocks = 0;
2775
2776	  ce_info->last_test_bb = test_bb;
2777
2778	  /* Found at least one && or || block, look for more.  */
2779	  do
2780	    {
2781	      ce_info->test_bb = test_bb = bb;
2782	      total_insns += n_insns;
2783	      blocks++;
2784
2785	      if (!single_pred_p (bb))
2786		break;
2787
2788	      bb = single_pred (bb);
2789	      n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2790	    }
2791	  while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2792
2793	  ce_info->num_multiple_test_blocks = blocks;
2794	  ce_info->num_multiple_test_insns = total_insns;
2795
2796	  if (ce_info->and_and_p)
2797	    ce_info->num_and_and_blocks = blocks;
2798	  else
2799	    ce_info->num_or_or_blocks = blocks;
2800	}
2801    }
2802
2803  /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2804     other than any || blocks which jump to the THEN block.  */
2805  if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
2806    return FALSE;
2807
2808  /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
2809  FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2810    {
2811      if (cur_edge->flags & EDGE_COMPLEX)
2812	return FALSE;
2813    }
2814
2815  FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2816    {
2817      if (cur_edge->flags & EDGE_COMPLEX)
2818	return FALSE;
2819    }
2820
2821  /* The THEN block of an IF-THEN combo must have zero or one successors.  */
2822  if (EDGE_COUNT (then_bb->succs) > 0
2823      && (!single_succ_p (then_bb)
2824          || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2825	  || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2826    return FALSE;
2827
2828  /* If the THEN block has no successors, conditional execution can still
2829     make a conditional call.  Don't do this unless the ELSE block has
2830     only one incoming edge -- the CFG manipulation is too ugly otherwise.
2831     Check for the last insn of the THEN block being an indirect jump, which
2832     is listed as not having any successors, but confuses the rest of the CE
2833     code processing.  ??? we should fix this in the future.  */
2834  if (EDGE_COUNT (then_bb->succs) == 0)
2835    {
2836      if (single_pred_p (else_bb))
2837	{
2838	  rtx last_insn = BB_END (then_bb);
2839
2840	  while (last_insn
2841		 && NOTE_P (last_insn)
2842		 && last_insn != BB_HEAD (then_bb))
2843	    last_insn = PREV_INSN (last_insn);
2844
2845	  if (last_insn
2846	      && JUMP_P (last_insn)
2847	      && ! simplejump_p (last_insn))
2848	    return FALSE;
2849
2850	  join_bb = else_bb;
2851	  else_bb = NULL_BLOCK;
2852	}
2853      else
2854	return FALSE;
2855    }
2856
2857  /* If the THEN block's successor is the other edge out of the TEST block,
2858     then we have an IF-THEN combo without an ELSE.  */
2859  else if (single_succ (then_bb) == else_bb)
2860    {
2861      join_bb = else_bb;
2862      else_bb = NULL_BLOCK;
2863    }
2864
2865  /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2866     has exactly one predecessor and one successor, and the outgoing edge
2867     is not complex, then we have an IF-THEN-ELSE combo.  */
2868  else if (single_succ_p (else_bb)
2869	   && single_succ (then_bb) == single_succ (else_bb)
2870	   && single_pred_p (else_bb)
2871	   && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2872	   && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2873    join_bb = single_succ (else_bb);
2874
2875  /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
2876  else
2877    return FALSE;
2878
2879  num_possible_if_blocks++;
2880
2881  if (dump_file)
2882    {
2883      fprintf (dump_file,
2884	       "\nIF-THEN%s block found, pass %d, start block %d "
2885	       "[insn %d], then %d [%d]",
2886	       (else_bb) ? "-ELSE" : "",
2887	       ce_info->pass,
2888	       test_bb->index,
2889	       BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2890	       then_bb->index,
2891	       BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2892
2893      if (else_bb)
2894	fprintf (dump_file, ", else %d [%d]",
2895		 else_bb->index,
