1/* Global common subexpression elimination/Partial redundancy elimination
2   and global constant/copy propagation for GNU compiler.
3   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* TODO
24   - reordering of memory allocation and freeing to be more space efficient
25   - do rough calc of how many regs are needed in each block, and a rough
26     calc of how many regs are available in each class and use that to
27     throttle back the code in cases where RTX_COST is minimal.
28   - a store to the same address as a load does not kill the load if the
29     source of the store is also the destination of the load.  Handling this
30     allows more load motion, particularly out of loops.
31   - ability to realloc sbitmap vectors would allow one initial computation
32     of reg_set_in_block with only subsequent additions, rather than
33     recomputing it for each pass
34
35*/
36
37/* References searched while implementing this.
38
39   Compilers Principles, Techniques and Tools
40   Aho, Sethi, Ullman
41   Addison-Wesley, 1988
42
43   Global Optimization by Suppression of Partial Redundancies
44   E. Morel, C. Renvoise
45   communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47   A Portable Machine-Independent Global Optimizer - Design and Measurements
48   Frederick Chow
49   Stanford Ph.D. thesis, Dec. 1983
50
51   A Fast Algorithm for Code Movement Optimization
52   D.M. Dhamdhere
53   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55   A Solution to a Problem with Morel and Renvoise's
56   Global Optimization by Suppression of Partial Redundancies
57   K-H Drechsler, M.P. Stadel
58   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60   Practical Adaptation of the Global Optimization
61   Algorithm of Morel and Renvoise
62   D.M. Dhamdhere
63   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65   Efficiently Computing Static Single Assignment Form and the Control
66   Dependence Graph
67   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70   Lazy Code Motion
71   J. Knoop, O. Ruthing, B. Steffen
72   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
75   Time for Reducible Flow Control
76   Thomas Ball
77   ACM Letters on Programming Languages and Systems,
78   Vol. 2, Num. 1-4, Mar-Dec 1993
79
80   An Efficient Representation for Sparse Sets
81   Preston Briggs, Linda Torczon
82   ACM Letters on Programming Languages and Systems,
83   Vol. 2, Num. 1-4, Mar-Dec 1993
84
85   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86   K-H Drechsler, M.P. Stadel
87   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89   Partial Dead Code Elimination
90   J. Knoop, O. Ruthing, B. Steffen
91   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93   Effective Partial Redundancy Elimination
94   P. Briggs, K.D. Cooper
95   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97   The Program Structure Tree: Computing Control Regions in Linear Time
98   R. Johnson, D. Pearson, K. Pingali
99   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101   Optimal Code Motion: Theory and Practice
102   J. Knoop, O. Ruthing, B. Steffen
103   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105   The power of assignment motion
106   J. Knoop, O. Ruthing, B. Steffen
107   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109   Global code motion / global value numbering
110   C. Click
111   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113   Value Driven Redundancy Elimination
114   L.T. Simpson
115   Rice University Ph.D. thesis, Apr. 1996
116
117   Value Numbering
118   L.T. Simpson
119   Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121   High Performance Compilers for Parallel Computing
122   Michael Wolfe
123   Addison-Wesley, 1996
124
125   Advanced Compiler Design and Implementation
126   Steven Muchnick
127   Morgan Kaufmann, 1997
128
129   Building an Optimizing Compiler
130   Robert Morgan
131   Digital Press, 1998
132
133   People wishing to speed up the code here should read:
134     Elimination Algorithms for Data Flow Analysis
135     B.G. Ryder, M.C. Paull
136     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138     How to Analyze Large Programs Efficiently and Informatively
139     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142   People wishing to do something different can find various possibilities
143   in the above papers and elsewhere.
144*/
145
146#include "config.h"
147#include "system.h"
148#include "coretypes.h"
149#include "tm.h"
150#include "toplev.h"
151
152#include "rtl.h"
153#include "tree.h"
154#include "tm_p.h"
155#include "regs.h"
156#include "hard-reg-set.h"
157#include "flags.h"
158#include "real.h"
159#include "insn-config.h"
160#include "recog.h"
161#include "basic-block.h"
162#include "output.h"
163#include "function.h"
164#include "expr.h"
165#include "except.h"
166#include "ggc.h"
167#include "params.h"
168#include "cselib.h"
169#include "intl.h"
170#include "obstack.h"
171#include "timevar.h"
172#include "tree-pass.h"
173#include "hashtab.h"
174
175/* Propagate flow information through back edges and thus enable PRE's
176   moving loop invariant calculations out of loops.
177
178   Originally this tended to create worse overall code, but several
179   improvements during the development of PRE seem to have made following
180   back edges generally a win.
181
182   Note much of the loop invariant code motion done here would normally
183   be done by loop.c, which has more heuristics for when to move invariants
184   out of loops.  At some point we might need to move some of those
185   heuristics into gcse.c.  */
186
187/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
188   are a superset of those done by GCSE.
189
190   We perform the following steps:
191
192   1) Compute basic block information.
193
194   2) Compute table of places where registers are set.
195
196   3) Perform copy/constant propagation.
197
198   4) Perform global cse using lazy code motion if not optimizing
199      for size, or code hoisting if we are.
200
201   5) Perform another pass of copy/constant propagation.
202
203   Two passes of copy/constant propagation are done because the first one
204   enables more GCSE and the second one helps to clean up the copies that
205   GCSE creates.  This is needed more for PRE than for Classic because Classic
206   GCSE will try to use an existing register containing the common
207   subexpression rather than create a new one.  This is harder to do for PRE
208   because of the code motion (which Classic GCSE doesn't do).
209
210   Expressions we are interested in GCSE-ing are of the form
211   (set (pseudo-reg) (expression)).
212   Function want_to_gcse_p says what these are.
213
214   PRE handles moving invariant expressions out of loops (by treating them as
215   partially redundant).
216
217   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218   assignment) based GVN (global value numbering).  L. T. Simpson's paper
219   (Rice University) on value numbering is a useful reference for this.
220
221   **********************
222
223   We used to support multiple passes but there are diminishing returns in
224   doing so.  The first pass usually makes 90% of the changes that are doable.
225   A second pass can make a few more changes made possible by the first pass.
226   Experiments show any further passes don't make enough changes to justify
227   the expense.
228
229   A study of spec92 using an unlimited number of passes:
230   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
233
234   It was found doing copy propagation between each pass enables further
235   substitutions.
236
237   PRE is quite expensive in complicated functions because the DFA can take
238   a while to converge.  Hence we only perform one pass.  The parameter
239   max-gcse-passes can be modified if one wants to experiment.
240
241   **********************
242
243   The steps for PRE are:
244
245   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246
247   2) Perform the data flow analysis for PRE.
248
249   3) Delete the redundant instructions
250
251   4) Insert the required copies [if any] that make the partially
252      redundant instructions fully redundant.
253
254   5) For other reaching expressions, insert an instruction to copy the value
255      to a newly created pseudo that will reach the redundant instruction.
256
257   The deletion is done first so that when we do insertions we
258   know which pseudo reg to use.
259
260   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261   argue it is not.  The number of iterations for the algorithm to converge
262   is typically 2-4 so I don't view it as that expensive (relatively speaking).
263
264   PRE GCSE depends heavily on the second CSE pass to clean up the copies
265   we create.  To make an expression reach the place where it's redundant,
266   the result of the expression is copied to a new register, and the redundant
267   expression is deleted by replacing it with this new register.  Classic GCSE
268   doesn't have this problem as much as it computes the reaching defs of
269   each register in each block and thus can try to use an existing
270   register.  */
271
272/* GCSE global vars.  */
273
274/* -dG dump file.  */
275static FILE *gcse_file;
276
277/* Note whether or not we should run jump optimization after gcse.  We
278   want to do this for two cases.
279
280    * If we changed any jumps via cprop.
281
282    * If we added any labels via edge splitting.  */
283static int run_jump_opt_after_gcse;
284
285/* Bitmaps are normally not included in debugging dumps.
286   However it's useful to be able to print them from GDB.
287   We could create special functions for this, but it's simpler to
288   just allow passing stderr to the dump_foo fns.  Since stderr can
289   be a macro, we store a copy here.  */
290static FILE *debug_stderr;
291
292/* An obstack for our working variables.  */
293static struct obstack gcse_obstack;
294
295struct reg_use {rtx reg_rtx; };
296
297/* Hash table of expressions.  */
298
299struct expr
300{
301  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
302  rtx expr;
303  /* Index in the available expression bitmaps.  */
304  int bitmap_index;
305  /* Next entry with the same hash.  */
306  struct expr *next_same_hash;
307  /* List of anticipatable occurrences in basic blocks in the function.
308     An "anticipatable occurrence" is one that is the first occurrence in the
309     basic block, the operands are not modified in the basic block prior
310     to the occurrence and the output is not used between the start of
311     the block and the occurrence.  */
312  struct occr *antic_occr;
313  /* List of available occurrence in basic blocks in the function.
314     An "available occurrence" is one that is the last occurrence in the
315     basic block and the operands are not modified by following statements in
316     the basic block [including this insn].  */
317  struct occr *avail_occr;
318  /* Non-null if the computation is PRE redundant.
319     The value is the newly created pseudo-reg to record a copy of the
320     expression in all the places that reach the redundant copy.  */
321  rtx reaching_reg;
322};
323
324/* Occurrence of an expression.
325   There is one per basic block.  If a pattern appears more than once the
326   last appearance is used [or first for anticipatable expressions].  */
327
328struct occr
329{
330  /* Next occurrence of this expression.  */
331  struct occr *next;
332  /* The insn that computes the expression.  */
333  rtx insn;
334  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
335  char deleted_p;
336  /* Nonzero if this [available] occurrence has been copied to
337     reaching_reg.  */
338  /* ??? This is mutually exclusive with deleted_p, so they could share
339     the same byte.  */
340  char copied_p;
341};
342
343/* Expression and copy propagation hash tables.
344   Each hash table is an array of buckets.
345   ??? It is known that if it were an array of entries, structure elements
346   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
347   not clear whether in the final analysis a sufficient amount of memory would
348   be saved as the size of the available expression bitmaps would be larger
349   [one could build a mapping table without holes afterwards though].
350   Someday I'll perform the computation and figure it out.  */
351
352struct hash_table
353{
354  /* The table itself.
355     This is an array of `expr_hash_table_size' elements.  */
356  struct expr **table;
357
358  /* Size of the hash table, in elements.  */
359  unsigned int size;
360
361  /* Number of hash table elements.  */
362  unsigned int n_elems;
363
364  /* Whether the table is expression of copy propagation one.  */
365  int set_p;
366};
367
368/* Expression hash table.  */
369static struct hash_table expr_hash_table;
370
371/* Copy propagation hash table.  */
372static struct hash_table set_hash_table;
373
374/* Mapping of uids to cuids.
375   Only real insns get cuids.  */
376static int *uid_cuid;
377
378/* Highest UID in UID_CUID.  */
379static int max_uid;
380
381/* Get the cuid of an insn.  */
382#ifdef ENABLE_CHECKING
383#define INSN_CUID(INSN) \
384  (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
385#else
386#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
387#endif
388
389/* Number of cuids.  */
390static int max_cuid;
391
392/* Mapping of cuids to insns.  */
393static rtx *cuid_insn;
394
395/* Get insn from cuid.  */
396#define CUID_INSN(CUID) (cuid_insn[CUID])
397
398/* Maximum register number in function prior to doing gcse + 1.
399   Registers created during this pass have regno >= max_gcse_regno.
400   This is named with "gcse" to not collide with global of same name.  */
401static unsigned int max_gcse_regno;
402
403/* Table of registers that are modified.
404
405   For each register, each element is a list of places where the pseudo-reg
406   is set.
407
408   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
409   requires knowledge of which blocks kill which regs [and thus could use
410   a bitmap instead of the lists `reg_set_table' uses].
411
412   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
413   num-regs) [however perhaps it may be useful to keep the data as is].  One
414   advantage of recording things this way is that `reg_set_table' is fairly
415   sparse with respect to pseudo regs but for hard regs could be fairly dense
416   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
417   up functions like compute_transp since in the case of pseudo-regs we only
418   need to iterate over the number of times a pseudo-reg is set, not over the
419   number of basic blocks [clearly there is a bit of a slow down in the cases
420   where a pseudo is set more than once in a block, however it is believed
421   that the net effect is to speed things up].  This isn't done for hard-regs
422   because recording call-clobbered hard-regs in `reg_set_table' at each
423   function call can consume a fair bit of memory, and iterating over
424   hard-regs stored this way in compute_transp will be more expensive.  */
425
426typedef struct reg_set
427{
428  /* The next setting of this register.  */
429  struct reg_set *next;
430  /* The index of the block where it was set.  */
431  int bb_index;
432} reg_set;
433
434static reg_set **reg_set_table;
435
436/* Size of `reg_set_table'.
437   The table starts out at max_gcse_regno + slop, and is enlarged as
438   necessary.  */
439static int reg_set_table_size;
440
441/* Amount to grow `reg_set_table' by when it's full.  */
442#define REG_SET_TABLE_SLOP 100
443
444/* This is a list of expressions which are MEMs and will be used by load
445   or store motion.
446   Load motion tracks MEMs which aren't killed by
447   anything except itself. (i.e., loads and stores to a single location).
448   We can then allow movement of these MEM refs with a little special
449   allowance. (all stores copy the same value to the reaching reg used
450   for the loads).  This means all values used to store into memory must have
451   no side effects so we can re-issue the setter value.
452   Store Motion uses this structure as an expression table to track stores
453   which look interesting, and might be moveable towards the exit block.  */
454
455struct ls_expr
456{
457  struct expr * expr;		/* Gcse expression reference for LM.  */
458  rtx pattern;			/* Pattern of this mem.  */
459  rtx pattern_regs;		/* List of registers mentioned by the mem.  */
460  rtx loads;			/* INSN list of loads seen.  */
461  rtx stores;			/* INSN list of stores seen.  */
462  struct ls_expr * next;	/* Next in the list.  */
463  int invalid;			/* Invalid for some reason.  */
464  int index;			/* If it maps to a bitmap index.  */
465  unsigned int hash_index;	/* Index when in a hash table.  */
466  rtx reaching_reg;		/* Register to use when re-writing.  */
467};
468
469/* Array of implicit set patterns indexed by basic block index.  */
470static rtx *implicit_sets;
471
472/* Head of the list of load/store memory refs.  */
473static struct ls_expr * pre_ldst_mems = NULL;
474
475/* Hashtable for the load/store memory refs.  */
476static htab_t pre_ldst_table = NULL;
477
478/* Bitmap containing one bit for each register in the program.
479   Used when performing GCSE to track which registers have been set since
480   the start of the basic block.  */
481static regset reg_set_bitmap;
482
483/* For each block, a bitmap of registers set in the block.
484   This is used by compute_transp.
485   It is computed during hash table computation and not by compute_sets
486   as it includes registers added since the last pass (or between cprop and
487   gcse) and it's currently not easy to realloc sbitmap vectors.  */
488static sbitmap *reg_set_in_block;
489
490/* Array, indexed by basic block number for a list of insns which modify
491   memory within that block.  */
492static rtx * modify_mem_list;
493static bitmap modify_mem_list_set;
494
495/* This array parallels modify_mem_list, but is kept canonicalized.  */
496static rtx * canon_modify_mem_list;
497
498/* Bitmap indexed by block numbers to record which blocks contain
499   function calls.  */
500static bitmap blocks_with_calls;
501
502/* Various variables for statistics gathering.  */
503
504/* Memory used in a pass.
505   This isn't intended to be absolutely precise.  Its intent is only
506   to keep an eye on memory usage.  */
507static int bytes_used;
508
509/* GCSE substitutions made.  */
510static int gcse_subst_count;
511/* Number of copy instructions created.  */
512static int gcse_create_count;
513/* Number of local constants propagated.  */
514static int local_const_prop_count;
515/* Number of local copies propagated.  */
516static int local_copy_prop_count;
517/* Number of global constants propagated.  */
518static int global_const_prop_count;
519/* Number of global copies propagated.  */
520static int global_copy_prop_count;
521
522/* For available exprs */
523static sbitmap *ae_kill, *ae_gen;
524
525static void compute_can_copy (void);
526static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
527static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
528static void *grealloc (void *, size_t);
529static void *gcse_alloc (unsigned long);
530static void alloc_gcse_mem (void);
531static void free_gcse_mem (void);
532static void alloc_reg_set_mem (int);
533static void free_reg_set_mem (void);
534static void record_one_set (int, rtx);
535static void record_set_info (rtx, rtx, void *);
536static void compute_sets (void);
537static void hash_scan_insn (rtx, struct hash_table *, int);
538static void hash_scan_set (rtx, rtx, struct hash_table *);
539static void hash_scan_clobber (rtx, rtx, struct hash_table *);
540static void hash_scan_call (rtx, rtx, struct hash_table *);
541static int want_to_gcse_p (rtx);
542static bool can_assign_to_reg_p (rtx);
543static bool gcse_constant_p (rtx);
544static int oprs_unchanged_p (rtx, rtx, int);
545static int oprs_anticipatable_p (rtx, rtx);
546static int oprs_available_p (rtx, rtx);
547static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
548				  struct hash_table *);
549static void insert_set_in_table (rtx, rtx, struct hash_table *);
550static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
551static unsigned int hash_set (int, int);
552static int expr_equiv_p (rtx, rtx);
553static void record_last_reg_set_info (rtx, int);
554static void record_last_mem_set_info (rtx);
555static void record_last_set_info (rtx, rtx, void *);
556static void compute_hash_table (struct hash_table *);
557static void alloc_hash_table (int, struct hash_table *, int);
558static void free_hash_table (struct hash_table *);
559static void compute_hash_table_work (struct hash_table *);
560static void dump_hash_table (FILE *, const char *, struct hash_table *);
561static struct expr *lookup_set (unsigned int, struct hash_table *);
562static struct expr *next_set (unsigned int, struct expr *);
563static void reset_opr_set_tables (void);
564static int oprs_not_set_p (rtx, rtx);
565static void mark_call (rtx);
566static void mark_set (rtx, rtx);
567static void mark_clobber (rtx, rtx);
568static void mark_oprs_set (rtx);
569static void alloc_cprop_mem (int, int);
570static void free_cprop_mem (void);
571static void compute_transp (rtx, int, sbitmap *, int);
572static void compute_transpout (void);
573static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
574				      struct hash_table *);
575static void compute_cprop_data (void);
576static void find_used_regs (rtx *, void *);
577static int try_replace_reg (rtx, rtx, rtx);
578static struct expr *find_avail_set (int, rtx);
579static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
580static void mems_conflict_for_gcse_p (rtx, rtx, void *);
581static int load_killed_in_block_p (basic_block, int, rtx, int);
582static void canon_list_insert (rtx, rtx, void *);
583static int cprop_insn (rtx, int);
584static int cprop (int);
585static void find_implicit_sets (void);
586static int one_cprop_pass (int, bool, bool);
587static bool constprop_register (rtx, rtx, rtx, bool);
588static struct expr *find_bypass_set (int, int);
589static bool reg_killed_on_edge (rtx, edge);
590static int bypass_block (basic_block, rtx, rtx);
591static int bypass_conditional_jumps (void);
592static void alloc_pre_mem (int, int);
593static void free_pre_mem (void);
594static void compute_pre_data (void);
595static int pre_expr_reaches_here_p (basic_block, struct expr *,
596				    basic_block);
597static void insert_insn_end_bb (struct expr *, basic_block, int);
598static void pre_insert_copy_insn (struct expr *, rtx);
599static void pre_insert_copies (void);
600static int pre_delete (void);
601static int pre_gcse (void);
602static int one_pre_gcse_pass (int);
603static void add_label_notes (rtx, rtx);
604static void alloc_code_hoist_mem (int, int);
605static void free_code_hoist_mem (void);
606static void compute_code_hoist_vbeinout (void);
607static void compute_code_hoist_data (void);
608static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
609static void hoist_code (void);
610static int one_code_hoisting_pass (void);
611static rtx process_insert_insn (struct expr *);
612static int pre_edge_insert (struct edge_list *, struct expr **);
613static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
614					 basic_block, char *);
615static struct ls_expr * ldst_entry (rtx);
616static void free_ldst_entry (struct ls_expr *);
617static void free_ldst_mems (void);
618static void print_ldst_list (FILE *);
619static struct ls_expr * find_rtx_in_ldst (rtx);
620static int enumerate_ldsts (void);
621static inline struct ls_expr * first_ls_expr (void);
622static inline struct ls_expr * next_ls_expr (struct ls_expr *);
623static int simple_mem (rtx);
624static void invalidate_any_buried_refs (rtx);
625static void compute_ld_motion_mems (void);
626static void trim_ld_motion_mems (void);
627static void update_ld_motion_stores (struct expr *);
628static void reg_set_info (rtx, rtx, void *);
629static void reg_clear_last_set (rtx, rtx, void *);
630static bool store_ops_ok (rtx, int *);
631static rtx extract_mentioned_regs (rtx);
632static rtx extract_mentioned_regs_helper (rtx, rtx);
633static void find_moveable_store (rtx, int *, int *);
634static int compute_store_table (void);
635static bool load_kills_store (rtx, rtx, int);
636static bool find_loads (rtx, rtx, int);
637static bool store_killed_in_insn (rtx, rtx, rtx, int);
638static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
639static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
640static void build_store_vectors (void);
641static void insert_insn_start_bb (rtx, basic_block);
642static int insert_store (struct ls_expr *, edge);
643static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
644static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
645static void delete_store (struct ls_expr *, basic_block);
646static void free_store_memory (void);
647static void store_motion (void);
648static void free_insn_expr_list_list (rtx *);
649static void clear_modify_mem_tables (void);
650static void free_modify_mem_tables (void);
651static rtx gcse_emit_move_after (rtx, rtx, rtx);
652static void local_cprop_find_used_regs (rtx *, void *);
653static bool do_local_cprop (rtx, rtx, bool, rtx*);
654static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
655static void local_cprop_pass (bool);
656static bool is_too_expensive (const char *);
657
658
659/* Entry point for global common subexpression elimination.
660   F is the first instruction in the function.  Return nonzero if a
661   change is mode.  */
662
663int
664gcse_main (rtx f ATTRIBUTE_UNUSED, FILE *file)
665{
666  int changed, pass;
667  /* Bytes used at start of pass.  */
668  int initial_bytes_used;
669  /* Maximum number of bytes used by a pass.  */
670  int max_pass_bytes;
671  /* Point to release obstack data from for each pass.  */
672  char *gcse_obstack_bottom;
673
674  /* We do not construct an accurate cfg in functions which call
675     setjmp, so just punt to be safe.  */
676  if (current_function_calls_setjmp)
677    return 0;
678
679  /* Assume that we do not need to run jump optimizations after gcse.  */
680  run_jump_opt_after_gcse = 0;
681
682  /* For calling dump_foo fns from gdb.  */
683  debug_stderr = stderr;
684  gcse_file = file;
685
686  /* Identify the basic block information for this function, including
687     successors and predecessors.  */
688  max_gcse_regno = max_reg_num ();
689
690  if (file)
691    dump_flow_info (file);
692
693  /* Return if there's nothing to do, or it is too expensive.  */
694  if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
695    return 0;
696
697  gcc_obstack_init (&gcse_obstack);
698  bytes_used = 0;
699
700  /* We need alias.  */
701  init_alias_analysis ();
702  /* Record where pseudo-registers are set.  This data is kept accurate
703     during each pass.  ??? We could also record hard-reg information here
704     [since it's unchanging], however it is currently done during hash table
705     computation.
