1/* Medium-level subroutines: convert bit-field store and extract
2   and shifts, multiplies and divides to rtl instructions.
3   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5   Free Software Foundation, Inc.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 2, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING.  If not, write to the Free
21Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2202110-1301, USA.  */
23
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
28#include "tm.h"
29#include "toplev.h"
30#include "rtl.h"
31#include "tree.h"
32#include "tm_p.h"
33#include "flags.h"
34#include "insn-config.h"
35#include "expr.h"
36#include "optabs.h"
37#include "real.h"
38#include "recog.h"
39#include "langhooks.h"
40
41static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
42				   unsigned HOST_WIDE_INT,
43				   unsigned HOST_WIDE_INT, rtx);
44static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
45				   unsigned HOST_WIDE_INT, rtx);
46static rtx extract_fixed_bit_field (enum machine_mode, rtx,
47				    unsigned HOST_WIDE_INT,
48				    unsigned HOST_WIDE_INT,
49				    unsigned HOST_WIDE_INT, rtx, int);
50static rtx mask_rtx (enum machine_mode, int, int, int);
51static rtx lshift_value (enum machine_mode, rtx, int, int);
52static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
53				    unsigned HOST_WIDE_INT, int);
54static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
55static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
56static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57
58/* Test whether a value is zero of a power of two.  */
59#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60
61/* Nonzero means divides or modulus operations are relatively cheap for
62   powers of two, so don't use branches; emit the operation instead.
63   Usually, this will mean that the MD file will emit non-branch
64   sequences.  */
65
66static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
67static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68
69#ifndef SLOW_UNALIGNED_ACCESS
70#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
71#endif
72
73/* For compilers that support multiple targets with different word sizes,
74   MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD.  An example
75   is the H8/300(H) compiler.  */
76
77#ifndef MAX_BITS_PER_WORD
78#define MAX_BITS_PER_WORD BITS_PER_WORD
79#endif
80
81/* Reduce conditional compilation elsewhere.  */
82#ifndef HAVE_insv
83#define HAVE_insv	0
84#define CODE_FOR_insv	CODE_FOR_nothing
85#define gen_insv(a,b,c,d) NULL_RTX
86#endif
87#ifndef HAVE_extv
88#define HAVE_extv	0
89#define CODE_FOR_extv	CODE_FOR_nothing
90#define gen_extv(a,b,c,d) NULL_RTX
91#endif
92#ifndef HAVE_extzv
93#define HAVE_extzv	0
94#define CODE_FOR_extzv	CODE_FOR_nothing
95#define gen_extzv(a,b,c,d) NULL_RTX
96#endif
97
98/* Cost of various pieces of RTL.  Note that some of these are indexed by
99   shift count and some by mode.  */
100static int zero_cost;
101static int add_cost[NUM_MACHINE_MODES];
102static int neg_cost[NUM_MACHINE_MODES];
103static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106static int mul_cost[NUM_MACHINE_MODES];
107static int div_cost[NUM_MACHINE_MODES];
108static int mul_widen_cost[NUM_MACHINE_MODES];
109static int mul_highpart_cost[NUM_MACHINE_MODES];
110
111void
112init_expmed (void)
113{
114  struct
115  {