2896		 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2897
2898      fprintf (dump_file, ", join %d [%d]",
2899	       join_bb->index,
2900	       BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2901
2902      if (ce_info->num_multiple_test_blocks > 0)
2903	fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2904		 ce_info->num_multiple_test_blocks,
2905		 (ce_info->and_and_p) ? "&&" : "||",
2906		 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2907		 ce_info->last_test_bb->index,
2908		 ((BB_HEAD (ce_info->last_test_bb))
2909		  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2910		  : -1));
2911
2912      fputc ('\n', dump_file);
2913    }
2914
2915  /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
2916     first condition for free, since we've already asserted that there's a
2917     fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
2918     we checked the FALLTHRU flag, those are already adjacent to the last IF
2919     block.  */
2920  /* ??? As an enhancement, move the ELSE block.  Have to deal with
2921     BLOCK notes, if by no other means than backing out the merge if they
2922     exist.  Sticky enough I don't want to think about it now.  */
2923  next = then_bb;
2924  if (else_bb && (next = next->next_bb) != else_bb)
2925    return FALSE;
2926  if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2927    {
2928      if (else_bb)
2929	join_bb = NULL;
2930      else
2931	return FALSE;
2932    }
2933
2934  /* Do the real work.  */
2935  ce_info->else_bb = else_bb;
2936  ce_info->join_bb = join_bb;
2937
2938  return process_if_block (ce_info);
2939}
2940
2941/* Convert a branch over a trap, or a branch
2942   to a trap, into a conditional trap.  */
2943
2944static int
2945find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2946{
2947  basic_block then_bb = then_edge->dest;
2948  basic_block else_bb = else_edge->dest;
2949  basic_block other_bb, trap_bb;
2950  rtx trap, jump, cond, cond_earliest, seq;
2951  enum rtx_code code;
2952
2953  /* Locate the block with the trap instruction.  */
2954  /* ??? While we look for no successors, we really ought to allow
2955     EH successors.  Need to fix merge_if_block for that to work.  */
2956  if ((trap = block_has_only_trap (then_bb)) != NULL)
2957    trap_bb = then_bb, other_bb = else_bb;
2958  else if ((trap = block_has_only_trap (else_bb)) != NULL)
2959    trap_bb = else_bb, other_bb = then_bb;
2960  else
2961    return FALSE;
2962
2963  if (dump_file)
2964    {
2965      fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2966	       test_bb->index, trap_bb->index);
2967    }
2968
2969  /* If this is not a standard conditional jump, we can't parse it.  */
2970  jump = BB_END (test_bb);
2971  cond = noce_get_condition (jump, &cond_earliest);
2972  if (! cond)
2973    return FALSE;
2974
2975  /* If the conditional jump is more than just a conditional jump, then
2976     we can not do if-conversion on this block.  */
2977  if (! onlyjump_p (jump))
2978    return FALSE;
2979
2980  /* We must be comparing objects whose modes imply the size.  */
2981  if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2982    return FALSE;
2983
2984  /* Reverse the comparison code, if necessary.  */
2985  code = GET_CODE (cond);
2986  if (then_bb == trap_bb)
2987    {
2988      code = reversed_comparison_code (cond, jump);
2989      if (code == UNKNOWN)
2990	return FALSE;
2991    }
2992
2993  /* Attempt to generate the conditional trap.  */
2994  seq = gen_cond_trap (code, XEXP (cond, 0),
2995		       XEXP (cond, 1),
2996		       TRAP_CODE (PATTERN (trap)));
2997  if (seq == NULL)
2998    return FALSE;
2999
3000  num_true_changes++;
3001
3002  /* Emit the new insns before cond_earliest.  */
3003  emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3004
3005  /* Delete the trap block if possible.  */
3006  remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3007  if (EDGE_COUNT (trap_bb->preds) == 0)
3008    delete_basic_block (trap_bb);
3009
3010  /* If the non-trap block and the test are now adjacent, merge them.