706
707     It may be tempting to compute MEM set information here too, but MEM sets
708     will be subject to code motion one day and thus we need to compute
709     information about memory sets when we build the hash tables.  */
710
711  alloc_reg_set_mem (max_gcse_regno);
712  compute_sets ();
713
714  pass = 0;
715  initial_bytes_used = bytes_used;
716  max_pass_bytes = 0;
717  gcse_obstack_bottom = gcse_alloc (1);
718  changed = 1;
719  while (changed && pass < MAX_GCSE_PASSES)
720    {
721      changed = 0;
722      if (file)
723	fprintf (file, "GCSE pass %d\n\n", pass + 1);
724
725      /* Initialize bytes_used to the space for the pred/succ lists,
726	 and the reg_set_table data.  */
727      bytes_used = initial_bytes_used;
728
729      /* Each pass may create new registers, so recalculate each time.  */
730      max_gcse_regno = max_reg_num ();
731
732      alloc_gcse_mem ();
733
734      /* Don't allow constant propagation to modify jumps
735	 during this pass.  */
736      timevar_push (TV_CPROP1);
737      changed = one_cprop_pass (pass + 1, false, false);
738      timevar_pop (TV_CPROP1);
739
740      if (optimize_size)
741	/* Do nothing.  */ ;
742      else
743	{
744	  timevar_push (TV_PRE);
745	  changed |= one_pre_gcse_pass (pass + 1);
746	  /* We may have just created new basic blocks.  Release and
747	     recompute various things which are sized on the number of
748	     basic blocks.  */
749	  if (changed)
750	    {
751	      free_modify_mem_tables ();
752	      modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
753	      canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
754	    }
755	  free_reg_set_mem ();
756	  alloc_reg_set_mem (max_reg_num ());
757	  compute_sets ();
758	  run_jump_opt_after_gcse = 1;
759	  timevar_pop (TV_PRE);
760	}
761
762      if (max_pass_bytes < bytes_used)
763	max_pass_bytes = bytes_used;
764
765      /* Free up memory, then reallocate for code hoisting.  We can
766	 not re-use the existing allocated memory because the tables
767	 will not have info for the insns or registers created by
768	 partial redundancy elimination.  */
769      free_gcse_mem ();
770
771      /* It does not make sense to run code hoisting unless we are optimizing
772	 for code size -- it rarely makes programs faster, and can make
773	 them bigger if we did partial redundancy elimination (when optimizing
774	 for space, we don't run the partial redundancy algorithms).  */
775      if (optimize_size)
776	{
777	  timevar_push (TV_HOIST);
778	  max_gcse_regno = max_reg_num ();
779	  alloc_gcse_mem ();
780	  changed |= one_code_hoisting_pass ();
781	  free_gcse_mem ();
782
783	  if (max_pass_bytes < bytes_used)
784	    max_pass_bytes = bytes_used;
785	  timevar_pop (TV_HOIST);
786	}
787
788      if (file)
789	{
790	  fprintf (file, "\n");
791	  fflush (file);
792	}
793
794      obstack_free (&gcse_obstack, gcse_obstack_bottom);
795      pass++;
796    }
797
798  /* Do one last pass of copy propagation, including cprop into
799     conditional jumps.  */
800
801  max_gcse_regno = max_reg_num ();
802  alloc_gcse_mem ();
803  /* This time, go ahead and allow cprop to alter jumps.  */
804  timevar_push (TV_CPROP2);
805  one_cprop_pass (pass + 1, true, false);
806  timevar_pop (TV_CPROP2);
807  free_gcse_mem ();
808
809  if (file)
810    {
811      fprintf (file, "GCSE of %s: %d basic blocks, ",
812	       current_function_name (), n_basic_blocks);
813      fprintf (file, "%d pass%s, %d bytes\n\n",
814	       pass, pass > 1 ? "es" : "", max_pass_bytes);
815    }
816
817  obstack_free (&gcse_obstack, NULL);
818  free_reg_set_mem ();
819
820  /* We are finished with alias.  */
821  end_alias_analysis ();
822  allocate_reg_info (max_reg_num (), FALSE, FALSE);
823
824  if (!optimize_size && flag_gcse_sm)
825    {
826      timevar_push (TV_LSM);
827      store_motion ();
828      timevar_pop (TV_LSM);
829    }
830
831  /* Record where pseudo-registers are set.  */
832  return run_jump_opt_after_gcse;
833}
834
835/* Misc. utilities.  */
836
837/* Nonzero for each mode that supports (set (reg) (reg)).
838   This is trivially true for integer and floating point values.
839   It may or may not be true for condition codes.  */
840static char can_copy[(int) NUM_MACHINE_MODES];
841
842/* Compute which modes support reg/reg copy operations.  */
843
844static void
845compute_can_copy (void)
846{
847  int i;
848#ifndef AVOID_CCMODE_COPIES
849  rtx reg, insn;
850#endif
851  memset (can_copy, 0, NUM_MACHINE_MODES);
852
853  start_sequence ();
854  for (i = 0; i < NUM_MACHINE_MODES; i++)
855    if (GET_MODE_CLASS (i) == MODE_CC)
856      {
857#ifdef AVOID_CCMODE_COPIES
858	can_copy[i] = 0;
859#else
860	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
861	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
862	if (recog (PATTERN (insn), insn, NULL) >= 0)
863	  can_copy[i] = 1;
864#endif
865      }
866    else
867      can_copy[i] = 1;
868
869  end_sequence ();
870}
871
872/* Returns whether the mode supports reg/reg copy operations.  */
873
874bool
875can_copy_p (enum machine_mode mode)
876{
877  static bool can_copy_init_p = false;
878
879  if (! can_copy_init_p)
880    {
881      compute_can_copy ();
882      can_copy_init_p = true;
883    }
884
885  return can_copy[mode] != 0;
886}
887
888/* Cover function to xmalloc to record bytes allocated.  */
889
890static void *
891gmalloc (size_t size)
892{
893  bytes_used += size;
894  return xmalloc (size);
895}
896
897/* Cover function to xcalloc to record bytes allocated.  */
898
899static void *
900gcalloc (size_t nelem, size_t elsize)
901{
902  bytes_used += nelem * elsize;
903  return xcalloc (nelem, elsize);
904}
905
906/* Cover function to xrealloc.
907   We don't record the additional size since we don't know it.
908   It won't affect memory usage stats much anyway.  */
909
910static void *
911grealloc (void *ptr, size_t size)
912{
913  return xrealloc (ptr, size);
914}
915
916/* Cover function to obstack_alloc.  */
917
918static void *
919gcse_alloc (unsigned long size)
920{
921  bytes_used += size;
922  return obstack_alloc (&gcse_obstack, size);
923}
924
925/* Allocate memory for the cuid mapping array,
926   and reg/memory set tracking tables.
927
928   This is called at the start of each pass.  */
929
930static void
931alloc_gcse_mem (void)
932{
933  int i;
934  basic_block bb;
935  rtx insn;
936
937  /* Find the largest UID and create a mapping from UIDs to CUIDs.
938     CUIDs are like UIDs except they increase monotonically, have no gaps,
939     and only apply to real insns.
940     (Actually, there are gaps, for insn that are not inside a basic block.
941     but we should never see those anyway, so this is OK.)  */
942
943  max_uid = get_max_uid ();
944  uid_cuid = gcalloc (max_uid + 1, sizeof (int));
945  i = 0;
946  FOR_EACH_BB (bb)
947    FOR_BB_INSNS (bb, insn)
948      {
949	if (INSN_P (insn))
950	  uid_cuid[INSN_UID (insn)] = i++;
951	else
952	  uid_cuid[INSN_UID (insn)] = i;
953      }
954
955  /* Create a table mapping cuids to insns.  */
956
957  max_cuid = i;
958  cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
959  i = 0;
960  FOR_EACH_BB (bb)
961    FOR_BB_INSNS (bb, insn)
962      if (INSN_P (insn))
963	CUID_INSN (i++) = insn;
964
965  /* Allocate vars to track sets of regs.  */
966  reg_set_bitmap = BITMAP_ALLOC (NULL);
967
968  /* Allocate vars to track sets of regs, memory per block.  */
969  reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
970  /* Allocate array to keep a list of insns which modify memory in each
971     basic block.  */
972  modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
973  canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
974  modify_mem_list_set = BITMAP_ALLOC (NULL);
975  blocks_with_calls = BITMAP_ALLOC (NULL);
976}
977
978/* Free memory allocated by alloc_gcse_mem.  */
979
980static void
981free_gcse_mem (void)
982{
983  free (uid_cuid);
984  free (cuid_insn);
985
986  BITMAP_FREE (reg_set_bitmap);
987
988  sbitmap_vector_free (reg_set_in_block);
989  free_modify_mem_tables ();
990  BITMAP_FREE (modify_mem_list_set);
991  BITMAP_FREE (blocks_with_calls);
992}
993
994/* Compute the local properties of each recorded expression.
995
996   Local properties are those that are defined by the block, irrespective of
997   other blocks.
998
999   An expression is transparent in a block if its operands are not modified
1000   in the block.
1001
1002   An expression is computed (locally available) in a block if it is computed
1003   at least once and expression would contain the same value if the
1004   computation was moved to the end of the block.
1005
1006   An expression is locally anticipatable in a block if it is computed at
1007   least once and expression would contain the same value if the computation
1008   was moved to the beginning of the block.
1009
1010   We call this routine for cprop, pre and code hoisting.  They all compute
1011   basically the same information and thus can easily share this code.
1012
1013   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1014   properties.  If NULL, then it is not necessary to compute or record that
1015   particular property.
1016
1017   TABLE controls which hash table to look at.  If it is  set hash table,
1018   additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1019   ABSALTERED.  */
1020
1021static void
1022compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1023			  struct hash_table *table)
1024{
1025  unsigned int i;
1026
1027  /* Initialize any bitmaps that were passed in.  */
1028  if (transp)
1029    {
1030      if (table->set_p)
1031	sbitmap_vector_zero (transp, last_basic_block);
1032      else
1033	sbitmap_vector_ones (transp, last_basic_block);
1034    }
1035
1036  if (comp)
1037    sbitmap_vector_zero (comp, last_basic_block);
1038  if (antloc)
1039    sbitmap_vector_zero (antloc, last_basic_block);
1040
1041  for (i = 0; i < table->size; i++)
1042    {
1043      struct expr *expr;
1044
1045      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1046	{
1047	  int indx = expr->bitmap_index;
1048	  struct occr *occr;
1049
1050	  /* The expression is transparent in this block if it is not killed.
1051	     We start by assuming all are transparent [none are killed], and
1052	     then reset the bits for those that are.  */
1053	  if (transp)
1054	    compute_transp (expr->expr, indx, transp, table->set_p);
1055
1056	  /* The occurrences recorded in antic_occr are exactly those that
1057	     we want to set to nonzero in ANTLOC.  */
1058	  if (antloc)
1059	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1060	      {
1061		SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1062
1063		/* While we're scanning the table, this is a good place to
1064		   initialize this.  */
1065		occr->deleted_p = 0;
1066	      }
1067
1068	  /* The occurrences recorded in avail_occr are exactly those that
1069	     we want to set to nonzero in COMP.  */
1070	  if (comp)
1071	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1072	      {
1073		SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1074
1075		/* While we're scanning the table, this is a good place to
1076		   initialize this.  */
1077		occr->copied_p = 0;
1078	      }
1079
1080	  /* While we're scanning the table, this is a good place to
1081	     initialize this.  */
1082	  expr->reaching_reg = 0;
1083	}
1084    }
1085}
1086
1087/* Register set information.
1088
1089   `reg_set_table' records where each register is set or otherwise
1090   modified.  */
1091
1092static struct obstack reg_set_obstack;
1093
1094static void
1095alloc_reg_set_mem (int n_regs)
1096{
1097  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1098  reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1099
1100  gcc_obstack_init (&reg_set_obstack);
1101}
1102
1103static void
1104free_reg_set_mem (void)
1105{
1106  free (reg_set_table);
1107  obstack_free (&reg_set_obstack, NULL);
1108}
1109
1110/* Record REGNO in the reg_set table.  */
1111
1112static void
1113record_one_set (int regno, rtx insn)
1114{
1115  /* Allocate a new reg_set element and link it onto the list.  */
1116  struct reg_set *new_reg_info;
1117
1118  /* If the table isn't big enough, enlarge it.  */
1119  if (regno >= reg_set_table_size)
1120    {
1121      int new_size = regno + REG_SET_TABLE_SLOP;
1122
1123      reg_set_table = grealloc (reg_set_table,
1124				new_size * sizeof (struct reg_set *));
1125      memset (reg_set_table + reg_set_table_size, 0,
1126	      (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1127      reg_set_table_size = new_size;
1128    }
1129
1130  new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1131  bytes_used += sizeof (struct reg_set);
1132  new_reg_info->bb_index = BLOCK_NUM (insn);
1133  new_reg_info->next = reg_set_table[regno];
1134  reg_set_table[regno] = new_reg_info;
1135}
1136
1137/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1138   an insn.  The DATA is really the instruction in which the SET is
1139   occurring.  */
1140
1141static void
1142record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1143{
1144  rtx record_set_insn = (rtx) data;
1145
1146  if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1147    record_one_set (REGNO (dest), record_set_insn);
1148}
1149
1150/* Scan the function and record each set of each pseudo-register.
1151
1152   This is called once, at the start of the gcse pass.  See the comments for
1153   `reg_set_table' for further documentation.  */
1154
1155static void
1156compute_sets (void)
1157{
1158  basic_block bb;
1159  rtx insn;
1160
1161  FOR_EACH_BB (bb)
1162    FOR_BB_INSNS (bb, insn)
1163      if (INSN_P (insn))
1164	note_stores (PATTERN (insn), record_set_info, insn);
1165}
1166
1167/* Hash table support.  */
1168
1169struct reg_avail_info
1170{
1171  basic_block last_bb;
1172  int first_set;
1173  int last_set;
1174};
1175
1176static struct reg_avail_info *reg_avail_info;
1177static basic_block current_bb;
1178
1179
1180/* See whether X, the source of a set, is something we want to consider for
1181   GCSE.  */
1182
1183static int
1184want_to_gcse_p (rtx x)
1185{
1186  switch (GET_CODE (x))
1187    {
1188    case REG:
1189    case SUBREG:
1190    case CONST_INT:
1191    case CONST_DOUBLE:
1192    case CONST_VECTOR:
1193    case CALL:
1194      return 0;
1195
1196    default:
1197      return can_assign_to_reg_p (x);
1198    }
1199}
1200
1201/* Used internally by can_assign_to_reg_p.  */
1202
1203static GTY(()) rtx test_insn;
1204
1205/* Return true if we can assign X to a pseudo register.  */
1206
1207static bool
1208can_assign_to_reg_p (rtx x)
1209{
1210  int num_clobbers = 0;
1211  int icode;
1212
1213  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
1214  if (general_operand (x, GET_MODE (x)))
1215    return 1;
1216  else if (GET_MODE (x) == VOIDmode)
1217    return 0;
1218
1219  /* Otherwise, check if we can make a valid insn from it.  First initialize
1220     our test insn if we haven't already.  */
1221  if (test_insn == 0)
1222    {
1223      test_insn
1224	= make_insn_raw (gen_rtx_SET (VOIDmode,
1225				      gen_rtx_REG (word_mode,
1226						   FIRST_PSEUDO_REGISTER * 2),
1227				      const0_rtx));
1228      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1229    }
1230
1231  /* Now make an insn like the one we would make when GCSE'ing and see if
1232     valid.  */
1233  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1234  SET_SRC (PATTERN (test_insn)) = x;
1235  return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1236	  && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1237}
1238
1239/* Return nonzero if the operands of expression X are unchanged from the
1240   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1241   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
1242
1243static int
1244oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1245{
1246  int i, j;
1247  enum rtx_code code;
1248  const char *fmt;
1249
1250  if (x == 0)
1251    return 1;
1252
1253  code = GET_CODE (x);
1254  switch (code)
1255    {
1256    case REG:
1257      {
1258	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1259
1260	if (info->last_bb != current_bb)
1261	  return 1;
1262	if (avail_p)
1263	  return info->last_set < INSN_CUID (insn);
1264	else
1265	  return info->first_set >= INSN_CUID (insn);
1266      }
1267
1268    case MEM:
1269      if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1270				  x, avail_p))
1271	return 0;
1272      else
1273	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1274
1275    case PRE_DEC:
1276    case PRE_INC:
1277    case POST_DEC:
1278    case POST_INC:
1279    case PRE_MODIFY:
1280    case POST_MODIFY:
1281      return 0;
1282
1283    case PC:
1284    case CC0: /*FIXME*/
1285    case CONST:
1286    case CONST_INT:
1287    case CONST_DOUBLE:
1288    case CONST_VECTOR:
1289    case SYMBOL_REF:
1290    case LABEL_REF:
1291    case ADDR_VEC:
1292    case ADDR_DIFF_VEC:
1293      return 1;
1294
1295    default:
1296      break;
1297    }
1298
1299  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1300    {
1301      if (fmt[i] == 'e')
1302	{
1303	  /* If we are about to do the last recursive call needed at this
1304	     level, change it into iteration.  This function is called enough
1305	     to be worth it.  */
1306	  if (i == 0)
1307	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1308
1309	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1310	    return 0;
1311	}
1312      else if (fmt[i] == 'E')
1313	for (j = 0; j < XVECLEN (x, i); j++)
1314	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1315	    return 0;
1316    }
1317
1318  return 1;
1319}
1320
1321/* Used for communication between mems_conflict_for_gcse_p and
1322   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
1323   conflict between two memory references.  */
1324static int gcse_mems_conflict_p;
1325
1326/* Used for communication between mems_conflict_for_gcse_p and
1327   load_killed_in_block_p.  A memory reference for a load instruction,
1328   mems_conflict_for_gcse_p will see if a memory store conflicts with
1329   this memory load.  */
1330static rtx gcse_mem_operand;
1331
1332/* DEST is the output of an instruction.  If it is a memory reference, and
1333   possibly conflicts with the load found in gcse_mem_operand, then set
1334   gcse_mems_conflict_p to a nonzero value.  */
1335
1336static void
1337mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1338			  void *data ATTRIBUTE_UNUSED)
1339{
1340  while (GET_CODE (dest) == SUBREG
1341	 || GET_CODE (dest) == ZERO_EXTRACT
1342	 || GET_CODE (dest) == STRICT_LOW_PART)
1343    dest = XEXP (dest, 0);
1344
1345  /* If DEST is not a MEM, then it will not conflict with the load.  Note
1346     that function calls are assumed to clobber memory, but are handled
1347     elsewhere.  */
1348  if (! MEM_P (dest))
1349    return;
1350
1351  /* If we are setting a MEM in our list of specially recognized MEMs,
1352     don't mark as killed this time.  */
1353
1354  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1355    {
1356      if (!find_rtx_in_ldst (dest))
1357	gcse_mems_conflict_p = 1;
1358      return;
1359    }
1360
1361  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1362		       rtx_addr_varies_p))
1363    gcse_mems_conflict_p = 1;
1364}
1365
1366/* Return nonzero if the expression in X (a memory reference) is killed
1367   in block BB before or after the insn with the CUID in UID_LIMIT.
1368   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1369   before UID_LIMIT.
1370
1371   To check the entire block, set UID_LIMIT to max_uid + 1 and
1372   AVAIL_P to 0.  */
1373
1374static int
1375load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1376{
1377  rtx list_entry = modify_mem_list[bb->index];
1378
1379  /* If this is a readonly then we aren't going to be changing it.  */
1380  if (MEM_READONLY_P (x))
1381    return 0;
1382
1383  while (list_entry)
1384    {
1385      rtx setter;
1386      /* Ignore entries in the list that do not apply.  */
1387      if ((avail_p
1388	   && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1389	  || (! avail_p
1390	      && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1391	{
1392	  list_entry = XEXP (list_entry, 1);
1393	  continue;
1394	}
1395
1396      setter = XEXP (list_entry, 0);
1397
1398      /* If SETTER is a call everything is clobbered.  Note that calls
1399	 to pure functions are never put on the list, so we need not
1400	 worry about them.  */
1401      if (CALL_P (setter))
1402	return 1;
1403
1404      /* SETTER must be an INSN of some kind that sets memory.  Call
1405	 note_stores to examine each hunk of memory that is modified.
1406
1407	 The note_stores interface is pretty limited, so we have to
1408	 communicate via global variables.  Yuk.  */
1409      gcse_mem_operand = x;
1410      gcse_mems_conflict_p = 0;
1411      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1412      if (gcse_mems_conflict_p)
1413	return 1;
1414      list_entry = XEXP (list_entry, 1);
1415    }
1416  return 0;
1417}
1418
1419/* Return nonzero if the operands of expression X are unchanged from
1420   the start of INSN's basic block up to but not including INSN.  */
1421
1422static int
1423oprs_anticipatable_p (rtx x, rtx insn)
1424{
1425  return oprs_unchanged_p (x, insn, 0);
1426}
1427
1428/* Return nonzero if the operands of expression X are unchanged from
1429   INSN to the end of INSN's basic block.  */
1430
1431static int
1432oprs_available_p (rtx x, rtx insn)
1433{
1434  return oprs_unchanged_p (x, insn, 1);
1435}
1436
1437/* Hash expression X.
1438
1439   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1440   indicating if a volatile operand is found or if the expression contains
1441   something we don't want to insert in the table.  HASH_TABLE_SIZE is
1442   the current size of the hash table to be probed.  */
1443
1444static unsigned int
1445hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1446	   int hash_table_size)
1447{
1448  unsigned int hash;
1449
1450  *do_not_record_p = 0;
1451
1452  hash = hash_rtx (x, mode, do_not_record_p,
1453		   NULL,  /*have_reg_qty=*/false);
1454  return hash % hash_table_size;
1455}
1456
1457/* Hash a set of register REGNO.
1458
1459   Sets are hashed on the register that is set.  This simplifies the PRE copy
1460   propagation code.
1461
1462   ??? May need to make things more elaborate.  Later, as necessary.  */
1463
1464static unsigned int
1465hash_set (int regno, int hash_table_size)
1466{
1467  unsigned int hash;
1468
1469  hash = regno;
1470  return hash % hash_table_size;
1471}
1472
1473/* Return nonzero if exp1 is equivalent to exp2.  */
1474
1475static int
1476expr_equiv_p (rtx x, rtx y)
1477{
1478  return exp_equiv_p (x, y, 0, true);
1479}
1480
1481/* Insert expression X in INSN in the hash TABLE.
1482   If it is already present, record it as the last occurrence in INSN's
1483   basic block.
1484
1485   MODE is the mode of the value X is being stored into.
1486   It is only used if X is a CONST_INT.
1487
1488   ANTIC_P is nonzero if X is an anticipatable expression.
1489   AVAIL_P is nonzero if X is an available expression.  */
1490
1491static void
1492insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1493		      int avail_p, struct hash_table *table)
1494{
1495  int found, do_not_record_p;
1496  unsigned int hash;
1497  struct expr *cur_expr, *last_expr = NULL;
1498  struct occr *antic_occr, *avail_occr;
1499
1500  hash = hash_expr (x, mode, &do_not_record_p, table->size);
1501
1502  /* Do not insert expression in table if it contains volatile operands,
1503     or if hash_expr determines the expression is something we don't want
1504     to or can't handle.  */
1505  if (do_not_record_p)
1506    return;
1507
1508  cur_expr = table->table[hash];
1509  found = 0;
1510
1511  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1512    {
1513      /* If the expression isn't found, save a pointer to the end of
1514	 the list.  */
1515      last_expr = cur_expr;
1516      cur_expr = cur_expr->next_same_hash;
1517    }
1518
1519  if (! found)
1520    {
1521      cur_expr = gcse_alloc (sizeof (struct expr));
1522      bytes_used += sizeof (struct expr);
1523      if (table->table[hash] == NULL)
1524	/* This is the first pattern that hashed to this index.  */
1525	table->table[hash] = cur_expr;
1526      else
1527	/* Add EXPR to end of this hash chain.  */
1528	last_expr->next_same_hash = cur_expr;
1529
1530      /* Set the fields of the expr element.  */
1531      cur_expr->expr = x;
1532      cur_expr->bitmap_index = table->n_elems++;
1533      cur_expr->next_same_hash = NULL;
1534      cur_expr->antic_occr = NULL;
1535      cur_expr->avail_occr = NULL;
1536    }
1537
1538  /* Now record the occurrence(s).  */
1539  if (antic_p)
1540    {
1541      antic_occr = cur_expr->antic_occr;
1542
1543      if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1544	antic_occr = NULL;
1545
1546      if (antic_occr)
1547	/* Found another instance of the expression in the same basic block.
1548	   Prefer the currently recorded one.  We want the first one in the
1549	   block and the block is scanned from start to end.  */
1550	; /* nothing to do */
1551      else
1552	{
1553	  /* First occurrence of this expression in this basic block.  */
1554	  antic_occr = gcse_alloc (sizeof (struct occr));
1555	  bytes_used += sizeof (struct occr);
1556	  antic_occr->insn = insn;
1557	  antic_occr->next = cur_expr->antic_occr;
1558	  antic_occr->deleted_p = 0;
1559	  cur_expr->antic_occr = antic_occr;
1560	}
1561    }
1562
1563  if (avail_p)
1564    {
1565      avail_occr = cur_expr->avail_occr;
1566
1567      if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1568	{
1569	  /* Found another instance of the expression in the same basic block.
1570	     Prefer this occurrence to the currently recorded one.  We want
1571	     the last one in the block and the block is scanned from start
1572	     to end.  */
1573	  avail_occr->insn = insn;
1574	}
1575      else
1576	{
1577	  /* First occurrence of this expression in this basic block.  */
1578	  avail_occr = gcse_alloc (sizeof (struct occr));
1579	  bytes_used += sizeof (struct occr);
1580	  avail_occr->insn = insn;
1581	  avail_occr->next = cur_expr->avail_occr;
1582	  avail_occr->deleted_p = 0;
1583	  cur_expr->avail_occr = avail_occr;
1584	}
1585    }
1586}
1587
1588/* Insert pattern X in INSN in the hash table.
1589   X is a SET of a reg to either another reg or a constant.
1590   If it is already present, record it as the last occurrence in INSN's
1591   basic block.  */
1592
1593static void
1594insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1595{
1596  int found;
1597  unsigned int hash;
1598  struct expr *cur_expr, *last_expr = NULL;
1599  struct occr *cur_occr;
1600
1601  gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1602
1603  hash = hash_set (REGNO (SET_DEST (x)), table->size);
1604
1605  cur_expr = table->table[hash];
1606  found = 0;
1607
1608  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1609    {
1610      /* If the expression isn't found, save a pointer to the end of
1611	 the list.  */
1612      last_expr = cur_expr;
1613      cur_expr = cur_expr->next_same_hash;
1614    }
1615
1616  if (! found)
1617    {
1618      cur_expr = gcse_alloc (sizeof (struct expr));
1619      bytes_used += sizeof (struct expr);
1620      if (table->table[hash] == NULL)
1621	/* This is the first pattern that hashed to this index.  */
1622	table->table[hash] = cur_expr;
1623      else
1624	/* Add EXPR to end of this hash chain.  */
1625	last_expr->next_same_hash = cur_expr;
1626
1627      /* Set the fields of the expr element.
1628	 We must copy X because it can be modified when copy propagation is
1629	 performed on its operands.  */
1630      cur_expr->expr = copy_rtx (x);
1631      cur_expr->bitmap_index = table->n_elems++;
1632      cur_expr->next_same_hash = NULL;
1633      cur_expr->antic_occr = NULL;
1634      cur_expr->avail_occr = NULL;
1635    }
1636
1637  /* Now record the occurrence.  */
1638  cur_occr = cur_expr->avail_occr;
1639
1640  if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1641    {
1642      /* Found another instance of the expression in the same basic block.