116    struct rtx_def reg;		rtunion reg_fld[2];
117    struct rtx_def plus;	rtunion plus_fld1;
118    struct rtx_def neg;
119    struct rtx_def udiv;	rtunion udiv_fld1;
120    struct rtx_def mult;	rtunion mult_fld1;
121    struct rtx_def div;		rtunion div_fld1;
122    struct rtx_def mod;		rtunion mod_fld1;
123    struct rtx_def zext;
124    struct rtx_def wide_mult;	rtunion wide_mult_fld1;
125    struct rtx_def wide_lshr;	rtunion wide_lshr_fld1;
126    struct rtx_def wide_trunc;
127    struct rtx_def shift;	rtunion shift_fld1;
128    struct rtx_def shift_mult;	rtunion shift_mult_fld1;
129    struct rtx_def shift_add;	rtunion shift_add_fld1;
130    struct rtx_def shift_sub;	rtunion shift_sub_fld1;
131  } all;
132
133  rtx pow2[MAX_BITS_PER_WORD];
134  rtx cint[MAX_BITS_PER_WORD];
135  int m, n;
136  enum machine_mode mode, wider_mode;
137
138  zero_cost = rtx_cost (const0_rtx, 0);
139
140  for (m = 1; m < MAX_BITS_PER_WORD; m++)
141    {
142      pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
143      cint[m] = GEN_INT (m);
144    }
145
146  memset (&all, 0, sizeof all);
147
148  PUT_CODE (&all.reg, REG);
149  /* Avoid using hard regs in ways which may be unsupported.  */
150  REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
151
152  PUT_CODE (&all.plus, PLUS);
153  XEXP (&all.plus, 0) = &all.reg;
154  XEXP (&all.plus, 1) = &all.reg;
155
156  PUT_CODE (&all.neg, NEG);
157  XEXP (&all.neg, 0) = &all.reg;
158
159  PUT_CODE (&all.udiv, UDIV);
160  XEXP (&all.udiv, 0) = &all.reg;
161  XEXP (&all.udiv, 1) = &all.reg;
162
163  PUT_CODE (&all.mult, MULT);
164  XEXP (&all.mult, 0) = &all.reg;
165  XEXP (&all.mult, 1) = &all.reg;
166
167  PUT_CODE (&all.div, DIV);
168  XEXP (&all.div, 0) = &all.reg;
169  XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
170
171  PUT_CODE (&all.mod, MOD);
172  XEXP (&all.mod, 0) = &all.reg;
173  XEXP (&all.mod, 1) = XEXP (&all.div, 1);
174
175  PUT_CODE (&all.zext, ZERO_EXTEND);
176  XEXP (&all.zext, 0) = &all.reg;
177
178  PUT_CODE (&all.wide_mult, MULT);
179  XEXP (&all.wide_mult, 0) = &all.zext;
180  XEXP (&all.wide_mult, 1) = &all.zext;
181
182  PUT_CODE (&all.wide_lshr, LSHIFTRT);
183  XEXP (&all.wide_lshr, 0) = &all.wide_mult;
184
185  PUT_CODE (&all.wide_trunc, TRUNCATE);
186  XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
187
188  PUT_CODE (&all.shift, ASHIFT);
189  XEXP (&all.shift, 0) = &all.reg;
190
191  PUT_CODE (&all.shift_mult, MULT);
192  XEXP (&all.shift_mult, 0) = &all.reg;
193
194  PUT_CODE (&all.shift_add, PLUS);
195  XEXP (&all.shift_add, 0) = &all.shift_mult;
196  XEXP (&all.shift_add, 1) = &all.reg;
197
198  PUT_CODE (&all.shift_sub, MINUS);
199  XEXP (&all.shift_sub, 0) = &all.shift_mult;
200  XEXP (&all.shift_sub, 1) = &all.reg;
201
202  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
203       mode != VOIDmode;
204       mode = GET_MODE_WIDER_MODE (mode))
205    {
206      PUT_MODE (&all.reg, mode);
207      PUT_MODE (&all.plus, mode);
208      PUT_MODE (&all.neg, mode);
209      PUT_MODE (&all.udiv, mode);
210      PUT_MODE (&all.mult, mode);
211      PUT_MODE (&all.div, mode);
212      PUT_MODE (&all.mod, mode);
213      PUT_MODE (&all.wide_trunc, mode);
214      PUT_MODE (&all.shift, mode);
215      PUT_MODE (&all.shift_mult, mode);
216      PUT_MODE (&all.shift_add, mode);
217      PUT_MODE (&all.shift_sub, mode);
218
219      add_cost[mode] = rtx_cost (&all.plus, SET);