3011     Otherwise we must insert a direct branch.  */
3012  if (test_bb->next_bb == other_bb)
3013    {
3014      struct ce_if_block new_ce_info;
3015      delete_insn (jump);
3016      memset (&new_ce_info, '\0', sizeof (new_ce_info));
3017      new_ce_info.test_bb = test_bb;
3018      new_ce_info.then_bb = NULL;
3019      new_ce_info.else_bb = NULL;
3020      new_ce_info.join_bb = other_bb;
3021      merge_if_block (&new_ce_info);
3022    }
3023  else
3024    {
3025      rtx lab, newjump;
3026
3027      lab = JUMP_LABEL (jump);
3028      newjump = emit_jump_insn_after (gen_jump (lab), jump);
3029      LABEL_NUSES (lab) += 1;
3030      JUMP_LABEL (newjump) = lab;
3031      emit_barrier_after (newjump);
3032
3033      delete_insn (jump);
3034    }
3035
3036  return TRUE;
3037}
3038
3039/* Subroutine of find_cond_trap: if BB contains only a trap insn,
3040   return it.  */
3041
3042static rtx
3043block_has_only_trap (basic_block bb)
3044{
3045  rtx trap;
3046
3047  /* We're not the exit block.  */
3048  if (bb == EXIT_BLOCK_PTR)
3049    return NULL_RTX;
3050
3051  /* The block must have no successors.  */
3052  if (EDGE_COUNT (bb->succs) > 0)
3053    return NULL_RTX;
3054
3055  /* The only instruction in the THEN block must be the trap.  */
3056  trap = first_active_insn (bb);
3057  if (! (trap == BB_END (bb)
3058	 && GET_CODE (PATTERN (trap)) == TRAP_IF
3059         && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3060    return NULL_RTX;
3061
3062  return trap;
3063}
3064
3065/* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3066   transformable, but not necessarily the other.  There need be no
3067   JOIN block.
3068
3069   Return TRUE if we were successful at converting the block.
3070
3071   Cases we'd like to look at:
3072
3073   (1)
3074	if (test) goto over; // x not live
3075	x = a;
3076	goto label;
3077	over:
3078
3079   becomes
3080
3081	x = a;
3082	if (! test) goto label;
3083
3084   (2)
3085	if (test) goto E; // x not live
3086	x = big();
3087	goto L;
3088	E:
3089	x = b;
3090	goto M;
3091
3092   becomes
3093
3094	x = b;
3095	if (test) goto M;
3096	x = big();
3097	goto L;
3098
3099   (3) // This one's really only interesting for targets that can do
3100       // multiway branching, e.g. IA-64 BBB bundles.  For other targets
3101       // it results in multiple branches on a cache line, which often
3102       // does not sit well with predictors.
3103
3104	if (test1) goto E; // predicted not taken
3105	x = a;
3106	if (test2) goto F;
3107	...
3108	E:
3109	x = b;
3110	J:
3111
3112   becomes
3113
3114	x = a;
3115	if (test1) goto E;
3116	if (test2) goto F;
3117
3118   Notes:
3119
3120   (A) Don't do (2) if the branch is predicted against the block we're
3121   eliminating.  Do it anyway if we can eliminate a branch; this requires
3122   that the sole successor of the eliminated block postdominate the other
3123   side of the if.
3124
3125   (B) With CE, on (3) we can steal from both sides of the if, creating
3126
3127	if (test1) x = a;
3128	if (!test1) x = b;
3129	if (test1) goto J;
3130	if (test2) goto F;
3131	...
3132	J:
3133
3134   Again, this is most useful if J postdominates.
3135
3136   (C) CE substitutes for helpful life information.
3137
3138   (D) These heuristics need a lot of work.  */
3139
3140/* Tests for case 1 above.  */
3141
3142static int
3143find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3144{
3145  basic_block then_bb = then_edge->dest;
3146  basic_block else_bb = else_edge->dest, new_bb;
3147  int then_bb_index;
3148
3149  /* If we are partitioning hot/cold basic blocks, we don't want to
3150     mess up unconditional or indirect jumps that cross between hot
3151     and cold sections.