1643	 Prefer this occurrence to the currently recorded one.  We want
1644	 the last one in the block and the block is scanned from start
1645	 to end.  */
1646      cur_occr->insn = insn;
1647    }
1648  else
1649    {
1650      /* First occurrence of this expression in this basic block.  */
1651      cur_occr = gcse_alloc (sizeof (struct occr));
1652      bytes_used += sizeof (struct occr);
1653
1654	  cur_occr->insn = insn;
1655	  cur_occr->next = cur_expr->avail_occr;
1656	  cur_occr->deleted_p = 0;
1657	  cur_expr->avail_occr = cur_occr;
1658    }
1659}
1660
1661/* Determine whether the rtx X should be treated as a constant for
1662   the purposes of GCSE's constant propagation.  */
1663
1664static bool
1665gcse_constant_p (rtx x)
1666{
1667  /* Consider a COMPARE of two integers constant.  */
1668  if (GET_CODE (x) == COMPARE
1669      && GET_CODE (XEXP (x, 0)) == CONST_INT
1670      && GET_CODE (XEXP (x, 1)) == CONST_INT)
1671    return true;
1672
1673  /* Consider a COMPARE of the same registers is a constant
1674     if they are not floating point registers.  */
1675  if (GET_CODE(x) == COMPARE
1676      && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1677      && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1678      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1679      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1680    return true;
1681
1682  return CONSTANT_P (x);
1683}
1684
1685/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1686   expression one).  */
1687
1688static void
1689hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1690{
1691  rtx src = SET_SRC (pat);
1692  rtx dest = SET_DEST (pat);
1693  rtx note;
1694
1695  if (GET_CODE (src) == CALL)
1696    hash_scan_call (src, insn, table);
1697
1698  else if (REG_P (dest))
1699    {
1700      unsigned int regno = REGNO (dest);
1701      rtx tmp;
1702
1703      /* If this is a single set and we are doing constant propagation,
1704	 see if a REG_NOTE shows this equivalent to a constant.  */
1705      if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1706	  && gcse_constant_p (XEXP (note, 0)))
1707	src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1708
1709      /* Only record sets of pseudo-regs in the hash table.  */
1710      if (! table->set_p
1711	  && regno >= FIRST_PSEUDO_REGISTER
1712	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1713	  && can_copy_p (GET_MODE (dest))
1714	  /* GCSE commonly inserts instruction after the insn.  We can't
1715	     do that easily for EH_REGION notes so disable GCSE on these
1716	     for now.  */
1717	  && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1718	  /* Is SET_SRC something we want to gcse?  */
1719	  && want_to_gcse_p (src)
1720	  /* Don't CSE a nop.  */
1721	  && ! set_noop_p (pat)
1722	  /* Don't GCSE if it has attached REG_EQUIV note.
1723	     At this point this only function parameters should have
1724	     REG_EQUIV notes and if the argument slot is used somewhere
1725	     explicitly, it means address of parameter has been taken,
1726	     so we should not extend the lifetime of the pseudo.  */
1727	  && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1728	      || ! MEM_P (XEXP (note, 0))))
1729	{
1730	  /* An expression is not anticipatable if its operands are
1731	     modified before this insn or if this is not the only SET in
1732	     this insn.  */
1733	  int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1734	  /* An expression is not available if its operands are
1735	     subsequently modified, including this insn.  It's also not
1736	     available if this is a branch, because we can't insert
1737	     a set after the branch.  */
1738	  int avail_p = (oprs_available_p (src, insn)
1739			 && ! JUMP_P (insn));
1740
1741	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1742	}
1743
1744      /* Record sets for constant/copy propagation.  */
1745      else if (table->set_p
1746	       && regno >= FIRST_PSEUDO_REGISTER
1747	       && ((REG_P (src)
1748		    && REGNO (src) >= FIRST_PSEUDO_REGISTER
1749		    && can_copy_p (GET_MODE (dest))
1750		    && REGNO (src) != regno)
1751		   || gcse_constant_p (src))
1752	       /* A copy is not available if its src or dest is subsequently
1753		  modified.  Here we want to search from INSN+1 on, but
1754		  oprs_available_p searches from INSN on.  */
1755	       && (insn == BB_END (BLOCK_FOR_INSN (insn))
1756		   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1757		       && oprs_available_p (pat, tmp))))
1758	insert_set_in_table (pat, insn, table);
1759    }
1760  /* In case of store we want to consider the memory value as available in
1761     the REG stored in that memory. This makes it possible to remove
1762     redundant loads from due to stores to the same location.  */
1763  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1764      {
1765        unsigned int regno = REGNO (src);
1766
1767        /* Do not do this for constant/copy propagation.  */
1768        if (! table->set_p
1769            /* Only record sets of pseudo-regs in the hash table.  */
1770	    && regno >= FIRST_PSEUDO_REGISTER
1771	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1772	   && can_copy_p (GET_MODE (src))
1773	   /* GCSE commonly inserts instruction after the insn.  We can't
1774	      do that easily for EH_REGION notes so disable GCSE on these
1775	      for now.  */
1776	   && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1777	   /* Is SET_DEST something we want to gcse?  */
1778	   && want_to_gcse_p (dest)
1779	   /* Don't CSE a nop.  */
1780	   && ! set_noop_p (pat)
1781	   /* Don't GCSE if it has attached REG_EQUIV note.
1782	      At this point this only function parameters should have
1783	      REG_EQUIV notes and if the argument slot is used somewhere
1784	      explicitly, it means address of parameter has been taken,
1785	      so we should not extend the lifetime of the pseudo.  */
1786	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1787	       || ! MEM_P (XEXP (note, 0))))
1788             {
1789               /* Stores are never anticipatable.  */
1790               int antic_p = 0;
1791	       /* An expression is not available if its operands are
1792	          subsequently modified, including this insn.  It's also not
1793	          available if this is a branch, because we can't insert
1794	          a set after the branch.  */
1795               int avail_p = oprs_available_p (dest, insn)
1796			     && ! JUMP_P (insn);
1797
1798	       /* Record the memory expression (DEST) in the hash table.  */
1799	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1800				     antic_p, avail_p, table);
1801             }
1802      }
1803}
1804
1805static void
1806hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1807		   struct hash_table *table ATTRIBUTE_UNUSED)
1808{
1809  /* Currently nothing to do.  */
1810}
1811
1812static void
1813hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1814		struct hash_table *table ATTRIBUTE_UNUSED)
1815{
1816  /* Currently nothing to do.  */
1817}
1818
1819/* Process INSN and add hash table entries as appropriate.
1820
1821   Only available expressions that set a single pseudo-reg are recorded.
1822
1823   Single sets in a PARALLEL could be handled, but it's an extra complication
1824   that isn't dealt with right now.  The trick is handling the CLOBBERs that
1825   are also in the PARALLEL.  Later.
1826
1827   If SET_P is nonzero, this is for the assignment hash table,
1828   otherwise it is for the expression hash table.
1829   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1830   not record any expressions.  */
1831
1832static void
1833hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1834{
1835  rtx pat = PATTERN (insn);
1836  int i;
1837
1838  if (in_libcall_block)
1839    return;
1840
1841  /* Pick out the sets of INSN and for other forms of instructions record
1842     what's been modified.  */
1843
1844  if (GET_CODE (pat) == SET)
1845    hash_scan_set (pat, insn, table);
1846  else if (GET_CODE (pat) == PARALLEL)
1847    for (i = 0; i < XVECLEN (pat, 0); i++)
1848      {
1849	rtx x = XVECEXP (pat, 0, i);
1850
1851	if (GET_CODE (x) == SET)
1852	  hash_scan_set (x, insn, table);
1853	else if (GET_CODE (x) == CLOBBER)
1854	  hash_scan_clobber (x, insn, table);
1855	else if (GET_CODE (x) == CALL)
1856	  hash_scan_call (x, insn, table);
1857      }
1858
1859  else if (GET_CODE (pat) == CLOBBER)
1860    hash_scan_clobber (pat, insn, table);
1861  else if (GET_CODE (pat) == CALL)
1862    hash_scan_call (pat, insn, table);
1863}
1864
1865static void
1866dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1867{
1868  int i;
1869  /* Flattened out table, so it's printed in proper order.  */
1870  struct expr **flat_table;
1871  unsigned int *hash_val;
1872  struct expr *expr;
1873
1874  flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1875  hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1876
1877  for (i = 0; i < (int) table->size; i++)
1878    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1879      {
1880	flat_table[expr->bitmap_index] = expr;
1881	hash_val[expr->bitmap_index] = i;
1882      }
1883
1884  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1885	   name, table->size, table->n_elems);
1886
1887  for (i = 0; i < (int) table->n_elems; i++)
1888    if (flat_table[i] != 0)
1889      {
1890	expr = flat_table[i];
1891	fprintf (file, "Index %d (hash value %d)\n  ",
1892		 expr->bitmap_index, hash_val[i]);
1893	print_rtl (file, expr->expr);
1894	fprintf (file, "\n");
1895      }
1896
1897  fprintf (file, "\n");
1898
1899  free (flat_table);
1900  free (hash_val);
1901}
1902
1903/* Record register first/last/block set information for REGNO in INSN.
1904
1905   first_set records the first place in the block where the register
1906   is set and is used to compute "anticipatability".
1907
1908   last_set records the last place in the block where the register
1909   is set and is used to compute "availability".
1910
1911   last_bb records the block for which first_set and last_set are
1912   valid, as a quick test to invalidate them.
1913
1914   reg_set_in_block records whether the register is set in the block
1915   and is used to compute "transparency".  */
1916
1917static void
1918record_last_reg_set_info (rtx insn, int regno)
1919{
1920  struct reg_avail_info *info = &reg_avail_info[regno];
1921  int cuid = INSN_CUID (insn);
1922
1923  info->last_set = cuid;
1924  if (info->last_bb != current_bb)
1925    {
1926      info->last_bb = current_bb;
1927      info->first_set = cuid;
1928      SET_BIT (reg_set_in_block[current_bb->index], regno);
1929    }
1930}
1931
1932
1933/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1934   Note we store a pair of elements in the list, so they have to be
1935   taken off pairwise.  */
1936
1937static void
1938canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1939		   void * v_insn)
1940{
1941  rtx dest_addr, insn;
1942  int bb;
1943
1944  while (GET_CODE (dest) == SUBREG
1945      || GET_CODE (dest) == ZERO_EXTRACT
1946      || GET_CODE (dest) == STRICT_LOW_PART)
1947    dest = XEXP (dest, 0);
1948
1949  /* If DEST is not a MEM, then it will not conflict with a load.  Note
1950     that function calls are assumed to clobber memory, but are handled
1951     elsewhere.  */
1952
1953  if (! MEM_P (dest))
1954    return;
1955
1956  dest_addr = get_addr (XEXP (dest, 0));
1957  dest_addr = canon_rtx (dest_addr);
1958  insn = (rtx) v_insn;
1959  bb = BLOCK_NUM (insn);
1960
1961  canon_modify_mem_list[bb] =
1962    alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1963  canon_modify_mem_list[bb] =
1964    alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1965}
1966
1967/* Record memory modification information for INSN.  We do not actually care
1968   about the memory location(s) that are set, or even how they are set (consider
1969   a CALL_INSN).  We merely need to record which insns modify memory.  */
1970
1971static void
1972record_last_mem_set_info (rtx insn)
1973{
1974  int bb = BLOCK_NUM (insn);
1975
1976  /* load_killed_in_block_p will handle the case of calls clobbering
1977     everything.  */
1978  modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1979  bitmap_set_bit (modify_mem_list_set, bb);
1980
1981  if (CALL_P (insn))
1982    {
1983      /* Note that traversals of this loop (other than for free-ing)
1984	 will break after encountering a CALL_INSN.  So, there's no
1985	 need to insert a pair of items, as canon_list_insert does.  */
1986      canon_modify_mem_list[bb] =
1987	alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1988      bitmap_set_bit (blocks_with_calls, bb);
1989    }
1990  else
1991    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1992}
1993
1994/* Called from compute_hash_table via note_stores to handle one
1995   SET or CLOBBER in an insn.  DATA is really the instruction in which
1996   the SET is taking place.  */
1997
1998static void
1999record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2000{
2001  rtx last_set_insn = (rtx) data;
2002
2003  if (GET_CODE (dest) == SUBREG)
2004    dest = SUBREG_REG (dest);
2005
2006  if (REG_P (dest))
2007    record_last_reg_set_info (last_set_insn, REGNO (dest));
2008  else if (MEM_P (dest)
2009	   /* Ignore pushes, they clobber nothing.  */
2010	   && ! push_operand (dest, GET_MODE (dest)))
2011    record_last_mem_set_info (last_set_insn);
2012}
2013
2014/* Top level function to create an expression or assignment hash table.
2015
2016   Expression entries are placed in the hash table if
2017   - they are of the form (set (pseudo-reg) src),
2018   - src is something we want to perform GCSE on,
2019   - none of the operands are subsequently modified in the block
2020
2021   Assignment entries are placed in the hash table if
2022   - they are of the form (set (pseudo-reg) src),
2023   - src is something we want to perform const/copy propagation on,
2024   - none of the operands or target are subsequently modified in the block
2025
2026   Currently src must be a pseudo-reg or a const_int.
2027
2028   TABLE is the table computed.  */
2029
2030static void
2031compute_hash_table_work (struct hash_table *table)
2032{
2033  unsigned int i;
2034
2035  /* While we compute the hash table we also compute a bit array of which
2036     registers are set in which blocks.
2037     ??? This isn't needed during const/copy propagation, but it's cheap to
2038     compute.  Later.  */
2039  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2040
2041  /* re-Cache any INSN_LIST nodes we have allocated.  */
2042  clear_modify_mem_tables ();
2043  /* Some working arrays used to track first and last set in each block.  */
2044  reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2045
2046  for (i = 0; i < max_gcse_regno; ++i)
2047    reg_avail_info[i].last_bb = NULL;
2048
2049  FOR_EACH_BB (current_bb)
2050    {
2051      rtx insn;
2052      unsigned int regno;
2053      int in_libcall_block;
2054
2055      /* First pass over the instructions records information used to
2056	 determine when registers and memory are first and last set.
2057	 ??? hard-reg reg_set_in_block computation
2058	 could be moved to compute_sets since they currently don't change.  */
2059
2060      FOR_BB_INSNS (current_bb, insn)
2061	{
2062	  if (! INSN_P (insn))
2063	    continue;
2064
2065	  if (CALL_P (insn))
2066	    {
2067	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2068		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2069		  record_last_reg_set_info (insn, regno);
2070
2071	      mark_call (insn);
2072	    }
2073
2074	  note_stores (PATTERN (insn), record_last_set_info, insn);
2075	}
2076
2077      /* Insert implicit sets in the hash table.  */
2078      if (table->set_p
2079	  && implicit_sets[current_bb->index] != NULL_RTX)
2080	hash_scan_set (implicit_sets[current_bb->index],
2081		       BB_HEAD (current_bb), table);
2082
2083      /* The next pass builds the hash table.  */
2084      in_libcall_block = 0;
2085      FOR_BB_INSNS (current_bb, insn)
2086	if (INSN_P (insn))
2087	  {
2088	    if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2089	      in_libcall_block = 1;
2090	    else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2091	      in_libcall_block = 0;
2092	    hash_scan_insn (insn, table, in_libcall_block);
2093	    if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2094	      in_libcall_block = 0;
2095	  }
2096    }
2097
2098  free (reg_avail_info);
2099  reg_avail_info = NULL;
2100}
2101
2102/* Allocate space for the set/expr hash TABLE.
2103   N_INSNS is the number of instructions in the function.
2104   It is used to determine the number of buckets to use.
2105   SET_P determines whether set or expression table will
2106   be created.  */
2107
2108static void
2109alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2110{
2111  int n;
2112
2113  table->size = n_insns / 4;
2114  if (table->size < 11)
2115    table->size = 11;
2116
2117  /* Attempt to maintain efficient use of hash table.
2118     Making it an odd number is simplest for now.
2119     ??? Later take some measurements.  */
2120  table->size |= 1;
2121  n = table->size * sizeof (struct expr *);
2122  table->table = gmalloc (n);
2123  table->set_p = set_p;
2124}
2125
2126/* Free things allocated by alloc_hash_table.  */
2127
2128static void
2129free_hash_table (struct hash_table *table)
2130{
2131  free (table->table);
2132}
2133
2134/* Compute the hash TABLE for doing copy/const propagation or
2135   expression hash table.  */
2136
2137static void
2138compute_hash_table (struct hash_table *table)
2139{
2140  /* Initialize count of number of entries in hash table.  */
2141  table->n_elems = 0;
2142  memset (table->table, 0, table->size * sizeof (struct expr *));
2143
2144  compute_hash_table_work (table);
2145}
2146
2147/* Expression tracking support.  */
2148
2149/* Lookup REGNO in the set TABLE.  The result is a pointer to the
2150   table entry, or NULL if not found.  */
2151
2152static struct expr *
2153lookup_set (unsigned int regno, struct hash_table *table)
2154{
2155  unsigned int hash = hash_set (regno, table->size);
2156  struct expr *expr;
2157
2158  expr = table->table[hash];
2159
2160  while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2161    expr = expr->next_same_hash;
2162
2163  return expr;
2164}
2165
2166/* Return the next entry for REGNO in list EXPR.  */
2167
2168static struct expr *
2169next_set (unsigned int regno, struct expr *expr)
2170{
2171  do
2172    expr = expr->next_same_hash;
2173  while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2174
2175  return expr;
2176}
2177
2178/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2179   types may be mixed.  */
2180
2181static void
2182free_insn_expr_list_list (rtx *listp)
2183{
2184  rtx list, next;
2185
2186  for (list = *listp; list ; list = next)
2187    {
2188      next = XEXP (list, 1);
2189      if (GET_CODE (list) == EXPR_LIST)
2190	free_EXPR_LIST_node (list);
2191      else
2192	free_INSN_LIST_node (list);
2193    }
2194
2195  *listp = NULL;
2196}
2197
2198/* Clear canon_modify_mem_list and modify_mem_list tables.  */
2199static void
2200clear_modify_mem_tables (void)
2201{
2202  unsigned i;
2203  bitmap_iterator bi;
2204
2205  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2206    {
2207      free_INSN_LIST_list (modify_mem_list + i);
2208      free_insn_expr_list_list (canon_modify_mem_list + i);
2209    }
2210  bitmap_clear (modify_mem_list_set);
2211  bitmap_clear (blocks_with_calls);
2212}
2213
2214/* Release memory used by modify_mem_list_set.  */
2215
2216static void
2217free_modify_mem_tables (void)
2218{
2219  clear_modify_mem_tables ();
2220  free (modify_mem_list);
2221  free (canon_modify_mem_list);
2222  modify_mem_list = 0;
2223  canon_modify_mem_list = 0;
2224}
2225
2226/* Reset tables used to keep track of what's still available [since the
2227   start of the block].  */
2228
2229static void
2230reset_opr_set_tables (void)
2231{
2232  /* Maintain a bitmap of which regs have been set since beginning of
2233     the block.  */
2234  CLEAR_REG_SET (reg_set_bitmap);
2235
2236  /* Also keep a record of the last instruction to modify memory.
2237     For now this is very trivial, we only record whether any memory
2238     location has been modified.  */
2239  clear_modify_mem_tables ();
2240}
2241
2242/* Return nonzero if the operands of X are not set before INSN in
2243   INSN's basic block.  */
2244
2245static int
2246oprs_not_set_p (rtx x, rtx insn)
2247{
2248  int i, j;
2249  enum rtx_code code;
2250  const char *fmt;
2251
2252  if (x == 0)
2253    return 1;
2254
2255  code = GET_CODE (x);
2256  switch (code)
2257    {
2258    case PC:
2259    case CC0:
2260    case CONST:
2261    case CONST_INT:
2262    case CONST_DOUBLE:
2263    case CONST_VECTOR:
2264    case SYMBOL_REF:
2265    case LABEL_REF:
2266    case ADDR_VEC:
2267    case ADDR_DIFF_VEC:
2268      return 1;
2269
2270    case MEM:
2271      if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2272				  INSN_CUID (insn), x, 0))
2273	return 0;
2274      else
2275	return oprs_not_set_p (XEXP (x, 0), insn);
2276
2277    case REG:
2278      return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2279
2280    default:
2281      break;
2282    }
2283
2284  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2285    {
2286      if (fmt[i] == 'e')
2287	{
2288	  /* If we are about to do the last recursive call
2289	     needed at this level, change it into iteration.
2290	     This function is called enough to be worth it.  */
2291	  if (i == 0)
2292	    return oprs_not_set_p (XEXP (x, i), insn);
2293
2294	  if (! oprs_not_set_p (XEXP (x, i), insn))
2295	    return 0;
2296	}
2297      else if (fmt[i] == 'E')
2298	for (j = 0; j < XVECLEN (x, i); j++)
2299	  if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2300	    return 0;
2301    }
2302
2303  return 1;
2304}
2305
2306/* Mark things set by a CALL.  */
2307
2308static void
2309mark_call (rtx insn)
2310{
2311  if (! CONST_OR_PURE_CALL_P (insn))
2312    record_last_mem_set_info (insn);
2313}
2314
2315/* Mark things set by a SET.  */
2316
2317static void
2318mark_set (rtx pat, rtx insn)
2319{
2320  rtx dest = SET_DEST (pat);
2321
2322  while (GET_CODE (dest) == SUBREG
2323	 || GET_CODE (dest) == ZERO_EXTRACT
2324	 || GET_CODE (dest) == STRICT_LOW_PART)
2325    dest = XEXP (dest, 0);
2326
2327  if (REG_P (dest))
2328    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2329  else if (MEM_P (dest))
2330    record_last_mem_set_info (insn);
2331
2332  if (GET_CODE (SET_SRC (pat)) == CALL)
2333    mark_call (insn);
2334}
2335
2336/* Record things set by a CLOBBER.  */
2337
2338static void
2339mark_clobber (rtx pat, rtx insn)
2340{
2341  rtx clob = XEXP (pat, 0);
2342
2343  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2344    clob = XEXP (clob, 0);
2345
2346  if (REG_P (clob))
2347    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2348  else
2349    record_last_mem_set_info (insn);
2350}
2351
2352/* Record things set by INSN.
2353   This data is used by oprs_not_set_p.  */
2354
2355static void
2356mark_oprs_set (rtx insn)
2357{
2358  rtx pat = PATTERN (insn);
2359  int i;
2360
2361  if (GET_CODE (pat) == SET)
2362    mark_set (pat, insn);
2363  else if (GET_CODE (pat) == PARALLEL)
2364    for (i = 0; i < XVECLEN (pat, 0); i++)
2365      {
2366	rtx x = XVECEXP (pat, 0, i);
2367
2368	if (GET_CODE (x) == SET)
2369	  mark_set (x, insn);
2370	else if (GET_CODE (x) == CLOBBER)
2371	  mark_clobber (x, insn);
2372	else if (GET_CODE (x) == CALL)
2373	  mark_call (insn);
2374      }
2375
2376  else if (GET_CODE (pat) == CLOBBER)
2377    mark_clobber (pat, insn);
2378  else if (GET_CODE (pat) == CALL)
2379    mark_call (insn);
2380}
2381
2382
2383/* Compute copy/constant propagation working variables.  */
2384
2385/* Local properties of assignments.  */
2386static sbitmap *cprop_pavloc;
2387static sbitmap *cprop_absaltered;
2388
2389/* Global properties of assignments (computed from the local properties).  */
2390static sbitmap *cprop_avin;
2391static sbitmap *cprop_avout;
2392
2393/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
2394   basic blocks.  N_SETS is the number of sets.  */
2395
2396static void
2397alloc_cprop_mem (int n_blocks, int n_sets)
2398{
2399  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2400  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2401
2402  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2403  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2404}
2405
2406/* Free vars used by copy/const propagation.  */
2407
2408static void
2409free_cprop_mem (void)
2410{
2411  sbitmap_vector_free (cprop_pavloc);
2412  sbitmap_vector_free (cprop_absaltered);
2413  sbitmap_vector_free (cprop_avin);
2414  sbitmap_vector_free (cprop_avout);
2415}
2416
2417/* For each block, compute whether X is transparent.  X is either an
2418   expression or an assignment [though we don't care which, for this context
2419   an assignment is treated as an expression].  For each block where an
2420   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2421   bit in BMAP.  */
2422
2423static void
2424compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2425{
2426  int i, j;
2427  basic_block bb;
2428  enum rtx_code code;
2429  reg_set *r;
2430  const char *fmt;
2431
2432  /* repeat is used to turn tail-recursion into iteration since GCC
2433     can't do it when there's no return value.  */
2434 repeat:
2435
2436  if (x == 0)
2437    return;
2438
2439  code = GET_CODE (x);
2440  switch (code)
2441    {
2442    case REG:
2443      if (set_p)
2444	{
2445	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2446	    {
2447	      FOR_EACH_BB (bb)
2448		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2449		  SET_BIT (bmap[bb->index], indx);
2450	    }
2451	  else
2452	    {
2453	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2454		SET_BIT (bmap[r->bb_index], indx);
2455	    }
2456	}
2457      else
2458	{
2459	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2460	    {
2461	      FOR_EACH_BB (bb)
2462		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2463		  RESET_BIT (bmap[bb->index], indx);
2464	    }
2465	  else
2466	    {
2467	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2468		RESET_BIT (bmap[r->bb_index], indx);
2469	    }
2470	}
2471
2472      return;
2473
2474    case MEM:
2475      if (! MEM_READONLY_P (x))
2476	{
2477	  bitmap_iterator bi;
2478	  unsigned bb_index;
2479
2480	  /* First handle all the blocks with calls.  We don't need to
2481	     do any list walking for them.  */
2482	  EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2483	    {
2484	      if (set_p)
2485		SET_BIT (bmap[bb_index], indx);
2486	      else
2487		RESET_BIT (bmap[bb_index], indx);
2488	    }
2489
2490	    /* Now iterate over the blocks which have memory modifications
2491	       but which do not have any calls.  */
2492	    EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2493					    blocks_with_calls,
2494					    0, bb_index, bi)
2495	      {
2496		rtx list_entry = canon_modify_mem_list[bb_index];
2497
2498		while (list_entry)
2499		  {
2500		    rtx dest, dest_addr;
2501
2502		    /* LIST_ENTRY must be an INSN of some kind that sets memory.