220      neg_cost[mode] = rtx_cost (&all.neg, SET);
221      div_cost[mode] = rtx_cost (&all.udiv, SET);
222      mul_cost[mode] = rtx_cost (&all.mult, SET);
223
224      sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
225      smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
226
227      wider_mode = GET_MODE_WIDER_MODE (mode);
228      if (wider_mode != VOIDmode)
229	{
230	  PUT_MODE (&all.zext, wider_mode);
231	  PUT_MODE (&all.wide_mult, wider_mode);
232	  PUT_MODE (&all.wide_lshr, wider_mode);
233	  XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
234
235	  mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
236	  mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
237	}
238
239      shift_cost[mode][0] = 0;
240      shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
241
242      n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
243      for (m = 1; m < n; m++)
244	{
245	  XEXP (&all.shift, 1) = cint[m];
246	  XEXP (&all.shift_mult, 1) = pow2[m];
247
248	  shift_cost[mode][m] = rtx_cost (&all.shift, SET);
249	  shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
250	  shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
251	}
252    }
253}
254
255/* Return an rtx representing minus the value of X.
256   MODE is the intended mode of the result,
257   useful if X is a CONST_INT.  */
258
259rtx
260negate_rtx (enum machine_mode mode, rtx x)
261{
262  rtx result = simplify_unary_operation (NEG, mode, x, mode);
263
264  if (result == 0)
265    result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
266
267  return result;
268}
269
270/* Report on the availability of insv/extv/extzv and the desired mode
271   of each of their operands.  Returns MAX_MACHINE_MODE if HAVE_foo
272   is false; else the mode of the specified operand.  If OPNO is -1,
273   all the caller cares about is whether the insn is available.  */
274enum machine_mode
275mode_for_extraction (enum extraction_pattern pattern, int opno)
276{
277  const struct insn_data *data;
278
279  switch (pattern)
280    {
281    case EP_insv:
282      if (HAVE_insv)
283	{
284	  data = &insn_data[CODE_FOR_insv];
285	  break;
286	}
287      return MAX_MACHINE_MODE;
288
289    case EP_extv:
290      if (HAVE_extv)
291	{
292	  data = &insn_data[CODE_FOR_extv];
293	  break;
294	}
295      return MAX_MACHINE_MODE;
296
297    case EP_extzv:
298      if (HAVE_extzv)
299	{
300	  data = &insn_data[CODE_FOR_extzv];
301	  break;
302	}
303      return MAX_MACHINE_MODE;
304
305    default:
306      gcc_unreachable ();
307    }
308
309  if (opno == -1)
310    return VOIDmode;
311
312  /* Everyone who uses this function used to follow it with
313     if (result == VOIDmode) result = word_mode; */
314  if (data->operand[opno].mode == VOIDmode)
315    return word_mode;
316  return data->operand[opno].mode;
317}
318
319
320/* Generate code to store value from rtx VALUE
321   into a bit-field within structure STR_RTX
322   containing BITSIZE bits starting at bit BITNUM.
323   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
324   ALIGN is the alignment that STR_RTX is known to have.
325   TOTAL_SIZE is the size of the structure in bytes, or -1 if varying.  */
326
327/* ??? Note that there are two different ideas here for how
328   to determine the size to count bits within, for a register.
329   One is BITS_PER_WORD, and the other is the size of operand 3
330   of the insv pattern.