3152
3153     Basic block partitioning may result in some jumps that appear to
3154     be optimizable (or blocks that appear to be mergeable), but which really
3155     must be left untouched (they are required to make it safely across
3156     partition boundaries).  See  the comments at the top of
3157     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
3158
3159  if ((BB_END (then_bb)
3160       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3161      || (BB_END (test_bb)
3162	  && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3163      || (BB_END (else_bb)
3164	  && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3165			    NULL_RTX)))
3166    return FALSE;
3167
3168  /* THEN has one successor.  */
3169  if (!single_succ_p (then_bb))
3170    return FALSE;
3171
3172  /* THEN does not fall through, but is not strange either.  */
3173  if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3174    return FALSE;
3175
3176  /* THEN has one predecessor.  */
3177  if (!single_pred_p (then_bb))
3178    return FALSE;
3179
3180  /* THEN must do something.  */
3181  if (forwarder_block_p (then_bb))
3182    return FALSE;
3183
3184  num_possible_if_blocks++;
3185  if (dump_file)
3186    fprintf (dump_file,
3187	     "\nIF-CASE-1 found, start %d, then %d\n",
3188	     test_bb->index, then_bb->index);
3189
3190  /* THEN is small.  */
3191  if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3192    return FALSE;
3193
3194  /* Registers set are dead, or are predicable.  */
3195  if (! dead_or_predicable (test_bb, then_bb, else_bb,
3196			    single_succ (then_bb), 1))
3197    return FALSE;
3198
3199  /* Conversion went ok, including moving the insns and fixing up the
3200     jump.  Adjust the CFG to match.  */
3201
3202  bitmap_ior (test_bb->il.rtl->global_live_at_end,
3203	      else_bb->il.rtl->global_live_at_start,
3204	      then_bb->il.rtl->global_live_at_end);
3205
3206
3207  /* We can avoid creating a new basic block if then_bb is immediately
3208     followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3209     thru to else_bb.  */
3210
3211  if (then_bb->next_bb == else_bb
3212      && then_bb->prev_bb == test_bb
3213      && else_bb != EXIT_BLOCK_PTR)
3214    {
3215      redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3216      new_bb = 0;
3217    }
3218  else
3219    new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3220                                             else_bb);
3221
3222  then_bb_index = then_bb->index;
3223  delete_basic_block (then_bb);
3224
3225  /* Make rest of code believe that the newly created block is the THEN_BB
3226     block we removed.  */
3227  if (new_bb)
3228    {
3229      new_bb->index = then_bb_index;
3230      BASIC_BLOCK (then_bb_index) = new_bb;
3231      /* Since the fallthru edge was redirected from test_bb to new_bb,
3232         we need to ensure that new_bb is in the same partition as
3233         test bb (you can not fall through across section boundaries).  */
3234      BB_COPY_PARTITION (new_bb, test_bb);
3235    }
3236  /* We've possibly created jump to next insn, cleanup_cfg will solve that
3237     later.  */
3238
3239  num_true_changes++;
3240  num_updated_if_blocks++;
3241
3242  return TRUE;
3243}
3244
3245/* Test for case 2 above.  */
3246
3247static int
3248find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3249{
3250  basic_block then_bb = then_edge->dest;
3251  basic_block else_bb = else_edge->dest;
3252  edge else_succ;
3253  rtx note;
3254
3255  /* If we are partitioning hot/cold basic blocks, we don't want to
3256     mess up unconditional or indirect jumps that cross between hot
3257     and cold sections.
3258
3259     Basic block partitioning may result in some jumps that appear to
3260     be optimizable (or blocks that appear to be mergeable), but which really
3261     must be left untouched (they are required to make it safely across
3262     partition boundaries).  See  the comments at the top of
3263     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
3264
3265  if ((BB_END (then_bb)
3266       && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3267      || (BB_END (test_bb)
3268	  && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3269      || (BB_END (else_bb)
3270	  && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3271			    NULL_RTX)))
3272    return FALSE;
3273
3274  /* ELSE has one successor.  */
3275  if (!single_succ_p (else_bb))
3276    return FALSE;
3277  else
3278    else_succ = single_succ_edge (else_bb);
3279
3280  /* ELSE outgoing edge is not complex.  */
3281  if (else_succ->flags & EDGE_COMPLEX)
3282    return FALSE;
3283
3284  /* ELSE has one predecessor.  */
3285  if (!single_pred_p (else_bb))
3286    return FALSE;
3287
3288  /* THEN is not EXIT.  */
3289  if (then_bb->index < 0)
3290    return FALSE;
3291
3292  /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
3293  note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3294  if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3295    ;
3296  else if (else_succ->dest->index < 0
3297	   || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3298			      else_succ->dest))
3299    ;
3300  else
3301    return FALSE;
3302
3303  num_possible_if_blocks++;
3304  if (dump_file)
3305    fprintf (dump_file,
3306	     "\nIF-CASE-2 found, start %d, else %d\n",
3307	     test_bb->index, else_bb->index);
3308
3309  /* ELSE is small.  */
3310  if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3311    return FALSE;
3312
3313  /* Registers set are dead, or are predicable.  */
3314  if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3315    return FALSE;
3316
3317  /* Conversion went ok, including moving the insns and fixing up the
3318     jump.  Adjust the CFG to match.  */
3319
3320  bitmap_ior (test_bb->il.rtl->global_live_at_end,
3321	      then_bb->il.rtl->global_live_at_start,
3322	      else_bb->il.rtl->global_live_at_end);
3323
3324  delete_basic_block (else_bb);
3325
3326  num_true_changes++;
3327  num_updated_if_blocks++;
3328
3329  /* ??? We may now fallthru from one of THEN's successors into a join
3330     block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
3331
3332  return TRUE;
3333}
3334
3335/* A subroutine of dead_or_predicable called through for_each_rtx.