2503		       Examine each hunk of memory that is modified.  */
2504
2505		    dest = XEXP (list_entry, 0);
2506		    list_entry = XEXP (list_entry, 1);
2507		    dest_addr = XEXP (list_entry, 0);
2508
2509		    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2510					       x, rtx_addr_varies_p))
2511		      {
2512			if (set_p)
2513			  SET_BIT (bmap[bb_index], indx);
2514			else
2515			  RESET_BIT (bmap[bb_index], indx);
2516			break;
2517		      }
2518		    list_entry = XEXP (list_entry, 1);
2519	          }
2520	      }
2521	}
2522
2523      x = XEXP (x, 0);
2524      goto repeat;
2525
2526    case PC:
2527    case CC0: /*FIXME*/
2528    case CONST:
2529    case CONST_INT:
2530    case CONST_DOUBLE:
2531    case CONST_VECTOR:
2532    case SYMBOL_REF:
2533    case LABEL_REF:
2534    case ADDR_VEC:
2535    case ADDR_DIFF_VEC:
2536      return;
2537
2538    default:
2539      break;
2540    }
2541
2542  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2543    {
2544      if (fmt[i] == 'e')
2545	{
2546	  /* If we are about to do the last recursive call
2547	     needed at this level, change it into iteration.
2548	     This function is called enough to be worth it.  */
2549	  if (i == 0)
2550	    {
2551	      x = XEXP (x, i);
2552	      goto repeat;
2553	    }
2554
2555	  compute_transp (XEXP (x, i), indx, bmap, set_p);
2556	}
2557      else if (fmt[i] == 'E')
2558	for (j = 0; j < XVECLEN (x, i); j++)
2559	  compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2560    }
2561}
2562
2563/* Top level routine to do the dataflow analysis needed by copy/const
2564   propagation.  */
2565
2566static void
2567compute_cprop_data (void)
2568{
2569  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2570  compute_available (cprop_pavloc, cprop_absaltered,
2571		     cprop_avout, cprop_avin);
2572}
2573
2574/* Copy/constant propagation.  */
2575
2576/* Maximum number of register uses in an insn that we handle.  */
2577#define MAX_USES 8
2578
2579/* Table of uses found in an insn.
2580   Allocated statically to avoid alloc/free complexity and overhead.  */
2581static struct reg_use reg_use_table[MAX_USES];
2582
2583/* Index into `reg_use_table' while building it.  */
2584static int reg_use_count;
2585
2586/* Set up a list of register numbers used in INSN.  The found uses are stored
2587   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
2588   and contains the number of uses in the table upon exit.
2589
2590   ??? If a register appears multiple times we will record it multiple times.
2591   This doesn't hurt anything but it will slow things down.  */
2592
2593static void
2594find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2595{
2596  int i, j;
2597  enum rtx_code code;
2598  const char *fmt;
2599  rtx x = *xptr;
2600
2601  /* repeat is used to turn tail-recursion into iteration since GCC
2602     can't do it when there's no return value.  */
2603 repeat:
2604  if (x == 0)
2605    return;
2606
2607  code = GET_CODE (x);
2608  if (REG_P (x))
2609    {
2610      if (reg_use_count == MAX_USES)
2611	return;
2612
2613      reg_use_table[reg_use_count].reg_rtx = x;
2614      reg_use_count++;
2615    }
2616
2617  /* Recursively scan the operands of this expression.  */
2618
2619  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2620    {
2621      if (fmt[i] == 'e')
2622	{
2623	  /* If we are about to do the last recursive call
2624	     needed at this level, change it into iteration.
2625	     This function is called enough to be worth it.  */
2626	  if (i == 0)
2627	    {
2628	      x = XEXP (x, 0);
2629	      goto repeat;
2630	    }
2631
2632	  find_used_regs (&XEXP (x, i), data);
2633	}
2634      else if (fmt[i] == 'E')
2635	for (j = 0; j < XVECLEN (x, i); j++)
2636	  find_used_regs (&XVECEXP (x, i, j), data);
2637    }
2638}
2639
2640/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2641   Returns nonzero is successful.  */
2642
2643static int
2644try_replace_reg (rtx from, rtx to, rtx insn)
2645{
2646  rtx note = find_reg_equal_equiv_note (insn);
2647  rtx src = 0;
2648  int success = 0;
2649  rtx set = single_set (insn);
2650
2651  validate_replace_src_group (from, to, insn);
2652  if (num_changes_pending () && apply_change_group ())
2653    success = 1;
2654
2655  /* Try to simplify SET_SRC if we have substituted a constant.  */
2656  if (success && set && CONSTANT_P (to))
2657    {
2658      src = simplify_rtx (SET_SRC (set));
2659
2660      if (src)
2661	validate_change (insn, &SET_SRC (set), src, 0);
2662    }
2663
2664  /* If there is already a NOTE, update the expression in it with our
2665     replacement.  */
2666  if (note != 0)
2667    XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2668
2669  if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2670    {
2671      /* If above failed and this is a single set, try to simplify the source of
2672	 the set given our substitution.  We could perhaps try this for multiple
2673	 SETs, but it probably won't buy us anything.  */
2674      src = simplify_replace_rtx (SET_SRC (set), from, to);
2675
2676      if (!rtx_equal_p (src, SET_SRC (set))
2677	  && validate_change (insn, &SET_SRC (set), src, 0))
2678	success = 1;
2679
2680      /* If we've failed to do replacement, have a single SET, don't already
2681	 have a note, and have no special SET, add a REG_EQUAL note to not
2682	 lose information.  */
2683      if (!success && note == 0 && set != 0
2684	  && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2685	  && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2686	note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2687    }
2688
2689  /* REG_EQUAL may get simplified into register.
2690     We don't allow that. Remove that note. This code ought
2691     not to happen, because previous code ought to synthesize
2692     reg-reg move, but be on the safe side.  */
2693  if (note && REG_P (XEXP (note, 0)))
2694    remove_note (insn, note);
2695
2696  return success;
2697}
2698
2699/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
2700   NULL no such set is found.  */
2701
2702static struct expr *
2703find_avail_set (int regno, rtx insn)
2704{
2705  /* SET1 contains the last set found that can be returned to the caller for
2706     use in a substitution.  */
2707  struct expr *set1 = 0;
2708
2709  /* Loops are not possible here.  To get a loop we would need two sets
2710     available at the start of the block containing INSN.  i.e. we would
2711     need two sets like this available at the start of the block:
2712
2713       (set (reg X) (reg Y))
2714       (set (reg Y) (reg X))
2715
2716     This can not happen since the set of (reg Y) would have killed the
2717     set of (reg X) making it unavailable at the start of this block.  */
2718  while (1)
2719    {
2720      rtx src;
2721      struct expr *set = lookup_set (regno, &set_hash_table);
2722
2723      /* Find a set that is available at the start of the block
2724	 which contains INSN.  */
2725      while (set)
2726	{
2727	  if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2728	    break;
2729	  set = next_set (regno, set);
2730	}
2731
2732      /* If no available set was found we've reached the end of the
2733	 (possibly empty) copy chain.  */
2734      if (set == 0)
2735	break;
2736
2737      gcc_assert (GET_CODE (set->expr) == SET);
2738
2739      src = SET_SRC (set->expr);
2740
2741      /* We know the set is available.
2742	 Now check that SRC is ANTLOC (i.e. none of the source operands
2743	 have changed since the start of the block).
2744
2745         If the source operand changed, we may still use it for the next
2746         iteration of this loop, but we may not use it for substitutions.  */
2747
2748      if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2749	set1 = set;
2750
2751      /* If the source of the set is anything except a register, then
2752	 we have reached the end of the copy chain.  */
2753      if (! REG_P (src))
2754	break;
2755
2756      /* Follow the copy chain, i.e. start another iteration of the loop
2757	 and see if we have an available copy into SRC.  */
2758      regno = REGNO (src);
2759    }
2760
2761  /* SET1 holds the last set that was available and anticipatable at
2762     INSN.  */
2763  return set1;
2764}
2765
2766/* Subroutine of cprop_insn that tries to propagate constants into
2767   JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
2768   it is the instruction that immediately precedes JUMP, and must be a
2769   single SET of a register.  FROM is what we will try to replace,
2770   SRC is the constant we will try to substitute for it.  Returns nonzero
2771   if a change was made.  */
2772
2773static int
2774cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2775{
2776  rtx new, set_src, note_src;
2777  rtx set = pc_set (jump);
2778  rtx note = find_reg_equal_equiv_note (jump);
2779
2780  if (note)
2781    {
2782      note_src = XEXP (note, 0);
2783      if (GET_CODE (note_src) == EXPR_LIST)
2784	note_src = NULL_RTX;
2785    }
2786  else note_src = NULL_RTX;
2787
2788  /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
2789  set_src = note_src ? note_src : SET_SRC (set);
2790
2791  /* First substitute the SETCC condition into the JUMP instruction,
2792     then substitute that given values into this expanded JUMP.  */
2793  if (setcc != NULL_RTX
2794      && !modified_between_p (from, setcc, jump)
2795      && !modified_between_p (src, setcc, jump))
2796    {
2797      rtx setcc_src;
2798      rtx setcc_set = single_set (setcc);
2799      rtx setcc_note = find_reg_equal_equiv_note (setcc);
2800      setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2801		? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2802      set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2803				      setcc_src);
2804    }
2805  else
2806    setcc = NULL_RTX;
2807
2808  new = simplify_replace_rtx (set_src, from, src);
2809
2810  /* If no simplification can be made, then try the next register.  */
2811  if (rtx_equal_p (new, SET_SRC (set)))
2812    return 0;
2813
2814  /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
2815  if (new == pc_rtx)
2816    delete_insn (jump);
2817  else
2818    {
2819      /* Ensure the value computed inside the jump insn to be equivalent
2820         to one computed by setcc.  */
2821      if (setcc && modified_in_p (new, setcc))
2822	return 0;
2823      if (! validate_change (jump, &SET_SRC (set), new, 0))
2824	{
2825	  /* When (some) constants are not valid in a comparison, and there
2826	     are two registers to be replaced by constants before the entire
2827	     comparison can be folded into a constant, we need to keep
2828	     intermediate information in REG_EQUAL notes.  For targets with
2829	     separate compare insns, such notes are added by try_replace_reg.
2830	     When we have a combined compare-and-branch instruction, however,
2831	     we need to attach a note to the branch itself to make this
2832	     optimization work.  */
2833
2834	  if (!rtx_equal_p (new, note_src))
2835	    set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2836	  return 0;
2837	}
2838
2839      /* Remove REG_EQUAL note after simplification.  */
2840      if (note_src)
2841	remove_note (jump, note);
2842
2843      /* If this has turned into an unconditional jump,
2844	 then put a barrier after it so that the unreachable
2845	 code will be deleted.  */
2846      if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2847	emit_barrier_after (jump);
2848     }
2849
2850#ifdef HAVE_cc0
2851  /* Delete the cc0 setter.  */
2852  if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2853    delete_insn (setcc);
2854#endif
2855
2856  run_jump_opt_after_gcse = 1;
2857
2858  global_const_prop_count++;
2859  if (gcse_file != NULL)
2860    {
2861      fprintf (gcse_file,
2862	       "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2863	       REGNO (from), INSN_UID (jump));
2864      print_rtl (gcse_file, src);
2865      fprintf (gcse_file, "\n");
2866    }
2867  purge_dead_edges (bb);
2868
2869  return 1;
2870}
2871
2872static bool
2873constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2874{
2875  rtx sset;
2876
2877  /* Check for reg or cc0 setting instructions followed by
2878     conditional branch instructions first.  */
2879  if (alter_jumps
2880      && (sset = single_set (insn)) != NULL
2881      && NEXT_INSN (insn)
2882      && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2883    {
2884      rtx dest = SET_DEST (sset);
2885      if ((REG_P (dest) || CC0_P (dest))
2886	  && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2887	return 1;
2888    }
2889
2890  /* Handle normal insns next.  */
2891  if (NONJUMP_INSN_P (insn)
2892      && try_replace_reg (from, to, insn))
2893    return 1;
2894
2895  /* Try to propagate a CONST_INT into a conditional jump.
2896     We're pretty specific about what we will handle in this
2897     code, we can extend this as necessary over time.
2898
2899     Right now the insn in question must look like
2900     (set (pc) (if_then_else ...))  */
2901  else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2902    return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2903  return 0;
2904}
2905
2906/* Perform constant and copy propagation on INSN.
2907   The result is nonzero if a change was made.  */
2908
2909static int
2910cprop_insn (rtx insn, int alter_jumps)
2911{
2912  struct reg_use *reg_used;
2913  int changed = 0;
2914  rtx note;
2915
2916  if (!INSN_P (insn))
2917    return 0;
2918
2919  reg_use_count = 0;
2920  note_uses (&PATTERN (insn), find_used_regs, NULL);
2921
2922  note = find_reg_equal_equiv_note (insn);
2923
2924  /* We may win even when propagating constants into notes.  */
2925  if (note)
2926    find_used_regs (&XEXP (note, 0), NULL);
2927
2928  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2929       reg_used++, reg_use_count--)
2930    {
2931      unsigned int regno = REGNO (reg_used->reg_rtx);
2932      rtx pat, src;
2933      struct expr *set;
2934
2935      /* Ignore registers created by GCSE.
2936	 We do this because ...  */
2937      if (regno >= max_gcse_regno)
2938	continue;
2939
2940      /* If the register has already been set in this block, there's
2941	 nothing we can do.  */
2942      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2943	continue;
2944
2945      /* Find an assignment that sets reg_used and is available
2946	 at the start of the block.  */
2947      set = find_avail_set (regno, insn);
2948      if (! set)
2949	continue;
2950
2951      pat = set->expr;
2952      /* ??? We might be able to handle PARALLELs.  Later.  */
2953      gcc_assert (GET_CODE (pat) == SET);
2954
2955      src = SET_SRC (pat);
2956
2957      /* Constant propagation.  */
2958      if (gcse_constant_p (src))
2959	{
2960          if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2961	    {
2962	      changed = 1;
2963	      global_const_prop_count++;
2964	      if (gcse_file != NULL)
2965		{
2966		  fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2967		  fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2968		  print_rtl (gcse_file, src);
2969		  fprintf (gcse_file, "\n");
2970		}
2971	      if (INSN_DELETED_P (insn))
2972		return 1;
2973	    }
2974	}
2975      else if (REG_P (src)
2976	       && REGNO (src) >= FIRST_PSEUDO_REGISTER
2977	       && REGNO (src) != regno)
2978	{
2979	  if (try_replace_reg (reg_used->reg_rtx, src, insn))
2980	    {
2981	      changed = 1;
2982	      global_copy_prop_count++;
2983	      if (gcse_file != NULL)
2984		{
2985		  fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2986			   regno, INSN_UID (insn));
2987		  fprintf (gcse_file, " with reg %d\n", REGNO (src));
2988		}
2989
2990	      /* The original insn setting reg_used may or may not now be
2991		 deletable.  We leave the deletion to flow.  */
2992	      /* FIXME: If it turns out that the insn isn't deletable,
2993		 then we may have unnecessarily extended register lifetimes
2994		 and made things worse.  */
2995	    }
2996	}
2997    }
2998
2999  return changed;
3000}
3001
3002/* Like find_used_regs, but avoid recording uses that appear in
3003   input-output contexts such as zero_extract or pre_dec.  This
3004   restricts the cases we consider to those for which local cprop
3005   can legitimately make replacements.  */
3006
3007static void
3008local_cprop_find_used_regs (rtx *xptr, void *data)
3009{
3010  rtx x = *xptr;
3011
3012  if (x == 0)
3013    return;
3014
3015  switch (GET_CODE (x))
3016    {
3017    case ZERO_EXTRACT:
3018    case SIGN_EXTRACT:
3019    case STRICT_LOW_PART:
3020      return;
3021
3022    case PRE_DEC:
3023    case PRE_INC:
3024    case POST_DEC:
3025    case POST_INC:
3026    case PRE_MODIFY:
3027    case POST_MODIFY:
3028      /* Can only legitimately appear this early in the context of
3029	 stack pushes for function arguments, but handle all of the
3030	 codes nonetheless.  */
3031      return;
3032
3033    case SUBREG:
3034      /* Setting a subreg of a register larger than word_mode leaves
3035	 the non-written words unchanged.  */
3036      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3037	return;
3038      break;
3039
3040    default:
3041      break;
3042    }
3043
3044  find_used_regs (xptr, data);
3045}
3046
3047/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3048   their REG_EQUAL notes need updating.  */
3049
3050static bool
3051do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3052{
3053  rtx newreg = NULL, newcnst = NULL;
3054
3055  /* Rule out USE instructions and ASM statements as we don't want to
3056     change the hard registers mentioned.  */
3057  if (REG_P (x)
3058      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3059          || (GET_CODE (PATTERN (insn)) != USE
3060	      && asm_noperands (PATTERN (insn)) < 0)))
3061    {
3062      cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3063      struct elt_loc_list *l;
3064
3065      if (!val)
3066	return false;
3067      for (l = val->locs; l; l = l->next)
3068	{
3069	  rtx this_rtx = l->loc;
3070	  rtx note;
3071
3072	  /* Don't CSE non-constant values out of libcall blocks.  */
3073	  if (l->in_libcall && ! CONSTANT_P (this_rtx))
3074	    continue;
3075
3076	  if (gcse_constant_p (this_rtx))
3077	    newcnst = this_rtx;
3078	  if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3079	      /* Don't copy propagate if it has attached REG_EQUIV note.
3080		 At this point this only function parameters should have
3081		 REG_EQUIV notes and if the argument slot is used somewhere
3082		 explicitly, it means address of parameter has been taken,
3083		 so we should not extend the lifetime of the pseudo.  */
3084	      && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3085		  || ! MEM_P (XEXP (note, 0))))
3086	    newreg = this_rtx;
3087	}
3088      if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3089	{
3090	  /* If we find a case where we can't fix the retval REG_EQUAL notes
3091	     match the new register, we either have to abandon this replacement
3092	     or fix delete_trivially_dead_insns to preserve the setting insn,
3093	     or make it delete the REG_EUAQL note, and fix up all passes that
3094	     require the REG_EQUAL note there.  */
3095	  bool adjusted;
3096
3097	  adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3098	  gcc_assert (adjusted);
3099
3100	  if (gcse_file != NULL)
3101	    {
3102	      fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3103		       REGNO (x));
3104	      fprintf (gcse_file, "insn %d with constant ",
3105		       INSN_UID (insn));
3106	      print_rtl (gcse_file, newcnst);
3107	      fprintf (gcse_file, "\n");
3108	    }
3109	  local_const_prop_count++;
3110	  return true;
3111	}
3112      else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3113	{
3114	  adjust_libcall_notes (x, newreg, insn, libcall_sp);
3115	  if (gcse_file != NULL)
3116	    {
3117	      fprintf (gcse_file,
3118		       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3119		       REGNO (x), INSN_UID (insn));
3120	      fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3121	    }
3122	  local_copy_prop_count++;
3123	  return true;
3124	}
3125    }
3126  return false;
3127}
3128
3129/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3130   their REG_EQUAL notes need updating to reflect that OLDREG has been
3131   replaced with NEWVAL in INSN.  Return true if all substitutions could
3132   be made.  */
3133static bool
3134adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3135{
3136  rtx end;
3137
3138  while ((end = *libcall_sp++))
3139    {
3140      rtx note = find_reg_equal_equiv_note (end);
3141
3142      if (! note)
3143	continue;
3144
3145      if (REG_P (newval))
3146	{
3147	  if (reg_set_between_p (newval, PREV_INSN (insn), end))
3148	    {
3149	      do
3150		{
3151		  note = find_reg_equal_equiv_note (end);
3152		  if (! note)
3153		    continue;
3154		  if (reg_mentioned_p (newval, XEXP (note, 0)))
3155		    return false;
3156		}
3157	      while ((end = *libcall_sp++));
3158	      return true;
3159	    }
3160	}
3161      XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3162      insn = end;
3163    }
3164  return true;
3165}
3166
3167#define MAX_NESTED_LIBCALLS 9
3168
3169/* Do local const/copy propagation (i.e. within each basic block).
3170   If ALTER_JUMPS is true, allow propagating into jump insns, which
3171   could modify the CFG.  */
3172
3173static void
3174local_cprop_pass (bool alter_jumps)
3175{
3176  basic_block bb;
3177  rtx insn;
3178  struct reg_use *reg_used;
3179  rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3180  bool changed = false;
3181
3182  cselib_init (false);
3183  libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3184  *libcall_sp = 0;
3185  FOR_EACH_BB (bb)
3186    {
3187      FOR_BB_INSNS (bb, insn)
3188	{
3189	  if (INSN_P (insn))
3190	    {
3191	      rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3192
3193	      if (note)
3194		{
3195		  gcc_assert (libcall_sp != libcall_stack);
3196		  *--libcall_sp = XEXP (note, 0);
3197		}
3198	      note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3199	      if (note)
3200		libcall_sp++;
3201	      note = find_reg_equal_equiv_note (insn);
3202	      do
3203		{
3204		  reg_use_count = 0;
3205		  note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3206			     NULL);
3207		  if (note)
3208		    local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3209
3210		  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3211		       reg_used++, reg_use_count--)
3212		    if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3213			libcall_sp))
3214		      {
3215			changed = true;
3216			break;
3217		      }
3218		  if (INSN_DELETED_P (insn))
3219		    break;
3220		}
3221	      while (reg_use_count);
3222	    }
3223	  cselib_process_insn (insn);
3224	}
3225
3226      /* Forget everything at the end of a basic block.  Make sure we are
3227	 not inside a libcall, they should never cross basic blocks.  */
3228      cselib_clear_table ();
3229      gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3230    }
3231
3232  cselib_finish ();
3233
3234  /* Global analysis may get into infinite loops for unreachable blocks.  */
3235  if (changed && alter_jumps)
3236    {
3237      delete_unreachable_blocks ();
3238      free_reg_set_mem ();
3239      alloc_reg_set_mem (max_reg_num ());
3240      compute_sets ();
3241    }
3242}
3243
3244/* Forward propagate copies.  This includes copies and constants.  Return
3245   nonzero if a change was made.  */
3246
3247static int
3248cprop (int alter_jumps)
3249{
3250  int changed;
3251  basic_block bb;
3252  rtx insn;
3253
3254  /* Note we start at block 1.  */
3255  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3256    {
3257      if (gcse_file != NULL)
3258	fprintf (gcse_file, "\n");
3259      return 0;
3260    }
3261
3262  changed = 0;
3263  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3264    {
3265      /* Reset tables used to keep track of what's still valid [since the
3266	 start of the block].  */
3267      reset_opr_set_tables ();
3268
3269      FOR_BB_INSNS (bb, insn)
3270	if (INSN_P (insn))
3271	  {
3272	    changed |= cprop_insn (insn, alter_jumps);
3273
3274	    /* Keep track of everything modified by this insn.  */
3275	    /* ??? Need to be careful w.r.t. mods done to INSN.  Don't
3276	       call mark_oprs_set if we turned the insn into a NOTE.  */
3277	    if (! NOTE_P (insn))
3278	      mark_oprs_set (insn);
3279	  }
3280    }
3281
3282  if (gcse_file != NULL)
3283    fprintf (gcse_file, "\n");
3284
3285  return changed;
3286}
3287
3288/* Similar to get_condition, only the resulting condition must be
3289   valid at JUMP, instead of at EARLIEST.
3290
3291   This differs from noce_get_condition in ifcvt.c in that we prefer not to
3292   settle for the condition variable in the jump instruction being integral.