331
332   If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
333   else, we use the mode of operand 3.  */
334
335rtx
336store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
337		 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
338		 rtx value)
339{
340  unsigned int unit
341    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
342  unsigned HOST_WIDE_INT offset, bitpos;
343  rtx op0 = str_rtx;
344  int byte_offset;
345  rtx orig_value;
346
347  enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
348
349  while (GET_CODE (op0) == SUBREG)
350    {
351      /* The following line once was done only if WORDS_BIG_ENDIAN,
352	 but I think that is a mistake.  WORDS_BIG_ENDIAN is
353	 meaningful at a much higher level; when structures are copied
354	 between memory and regs, the higher-numbered regs
355	 always get higher addresses.  */
356      int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
357      int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
358
359      byte_offset = 0;
360
361      /* Paradoxical subregs need special handling on big endian machines.  */
362      if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
363	{
364	  int difference = inner_mode_size - outer_mode_size;
365
366	  if (WORDS_BIG_ENDIAN)
367	    byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
368	  if (BYTES_BIG_ENDIAN)
369	    byte_offset += difference % UNITS_PER_WORD;
370	}
371      else
372	byte_offset = SUBREG_BYTE (op0);
373
374      bitnum += byte_offset * BITS_PER_UNIT;
375      op0 = SUBREG_REG (op0);
376    }
377
378  /* No action is needed if the target is a register and if the field
379     lies completely outside that register.  This can occur if the source
380     code contains an out-of-bounds access to a small array.  */
381  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
382    return value;
383
384  /* Use vec_set patterns for inserting parts of vectors whenever
385     available.  */
386  if (VECTOR_MODE_P (GET_MODE (op0))
387      && !MEM_P (op0)
388      && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
389	  != CODE_FOR_nothing)
390      && fieldmode == GET_MODE_INNER (GET_MODE (op0))
391      && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
392      && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
393    {
394      enum machine_mode outermode = GET_MODE (op0);
395      enum machine_mode innermode = GET_MODE_INNER (outermode);
396      int icode = (int) vec_set_optab->handlers[outermode].insn_code;
397      int pos = bitnum / GET_MODE_BITSIZE (innermode);
398      rtx rtxpos = GEN_INT (pos);
399      rtx src = value;
400      rtx dest = op0;
401      rtx pat, seq;
402      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
403      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
404      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
405
406      start_sequence ();
407
408      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
409	src = copy_to_mode_reg (mode1, src);
410
411      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
412	rtxpos = copy_to_mode_reg (mode1, rtxpos);
413
414      /* We could handle this, but we should always be called with a pseudo
415	 for our targets and all insns should take them as outputs.  */
416      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
417		  && (*insn_data[icode].operand[1].predicate) (src, mode1)
418		  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
419      pat = GEN_FCN (icode) (dest, src, rtxpos);
420      seq = get_insns ();
421      end_sequence ();
422      if (pat)
423	{
424	  emit_insn (seq);
425	  emit_insn (pat);
426	  return dest;
427	}
428    }
429
430  /* If the target is a register, overwriting the entire object, or storing
431     a full-word or multi-word field can be done with just a SUBREG.
432
433     If the target is memory, storing any naturally aligned field can be
434     done with a simple store.  For targets that support fast unaligned
435     memory, any naturally sized, unit aligned field can be done directly.  */
436
437  offset = bitnum / unit;
438  bitpos = bitnum % unit;
439  byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
440                + (offset * UNITS_PER_WORD);
441
442  if (bitpos == 0
443      && bitsize == GET_MODE_BITSIZE (fieldmode)
444      && (!MEM_P (op0)
445	  ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
446	     || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
447	     && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
448	  : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
449	     || (offset * BITS_PER_UNIT % bitsize == 0
450		 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
451    {
452      if (MEM_P (op0))
453	op0 = adjust_address (op0, fieldmode, offset);
454      else if (GET_MODE (op0) != fieldmode)
455	op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
456				   byte_offset);
457      emit_move_insn (op0, value);
458      return value;
459    }
460
461  /* Make sure we are playing with integral modes.  Pun with subregs
462     if we aren't.  This must come after the entire register case above,
463     since that case is valid for any mode.  The following cases are only
464     valid for integral modes.  */
465  {
466    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
467    if (imode != GET_MODE (op0))
468      {
469	if (MEM_P (op0))
470	  op0 = adjust_address (op0, imode, 0);
471	else
472	  {
473	    gcc_assert (imode != BLKmode);
474	    op0 = gen_lowpart (imode, op0);
475	  }
476      }
477  }
478
479  /* We may be accessing data outside the field, which means
480     we can alias adjacent data.  */
481  if (MEM_P (op0))
482    {
483      op0 = shallow_copy_rtx (op0);
484      set_mem_alias_set (op0, 0);
485      set_mem_expr (op0, 0);
486    }
487
488  /* If OP0 is a register, BITPOS must count within a word.