3336   Return 1 if a memory is found.  */
3337
3338static int
3339find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3340{
3341  return MEM_P (*px);
3342}
3343
3344/* Used by the code above to perform the actual rtl transformations.
3345   Return TRUE if successful.
3346
3347   TEST_BB is the block containing the conditional branch.  MERGE_BB
3348   is the block containing the code to manipulate.  NEW_DEST is the
3349   label TEST_BB should be branching to after the conversion.
3350   REVERSEP is true if the sense of the branch should be reversed.  */
3351
3352static int
3353dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3354		    basic_block other_bb, basic_block new_dest, int reversep)
3355{
3356  rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3357
3358  jump = BB_END (test_bb);
3359
3360  /* Find the extent of the real code in the merge block.  */
3361  head = BB_HEAD (merge_bb);
3362  end = BB_END (merge_bb);
3363
3364  if (LABEL_P (head))
3365    head = NEXT_INSN (head);
3366  if (NOTE_P (head))
3367    {
3368      if (head == end)
3369	{
3370	  head = end = NULL_RTX;
3371	  goto no_body;
3372	}
3373      head = NEXT_INSN (head);
3374    }
3375
3376  if (JUMP_P (end))
3377    {
3378      if (head == end)
3379	{
3380	  head = end = NULL_RTX;
3381	  goto no_body;
3382	}
3383      end = PREV_INSN (end);
3384    }
3385
3386  /* Disable handling dead code by conditional execution if the machine needs
3387     to do anything funny with the tests, etc.  */
3388#ifndef IFCVT_MODIFY_TESTS
3389  if (HAVE_conditional_execution)
3390    {
3391      /* In the conditional execution case, we have things easy.  We know
3392	 the condition is reversible.  We don't have to check life info
3393	 because we're going to conditionally execute the code anyway.
3394	 All that's left is making sure the insns involved can actually
3395	 be predicated.  */
3396
3397      rtx cond, prob_val;
3398
3399      cond = cond_exec_get_condition (jump);
3400      if (! cond)
3401	return FALSE;
3402
3403      prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3404      if (prob_val)
3405	prob_val = XEXP (prob_val, 0);
3406
3407      if (reversep)
3408	{
3409	  enum rtx_code rev = reversed_comparison_code (cond, jump);
3410	  if (rev == UNKNOWN)
3411	    return FALSE;
3412	  cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3413			         XEXP (cond, 1));
3414	  if (prob_val)
3415	    prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3416	}
3417
3418      if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3419				     prob_val, 0))
3420	goto cancel;
3421
3422      earliest = jump;
3423    }
3424  else
3425#endif
3426    {
3427      /* In the non-conditional execution case, we have to verify that there
3428	 are no trapping operations, no calls, no references to memory, and
3429	 that any registers modified are dead at the branch site.  */
3430
3431      rtx insn, cond, prev;
3432      regset merge_set, tmp, test_live, test_set;
3433      struct propagate_block_info *pbi;
3434      unsigned i, fail = 0;
3435      bitmap_iterator bi;
3436
3437      /* Check for no calls or trapping operations.  */
3438      for (insn = head; ; insn = NEXT_INSN (insn))
3439	{
3440	  if (CALL_P (insn))
3441	    return FALSE;
3442	  if (INSN_P (insn))
3443	    {
3444	      if (may_trap_p (PATTERN (insn)))
3445		return FALSE;
3446
3447	      /* ??? Even non-trapping memories such as stack frame
3448		 references must be avoided.  For stores, we collect
3449		 no lifetime info; for reads, we'd have to assert
3450		 true_dependence false against every store in the
3451		 TEST range.  */
3452	      if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3453		return FALSE;
3454	    }
3455	  if (insn == end)
3456	    break;
3457	}
3458
3459      if (! any_condjump_p (jump))
3460	return FALSE;
3461
3462      /* Find the extent of the conditional.  */
3463      cond = noce_get_condition (jump, &earliest);
3464      if (! cond)
3465	return FALSE;
3466
3467      /* Collect:
3468	   MERGE_SET = set of registers set in MERGE_BB
3469	   TEST_LIVE = set of registers live at EARLIEST
3470	   TEST_SET  = set of registers set between EARLIEST and the
3471		       end of the block.  */
3472
3473      tmp = ALLOC_REG_SET (&reg_obstack);
3474      merge_set = ALLOC_REG_SET (&reg_obstack);
3475      test_live = ALLOC_REG_SET (&reg_obstack);
3476      test_set = ALLOC_REG_SET (&reg_obstack);