3293   We prefer to be able to record the value of a user variable, rather than
3294   the value of a temporary used in a condition.  This could be solved by
3295   recording the value of *every* register scanned by canonicalize_condition,
3296   but this would require some code reorganization.  */
3297
3298rtx
3299fis_get_condition (rtx jump)
3300{
3301  return get_condition (jump, NULL, false, true);
3302}
3303
3304/* Check the comparison COND to see if we can safely form an implicit set from
3305   it.  COND is either an EQ or NE comparison.  */
3306
3307static bool
3308implicit_set_cond_p (rtx cond)
3309{
3310  enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3311  rtx cst = XEXP (cond, 1);
3312
3313  /* We can't perform this optimization if either operand might be or might
3314     contain a signed zero.  */
3315  if (HONOR_SIGNED_ZEROS (mode))
3316    {
3317      /* It is sufficient to check if CST is or contains a zero.  We must
3318	 handle float, complex, and vector.  If any subpart is a zero, then
3319	 the optimization can't be performed.  */
3320      /* ??? The complex and vector checks are not implemented yet.  We just
3321	 always return zero for them.  */
3322      if (GET_CODE (cst) == CONST_DOUBLE)
3323	{
3324	  REAL_VALUE_TYPE d;
3325	  REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3326	  if (REAL_VALUES_EQUAL (d, dconst0))
3327	    return 0;
3328	}
3329      else
3330	return 0;
3331    }
3332
3333  return gcse_constant_p (cst);
3334}
3335
3336/* Find the implicit sets of a function.  An "implicit set" is a constraint
3337   on the value of a variable, implied by a conditional jump.  For example,
3338   following "if (x == 2)", the then branch may be optimized as though the
3339   conditional performed an "explicit set", in this example, "x = 2".  This
3340   function records the set patterns that are implicit at the start of each
3341   basic block.  */
3342
3343static void
3344find_implicit_sets (void)
3345{
3346  basic_block bb, dest;
3347  unsigned int count;
3348  rtx cond, new;
3349
3350  count = 0;
3351  FOR_EACH_BB (bb)
3352    /* Check for more than one successor.  */
3353    if (EDGE_COUNT (bb->succs) > 1)
3354      {
3355	cond = fis_get_condition (BB_END (bb));
3356
3357	if (cond
3358	    && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3359	    && REG_P (XEXP (cond, 0))
3360	    && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3361	    && implicit_set_cond_p (cond))
3362	  {
3363	    dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3364					 : FALLTHRU_EDGE (bb)->dest;
3365
3366	    if (dest && single_pred_p (dest)
3367		&& dest != EXIT_BLOCK_PTR)
3368	      {
3369		new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3370					     XEXP (cond, 1));
3371		implicit_sets[dest->index] = new;
3372		if (gcse_file)
3373		  {
3374		    fprintf(gcse_file, "Implicit set of reg %d in ",
3375			    REGNO (XEXP (cond, 0)));
3376		    fprintf(gcse_file, "basic block %d\n", dest->index);
3377		  }
3378		count++;
3379	      }
3380	  }
3381      }
3382
3383  if (gcse_file)
3384    fprintf (gcse_file, "Found %d implicit sets\n", count);
3385}
3386
3387/* Perform one copy/constant propagation pass.
3388   PASS is the pass count.  If CPROP_JUMPS is true, perform constant
3389   propagation into conditional jumps.  If BYPASS_JUMPS is true,
3390   perform conditional jump bypassing optimizations.  */
3391
3392static int
3393one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3394{
3395  int changed = 0;
3396
3397  global_const_prop_count = local_const_prop_count = 0;
3398  global_copy_prop_count = local_copy_prop_count = 0;
3399
3400  local_cprop_pass (cprop_jumps);
3401
3402  /* Determine implicit sets.  */
3403  implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3404  find_implicit_sets ();
3405
3406  alloc_hash_table (max_cuid, &set_hash_table, 1);
3407  compute_hash_table (&set_hash_table);
3408
3409  /* Free implicit_sets before peak usage.  */
3410  free (implicit_sets);
3411  implicit_sets = NULL;
3412
3413  if (gcse_file)
3414    dump_hash_table (gcse_file, "SET", &set_hash_table);
3415  if (set_hash_table.n_elems > 0)
3416    {
3417      alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3418      compute_cprop_data ();
3419      changed = cprop (cprop_jumps);
3420      if (bypass_jumps)
3421	changed |= bypass_conditional_jumps ();
3422      free_cprop_mem ();
3423    }
3424
3425  free_hash_table (&set_hash_table);
3426
3427  if (gcse_file)
3428    {
3429      fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3430	       current_function_name (), pass, bytes_used);
3431      fprintf (gcse_file, "%d local const props, %d local copy props, ",
3432	       local_const_prop_count, local_copy_prop_count);
3433      fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3434	       global_const_prop_count, global_copy_prop_count);
3435    }
3436  /* Global analysis may get into infinite loops for unreachable blocks.  */
3437  if (changed && cprop_jumps)
3438    delete_unreachable_blocks ();
3439
3440  return changed;
3441}
3442
3443/* Bypass conditional jumps.  */
3444
3445/* The value of last_basic_block at the beginning of the jump_bypass
3446   pass.  The use of redirect_edge_and_branch_force may introduce new
3447   basic blocks, but the data flow analysis is only valid for basic
3448   block indices less than bypass_last_basic_block.  */
3449
3450static int bypass_last_basic_block;
3451
3452/* Find a set of REGNO to a constant that is available at the end of basic
3453   block BB.  Returns NULL if no such set is found.  Based heavily upon
3454   find_avail_set.  */
3455
3456static struct expr *
3457find_bypass_set (int regno, int bb)
3458{
3459  struct expr *result = 0;
3460
3461  for (;;)
3462    {
3463      rtx src;
3464      struct expr *set = lookup_set (regno, &set_hash_table);
3465
3466      while (set)
3467	{
3468	  if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3469	    break;
3470	  set = next_set (regno, set);
3471	}
3472
3473      if (set == 0)
3474	break;
3475
3476      gcc_assert (GET_CODE (set->expr) == SET);
3477
3478      src = SET_SRC (set->expr);
3479      if (gcse_constant_p (src))
3480	result = set;
3481
3482      if (! REG_P (src))
3483	break;
3484
3485      regno = REGNO (src);
3486    }
3487  return result;
3488}
3489
3490
3491/* Subroutine of bypass_block that checks whether a pseudo is killed by
3492   any of the instructions inserted on an edge.  Jump bypassing places
3493   condition code setters on CFG edges using insert_insn_on_edge.  This
3494   function is required to check that our data flow analysis is still
3495   valid prior to commit_edge_insertions.  */
3496
3497static bool
3498reg_killed_on_edge (rtx reg, edge e)
3499{
3500  rtx insn;
3501
3502  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3503    if (INSN_P (insn) && reg_set_p (reg, insn))
3504      return true;
3505
3506  return false;
3507}
3508
3509/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3510   basic block BB which has more than one predecessor.  If not NULL, SETCC
3511   is the first instruction of BB, which is immediately followed by JUMP_INSN
3512   JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3513   Returns nonzero if a change was made.
3514
3515   During the jump bypassing pass, we may place copies of SETCC instructions
3516   on CFG edges.  The following routine must be careful to pay attention to
3517   these inserted insns when performing its transformations.  */
3518
3519static int
3520bypass_block (basic_block bb, rtx setcc, rtx jump)
3521{
3522  rtx insn, note;
3523  edge e, edest;
3524  int i, change;
3525  int may_be_loop_header;
3526  unsigned removed_p;
3527  edge_iterator ei;
3528
3529  insn = (setcc != NULL) ? setcc : jump;
3530
3531  /* Determine set of register uses in INSN.  */
3532  reg_use_count = 0;
3533  note_uses (&PATTERN (insn), find_used_regs, NULL);
3534  note = find_reg_equal_equiv_note (insn);
3535  if (note)
3536    find_used_regs (&XEXP (note, 0), NULL);
3537
3538  may_be_loop_header = false;
3539  FOR_EACH_EDGE (e, ei, bb->preds)
3540    if (e->flags & EDGE_DFS_BACK)
3541      {
3542	may_be_loop_header = true;
3543	break;
3544      }
3545
3546  change = 0;
3547  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3548    {
3549      removed_p = 0;
3550
3551      if (e->flags & EDGE_COMPLEX)
3552	{
3553	  ei_next (&ei);
3554	  continue;
3555	}
3556
3557      /* We can't redirect edges from new basic blocks.  */
3558      if (e->src->index >= bypass_last_basic_block)
3559	{
3560	  ei_next (&ei);
3561	  continue;
3562	}
3563
3564      /* The irreducible loops created by redirecting of edges entering the
3565	 loop from outside would decrease effectiveness of some of the following
3566	 optimizations, so prevent this.  */
3567      if (may_be_loop_header
3568	  && !(e->flags & EDGE_DFS_BACK))
3569	{
3570	  ei_next (&ei);
3571	  continue;
3572	}
3573
3574      for (i = 0; i < reg_use_count; i++)
3575	{
3576	  struct reg_use *reg_used = &reg_use_table[i];
3577	  unsigned int regno = REGNO (reg_used->reg_rtx);
3578	  basic_block dest, old_dest;
3579	  struct expr *set;
3580	  rtx src, new;
3581
3582	  if (regno >= max_gcse_regno)
3583	    continue;
3584
3585	  set = find_bypass_set (regno, e->src->index);
3586
3587	  if (! set)
3588	    continue;
3589
3590	  /* Check the data flow is valid after edge insertions.  */
3591	  if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3592	    continue;
3593
3594	  src = SET_SRC (pc_set (jump));
3595
3596	  if (setcc != NULL)
3597	      src = simplify_replace_rtx (src,
3598					  SET_DEST (PATTERN (setcc)),
3599					  SET_SRC (PATTERN (setcc)));
3600
3601	  new = simplify_replace_rtx (src, reg_used->reg_rtx,
3602				      SET_SRC (set->expr));
3603
3604	  /* Jump bypassing may have already placed instructions on
3605	     edges of the CFG.  We can't bypass an outgoing edge that
3606	     has instructions associated with it, as these insns won't
3607	     get executed if the incoming edge is redirected.  */
3608
3609	  if (new == pc_rtx)
3610	    {
3611	      edest = FALLTHRU_EDGE (bb);
3612	      dest = edest->insns.r ? NULL : edest->dest;
3613	    }
3614	  else if (GET_CODE (new) == LABEL_REF)
3615	    {
3616	      dest = BLOCK_FOR_INSN (XEXP (new, 0));
3617	      /* Don't bypass edges containing instructions.  */
3618	      edest = find_edge (bb, dest);
3619	      if (edest && edest->insns.r)
3620		dest = NULL;
3621	    }
3622	  else
3623	    dest = NULL;
3624
3625	  /* Avoid unification of the edge with other edges from original
3626	     branch.  We would end up emitting the instruction on "both"
3627	     edges.  */
3628
3629	  if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3630	      && find_edge (e->src, dest))
3631	    dest = NULL;
3632
3633	  old_dest = e->dest;
3634	  if (dest != NULL
3635	      && dest != old_dest
3636	      && dest != EXIT_BLOCK_PTR)
3637            {
3638	      redirect_edge_and_branch_force (e, dest);
3639
3640	      /* Copy the register setter to the redirected edge.
3641		 Don't copy CC0 setters, as CC0 is dead after jump.  */
3642	      if (setcc)
3643		{
3644		  rtx pat = PATTERN (setcc);
3645		  if (!CC0_P (SET_DEST (pat)))
3646		    insert_insn_on_edge (copy_insn (pat), e);
3647		}
3648
3649	      if (gcse_file != NULL)
3650		{
3651		  fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3652				      "in jump_insn %d equals constant ",
3653			   regno, INSN_UID (jump));
3654		  print_rtl (gcse_file, SET_SRC (set->expr));
3655		  fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3656			   e->src->index, old_dest->index, dest->index);
3657		}
3658	      change = 1;
3659	      removed_p = 1;
3660	      break;
3661	    }
3662	}
3663      if (!removed_p)
3664	ei_next (&ei);
3665    }
3666  return change;
3667}
3668
3669/* Find basic blocks with more than one predecessor that only contain a
3670   single conditional jump.  If the result of the comparison is known at
3671   compile-time from any incoming edge, redirect that edge to the
3672   appropriate target.  Returns nonzero if a change was made.
3673
3674   This function is now mis-named, because we also handle indirect jumps.  */
3675
3676static int
3677bypass_conditional_jumps (void)
3678{
3679  basic_block bb;
3680  int changed;
3681  rtx setcc;
3682  rtx insn;
3683  rtx dest;
3684
3685  /* Note we start at block 1.  */
3686  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3687    return 0;
3688
3689  bypass_last_basic_block = last_basic_block;
3690  mark_dfs_back_edges ();
3691
3692  changed = 0;
3693  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3694		  EXIT_BLOCK_PTR, next_bb)
3695    {
3696      /* Check for more than one predecessor.  */
3697      if (!single_pred_p (bb))
3698	{
3699	  setcc = NULL_RTX;
3700	  FOR_BB_INSNS (bb, insn)
3701	    if (NONJUMP_INSN_P (insn))
3702	      {
3703		if (setcc)
3704		  break;
3705		if (GET_CODE (PATTERN (insn)) != SET)
3706		  break;
3707
3708		dest = SET_DEST (PATTERN (insn));
3709		if (REG_P (dest) || CC0_P (dest))
3710		  setcc = insn;
3711		else
3712		  break;
3713	      }
3714	    else if (JUMP_P (insn))
3715	      {
3716		if ((any_condjump_p (insn) || computed_jump_p (insn))
3717		    && onlyjump_p (insn))
3718		  changed |= bypass_block (bb, setcc, insn);
3719		break;
3720	      }
3721	    else if (INSN_P (insn))
3722	      break;
3723	}
3724    }
3725
3726  /* If we bypassed any register setting insns, we inserted a
3727     copy on the redirected edge.  These need to be committed.  */
3728  if (changed)
3729    commit_edge_insertions();
3730
3731  return changed;
3732}
3733
3734/* Compute PRE+LCM working variables.  */
3735
3736/* Local properties of expressions.  */
3737/* Nonzero for expressions that are transparent in the block.  */
3738static sbitmap *transp;
3739
3740/* Nonzero for expressions that are transparent at the end of the block.
3741   This is only zero for expressions killed by abnormal critical edge
3742   created by a calls.  */
3743static sbitmap *transpout;
3744
3745/* Nonzero for expressions that are computed (available) in the block.  */
3746static sbitmap *comp;
3747
3748/* Nonzero for expressions that are locally anticipatable in the block.  */
3749static sbitmap *antloc;
3750
3751/* Nonzero for expressions where this block is an optimal computation
3752   point.  */
3753static sbitmap *pre_optimal;
3754
3755/* Nonzero for expressions which are redundant in a particular block.  */
3756static sbitmap *pre_redundant;
3757
3758/* Nonzero for expressions which should be inserted on a specific edge.  */
3759static sbitmap *pre_insert_map;
3760
3761/* Nonzero for expressions which should be deleted in a specific block.  */
3762static sbitmap *pre_delete_map;
3763
3764/* Contains the edge_list returned by pre_edge_lcm.  */
3765static struct edge_list *edge_list;
3766
3767/* Redundant insns.  */
3768static sbitmap pre_redundant_insns;
3769
3770/* Allocate vars used for PRE analysis.  */
3771
3772static void
3773alloc_pre_mem (int n_blocks, int n_exprs)
3774{
3775  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3776  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3777  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3778
3779  pre_optimal = NULL;
3780  pre_redundant = NULL;
3781  pre_insert_map = NULL;
3782  pre_delete_map = NULL;
3783  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3784
3785  /* pre_insert and pre_delete are allocated later.  */
3786}
3787
3788/* Free vars used for PRE analysis.  */
3789
3790static void
3791free_pre_mem (void)
3792{
3793  sbitmap_vector_free (transp);
3794  sbitmap_vector_free (comp);
3795
3796  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
3797
3798  if (pre_optimal)
3799    sbitmap_vector_free (pre_optimal);
3800  if (pre_redundant)
3801    sbitmap_vector_free (pre_redundant);
3802  if (pre_insert_map)
3803    sbitmap_vector_free (pre_insert_map);
3804  if (pre_delete_map)
3805    sbitmap_vector_free (pre_delete_map);
3806
3807  transp = comp = NULL;
3808  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3809}
3810
3811/* Top level routine to do the dataflow analysis needed by PRE.  */
3812
3813static void
3814compute_pre_data (void)
3815{
3816  sbitmap trapping_expr;
3817  basic_block bb;
3818  unsigned int ui;
3819
3820  compute_local_properties (transp, comp, antloc, &expr_hash_table);
3821  sbitmap_vector_zero (ae_kill, last_basic_block);
3822
3823  /* Collect expressions which might trap.  */
3824  trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3825  sbitmap_zero (trapping_expr);
3826  for (ui = 0; ui < expr_hash_table.size; ui++)
3827    {
3828      struct expr *e;
3829      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3830	if (may_trap_p (e->expr))
3831	  SET_BIT (trapping_expr, e->bitmap_index);
3832    }
3833
3834  /* Compute ae_kill for each basic block using:
3835
3836     ~(TRANSP | COMP)
3837  */
3838
3839  FOR_EACH_BB (bb)
3840    {
3841      edge e;
3842      edge_iterator ei;
3843
3844      /* If the current block is the destination of an abnormal edge, we
3845	 kill all trapping expressions because we won't be able to properly
3846	 place the instruction on the edge.  So make them neither
3847	 anticipatable nor transparent.  This is fairly conservative.  */
3848      FOR_EACH_EDGE (e, ei, bb->preds)
3849	if (e->flags & EDGE_ABNORMAL)
3850	  {
3851	    sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3852	    sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3853	    break;
3854	  }
3855
3856      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3857      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3858    }
3859
3860  edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3861			    ae_kill, &pre_insert_map, &pre_delete_map);
3862  sbitmap_vector_free (antloc);
3863  antloc = NULL;
3864  sbitmap_vector_free (ae_kill);
3865  ae_kill = NULL;
3866  sbitmap_free (trapping_expr);
3867}
3868
3869/* PRE utilities */
3870
3871/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3872   block BB.
3873
3874   VISITED is a pointer to a working buffer for tracking which BB's have
3875   been visited.  It is NULL for the top-level call.
3876
3877   We treat reaching expressions that go through blocks containing the same
3878   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
3879   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3880   2 as not reaching.  The intent is to improve the probability of finding
3881   only one reaching expression and to reduce register lifetimes by picking
3882   the closest such expression.  */
3883
3884static int
3885pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3886{
3887  edge pred;
3888  edge_iterator ei;
3889
3890  FOR_EACH_EDGE (pred, ei, bb->preds)
3891    {
3892      basic_block pred_bb = pred->src;
3893
3894      if (pred->src == ENTRY_BLOCK_PTR
3895	  /* Has predecessor has already been visited?  */
3896	  || visited[pred_bb->index])
3897	;/* Nothing to do.  */
3898
3899      /* Does this predecessor generate this expression?  */
3900      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3901	{
3902	  /* Is this the occurrence we're looking for?
3903	     Note that there's only one generating occurrence per block
3904	     so we just need to check the block number.  */
3905	  if (occr_bb == pred_bb)
3906	    return 1;
3907
3908	  visited[pred_bb->index] = 1;
3909	}
3910      /* Ignore this predecessor if it kills the expression.  */
3911      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3912	visited[pred_bb->index] = 1;
3913
3914      /* Neither gen nor kill.  */
3915      else
3916	{
3917	  visited[pred_bb->index] = 1;
3918	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3919	    return 1;
3920	}
3921    }
3922
3923  /* All paths have been checked.  */
3924  return 0;
3925}
3926
3927/* The wrapper for pre_expr_reaches_here_work that ensures that any
3928   memory allocated for that function is returned.  */
3929
3930static int
3931pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3932{
3933  int rval;
3934  char *visited = xcalloc (last_basic_block, 1);
3935
3936  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3937
3938  free (visited);
3939  return rval;
3940}
3941
3942
3943/* Given an expr, generate RTL which we can insert at the end of a BB,
3944   or on an edge.  Set the block number of any insns generated to
3945   the value of BB.  */
3946
3947static rtx
3948process_insert_insn (struct expr *expr)
3949{
3950  rtx reg = expr->reaching_reg;
3951  rtx exp = copy_rtx (expr->expr);
3952  rtx pat;
3953
3954  start_sequence ();
3955
3956  /* If the expression is something that's an operand, like a constant,
3957     just copy it to a register.  */
3958  if (general_operand (exp, GET_MODE (reg)))
3959    emit_move_insn (reg, exp);
3960
3961  /* Otherwise, make a new insn to compute this expression and make sure the
3962     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
3963     expression to make sure we don't have any sharing issues.  */
3964  else
3965    {
3966      rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3967
3968      if (insn_invalid_p (insn))
3969	gcc_unreachable ();
3970    }
3971
3972
3973  pat = get_insns ();
3974  end_sequence ();
3975
3976  return pat;
3977}
3978
3979/* Add EXPR to the end of basic block BB.
3980
3981   This is used by both the PRE and code hoisting.
3982
3983   For PRE, we want to verify that the expr is either transparent
3984   or locally anticipatable in the target block.  This check makes
3985   no sense for code hoisting.  */
3986
3987static void
3988insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3989{
3990  rtx insn = BB_END (bb);
3991  rtx new_insn;
3992  rtx reg = expr->reaching_reg;
3993  int regno = REGNO (reg);
3994  rtx pat, pat_end;
3995
3996  pat = process_insert_insn (expr);
3997  gcc_assert (pat && INSN_P (pat));
3998
3999  pat_end = pat;
4000  while (NEXT_INSN (pat_end) != NULL_RTX)
4001    pat_end = NEXT_INSN (pat_end);
4002
4003  /* If the last insn is a jump, insert EXPR in front [taking care to
4004     handle cc0, etc. properly].  Similarly we need to care trapping
4005     instructions in presence of non-call exceptions.  */
4006
4007  if (JUMP_P (insn)
4008      || (NONJUMP_INSN_P (insn)
4009	  && (!single_succ_p (bb)
4010	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4011    {
4012#ifdef HAVE_cc0
4013      rtx note;
4014#endif
4015      /* It should always be the case that we can put these instructions
4016	 anywhere in the basic block with performing PRE optimizations.
4017	 Check this.  */
4018      gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4019		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4020		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
4021
4022      /* If this is a jump table, then we can't insert stuff here.  Since
4023	 we know the previous real insn must be the tablejump, we insert
4024	 the new instruction just before the tablejump.  */
4025      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4026	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4027	insn = prev_real_insn (insn);
4028
4029#ifdef HAVE_cc0
4030      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4031	 if cc0 isn't set.  */
4032      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4033      if (note)
4034	insn = XEXP (note, 0);
4035      else
4036	{
4037	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4038	  if (maybe_cc0_setter
4039	      && INSN_P (maybe_cc0_setter)
4040	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4041	    insn = maybe_cc0_setter;
4042	}
4043#endif
4044      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
4045      new_insn = emit_insn_before_noloc (pat, insn);
4046    }
4047
4048  /* Likewise if the last insn is a call, as will happen in the presence
4049     of exception handling.  */
4050  else if (CALL_P (insn)
4051	   && (!single_succ_p (bb)
4052	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4053    {
4054      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4055	 we search backward and place the instructions before the first
4056	 parameter is loaded.  Do this for everyone for consistency and a
4057	 presumption that we'll get better code elsewhere as well.
4058
4059	 It should always be the case that we can put these instructions
4060	 anywhere in the basic block with performing PRE optimizations.
4061	 Check this.  */
4062
4063      gcc_assert (!pre
4064		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4065		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
4066
4067      /* Since different machines initialize their parameter registers
4068	 in different orders, assume nothing.  Collect the set of all
4069	 parameter registers.  */
4070      insn = find_first_parameter_load (insn, BB_HEAD (bb));
4071
4072      /* If we found all the parameter loads, then we want to insert
4073	 before the first parameter load.
4074
4075	 If we did not find all the parameter loads, then we might have
4076	 stopped on the head of the block, which could be a CODE_LABEL.
4077	 If we inserted before the CODE_LABEL, then we would be putting
4078	 the insn in the wrong basic block.  In that case, put the insn
4079	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
4080      while (LABEL_P (insn)
4081	     || NOTE_INSN_BASIC_BLOCK_P (insn))
4082	insn = NEXT_INSN (insn);
4083
4084      new_insn = emit_insn_before_noloc (pat, insn);
4085    }
4086  else
4087    new_insn = emit_insn_after_noloc (pat, insn);
4088
4089  while (1)
4090    {
4091      if (INSN_P (pat))
4092	{
4093	  add_label_notes (PATTERN (pat), new_insn);
4094	  note_stores (PATTERN (pat), record_set_info, pat);
4095	}
4096      if (pat == pat_end)
4097	break;
4098      pat = NEXT_INSN (pat);
4099    }
4100
4101  gcse_create_count++;
4102
4103  if (gcse_file)
4104    {
4105      fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4106	       bb->index, INSN_UID (new_insn));
4107      fprintf (gcse_file, "copying expression %d to reg %d\n",
4108	       expr->bitmap_index, regno);
4109    }
4110}
4111
4112/* Insert partially redundant expressions on edges in the CFG to make
4113   the expressions fully redundant.  */
4114
4115static int
4116pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4117{
4118  int e, i, j, num_edges, set_size, did_insert = 0;
4119  sbitmap *inserted;
4120
4121  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4122     if it reaches any of the deleted expressions.  */
4123
4124  set_size = pre_insert_map[0]->size;
4125  num_edges = NUM_EDGES (edge_list);
4126  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4127  sbitmap_vector_zero (inserted, num_edges);
4128
4129  for (e = 0; e < num_edges; e++)
4130    {
4131      int indx;
4132      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4133
4134      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4135	{
4136	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4137
4138	  for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4139	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4140	      {
4141		struct expr *expr = index_map[j];
4142		struct occr *occr;
4143
4144		/* Now look at each deleted occurrence of this expression.  */
4145		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4146		  {
4147		    if (! occr->deleted_p)
4148		      continue;
4149
4150		    /* Insert this expression on this edge if it would
4151		       reach the deleted occurrence in BB.  */
4152		    if (!TEST_BIT (inserted[e], j))
4153		      {
4154			rtx insn;
4155			edge eg = INDEX_EDGE (edge_list, e);
4156
4157			/* We can't insert anything on an abnormal and
4158			   critical edge, so we insert the insn at the end of
4159			   the previous block. There are several alternatives
4160			   detailed in Morgans book P277 (sec 10.5) for
4161			   handling this situation.  This one is easiest for
4162			   now.  */
4163
4164			if (eg->flags & EDGE_ABNORMAL)
4165			  insert_insn_end_bb (index_map[j], bb, 0);
4166			else
4167			  {
4168			    insn = process_insert_insn (index_map[j]);
4169			    insert_insn_on_edge (insn, eg);
4170			  }
4171
4172			if (gcse_file)
4173			  {
4174			    fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4175				     bb->index,
4176				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4177			    fprintf (gcse_file, "copy expression %d\n",
4178				     expr->bitmap_index);
4179			  }
4180
4181			update_ld_motion_stores (expr);
4182			SET_BIT (inserted[e], j);
4183			did_insert = 1;
4184			gcse_create_count++;
4185		      }
4186		  }
4187	      }
4188	}
4189    }
4190
4191  sbitmap_vector_free (inserted);
4192  return did_insert;
4193}
4194
4195/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4196   Given "old_reg <- expr" (INSN), instead of adding after it
4197     reaching_reg <- old_reg
4198   it's better to do the following:
4199     reaching_reg <- expr
4200     old_reg      <- reaching_reg
4201   because this way copy propagation can discover additional PRE
4202   opportunities.  But if this fails, we try the old way.