3477
3478      /* ??? bb->local_set is only valid during calculate_global_regs_live,
3479	 so we must recompute usage for MERGE_BB.  Not so bad, I suppose,
3480         since we've already asserted that MERGE_BB is small.  */
3481      /* If we allocated new pseudos (e.g. in the conditional move
3482	 expander called from noce_emit_cmove), we must resize the
3483	 array first.  */
3484      if (max_regno < max_reg_num ())
3485	{
3486	  max_regno = max_reg_num ();
3487	  allocate_reg_info (max_regno, FALSE, FALSE);
3488	}
3489      propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3490
3491      /* For small register class machines, don't lengthen lifetimes of
3492	 hard registers before reload.  */
3493      if (SMALL_REGISTER_CLASSES && ! reload_completed)
3494	{
3495          EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3496	    {
3497	      if (i < FIRST_PSEUDO_REGISTER
3498		  && ! fixed_regs[i]
3499		  && ! global_regs[i])
3500		fail = 1;
3501	    }
3502	}
3503
3504      /* For TEST, we're interested in a range of insns, not a whole block.
3505	 Moreover, we're interested in the insns live from OTHER_BB.  */
3506
3507      COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3508      pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3509				       0);
3510
3511      for (insn = jump; ; insn = prev)
3512	{
3513	  prev = propagate_one_insn (pbi, insn);
3514	  if (insn == earliest)
3515	    break;
3516	}
3517
3518      free_propagate_block_info (pbi);
3519
3520      /* We can perform the transformation if
3521	   MERGE_SET & (TEST_SET | TEST_LIVE)
3522	 and
3523	   TEST_SET & merge_bb->il.rtl->global_live_at_start
3524	 are empty.  */
3525
3526      if (bitmap_intersect_p (test_set, merge_set)
3527	  || bitmap_intersect_p (test_live, merge_set)
3528	  || bitmap_intersect_p (test_set,
3529	    			 merge_bb->il.rtl->global_live_at_start))
3530	fail = 1;
3531
3532      FREE_REG_SET (tmp);
3533      FREE_REG_SET (merge_set);
3534      FREE_REG_SET (test_live);
3535      FREE_REG_SET (test_set);
3536
3537      if (fail)
3538	return FALSE;
3539    }
3540
3541 no_body:
3542  /* We don't want to use normal invert_jump or redirect_jump because
3543     we don't want to delete_insn called.  Also, we want to do our own
3544     change group management.  */
3545
3546  old_dest = JUMP_LABEL (jump);
3547  if (other_bb != new_dest)
3548    {
3549      new_label = block_label (new_dest);
3550      if (reversep
3551	  ? ! invert_jump_1 (jump, new_label)
3552	  : ! redirect_jump_1 (jump, new_label))
3553	goto cancel;
3554    }
3555
3556  if (! apply_change_group ())
3557    return FALSE;
3558
3559  if (other_bb != new_dest)
3560    {
3561      redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3562
3563      redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3564      if (reversep)
3565	{
3566	  gcov_type count, probability;
3567	  count = BRANCH_EDGE (test_bb)->count;
3568	  BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3569	  FALLTHRU_EDGE (test_bb)->count = count;
3570	  probability = BRANCH_EDGE (test_bb)->probability;
3571	  BRANCH_EDGE (test_bb)->probability
3572	    = FALLTHRU_EDGE (test_bb)->probability;
3573	  FALLTHRU_EDGE (test_bb)->probability = probability;
3574	  update_br_prob_note (test_bb);
3575	}
3576    }
3577
3578  /* Move the insns out of MERGE_BB to before the branch.  */
3579  if (head != NULL)
3580    {
3581      rtx insn;
3582
3583      if (end == BB_END (merge_bb))
3584	BB_END (merge_bb) = PREV_INSN (head);
3585
3586      if (squeeze_notes (&head, &end))
3587	return TRUE;
3588
3589      /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3590	 notes might become invalid.  */
3591      insn = head;
3592      do
3593	{
3594	  rtx note, set;
3595
3596	  if (! INSN_P (insn))
3597	    continue;
3598	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3599	  if (! note)
3600	    continue;
3601	  set = single_set (insn);
3602	  if (!set || !function_invariant_p (SET_SRC (set)))
3603	    remove_note (insn, note);
3604	} while (insn != end && (insn = NEXT_INSN (insn)));
3605
3606      reorder_insns (head, end, PREV_INSN (earliest));
3607    }
3608
3609  /* Remove the jump and edge if we can.  */
3610  if (other_bb == new_dest)
3611    {
3612      delete_insn (jump);
3613      remove_edge (BRANCH_EDGE (test_bb));
3614      /* ??? Can't merge blocks here, as then_bb is still in use.