4203   When "expr" is a store, i.e.
4204   given "MEM <- old_reg", instead of adding after it
4205     reaching_reg <- old_reg
4206   it's better to add it before as follows:
4207     reaching_reg <- old_reg
4208     MEM          <- reaching_reg.  */
4209
4210static void
4211pre_insert_copy_insn (struct expr *expr, rtx insn)
4212{
4213  rtx reg = expr->reaching_reg;
4214  int regno = REGNO (reg);
4215  int indx = expr->bitmap_index;
4216  rtx pat = PATTERN (insn);
4217  rtx set, new_insn;
4218  rtx old_reg;
4219  int i;
4220
4221  /* This block matches the logic in hash_scan_insn.  */
4222  switch (GET_CODE (pat))
4223    {
4224    case SET:
4225      set = pat;
4226      break;
4227
4228    case PARALLEL:
4229      /* Search through the parallel looking for the set whose
4230	 source was the expression that we're interested in.  */
4231      set = NULL_RTX;
4232      for (i = 0; i < XVECLEN (pat, 0); i++)
4233	{
4234	  rtx x = XVECEXP (pat, 0, i);
4235	  if (GET_CODE (x) == SET
4236	      && expr_equiv_p (SET_SRC (x), expr->expr))
4237	    {
4238	      set = x;
4239	      break;
4240	    }
4241	}
4242      break;
4243
4244    default:
4245      gcc_unreachable ();
4246    }
4247
4248  if (REG_P (SET_DEST (set)))
4249    {
4250      old_reg = SET_DEST (set);
4251      /* Check if we can modify the set destination in the original insn.  */
4252      if (validate_change (insn, &SET_DEST (set), reg, 0))
4253        {
4254          new_insn = gen_move_insn (old_reg, reg);
4255          new_insn = emit_insn_after (new_insn, insn);
4256
4257          /* Keep register set table up to date.  */
4258          record_one_set (regno, insn);
4259        }
4260      else
4261        {
4262          new_insn = gen_move_insn (reg, old_reg);
4263          new_insn = emit_insn_after (new_insn, insn);
4264
4265          /* Keep register set table up to date.  */
4266          record_one_set (regno, new_insn);
4267        }
4268    }
4269  else /* This is possible only in case of a store to memory.  */
4270    {
4271      old_reg = SET_SRC (set);
4272      new_insn = gen_move_insn (reg, old_reg);
4273
4274      /* Check if we can modify the set source in the original insn.  */
4275      if (validate_change (insn, &SET_SRC (set), reg, 0))
4276        new_insn = emit_insn_before (new_insn, insn);
4277      else
4278        new_insn = emit_insn_after (new_insn, insn);
4279
4280      /* Keep register set table up to date.  */
4281      record_one_set (regno, new_insn);
4282    }
4283
4284  gcse_create_count++;
4285
4286  if (gcse_file)
4287    fprintf (gcse_file,
4288	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4289	      BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4290	      INSN_UID (insn), regno);
4291}
4292
4293/* Copy available expressions that reach the redundant expression
4294   to `reaching_reg'.  */
4295
4296static void
4297pre_insert_copies (void)
4298{
4299  unsigned int i, added_copy;
4300  struct expr *expr;
4301  struct occr *occr;
4302  struct occr *avail;
4303
4304  /* For each available expression in the table, copy the result to
4305     `reaching_reg' if the expression reaches a deleted one.
4306
4307     ??? The current algorithm is rather brute force.
4308     Need to do some profiling.  */
4309
4310  for (i = 0; i < expr_hash_table.size; i++)
4311    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4312      {
4313	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
4314	   we don't want to insert a copy here because the expression may not
4315	   really be redundant.  So only insert an insn if the expression was
4316	   deleted.  This test also avoids further processing if the
4317	   expression wasn't deleted anywhere.  */
4318	if (expr->reaching_reg == NULL)
4319	  continue;
4320
4321	/* Set when we add a copy for that expression.  */
4322	added_copy = 0;
4323
4324	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4325	  {
4326	    if (! occr->deleted_p)
4327	      continue;
4328
4329	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4330	      {
4331		rtx insn = avail->insn;
4332
4333		/* No need to handle this one if handled already.  */
4334		if (avail->copied_p)
4335		  continue;
4336
4337		/* Don't handle this one if it's a redundant one.  */
4338		if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4339		  continue;
4340
4341		/* Or if the expression doesn't reach the deleted one.  */
4342		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4343					       expr,
4344					       BLOCK_FOR_INSN (occr->insn)))
4345		  continue;
4346
4347                added_copy = 1;
4348
4349		/* Copy the result of avail to reaching_reg.  */
4350		pre_insert_copy_insn (expr, insn);
4351		avail->copied_p = 1;
4352	      }
4353	  }
4354
4355	  if (added_copy)
4356            update_ld_motion_stores (expr);
4357      }
4358}
4359
4360/* Emit move from SRC to DEST noting the equivalence with expression computed
4361   in INSN.  */
4362static rtx
4363gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4364{
4365  rtx new;
4366  rtx set = single_set (insn), set2;
4367  rtx note;
4368  rtx eqv;
4369
4370  /* This should never fail since we're creating a reg->reg copy
4371     we've verified to be valid.  */
4372
4373  new = emit_insn_after (gen_move_insn (dest, src), insn);
4374
4375  /* Note the equivalence for local CSE pass.  */
4376  set2 = single_set (new);
4377  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4378    return new;
4379  if ((note = find_reg_equal_equiv_note (insn)))
4380    eqv = XEXP (note, 0);
4381  else
4382    eqv = SET_SRC (set);
4383
4384  set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4385
4386  return new;
4387}
4388
4389/* Delete redundant computations.
4390   Deletion is done by changing the insn to copy the `reaching_reg' of
4391   the expression into the result of the SET.  It is left to later passes
4392   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4393
4394   Returns nonzero if a change is made.  */
4395
4396static int
4397pre_delete (void)
4398{
4399  unsigned int i;
4400  int changed;
4401  struct expr *expr;
4402  struct occr *occr;
4403
4404  changed = 0;
4405  for (i = 0; i < expr_hash_table.size; i++)
4406    for (expr = expr_hash_table.table[i];
4407	 expr != NULL;
4408	 expr = expr->next_same_hash)
4409      {
4410	int indx = expr->bitmap_index;
4411
4412	/* We only need to search antic_occr since we require
4413	   ANTLOC != 0.  */
4414
4415	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4416	  {
4417	    rtx insn = occr->insn;
4418	    rtx set;
4419	    basic_block bb = BLOCK_FOR_INSN (insn);
4420
4421	    /* We only delete insns that have a single_set.  */
4422	    if (TEST_BIT (pre_delete_map[bb->index], indx)
4423		&& (set = single_set (insn)) != 0)
4424	      {
4425		/* Create a pseudo-reg to store the result of reaching
4426		   expressions into.  Get the mode for the new pseudo from
4427		   the mode of the original destination pseudo.  */
4428		if (expr->reaching_reg == NULL)
4429		  expr->reaching_reg
4430		    = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4431
4432		gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4433		delete_insn (insn);
4434		occr->deleted_p = 1;
4435		SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4436		changed = 1;
4437		gcse_subst_count++;
4438
4439		if (gcse_file)
4440		  {
4441		    fprintf (gcse_file,
4442			     "PRE: redundant insn %d (expression %d) in ",
4443			       INSN_UID (insn), indx);
4444		    fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4445			     bb->index, REGNO (expr->reaching_reg));
4446		  }
4447	      }
4448	  }
4449      }
4450
4451  return changed;
4452}
4453
4454/* Perform GCSE optimizations using PRE.
4455   This is called by one_pre_gcse_pass after all the dataflow analysis
4456   has been done.
4457
4458   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4459   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4460   Compiler Design and Implementation.
4461
4462   ??? A new pseudo reg is created to hold the reaching expression.  The nice
4463   thing about the classical approach is that it would try to use an existing
4464   reg.  If the register can't be adequately optimized [i.e. we introduce
4465   reload problems], one could add a pass here to propagate the new register
4466   through the block.
4467
4468   ??? We don't handle single sets in PARALLELs because we're [currently] not
4469   able to copy the rest of the parallel when we insert copies to create full
4470   redundancies from partial redundancies.  However, there's no reason why we
4471   can't handle PARALLELs in the cases where there are no partial
4472   redundancies.  */
4473
4474static int
4475pre_gcse (void)
4476{
4477  unsigned int i;
4478  int did_insert, changed;
4479  struct expr **index_map;
4480  struct expr *expr;
4481
4482  /* Compute a mapping from expression number (`bitmap_index') to
4483     hash table entry.  */
4484
4485  index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4486  for (i = 0; i < expr_hash_table.size; i++)
4487    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4488      index_map[expr->bitmap_index] = expr;
4489
4490  /* Reset bitmap used to track which insns are redundant.  */
4491  pre_redundant_insns = sbitmap_alloc (max_cuid);
4492  sbitmap_zero (pre_redundant_insns);
4493
4494  /* Delete the redundant insns first so that
4495     - we know what register to use for the new insns and for the other
4496       ones with reaching expressions
4497     - we know which insns are redundant when we go to create copies  */
4498
4499  changed = pre_delete ();
4500
4501  did_insert = pre_edge_insert (edge_list, index_map);
4502
4503  /* In other places with reaching expressions, copy the expression to the
4504     specially allocated pseudo-reg that reaches the redundant expr.  */
4505  pre_insert_copies ();
4506  if (did_insert)
4507    {
4508      commit_edge_insertions ();
4509      changed = 1;
4510    }
4511
4512  free (index_map);
4513  sbitmap_free (pre_redundant_insns);
4514  return changed;
4515}
4516
4517/* Top level routine to perform one PRE GCSE pass.
4518
4519   Return nonzero if a change was made.  */
4520
4521static int
4522one_pre_gcse_pass (int pass)
4523{
4524  int changed = 0;
4525
4526  gcse_subst_count = 0;
4527  gcse_create_count = 0;
4528
4529  alloc_hash_table (max_cuid, &expr_hash_table, 0);
4530  add_noreturn_fake_exit_edges ();
4531  if (flag_gcse_lm)
4532    compute_ld_motion_mems ();
4533
4534  compute_hash_table (&expr_hash_table);
4535  trim_ld_motion_mems ();
4536  if (gcse_file)
4537    dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4538
4539  if (expr_hash_table.n_elems > 0)
4540    {
4541      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4542      compute_pre_data ();
4543      changed |= pre_gcse ();
4544      free_edge_list (edge_list);
4545      free_pre_mem ();
4546    }
4547
4548  free_ldst_mems ();
4549  remove_fake_exit_edges ();
4550  free_hash_table (&expr_hash_table);
4551
4552  if (gcse_file)
4553    {
4554      fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4555	       current_function_name (), pass, bytes_used);
4556      fprintf (gcse_file, "%d substs, %d insns created\n",
4557	       gcse_subst_count, gcse_create_count);
4558    }
4559
4560  return changed;
4561}
4562
4563/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4564   If notes are added to an insn which references a CODE_LABEL, the
4565   LABEL_NUSES count is incremented.  We have to add REG_LABEL notes,
4566   because the following loop optimization pass requires them.  */
4567
4568/* ??? This is very similar to the loop.c add_label_notes function.  We
4569   could probably share code here.  */
4570
4571/* ??? If there was a jump optimization pass after gcse and before loop,
4572   then we would not need to do this here, because jump would add the
4573   necessary REG_LABEL notes.  */
4574
4575static void
4576add_label_notes (rtx x, rtx insn)
4577{
4578  enum rtx_code code = GET_CODE (x);
4579  int i, j;
4580  const char *fmt;
4581
4582  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4583    {
4584      /* This code used to ignore labels that referred to dispatch tables to
4585	 avoid flow generating (slightly) worse code.
4586
4587	 We no longer ignore such label references (see LABEL_REF handling in
4588	 mark_jump_label for additional information).  */
4589
4590      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4591					    REG_NOTES (insn));
4592      if (LABEL_P (XEXP (x, 0)))
4593	LABEL_NUSES (XEXP (x, 0))++;
4594      return;
4595    }
4596
4597  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4598    {
4599      if (fmt[i] == 'e')
4600	add_label_notes (XEXP (x, i), insn);
4601      else if (fmt[i] == 'E')
4602	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4603	  add_label_notes (XVECEXP (x, i, j), insn);
4604    }
4605}
4606
4607/* Compute transparent outgoing information for each block.
4608
4609   An expression is transparent to an edge unless it is killed by
4610   the edge itself.  This can only happen with abnormal control flow,
4611   when the edge is traversed through a call.  This happens with
4612   non-local labels and exceptions.
4613
4614   This would not be necessary if we split the edge.  While this is
4615   normally impossible for abnormal critical edges, with some effort
4616   it should be possible with exception handling, since we still have
4617   control over which handler should be invoked.  But due to increased
4618   EH table sizes, this may not be worthwhile.  */
4619
4620static void
4621compute_transpout (void)
4622{
4623  basic_block bb;
4624  unsigned int i;
4625  struct expr *expr;
4626
4627  sbitmap_vector_ones (transpout, last_basic_block);
4628
4629  FOR_EACH_BB (bb)
4630    {
4631      /* Note that flow inserted a nop a the end of basic blocks that
4632	 end in call instructions for reasons other than abnormal
4633	 control flow.  */
4634      if (! CALL_P (BB_END (bb)))
4635	continue;
4636
4637      for (i = 0; i < expr_hash_table.size; i++)
4638	for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4639	  if (MEM_P (expr->expr))
4640	    {
4641	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4642		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4643		continue;
4644
4645	      /* ??? Optimally, we would use interprocedural alias
4646		 analysis to determine if this mem is actually killed
4647		 by this call.  */
4648	      RESET_BIT (transpout[bb->index], expr->bitmap_index);
4649	    }
4650    }
4651}
4652
4653/* Code Hoisting variables and subroutines.  */
4654
4655/* Very busy expressions.  */
4656static sbitmap *hoist_vbein;
4657static sbitmap *hoist_vbeout;
4658
4659/* Hoistable expressions.  */
4660static sbitmap *hoist_exprs;
4661
4662/* ??? We could compute post dominators and run this algorithm in
4663   reverse to perform tail merging, doing so would probably be
4664   more effective than the tail merging code in jump.c.
4665
4666   It's unclear if tail merging could be run in parallel with
4667   code hoisting.  It would be nice.  */
4668
4669/* Allocate vars used for code hoisting analysis.  */
4670
4671static void
4672alloc_code_hoist_mem (int n_blocks, int n_exprs)
4673{
4674  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4675  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4676  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4677
4678  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4679  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4680  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4681  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4682}
4683
4684/* Free vars used for code hoisting analysis.  */
4685
4686static void
4687free_code_hoist_mem (void)
4688{
4689  sbitmap_vector_free (antloc);
4690  sbitmap_vector_free (transp);
4691  sbitmap_vector_free (comp);
4692
4693  sbitmap_vector_free (hoist_vbein);
4694  sbitmap_vector_free (hoist_vbeout);
4695  sbitmap_vector_free (hoist_exprs);
4696  sbitmap_vector_free (transpout);
4697
4698  free_dominance_info (CDI_DOMINATORS);
4699}
4700
4701/* Compute the very busy expressions at entry/exit from each block.
4702
4703   An expression is very busy if all paths from a given point
4704   compute the expression.  */
4705
4706static void
4707compute_code_hoist_vbeinout (void)
4708{
4709  int changed, passes;
4710  basic_block bb;
4711
4712  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4713  sbitmap_vector_zero (hoist_vbein, last_basic_block);
4714
4715  passes = 0;
4716  changed = 1;
4717
4718  while (changed)
4719    {
4720      changed = 0;
4721
4722      /* We scan the blocks in the reverse order to speed up
4723	 the convergence.  */
4724      FOR_EACH_BB_REVERSE (bb)
4725	{
4726	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4727					      hoist_vbeout[bb->index], transp[bb->index]);
4728	  if (bb->next_bb != EXIT_BLOCK_PTR)
4729	    sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4730	}
4731
4732      passes++;
4733    }
4734
4735  if (gcse_file)
4736    fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4737}
4738
4739/* Top level routine to do the dataflow analysis needed by code hoisting.  */
4740
4741static void
4742compute_code_hoist_data (void)
4743{
4744  compute_local_properties (transp, comp, antloc, &expr_hash_table);
4745  compute_transpout ();
4746  compute_code_hoist_vbeinout ();
4747  calculate_dominance_info (CDI_DOMINATORS);
4748  if (gcse_file)
4749    fprintf (gcse_file, "\n");
4750}
4751
4752/* Determine if the expression identified by EXPR_INDEX would
4753   reach BB unimpared if it was placed at the end of EXPR_BB.
4754
4755   It's unclear exactly what Muchnick meant by "unimpared".  It seems
4756   to me that the expression must either be computed or transparent in
4757   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
4758   would allow the expression to be hoisted out of loops, even if
4759   the expression wasn't a loop invariant.
4760
4761   Contrast this to reachability for PRE where an expression is
4762   considered reachable if *any* path reaches instead of *all*
4763   paths.  */
4764
4765static int
4766hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4767{
4768  edge pred;
4769  edge_iterator ei;
4770  int visited_allocated_locally = 0;
4771
4772
4773  if (visited == NULL)
4774    {
4775      visited_allocated_locally = 1;
4776      visited = xcalloc (last_basic_block, 1);
4777    }
4778
4779  FOR_EACH_EDGE (pred, ei, bb->preds)
4780    {
4781      basic_block pred_bb = pred->src;
4782
4783      if (pred->src == ENTRY_BLOCK_PTR)
4784	break;
4785      else if (pred_bb == expr_bb)
4786	continue;
4787      else if (visited[pred_bb->index])
4788	continue;
4789
4790      /* Does this predecessor generate this expression?  */
4791      else if (TEST_BIT (comp[pred_bb->index], expr_index))
4792	break;
4793      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4794	break;
4795
4796      /* Not killed.  */
4797      else
4798	{
4799	  visited[pred_bb->index] = 1;
4800	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4801					   pred_bb, visited))
4802	    break;
4803	}
4804    }
4805  if (visited_allocated_locally)
4806    free (visited);
4807
4808  return (pred == NULL);
4809}
4810
4811/* Actually perform code hoisting.  */
4812
4813static void
4814hoist_code (void)
4815{
4816  basic_block bb, dominated;
4817  basic_block *domby;
4818  unsigned int domby_len;
4819  unsigned int i,j;
4820  struct expr **index_map;
4821  struct expr *expr;
4822
4823  sbitmap_vector_zero (hoist_exprs, last_basic_block);
4824
4825  /* Compute a mapping from expression number (`bitmap_index') to
4826     hash table entry.  */
4827
4828  index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4829  for (i = 0; i < expr_hash_table.size; i++)
4830    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4831      index_map[expr->bitmap_index] = expr;
4832
4833  /* Walk over each basic block looking for potentially hoistable
4834     expressions, nothing gets hoisted from the entry block.  */
4835  FOR_EACH_BB (bb)
4836    {
4837      int found = 0;
4838      int insn_inserted_p;
4839
4840      domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4841      /* Examine each expression that is very busy at the exit of this
4842	 block.  These are the potentially hoistable expressions.  */
4843      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4844	{
4845	  int hoistable = 0;
4846
4847	  if (TEST_BIT (hoist_vbeout[bb->index], i)
4848	      && TEST_BIT (transpout[bb->index], i))
4849	    {
4850	      /* We've found a potentially hoistable expression, now
4851		 we look at every block BB dominates to see if it
4852		 computes the expression.  */
4853	      for (j = 0; j < domby_len; j++)
4854		{
4855		  dominated = domby[j];
4856		  /* Ignore self dominance.  */
4857		  if (bb == dominated)
4858		    continue;
4859		  /* We've found a dominated block, now see if it computes
4860		     the busy expression and whether or not moving that
4861		     expression to the "beginning" of that block is safe.  */
4862		  if (!TEST_BIT (antloc[dominated->index], i))
4863		    continue;
4864
4865		  /* Note if the expression would reach the dominated block
4866		     unimpared if it was placed at the end of BB.
4867
4868		     Keep track of how many times this expression is hoistable
4869		     from a dominated block into BB.  */
4870		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4871		    hoistable++;
4872		}
4873
4874	      /* If we found more than one hoistable occurrence of this
4875		 expression, then note it in the bitmap of expressions to
4876		 hoist.  It makes no sense to hoist things which are computed
4877		 in only one BB, and doing so tends to pessimize register
4878		 allocation.  One could increase this value to try harder
4879		 to avoid any possible code expansion due to register
4880		 allocation issues; however experiments have shown that
4881		 the vast majority of hoistable expressions are only movable
4882		 from two successors, so raising this threshold is likely
4883		 to nullify any benefit we get from code hoisting.  */
4884	      if (hoistable > 1)
4885		{
4886		  SET_BIT (hoist_exprs[bb->index], i);
4887		  found = 1;
4888		}
4889	    }
4890	}
4891      /* If we found nothing to hoist, then quit now.  */
4892      if (! found)
4893        {
4894	  free (domby);
4895	continue;
4896	}
4897
4898      /* Loop over all the hoistable expressions.  */
4899      for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4900	{
4901	  /* We want to insert the expression into BB only once, so
4902	     note when we've inserted it.  */
4903	  insn_inserted_p = 0;
4904
4905	  /* These tests should be the same as the tests above.  */
4906	  if (TEST_BIT (hoist_exprs[bb->index], i))
4907	    {
4908	      /* We've found a potentially hoistable expression, now
4909		 we look at every block BB dominates to see if it
4910		 computes the expression.  */
4911	      for (j = 0; j < domby_len; j++)
4912		{
4913		  dominated = domby[j];
4914		  /* Ignore self dominance.  */
4915		  if (bb == dominated)
4916		    continue;
4917
4918		  /* We've found a dominated block, now see if it computes
4919		     the busy expression and whether or not moving that
4920		     expression to the "beginning" of that block is safe.  */
4921		  if (!TEST_BIT (antloc[dominated->index], i))
4922		    continue;
4923
4924		  /* The expression is computed in the dominated block and
4925		     it would be safe to compute it at the start of the
4926		     dominated block.  Now we have to determine if the
4927		     expression would reach the dominated block if it was
4928		     placed at the end of BB.  */
4929		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4930		    {
4931		      struct expr *expr = index_map[i];
4932		      struct occr *occr = expr->antic_occr;
4933		      rtx insn;
4934		      rtx set;
4935
4936		      /* Find the right occurrence of this expression.  */
4937		      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4938			occr = occr->next;
4939
4940		      gcc_assert (occr);
4941		      insn = occr->insn;
4942		      set = single_set (insn);
4943		      gcc_assert (set);
4944
4945		      /* Create a pseudo-reg to store the result of reaching
4946			 expressions into.  Get the mode for the new pseudo
4947			 from the mode of the original destination pseudo.  */
4948		      if (expr->reaching_reg == NULL)
4949			expr->reaching_reg
4950			  = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4951
4952		      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4953		      delete_insn (insn);
4954		      occr->deleted_p = 1;
4955		      if (!insn_inserted_p)
4956			{
4957			  insert_insn_end_bb (index_map[i], bb, 0);
4958			  insn_inserted_p = 1;
4959			}
4960		    }
4961		}
4962	    }
4963	}
4964      free (domby);
4965    }
4966
4967  free (index_map);
4968}
4969
4970/* Top level routine to perform one code hoisting (aka unification) pass
4971
4972   Return nonzero if a change was made.  */
4973
4974static int
4975one_code_hoisting_pass (void)
4976{
4977  int changed = 0;
4978
4979  alloc_hash_table (max_cuid, &expr_hash_table, 0);
4980  compute_hash_table (&expr_hash_table);
4981  if (gcse_file)
4982    dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
4983
4984  if (expr_hash_table.n_elems > 0)
4985    {
4986      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4987      compute_code_hoist_data ();
4988      hoist_code ();
4989      free_code_hoist_mem ();
4990    }
4991
4992  free_hash_table (&expr_hash_table);
4993
4994  return changed;
4995}
4996
4997/*  Here we provide the things required to do store motion towards
4998    the exit. In order for this to be effective, gcse also needed to
4999    be taught how to move a load when it is kill only by a store to itself.