3615	 At minimum, the merge will get done just before bb-reorder.  */
3616    }
3617
3618  return TRUE;
3619
3620 cancel:
3621  cancel_changes (0);
3622  return FALSE;
3623}
3624
3625/* Main entry point for all if-conversion.  */
3626
3627void
3628if_convert (int x_life_data_ok)
3629{
3630  basic_block bb;
3631  int pass;
3632
3633  num_possible_if_blocks = 0;
3634  num_updated_if_blocks = 0;
3635  num_true_changes = 0;
3636  life_data_ok = (x_life_data_ok != 0);
3637
3638  if ((! targetm.cannot_modify_jumps_p ())
3639      && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3640	  || !targetm.have_named_sections))
3641    {
3642      struct loops loops;
3643
3644      flow_loops_find (&loops);
3645      mark_loop_exit_edges (&loops);
3646      flow_loops_free (&loops);
3647      free_dominance_info (CDI_DOMINATORS);
3648    }
3649
3650  /* Compute postdominators.  */
3651  calculate_dominance_info (CDI_POST_DOMINATORS);
3652
3653  if (life_data_ok)
3654    clear_bb_flags ();
3655
3656  /* Go through each of the basic blocks looking for things to convert.  If we
3657     have conditional execution, we make multiple passes to allow us to handle
3658     IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
3659  pass = 0;
3660  do
3661    {
3662      cond_exec_changed_p = FALSE;
3663      pass++;
3664
3665#ifdef IFCVT_MULTIPLE_DUMPS
3666      if (dump_file && pass > 1)
3667	fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3668#endif
3669
3670      FOR_EACH_BB (bb)
3671	{
3672	  basic_block new_bb;
3673	  while ((new_bb = find_if_header (bb, pass)))
3674	    bb = new_bb;
3675	}
3676
3677#ifdef IFCVT_MULTIPLE_DUMPS
3678      if (dump_file && cond_exec_changed_p)
3679	print_rtl_with_bb (dump_file, get_insns ());
3680#endif
3681    }
3682  while (cond_exec_changed_p);
3683
3684#ifdef IFCVT_MULTIPLE_DUMPS
3685  if (dump_file)
3686    fprintf (dump_file, "\n\n========== no more changes\n");
3687#endif
3688
3689  free_dominance_info (CDI_POST_DOMINATORS);
3690
3691  if (dump_file)
3692    fflush (dump_file);
3693
3694  clear_aux_for_blocks ();
3695
3696  /* Rebuild life info for basic blocks that require it.  */
3697  if (num_true_changes && life_data_ok)
3698    {
3699      /* If we allocated new pseudos, we must resize the array for sched1.  */
3700      if (max_regno < max_reg_num ())
3701	{
3702	  max_regno = max_reg_num ();
3703	  allocate_reg_info (max_regno, FALSE, FALSE);
3704	}
3705      update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3706					PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3707					| PROP_KILL_DEAD_CODE);
3708    }
3709
3710  /* Write the final stats.  */
3711  if (dump_file && num_possible_if_blocks > 0)
3712    {
3713      fprintf (dump_file,
3714	       "\n%d possible IF blocks searched.\n",
3715	       num_possible_if_blocks);
3716      fprintf (dump_file,
3717	       "%d IF blocks converted.\n",
3718	       num_updated_if_blocks);
3719      fprintf (dump_file,
3720	       "%d true changes made.\n\n\n",
3721	       num_true_changes);
3722    }
3723
3724#ifdef ENABLE_CHECKING
3725  verify_flow_info ();
3726#endif
3727}
3728
3729static bool
3730gate_handle_if_conversion (void)
3731{
3732  return (optimize > 0);
3733}
3734
3735/* If-conversion and CFG cleanup.  */
3736static void
3737rest_of_handle_if_conversion (void)
3738{
3739  if (flag_if_conversion)
3740    {
3741      if (dump_file)
3742        dump_flow_info (dump_file);
3743      cleanup_cfg (CLEANUP_EXPENSIVE);
3744      reg_scan (get_insns (), max_reg_num ());
3745      if_convert (0);
3746    }
3747
3748  timevar_push (TV_JUMP);
3749  cleanup_cfg (CLEANUP_EXPENSIVE);
3750  reg_scan (get_insns (), max_reg_num ());