5000
5001	    int i;
5002	    float a[10];
5003
5004	    void foo(float scale)
5005	    {
5006	      for (i=0; i<10; i++)
5007		a[i] *= scale;
5008	    }
5009
5010    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5011    the load out since its live around the loop, and stored at the bottom
5012    of the loop.
5013
5014      The 'Load Motion' referred to and implemented in this file is
5015    an enhancement to gcse which when using edge based lcm, recognizes
5016    this situation and allows gcse to move the load out of the loop.
5017
5018      Once gcse has hoisted the load, store motion can then push this
5019    load towards the exit, and we end up with no loads or stores of 'i'
5020    in the loop.  */
5021
5022static hashval_t
5023pre_ldst_expr_hash (const void *p)
5024{
5025  int do_not_record_p = 0;
5026  const struct ls_expr *x = p;
5027  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5028}
5029
5030static int
5031pre_ldst_expr_eq (const void *p1, const void *p2)
5032{
5033  const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5034  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5035}
5036
5037/* This will search the ldst list for a matching expression. If it
5038   doesn't find one, we create one and initialize it.  */
5039
5040static struct ls_expr *
5041ldst_entry (rtx x)
5042{
5043  int do_not_record_p = 0;
5044  struct ls_expr * ptr;
5045  unsigned int hash;
5046  void **slot;
5047  struct ls_expr e;
5048
5049  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5050		   NULL,  /*have_reg_qty=*/false);
5051
5052  e.pattern = x;
5053  slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5054  if (*slot)
5055    return (struct ls_expr *)*slot;
5056
5057  ptr = xmalloc (sizeof (struct ls_expr));
5058
5059  ptr->next         = pre_ldst_mems;
5060  ptr->expr         = NULL;
5061  ptr->pattern      = x;
5062  ptr->pattern_regs = NULL_RTX;
5063  ptr->loads        = NULL_RTX;
5064  ptr->stores       = NULL_RTX;
5065  ptr->reaching_reg = NULL_RTX;
5066  ptr->invalid      = 0;
5067  ptr->index        = 0;
5068  ptr->hash_index   = hash;
5069  pre_ldst_mems     = ptr;
5070  *slot = ptr;
5071
5072  return ptr;
5073}
5074
5075/* Free up an individual ldst entry.  */
5076
5077static void
5078free_ldst_entry (struct ls_expr * ptr)
5079{
5080  free_INSN_LIST_list (& ptr->loads);
5081  free_INSN_LIST_list (& ptr->stores);
5082
5083  free (ptr);
5084}
5085
5086/* Free up all memory associated with the ldst list.  */
5087
5088static void
5089free_ldst_mems (void)
5090{
5091  if (pre_ldst_table)
5092    htab_delete (pre_ldst_table);
5093  pre_ldst_table = NULL;
5094
5095  while (pre_ldst_mems)
5096    {
5097      struct ls_expr * tmp = pre_ldst_mems;
5098
5099      pre_ldst_mems = pre_ldst_mems->next;
5100
5101      free_ldst_entry (tmp);
5102    }
5103
5104  pre_ldst_mems = NULL;
5105}
5106
5107/* Dump debugging info about the ldst list.  */
5108
5109static void
5110print_ldst_list (FILE * file)
5111{
5112  struct ls_expr * ptr;
5113
5114  fprintf (file, "LDST list: \n");
5115
5116  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5117    {
5118      fprintf (file, "  Pattern (%3d): ", ptr->index);
5119
5120      print_rtl (file, ptr->pattern);
5121
5122      fprintf (file, "\n	 Loads : ");
5123
5124      if (ptr->loads)
5125	print_rtl (file, ptr->loads);
5126      else
5127	fprintf (file, "(nil)");
5128
5129      fprintf (file, "\n	Stores : ");
5130
5131      if (ptr->stores)
5132	print_rtl (file, ptr->stores);
5133      else
5134	fprintf (file, "(nil)");
5135
5136      fprintf (file, "\n\n");
5137    }
5138
5139  fprintf (file, "\n");
5140}
5141
5142/* Returns 1 if X is in the list of ldst only expressions.  */
5143
5144static struct ls_expr *
5145find_rtx_in_ldst (rtx x)
5146{
5147  struct ls_expr e;
5148  void **slot;
5149  if (!pre_ldst_table)
5150    return NULL;
5151  e.pattern = x;
5152  slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5153  if (!slot || ((struct ls_expr *)*slot)->invalid)
5154    return NULL;
5155  return *slot;
5156}
5157
5158/* Assign each element of the list of mems a monotonically increasing value.  */
5159
5160static int
5161enumerate_ldsts (void)
5162{
5163  struct ls_expr * ptr;
5164  int n = 0;
5165
5166  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5167    ptr->index = n++;
5168
5169  return n;
5170}
5171
5172/* Return first item in the list.  */
5173
5174static inline struct ls_expr *
5175first_ls_expr (void)
5176{
5177  return pre_ldst_mems;
5178}
5179
5180/* Return the next item in the list after the specified one.  */
5181
5182static inline struct ls_expr *
5183next_ls_expr (struct ls_expr * ptr)
5184{
5185  return ptr->next;
5186}
5187
5188/* Load Motion for loads which only kill themselves.  */
5189
5190/* Return true if x is a simple MEM operation, with no registers or
5191   side effects. These are the types of loads we consider for the
5192   ld_motion list, otherwise we let the usual aliasing take care of it.  */
5193
5194static int
5195simple_mem (rtx x)
5196{
5197  if (! MEM_P (x))
5198    return 0;
5199
5200  if (MEM_VOLATILE_P (x))
5201    return 0;
5202
5203  if (GET_MODE (x) == BLKmode)
5204    return 0;
5205
5206  /* If we are handling exceptions, we must be careful with memory references
5207     that may trap. If we are not, the behavior is undefined, so we may just
5208     continue.  */
5209  if (flag_non_call_exceptions && may_trap_p (x))
5210    return 0;
5211
5212  if (side_effects_p (x))
5213    return 0;
5214
5215  /* Do not consider function arguments passed on stack.  */
5216  if (reg_mentioned_p (stack_pointer_rtx, x))
5217    return 0;
5218
5219  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5220    return 0;
5221
5222  return 1;
5223}
5224
5225/* Make sure there isn't a buried reference in this pattern anywhere.
5226   If there is, invalidate the entry for it since we're not capable
5227   of fixing it up just yet.. We have to be sure we know about ALL
5228   loads since the aliasing code will allow all entries in the
5229   ld_motion list to not-alias itself.  If we miss a load, we will get
5230   the wrong value since gcse might common it and we won't know to
5231   fix it up.  */
5232
5233static void
5234invalidate_any_buried_refs (rtx x)
5235{
5236  const char * fmt;
5237  int i, j;
5238  struct ls_expr * ptr;
5239
5240  /* Invalidate it in the list.  */
5241  if (MEM_P (x) && simple_mem (x))
5242    {
5243      ptr = ldst_entry (x);
5244      ptr->invalid = 1;
5245    }
5246
5247  /* Recursively process the insn.  */
5248  fmt = GET_RTX_FORMAT (GET_CODE (x));
5249
5250  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5251    {
5252      if (fmt[i] == 'e')
5253	invalidate_any_buried_refs (XEXP (x, i));
5254      else if (fmt[i] == 'E')
5255	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5256	  invalidate_any_buried_refs (XVECEXP (x, i, j));
5257    }
5258}
5259
5260/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
5261   being defined as MEM loads and stores to symbols, with no side effects
5262   and no registers in the expression.  For a MEM destination, we also
5263   check that the insn is still valid if we replace the destination with a
5264   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
5265   which don't match this criteria, they are invalidated and trimmed out
5266   later.  */
5267
5268static void
5269compute_ld_motion_mems (void)
5270{
5271  struct ls_expr * ptr;
5272  basic_block bb;
5273  rtx insn;
5274
5275  pre_ldst_mems = NULL;
5276  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5277				pre_ldst_expr_eq, NULL);
5278
5279  FOR_EACH_BB (bb)
5280    {
5281      FOR_BB_INSNS (bb, insn)
5282	{
5283	  if (INSN_P (insn))
5284	    {
5285	      if (GET_CODE (PATTERN (insn)) == SET)
5286		{
5287		  rtx src = SET_SRC (PATTERN (insn));
5288		  rtx dest = SET_DEST (PATTERN (insn));
5289
5290		  /* Check for a simple LOAD...  */
5291		  if (MEM_P (src) && simple_mem (src))
5292		    {
5293		      ptr = ldst_entry (src);
5294		      if (REG_P (dest))
5295			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5296		      else
5297			ptr->invalid = 1;
5298		    }
5299		  else
5300		    {
5301		      /* Make sure there isn't a buried load somewhere.  */
5302		      invalidate_any_buried_refs (src);
5303		    }
5304
5305		  /* Check for stores. Don't worry about aliased ones, they
5306		     will block any movement we might do later. We only care
5307		     about this exact pattern since those are the only
5308		     circumstance that we will ignore the aliasing info.  */
5309		  if (MEM_P (dest) && simple_mem (dest))
5310		    {
5311		      ptr = ldst_entry (dest);
5312
5313		      if (! MEM_P (src)
5314			  && GET_CODE (src) != ASM_OPERANDS
5315			  /* Check for REG manually since want_to_gcse_p
5316			     returns 0 for all REGs.  */
5317			  && can_assign_to_reg_p (src))
5318			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5319		      else
5320			ptr->invalid = 1;
5321		    }
5322		}
5323	      else
5324		invalidate_any_buried_refs (PATTERN (insn));
5325	    }
5326	}
5327    }
5328}
5329
5330/* Remove any references that have been either invalidated or are not in the
5331   expression list for pre gcse.  */
5332
5333static void
5334trim_ld_motion_mems (void)
5335{
5336  struct ls_expr * * last = & pre_ldst_mems;
5337  struct ls_expr * ptr = pre_ldst_mems;
5338
5339  while (ptr != NULL)
5340    {
5341      struct expr * expr;
5342
5343      /* Delete if entry has been made invalid.  */
5344      if (! ptr->invalid)
5345	{
5346	  /* Delete if we cannot find this mem in the expression list.  */
5347	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
5348
5349	  for (expr = expr_hash_table.table[hash];
5350	       expr != NULL;
5351	       expr = expr->next_same_hash)
5352	    if (expr_equiv_p (expr->expr, ptr->pattern))
5353	      break;
5354	}
5355      else
5356	expr = (struct expr *) 0;
5357
5358      if (expr)
5359	{
5360	  /* Set the expression field if we are keeping it.  */
5361	  ptr->expr = expr;
5362	  last = & ptr->next;
5363	  ptr = ptr->next;
5364	}
5365      else
5366	{
5367	  *last = ptr->next;
5368	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5369	  free_ldst_entry (ptr);
5370	  ptr = * last;
5371	}
5372    }
5373
5374  /* Show the world what we've found.  */
5375  if (gcse_file && pre_ldst_mems != NULL)
5376    print_ldst_list (gcse_file);
5377}
5378
5379/* This routine will take an expression which we are replacing with
5380   a reaching register, and update any stores that are needed if
5381   that expression is in the ld_motion list.  Stores are updated by
5382   copying their SRC to the reaching register, and then storing
5383   the reaching register into the store location. These keeps the
5384   correct value in the reaching register for the loads.  */
5385
5386static void
5387update_ld_motion_stores (struct expr * expr)
5388{
5389  struct ls_expr * mem_ptr;
5390
5391  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5392    {
5393      /* We can try to find just the REACHED stores, but is shouldn't
5394	 matter to set the reaching reg everywhere...  some might be
5395	 dead and should be eliminated later.  */
5396
5397      /* We replace (set mem expr) with (set reg expr) (set mem reg)
5398	 where reg is the reaching reg used in the load.  We checked in
5399	 compute_ld_motion_mems that we can replace (set mem expr) with
5400	 (set reg expr) in that insn.  */
5401      rtx list = mem_ptr->stores;
5402
5403      for ( ; list != NULL_RTX; list = XEXP (list, 1))
5404	{
5405	  rtx insn = XEXP (list, 0);
5406	  rtx pat = PATTERN (insn);
5407	  rtx src = SET_SRC (pat);
5408	  rtx reg = expr->reaching_reg;
5409	  rtx copy, new;
5410
5411	  /* If we've already copied it, continue.  */
5412	  if (expr->reaching_reg == src)
5413	    continue;
5414
5415	  if (gcse_file)
5416	    {
5417	      fprintf (gcse_file, "PRE:  store updated with reaching reg ");
5418	      print_rtl (gcse_file, expr->reaching_reg);
5419	      fprintf (gcse_file, ":\n	");
5420	      print_inline_rtx (gcse_file, insn, 8);
5421	      fprintf (gcse_file, "\n");
5422	    }
5423
5424	  copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5425	  new = emit_insn_before (copy, insn);
5426	  record_one_set (REGNO (reg), new);
5427	  SET_SRC (pat) = reg;
5428
5429	  /* un-recognize this pattern since it's probably different now.  */
5430	  INSN_CODE (insn) = -1;
5431	  gcse_create_count++;
5432	}
5433    }
5434}
5435
5436/* Store motion code.  */
5437
5438#define ANTIC_STORE_LIST(x)		((x)->loads)
5439#define AVAIL_STORE_LIST(x)		((x)->stores)
5440#define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)
5441
5442/* This is used to communicate the target bitvector we want to use in the
5443   reg_set_info routine when called via the note_stores mechanism.  */
5444static int * regvec;
5445
5446/* And current insn, for the same routine.  */
5447static rtx compute_store_table_current_insn;
5448
5449/* Used in computing the reverse edge graph bit vectors.  */
5450static sbitmap * st_antloc;
5451
5452/* Global holding the number of store expressions we are dealing with.  */
5453static int num_stores;
5454
5455/* Checks to set if we need to mark a register set.  Called from
5456   note_stores.  */
5457
5458static void
5459reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5460	      void *data)
5461{
5462  sbitmap bb_reg = data;
5463
5464  if (GET_CODE (dest) == SUBREG)
5465    dest = SUBREG_REG (dest);
5466
5467  if (REG_P (dest))
5468    {
5469      regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5470      if (bb_reg)
5471	SET_BIT (bb_reg, REGNO (dest));
5472    }
5473}
5474
5475/* Clear any mark that says that this insn sets dest.  Called from
5476   note_stores.  */
5477
5478static void
5479reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5480	      void *data)
5481{
5482  int *dead_vec = data;
5483
5484  if (GET_CODE (dest) == SUBREG)
5485    dest = SUBREG_REG (dest);
5486
5487  if (REG_P (dest) &&
5488      dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5489    dead_vec[REGNO (dest)] = 0;
5490}
5491
5492/* Return zero if some of the registers in list X are killed
5493   due to set of registers in bitmap REGS_SET.  */
5494
5495static bool
5496store_ops_ok (rtx x, int *regs_set)
5497{
5498  rtx reg;
5499
5500  for (; x; x = XEXP (x, 1))
5501    {
5502      reg = XEXP (x, 0);
5503      if (regs_set[REGNO(reg)])
5504	return false;
5505    }
5506
5507  return true;
5508}
5509
5510/* Returns a list of registers mentioned in X.  */
5511static rtx
5512extract_mentioned_regs (rtx x)
5513{
5514  return extract_mentioned_regs_helper (x, NULL_RTX);
5515}
5516
5517/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5518   registers.  */
5519static rtx
5520extract_mentioned_regs_helper (rtx x, rtx accum)
5521{
5522  int i;
5523  enum rtx_code code;
5524  const char * fmt;
5525
5526  /* Repeat is used to turn tail-recursion into iteration.  */
5527 repeat:
5528
5529  if (x == 0)
5530    return accum;
5531
5532  code = GET_CODE (x);
5533  switch (code)
5534    {
5535    case REG:
5536      return alloc_EXPR_LIST (0, x, accum);
5537
5538    case MEM:
5539      x = XEXP (x, 0);
5540      goto repeat;
5541
5542    case PRE_DEC:
5543    case PRE_INC:
5544    case POST_DEC:
5545    case POST_INC:
5546      /* We do not run this function with arguments having side effects.  */
5547      gcc_unreachable ();
5548
5549    case PC:
5550    case CC0: /*FIXME*/
5551    case CONST:
5552    case CONST_INT:
5553    case CONST_DOUBLE:
5554    case CONST_VECTOR:
5555    case SYMBOL_REF:
5556    case LABEL_REF:
5557    case ADDR_VEC:
5558    case ADDR_DIFF_VEC:
5559      return accum;
5560
5561    default:
5562      break;
5563    }
5564
5565  i = GET_RTX_LENGTH (code) - 1;
5566  fmt = GET_RTX_FORMAT (code);
5567
5568  for (; i >= 0; i--)
5569    {
5570      if (fmt[i] == 'e')
5571	{
5572	  rtx tem = XEXP (x, i);
5573
5574	  /* If we are about to do the last recursive call
5575	     needed at this level, change it into iteration.  */
5576	  if (i == 0)
5577	    {
5578	      x = tem;
5579	      goto repeat;
5580	    }
5581
5582	  accum = extract_mentioned_regs_helper (tem, accum);
5583	}
5584      else if (fmt[i] == 'E')
5585	{
5586	  int j;
5587
5588	  for (j = 0; j < XVECLEN (x, i); j++)
5589	    accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5590	}
5591    }
5592
5593  return accum;
5594}
5595
5596/* Determine whether INSN is MEM store pattern that we will consider moving.
5597   REGS_SET_BEFORE is bitmap of registers set before (and including) the
5598   current insn, REGS_SET_AFTER is bitmap of registers set after (and
5599   including) the insn in this basic block.  We must be passing through BB from
5600   head to end, as we are using this fact to speed things up.
5601
5602   The results are stored this way:
5603
5604   -- the first anticipatable expression is added into ANTIC_STORE_LIST
5605   -- if the processed expression is not anticipatable, NULL_RTX is added
5606      there instead, so that we can use it as indicator that no further
5607      expression of this type may be anticipatable
5608   -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5609      consequently, all of them but this head are dead and may be deleted.
5610   -- if the expression is not available, the insn due to that it fails to be
5611      available is stored in reaching_reg.
5612
5613   The things are complicated a bit by fact that there already may be stores
5614   to the same MEM from other blocks; also caller must take care of the
5615   necessary cleanup of the temporary markers after end of the basic block.
5616   */
5617
5618static void
5619find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5620{
5621  struct ls_expr * ptr;
5622  rtx dest, set, tmp;
5623  int check_anticipatable, check_available;
5624  basic_block bb = BLOCK_FOR_INSN (insn);
5625
5626  set = single_set (insn);
5627  if (!set)
5628    return;
5629
5630  dest = SET_DEST (set);
5631
5632  if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5633      || GET_MODE (dest) == BLKmode)
5634    return;
5635
5636  if (side_effects_p (dest))
5637    return;
5638
5639  /* If we are handling exceptions, we must be careful with memory references
5640     that may trap. If we are not, the behavior is undefined, so we may just
5641     continue.  */
5642  if (flag_non_call_exceptions && may_trap_p (dest))
5643    return;
5644
5645  /* Even if the destination cannot trap, the source may.  In this case we'd
5646     need to handle updating the REG_EH_REGION note.  */
5647  if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5648    return;
5649
5650  /* Make sure that the SET_SRC of this store insns can be assigned to
5651     a register, or we will fail later on in replace_store_insn, which
5652     assumes that we can do this.  But sometimes the target machine has
5653     oddities like MEM read-modify-write instruction.  See for example
5654     PR24257.  */
5655  if (!can_assign_to_reg_p (SET_SRC (set)))
5656    return;
5657
5658  ptr = ldst_entry (dest);
5659  if (!ptr->pattern_regs)
5660    ptr->pattern_regs = extract_mentioned_regs (dest);
5661
5662  /* Do not check for anticipatability if we either found one anticipatable
5663     store already, or tested for one and found out that it was killed.  */
5664  check_anticipatable = 0;
5665  if (!ANTIC_STORE_LIST (ptr))
5666    check_anticipatable = 1;
5667  else
5668    {
5669      tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5670      if (tmp != NULL_RTX
5671	  && BLOCK_FOR_INSN (tmp) != bb)
5672	check_anticipatable = 1;
5673    }
5674  if (check_anticipatable)
5675    {
5676      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5677	tmp = NULL_RTX;
5678      else
5679	tmp = insn;
5680      ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5681						ANTIC_STORE_LIST (ptr));
5682    }
5683
5684  /* It is not necessary to check whether store is available if we did
5685     it successfully before; if we failed before, do not bother to check
5686     until we reach the insn that caused us to fail.  */
5687  check_available = 0;
5688  if (!AVAIL_STORE_LIST (ptr))
5689    check_available = 1;
5690  else
5691    {
5692      tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5693      if (BLOCK_FOR_INSN (tmp) != bb)
5694	check_available = 1;
5695    }
5696  if (check_available)
5697    {
5698      /* Check that we have already reached the insn at that the check
5699	 failed last time.  */
5700      if (LAST_AVAIL_CHECK_FAILURE (ptr))
5701	{
5702	  for (tmp = BB_END (bb);
5703	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5704	       tmp = PREV_INSN (tmp))
5705	    continue;
5706	  if (tmp == insn)
5707	    check_available = 0;
5708	}
5709      else
5710	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5711					      bb, regs_set_after,
5712					      &LAST_AVAIL_CHECK_FAILURE (ptr));
5713    }
5714  if (!check_available)
5715    AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5716}
5717
5718/* Find available and anticipatable stores.  */
5719
5720static int
5721compute_store_table (void)
5722{
5723  int ret;
5724  basic_block bb;
5725  unsigned regno;
5726  rtx insn, pat, tmp;
5727  int *last_set_in, *already_set;
5728  struct ls_expr * ptr, **prev_next_ptr_ptr;
5729
5730  max_gcse_regno = max_reg_num ();
5731
5732  reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5733						       max_gcse_regno);
5734  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5735  pre_ldst_mems = 0;
5736  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5737				pre_ldst_expr_eq, NULL);
5738  last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5739  already_set = xmalloc (sizeof (int) * max_gcse_regno);
5740
5741  /* Find all the stores we care about.  */
5742  FOR_EACH_BB (bb)
5743    {
5744      /* First compute the registers set in this block.  */
5745      regvec = last_set_in;
5746
5747      FOR_BB_INSNS (bb, insn)
5748	{
5749	  if (! INSN_P (insn))
5750	    continue;
5751
5752	  if (CALL_P (insn))
5753	    {
5754	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5755		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5756		  {
5757		    last_set_in[regno] = INSN_UID (insn);
5758		    SET_BIT (reg_set_in_block[bb->index], regno);
5759		  }
5760	    }
5761
5762	  pat = PATTERN (insn);
5763	  compute_store_table_current_insn = insn;
5764	  note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5765	}
5766
5767      /* Now find the stores.  */
5768      memset (already_set, 0, sizeof (int) * max_gcse_regno);
5769      regvec = already_set;
5770      FOR_BB_INSNS (bb, insn)
5771	{
5772	  if (! INSN_P (insn))
5773	    continue;
5774
5775	  if (CALL_P (insn))
5776	    {
5777	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5778		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5779		  already_set[regno] = 1;
5780	    }
5781
5782	  pat = PATTERN (insn);
5783	  note_stores (pat, reg_set_info, NULL);
5784
5785	  /* Now that we've marked regs, look for stores.  */
5786	  find_moveable_store (insn, already_set, last_set_in);
5787
5788	  /* Unmark regs that are no longer set.  */
5789	  compute_store_table_current_insn = insn;
5790	  note_stores (pat, reg_clear_last_set, last_set_in);
5791	  if (CALL_P (insn))
5792	    {
5793	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5794		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5795		    && last_set_in[regno] == INSN_UID (insn))
5796		  last_set_in[regno] = 0;
5797	    }
5798	}
5799
5800#ifdef ENABLE_CHECKING
5801      /* last_set_in should now be all-zero.  */
5802      for (regno = 0; regno < max_gcse_regno; regno++)
5803	gcc_assert (!last_set_in[regno]);
5804#endif
5805
5806      /* Clear temporary marks.  */
5807      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5808	{
5809	  LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5810	  if (ANTIC_STORE_LIST (ptr)
5811	      && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5812	    ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5813	}
5814    }
5815
5816  /* Remove the stores that are not available anywhere, as there will
5817     be no opportunity to optimize them.  */
5818  for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5819       ptr != NULL;
5820       ptr = *prev_next_ptr_ptr)
5821    {
5822      if (!AVAIL_STORE_LIST (ptr))
5823	{
5824	  *prev_next_ptr_ptr = ptr->next;
5825	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5826	  free_ldst_entry (ptr);
5827	}
5828      else
5829	prev_next_ptr_ptr = &ptr->next;
5830    }
5831
5832  ret = enumerate_ldsts ();
5833
5834  if (gcse_file)
5835    {
5836      fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5837      print_ldst_list (gcse_file);
5838    }
5839
5840  free (last_set_in);
5841  free (already_set);
5842  return ret;
5843}
5844
5845/* Check to see if the load X is aliased with STORE_PATTERN.
5846   AFTER is true if we are checking the case when STORE_PATTERN occurs
5847   after the X.  */
5848
5849static bool
5850load_kills_store (rtx x, rtx store_pattern, int after)
5851{
5852  if (after)
5853    return anti_dependence (x, store_pattern);
5854  else
5855    return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5856			    rtx_addr_varies_p);
5857}
5858
5859/* Go through the entire insn X, looking for any loads which might alias
5860   STORE_PATTERN.  Return true if found.
5861   AFTER is true if we are checking the case when STORE_PATTERN occurs
5862   after the insn X.  */
5863
5864static bool
5865find_loads (rtx x, rtx store_pattern, int after)
5866{
5867  const char * fmt;
5868  int i, j;
5869  int ret = false;
5870
5871  if (!x)
5872    return false;
5873
5874  if (GET_CODE (x) == SET)
5875    x = SET_SRC (x);
5876
5877  if (MEM_P (x))
5878    {
5879      if (load_kills_store (x, store_pattern, after))
5880	return true;
5881    }
5882
5883  /* Recursively process the insn.  */
5884  fmt = GET_RTX_FORMAT (GET_CODE (x));
5885
5886  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5887    {
5888      if (fmt[i] == 'e')
5889	ret |= find_loads (XEXP (x, i), store_pattern, after);
5890      else if (fmt[i] == 'E')
5891	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5892	  ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5893    }
5894  return ret;
5895}
5896
5897/* Check if INSN kills the store pattern X (is aliased with it).
5898   AFTER is true if we are checking the case when store X occurs
5899   after the insn.  Return true if it does.  */
5900
5901static bool
5902store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5903{
5904  rtx reg, base, note;
5905
5906  if (!INSN_P (insn))
5907    return false;
5908
5909  if (CALL_P (insn))
5910    {
5911      /* A normal or pure call might read from pattern,
5912	 but a const call will not.  */
5913      if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5914	return true;
5915
5916      /* But even a const call reads its parameters.  Check whether the
5917	 base of some of registers used in mem is stack pointer.  */
5918      for (reg = x_regs; reg; reg = XEXP (reg, 1))
5919	{
5920	  base = find_base_term (XEXP (reg, 0));
5921	  if (!base
5922	      || (GET_CODE (base) == ADDRESS
5923		  && GET_MODE (base) == Pmode
5924		  && XEXP (base, 0) == stack_pointer_rtx))
5925	    return true;
5926	}
5927
5928      return false;
5929    }
5930
5931  if (GET_CODE (PATTERN (insn)) == SET)
5932    {
5933      rtx pat = PATTERN (insn);
5934      rtx dest = SET_DEST (pat);
5935
5936      if (GET_CODE (dest) == ZERO_EXTRACT)
5937	dest = XEXP (dest, 0);
5938
5939      /* Check for memory stores to aliased objects.  */
5940      if (MEM_P (dest)
5941	  && !expr_equiv_p (dest, x))
5942	{
5943	  if (after)
5944	    {
5945	      if (output_dependence (dest, x))
5946		return true;
5947	    }
5948	  else
5949	    {
5950	      if (output_dependence (x, dest))
5951		return true;
5952	    }
5953	}
5954      if (find_loads (SET_SRC (pat), x, after))
5955	return true;
5956    }
5957  else if (find_loads (PATTERN (insn), x, after))
5958    return true;
5959
5960  /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5961     location aliased with X, then this insn kills X.  */
5962  note = find_reg_equal_equiv_note (insn);
5963  if (! note)
5964    return false;
5965  note = XEXP (note, 0);
5966
5967  /* However, if the note represents a must alias rather than a may
5968     alias relationship, then it does not kill X.  */
5969  if (expr_equiv_p (note, x))
5970    return false;
5971
5972  /* See if there are any aliased loads in the note.  */
5973  return find_loads (note, x, after);
5974}
5975
5976/* Returns true if the expression X is loaded or clobbered on or after INSN
5977   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
5978   or after the insn.  X_REGS is list of registers mentioned in X. If the store
5979   is killed, return the last insn in that it occurs in FAIL_INSN.  */
5980
5981static bool
5982store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5983		    int *regs_set_after, rtx *fail_insn)
5984{
5985  rtx last = BB_END (bb), act;
5986
5987  if (!store_ops_ok (x_regs, regs_set_after))
5988    {
5989      /* We do not know where it will happen.  */
5990      if (fail_insn)
5991	*fail_insn = NULL_RTX;
5992      return true;
5993    }
5994
5995  /* Scan from the end, so that fail_insn is determined correctly.  */
5996  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
5997    if (store_killed_in_insn (x, x_regs, act, false))
5998      {
5999	if (fail_insn)
6000	  *fail_insn = act;
6001	return true;
6002      }
6003
6004  return false;
6005}
6006
6007/* Returns true if the expression X is loaded or clobbered on or before INSN
6008   within basic block BB. X_REGS is list of registers mentioned in X.
6009   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
6010static bool
6011store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6012		     int *regs_set_before)
6013{
6014  rtx first = BB_HEAD (bb);
6015
6016  if (!store_ops_ok (x_regs, regs_set_before))
6017    return true;
6018
6019  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6020    if (store_killed_in_insn (x, x_regs, insn, true))
6021      return true;
6022
6023  return false;
6024}
6025
6026/* Fill in available, anticipatable, transparent and kill vectors in
6027   STORE_DATA, based on lists of available and anticipatable stores.  */
6028static void
6029build_store_vectors (void)
6030{
6031  basic_block bb;
6032  int *regs_set_in_block;
6033  rtx insn, st;
6034  struct ls_expr * ptr;
6035  unsigned regno;
6036
6037  /* Build the gen_vector. This is any store in the table which is not killed
6038     by aliasing later in its block.  */
6039  ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6040  sbitmap_vector_zero (ae_gen, last_basic_block);
6041
6042  st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6043  sbitmap_vector_zero (st_antloc, last_basic_block);
6044
6045  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6046    {
6047      for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6048	{
6049	  insn = XEXP (st, 0);
6050	  bb = BLOCK_FOR_INSN (insn);
6051
6052	  /* If we've already seen an available expression in this block,
6053	     we can delete this one (It occurs earlier in the block). We'll
6054	     copy the SRC expression to an unused register in case there
6055	     are any side effects.  */
6056	  if (TEST_BIT (ae_gen[bb->index], ptr->index))
6057	    {
6058	      rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6059	      if (gcse_file)
6060		fprintf (gcse_file, "Removing redundant store:\n");
6061	      replace_store_insn (r, XEXP (st, 0), bb, ptr);
6062	      continue;
6063	    }
6064	  SET_BIT (ae_gen[bb->index], ptr->index);
6065	}
6066
6067      for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6068	{
6069	  insn = XEXP (st, 0);
6070	  bb = BLOCK_FOR_INSN (insn);
6071	  SET_BIT (st_antloc[bb->index], ptr->index);
6072	}
6073    }
6074
6075  ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6076  sbitmap_vector_zero (ae_kill, last_basic_block);
6077
6078  transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6079  sbitmap_vector_zero (transp, last_basic_block);
6080  regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6081
6082  FOR_EACH_BB (bb)
6083    {
6084      for (regno = 0; regno < max_gcse_regno; regno++)
6085	regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6086
6087      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6088	{
6089	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6090				  bb, regs_set_in_block, NULL))
6091	    {
6092	      /* It should not be necessary to consider the expression
6093		 killed if it is both anticipatable and available.  */
6094	      if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6095		  || !TEST_BIT (ae_gen[bb->index], ptr->index))
6096		SET_BIT (ae_kill[bb->index], ptr->index);
6097	    }
6098	  else
6099	    SET_BIT (transp[bb->index], ptr->index);
6100	}
6101    }
6102
6103  free (regs_set_in_block);
6104
6105  if (gcse_file)
6106    {
6107      dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6108      dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6109      dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6110      dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6111    }
6112}
6113
6114/* Insert an instruction at the beginning of a basic block, and update
6115   the BB_HEAD if needed.  */
6116
6117static void
6118insert_insn_start_bb (rtx insn, basic_block bb)
6119{
6120  /* Insert at start of successor block.  */
6121  rtx prev = PREV_INSN (BB_HEAD (bb));
6122  rtx before = BB_HEAD (bb);
6123  while (before != 0)
6124    {
6125      if (! LABEL_P (before)
6126	  && (! NOTE_P (before)
6127	      || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6128	break;
6129      prev = before;
6130      if (prev == BB_END (bb))
6131	break;
6132      before = NEXT_INSN (before);
6133    }
6134
6135  insn = emit_insn_after_noloc (insn, prev);
6136
6137  if (gcse_file)
6138    {
6139      fprintf (gcse_file, "STORE_MOTION  insert store at start of BB %d:\n",
6140	       bb->index);
6141      print_inline_rtx (gcse_file, insn, 6);
6142      fprintf (gcse_file, "\n");
6143    }
6144}
6145
6146/* This routine will insert a store on an edge. EXPR is the ldst entry for
6147   the memory reference, and E is the edge to insert it on.  Returns nonzero
6148   if an edge insertion was performed.  */
6149
6150static int
6151insert_store (struct ls_expr * expr, edge e)
6152{
6153  rtx reg, insn;
6154  basic_block bb;
6155  edge tmp;
6156  edge_iterator ei;
6157
6158  /* We did all the deleted before this insert, so if we didn't delete a
6159     store, then we haven't set the reaching reg yet either.  */
6160  if (expr->reaching_reg == NULL_RTX)
6161    return 0;
6162
6163  if (e->flags & EDGE_FAKE)
6164    return 0;
6165
6166  reg = expr->reaching_reg;
6167  insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6168
6169  /* If we are inserting this expression on ALL predecessor edges of a BB,
6170     insert it at the start of the BB, and reset the insert bits on the other
6171     edges so we don't try to insert it on the other edges.  */
6172  bb = e->dest;
6173  FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6174    if (!(tmp->flags & EDGE_FAKE))
6175      {
6176	int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6177
6178	gcc_assert (index != EDGE_INDEX_NO_EDGE);
6179	if (! TEST_BIT (pre_insert_map[index], expr->index))
6180	  break;
6181      }
6182
6183  /* If tmp is NULL, we found an insertion on every edge, blank the
6184     insertion vector for these edges, and insert at the start of the BB.  */
6185  if (!tmp && bb != EXIT_BLOCK_PTR)
6186    {
6187      FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6188	{
6189	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6190	  RESET_BIT (pre_insert_map[index], expr->index);
6191	}
6192      insert_insn_start_bb (insn, bb);
6193      return 0;
6194    }
6195
6196  /* We can't put stores in the front of blocks pointed to by abnormal
6197     edges since that may put a store where one didn't used to be.  */
6198  gcc_assert (!(e->flags & EDGE_ABNORMAL));
6199
6200  insert_insn_on_edge (insn, e);
6201
6202  if (gcse_file)
6203    {
6204      fprintf (gcse_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
6205	       e->src->index, e->dest->index);
6206      print_inline_rtx (gcse_file, insn, 6);
6207      fprintf (gcse_file, "\n");
6208    }
6209
6210  return 1;
6211}
6212
6213/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6214   memory location in SMEXPR set in basic block BB.
6215
6216   This could be rather expensive.  */
6217
6218static void
6219remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6220{
6221  edge_iterator *stack, ei;
6222  int sp;
6223  edge act;
6224  sbitmap visited = sbitmap_alloc (last_basic_block);
6225  rtx last, insn, note;
6226  rtx mem = smexpr->pattern;
6227
6228  stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6229  sp = 0;
6230  ei = ei_start (bb->succs);
6231
6232  sbitmap_zero (visited);
6233
6234  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6235  while (1)
6236    {
6237      if (!act)
6238	{
6239	  if (!sp)
6240	    {
6241	      free (stack);
6242	      sbitmap_free (visited);
6243	      return;
6244	    }
6245	  act = ei_edge (stack[--sp]);
6246	}
6247      bb = act->dest;
6248
6249      if (bb == EXIT_BLOCK_PTR
6250	  || TEST_BIT (visited, bb->index))
6251	{
6252	  if (!ei_end_p (ei))
6253	      ei_next (&ei);
6254	  act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6255	  continue;
6256	}
6257      SET_BIT (visited, bb->index);
6258
6259      if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6260	{
6261	  for (last = ANTIC_STORE_LIST (smexpr);
6262	       BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6263	       last = XEXP (last, 1))
6264	    continue;
6265	  last = XEXP (last, 0);
6266	}
6267      else
6268	last = NEXT_INSN (BB_END (bb));
6269
6270      for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6271	if (INSN_P (insn))
6272	  {
6273	    note = find_reg_equal_equiv_note (insn);
6274	    if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6275	      continue;
6276
6277	    if (gcse_file)
6278	      fprintf (gcse_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
6279		       INSN_UID (insn));
6280	    remove_note (insn, note);
6281	  }
6282
6283      if (!ei_end_p (ei))
6284	ei_next (&ei);
6285      act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6286
6287      if (EDGE_COUNT (bb->succs) > 0)
6288	{
6289	  if (act)
6290	    stack[sp++] = ei;
6291	  ei = ei_start (bb->succs);
6292	  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6293	}
6294    }
6295}
6296
6297/* This routine will replace a store with a SET to a specified register.  */
6298
6299static void
6300replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6301{
6302  rtx insn, mem, note, set, ptr, pair;
6303
6304  mem = smexpr->pattern;
6305  insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6306  insn = emit_insn_after (insn, del);
6307
6308  if (gcse_file)
6309    {
6310      fprintf (gcse_file,
6311	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
6312      print_inline_rtx (gcse_file, del, 6);
6313      fprintf (gcse_file, "\nSTORE MOTION  replaced with insn:\n      ");
6314      print_inline_rtx (gcse_file, insn, 6);
6315      fprintf (gcse_file, "\n");
6316    }
6317
6318  for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6319    if (XEXP (ptr, 0) == del)
6320      {
6321	XEXP (ptr, 0) = insn;
6322	break;
6323      }
6324
6325  /* Move the notes from the deleted insn to its replacement, and patch
6326     up the LIBCALL notes.  */
6327  REG_NOTES (insn) = REG_NOTES (del);
6328
6329  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6330  if (note)
6331    {
6332      pair = XEXP (note, 0);
6333      note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6334      XEXP (note, 0) = insn;
6335    }
6336  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6337  if (note)
6338    {
6339      pair = XEXP (note, 0);
6340      note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6341      XEXP (note, 0) = insn;
6342    }
6343
6344  delete_insn (del);
6345
6346  /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6347     they are no longer accurate provided that they are reached by this
6348     definition, so drop them.  */
6349  for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6350    if (INSN_P (insn))
6351      {
6352	set = single_set (insn);
6353	if (!set)
6354	  continue;
6355	if (expr_equiv_p (SET_DEST (set), mem))
6356	  return;
6357	note = find_reg_equal_equiv_note (insn);
6358	if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6359	  continue;
6360
6361	if (gcse_file)
6362	  fprintf (gcse_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
6363		   INSN_UID (insn));
6364	remove_note (insn, note);
6365      }
6366  remove_reachable_equiv_notes (bb, smexpr);
6367}
6368
6369
6370/* Delete a store, but copy the value that would have been stored into
6371   the reaching_reg for later storing.  */
6372
6373static void
6374delete_store (struct ls_expr * expr, basic_block bb)
6375{
6376  rtx reg, i, del;
6377
6378  if (expr->reaching_reg == NULL_RTX)
6379    expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6380
6381  reg = expr->reaching_reg;
6382
6383  for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6384    {
6385      del = XEXP (i, 0);
6386      if (BLOCK_FOR_INSN (del) == bb)
6387	{
6388	  /* We know there is only one since we deleted redundant
6389	     ones during the available computation.  */
6390	  replace_store_insn (reg, del, bb, expr);
6391	  break;
6392	}
6393    }
6394}
6395
6396/* Free memory used by store motion.  */
6397
6398static void
6399free_store_memory (void)
6400{
6401  free_ldst_mems ();
6402
6403  if (ae_gen)
6404    sbitmap_vector_free (ae_gen);
6405  if (ae_kill)
6406    sbitmap_vector_free (ae_kill);
6407  if (transp)
6408    sbitmap_vector_free (transp);
6409  if (st_antloc)
6410    sbitmap_vector_free (st_antloc);
6411  if (pre_insert_map)
6412    sbitmap_vector_free (pre_insert_map);
6413  if (pre_delete_map)
6414    sbitmap_vector_free (pre_delete_map);
6415  if (reg_set_in_block)
6416    sbitmap_vector_free (reg_set_in_block);
6417
6418  ae_gen = ae_kill = transp = st_antloc = NULL;
6419  pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6420}
6421
6422/* Perform store motion. Much like gcse, except we move expressions the
6423   other way by looking at the flowgraph in reverse.  */
6424
6425static void
6426store_motion (void)
6427{
6428  basic_block bb;
6429  int x;
6430  struct ls_expr * ptr;
6431  int update_flow = 0;
6432
6433  if (gcse_file)
6434    {
6435      fprintf (gcse_file, "before store motion\n");
6436      print_rtl (gcse_file, get_insns ());
6437    }
6438
6439  init_alias_analysis ();
6440
6441  /* Find all the available and anticipatable stores.  */
6442  num_stores = compute_store_table ();
6443  if (num_stores == 0)
6444    {
6445      htab_delete (pre_ldst_table);
6446      pre_ldst_table = NULL;
6447      sbitmap_vector_free (reg_set_in_block);
6448      end_alias_analysis ();
6449      return;
6450    }
6451
6452  /* Now compute kill & transp vectors.  */
6453  build_store_vectors ();
6454  add_noreturn_fake_exit_edges ();
6455  connect_infinite_loops_to_exit ();
6456
6457  edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6458				st_antloc, ae_kill, &pre_insert_map,
6459				&pre_delete_map);
6460
6461  /* Now we want to insert the new stores which are going to be needed.  */
6462  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6463    {
6464      /* If any of the edges we have above are abnormal, we can't move this
6465	 store.  */
6466      for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6467	if (TEST_BIT (pre_insert_map[x], ptr->index)
6468	    && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6469	  break;
6470
6471      if (x >= 0)
6472	{
6473	  if (gcse_file != NULL)
6474	    fprintf (gcse_file,
6475		     "Can't replace store %d: abnormal edge from %d to %d\n",
6476		     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6477		     INDEX_EDGE (edge_list, x)->dest->index);
6478	  continue;
6479	}
6480
6481      /* Now we want to insert the new stores which are going to be needed.  */
6482
6483      FOR_EACH_BB (bb)
6484	if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6485	  delete_store (ptr, bb);
6486
6487      for (x = 0; x < NUM_EDGES (edge_list); x++)
6488	if (TEST_BIT (pre_insert_map[x], ptr->index))
6489	  update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6490    }
6491
6492  if (update_flow)
6493    commit_edge_insertions ();
6494
6495  free_store_memory ();
6496  free_edge_list (edge_list);
6497  remove_fake_exit_edges ();
6498  end_alias_analysis ();
6499}
6500
6501
6502/* Entry point for jump bypassing optimization pass.  */
6503
6504int
6505bypass_jumps (FILE *file)
6506{
6507  int changed;
6508
6509  /* We do not construct an accurate cfg in functions which call
6510     setjmp, so just punt to be safe.  */
6511  if (current_function_calls_setjmp)
6512    return 0;
6513
6514  /* For calling dump_foo fns from gdb.  */
6515  debug_stderr = stderr;
6516  gcse_file = file;
6517
6518  /* Identify the basic block information for this function, including
6519     successors and predecessors.  */
6520  max_gcse_regno = max_reg_num ();
6521
6522  if (file)
6523    dump_flow_info (file);
6524
6525  /* Return if there's nothing to do, or it is too expensive.  */
6526  if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6527    return 0;
6528
6529  gcc_obstack_init (&gcse_obstack);
6530  bytes_used = 0;
6531
6532  /* We need alias.  */
6533  init_alias_analysis ();
6534
6535  /* Record where pseudo-registers are set.  This data is kept accurate
6536     during each pass.  ??? We could also record hard-reg information here
6537     [since it's unchanging], however it is currently done during hash table
6538     computation.
6539
6540     It may be tempting to compute MEM set information here too, but MEM sets
6541     will be subject to code motion one day and thus we need to compute
6542     information about memory sets when we build the hash tables.  */
6543
6544  alloc_reg_set_mem (max_gcse_regno);
6545  compute_sets ();
6546
6547  max_gcse_regno = max_reg_num ();
6548  alloc_gcse_mem ();
6549  changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6550  free_gcse_mem ();
6551
6552  if (file)
6553    {
6554      fprintf (file, "BYPASS of %s: %d basic blocks, ",
6555	       current_function_name (), n_basic_blocks);
6556      fprintf (file, "%d bytes\n\n", bytes_used);
6557    }
6558
6559  obstack_free (&gcse_obstack, NULL);
6560  free_reg_set_mem ();
6561
6562  /* We are finished with alias.  */
6563  end_alias_analysis ();
6564  allocate_reg_info (max_reg_num (), FALSE, FALSE);
6565
6566  return changed;
6567}
6568
6569/* Return true if the graph is too expensive to optimize. PASS is the
6570   optimization about to be performed.  */
6571
6572static bool
6573is_too_expensive (const char *pass)
6574{
6575  /* Trying to perform global optimizations on flow graphs which have
6576     a high connectivity will take a long time and is unlikely to be
6577     particularly useful.
6578
6579     In normal circumstances a cfg should have about twice as many
6580     edges as blocks.  But we do not want to punish small functions
6581     which have a couple switch statements.  Rather than simply
6582     threshold the number of blocks, uses something with a more
6583     graceful degradation.  */
6584  if (n_edges > 20000 + n_basic_blocks * 4)
6585    {
6586      warning (OPT_Wdisabled_optimization,
6587	       "%s: %d basic blocks and %d edges/basic block",
6588	       pass, n_basic_blocks, n_edges / n_basic_blocks);
6589
6590      return true;
6591    }
6592
6593  /* If allocating memory for the cprop bitmap would take up too much
6594     storage it's better just to disable the optimization.  */
6595  if ((n_basic_blocks
6596       * SBITMAP_SET_SIZE (max_reg_num ())
6597       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6598    {
6599      warning (OPT_Wdisabled_optimization,
6600	       "%s: %d basic blocks and %d registers",
6601	       pass, n_basic_blocks, max_reg_num ());
6602
6603      return true;
6604    }
6605
6606  return false;
6607}
6608
6609static bool
6610gate_handle_jump_bypass (void)
6611{
6612  return optimize > 0 && flag_gcse;
6613}
6614
6615/* Perform jump bypassing and control flow optimizations.  */
6616static void
6617rest_of_handle_jump_bypass (void)
6618{
6619  cleanup_cfg (CLEANUP_EXPENSIVE);
6620  reg_scan (get_insns (), max_reg_num ());
6621
6622  if (bypass_jumps (dump_file))
6623    {
6624      rebuild_jump_labels (get_insns ());
6625      cleanup_cfg (CLEANUP_EXPENSIVE);
6626      delete_trivially_dead_insns (get_insns (), max_reg_num ());
6627    }
6628}
6629
6630struct tree_opt_pass pass_jump_bypass =
6631{
6632  "bypass",                             /* name */
6633  gate_handle_jump_bypass,              /* gate */
6634  rest_of_handle_jump_bypass,           /* execute */
6635  NULL,                                 /* sub */
6636  NULL,                                 /* next */
6637  0,                                    /* static_pass_number */
6638  TV_BYPASS,                            /* tv_id */
6639  0,                                    /* properties_required */
6640  0,                                    /* properties_provided */
6641  0,                                    /* properties_destroyed */
6642  0,                                    /* todo_flags_start */
6643  TODO_dump_func |
6644  TODO_ggc_collect | TODO_verify_flow,  /* todo_flags_finish */
6645  'G'                                   /* letter */
6646};
6647
6648
6649static bool
6650gate_handle_gcse (void)
6651{
6652  return optimize > 0 && flag_gcse;
6653}
6654
6655
6656static void
6657rest_of_handle_gcse (void)
6658{
6659  int save_csb, save_cfj;
6660  int tem2 = 0, tem;
6661
6662  tem = gcse_main (get_insns (), dump_file);
6663  rebuild_jump_labels (get_insns ());
6664  delete_trivially_dead_insns (get_insns (), max_reg_num ());
6665
6666  save_csb = flag_cse_skip_blocks;
6667  save_cfj = flag_cse_follow_jumps;
6668  flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6669
6670  /* If -fexpensive-optimizations, re-run CSE to clean up things done
6671     by gcse.  */
6672  if (flag_expensive_optimizations)
6673    {
6674      timevar_push (TV_CSE);
6675      reg_scan (get_insns (), max_reg_num ());
6676      tem2 = cse_main (get_insns (), max_reg_num (), dump_file);
6677      purge_all_dead_edges ();
6678      delete_trivially_dead_insns (get_insns (), max_reg_num ());
6679      timevar_pop (TV_CSE);
6680      cse_not_expected = !flag_rerun_cse_after_loop;
6681    }
6682
6683  /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6684     things up.  */
6685  if (tem || tem2)
6686    {
6687      timevar_push (TV_JUMP);
6688      rebuild_jump_labels (get_insns ());
6689      delete_dead_jumptables ();
6690      cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_PRE_LOOP);
6691      timevar_pop (TV_JUMP);
6692    }
6693
6694  flag_cse_skip_blocks = save_csb;
6695  flag_cse_follow_jumps = save_cfj;
6696}
6697
6698struct tree_opt_pass pass_gcse =
6699{
6700  "gcse1",                              /* name */
6701  gate_handle_gcse,                     /* gate */
6702  rest_of_handle_gcse,			/* execute */
6703  NULL,                                 /* sub */
6704  NULL,                                 /* next */
6705  0,                                    /* static_pass_number */
6706  TV_GCSE,                              /* tv_id */
6707  0,                                    /* properties_required */
6708  0,                                    /* properties_provided */
6709  0,                                    /* properties_destroyed */
6710  0,                                    /* todo_flags_start */
6711  TODO_dump_func |
6712  TODO_verify_flow | TODO_ggc_collect,  /* todo_flags_finish */
6713  'G'                                   /* letter */
6714};
6715
6716
6717#include "gt-gcse.h"
6718