3751  timevar_pop (TV_JUMP);
3752}
3753
3754struct tree_opt_pass pass_rtl_ifcvt =
3755{
3756  "ce1",                                /* name */
3757  gate_handle_if_conversion,            /* gate */
3758  rest_of_handle_if_conversion,         /* execute */
3759  NULL,                                 /* sub */
3760  NULL,                                 /* next */
3761  0,                                    /* static_pass_number */
3762  TV_IFCVT,                             /* tv_id */
3763  0,                                    /* properties_required */
3764  0,                                    /* properties_provided */
3765  0,                                    /* properties_destroyed */
3766  0,                                    /* todo_flags_start */
3767  TODO_dump_func,                       /* todo_flags_finish */
3768  'C'                                   /* letter */
3769};
3770
3771static bool
3772gate_handle_if_after_combine (void)
3773{
3774  return (optimize > 0 && flag_if_conversion);
3775}
3776
3777
3778/* Rerun if-conversion, as combine may have simplified things enough
3779   to now meet sequence length restrictions.  */
3780static void
3781rest_of_handle_if_after_combine (void)
3782{
3783  no_new_pseudos = 0;
3784  if_convert (1);
3785  no_new_pseudos = 1;
3786}
3787
3788struct tree_opt_pass pass_if_after_combine =
3789{
3790  "ce2",                                /* name */
3791  gate_handle_if_after_combine,         /* gate */
3792  rest_of_handle_if_after_combine,      /* execute */
3793  NULL,                                 /* sub */
3794  NULL,                                 /* next */
3795  0,                                    /* static_pass_number */
3796  TV_IFCVT,                             /* tv_id */
3797  0,                                    /* properties_required */
3798  0,                                    /* properties_provided */
3799  0,                                    /* properties_destroyed */
3800  0,                                    /* todo_flags_start */
3801  TODO_dump_func |
3802  TODO_ggc_collect,                     /* todo_flags_finish */
3803  'C'                                   /* letter */
3804};
3805
3806
3807static bool
3808gate_handle_if_after_reload (void)
3809{
3810  return (optimize > 0);
3811}
3812
3813static void
3814rest_of_handle_if_after_reload (void)
3815{
3816  /* Last attempt to optimize CFG, as scheduling, peepholing and insn
3817     splitting possibly introduced more crossjumping opportunities.  */
3818  cleanup_cfg (CLEANUP_EXPENSIVE
3819               | CLEANUP_UPDATE_LIFE
3820               | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
3821  if (flag_if_conversion2)
3822    if_convert (1);
3823}
3824
3825
3826struct tree_opt_pass pass_if_after_reload =
3827{
3828  "ce3",                                /* name */
3829  gate_handle_if_after_reload,          /* gate */
3830  rest_of_handle_if_after_reload,       /* execute */
3831  NULL,                                 /* sub */
3832  NULL,                                 /* next */
3833  0,                                    /* static_pass_number */
3834  TV_IFCVT2,                            /* tv_id */
3835  0,                                    /* properties_required */
3836  0,                                    /* properties_provided */
3837  0,                                    /* properties_destroyed */
3838  0,                                    /* todo_flags_start */
3839  TODO_dump_func |
3840  TODO_ggc_collect,                     /* todo_flags_finish */
3841  'E'                                   /* letter */
3842};
3843
3844
3845