489     But as we have it, it counts within whatever size OP0 now has.
490     On a bigendian machine, these are not the same, so convert.  */
491  if (BYTES_BIG_ENDIAN
492      && !MEM_P (op0)
493      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
494    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
495
496  /* Storing an lsb-aligned field in a register
497     can be done with a movestrict instruction.  */
498
499  if (!MEM_P (op0)
500      && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
501      && bitsize == GET_MODE_BITSIZE (fieldmode)
502      && (movstrict_optab->handlers[fieldmode].insn_code
503	  != CODE_FOR_nothing))
504    {
505      int icode = movstrict_optab->handlers[fieldmode].insn_code;
506
507      /* Get appropriate low part of the value being stored.  */
508      if (GET_CODE (value) == CONST_INT || REG_P (value))
509	value = gen_lowpart (fieldmode, value);
510      else if (!(GET_CODE (value) == SYMBOL_REF
511		 || GET_CODE (value) == LABEL_REF
512		 || GET_CODE (value) == CONST))
513	value = convert_to_mode (fieldmode, value, 0);
514
515      if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
516	value = copy_to_mode_reg (fieldmode, value);
517
518      if (GET_CODE (op0) == SUBREG)
519	{
520	  /* Else we've got some float mode source being extracted into
521	     a different float mode destination -- this combination of
522	     subregs results in Severe Tire Damage.  */
523	  gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
524		      || GET_MODE_CLASS (fieldmode) == MODE_INT
525		      || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
526	  op0 = SUBREG_REG (op0);
527	}
528
529      emit_insn (GEN_FCN (icode)
530		 (gen_rtx_SUBREG (fieldmode, op0,
531				  (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
532				  + (offset * UNITS_PER_WORD)),
533				  value));
534
535      return value;
536    }
537
538  /* Handle fields bigger than a word.  */
539
540  if (bitsize > BITS_PER_WORD)
541    {
542      /* Here we transfer the words of the field
543	 in the order least significant first.
544	 This is because the most significant word is the one which may
545	 be less than full.
546	 However, only do that if the value is not BLKmode.  */
547
548      unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
549      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
550      unsigned int i;
551
552      /* This is the mode we must force value to, so that there will be enough
553	 subwords to extract.  Note that fieldmode will often (always?) be
554	 VOIDmode, because that is what store_field uses to indicate that this
555	 is a bit field, but passing VOIDmode to operand_subword_force
556	 is not allowed.  */
557      fieldmode = GET_MODE (value);
558      if (fieldmode == VOIDmode)
559	fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
560
561      for (i = 0; i < nwords; i++)
562	{
563	  /* If I is 0, use the low-order word in both field and target;
564	     if I is 1, use the next to lowest word; and so on.  */
565	  unsigned int wordnum = (backwards ? nwords - i - 1 : i);
566	  unsigned int bit_offset = (backwards
567				     ? MAX ((int) bitsize - ((int) i + 1)
568					    * BITS_PER_WORD,
569					    0)
570				     : (int) i * BITS_PER_WORD);
571
572	  store_bit_field (op0, MIN (BITS_PER_WORD,
573				     bitsize - i * BITS_PER_WORD),
574			   bitnum + bit_offset, word_mode,
575			   operand_subword_force (value, wordnum, fieldmode));
576	}
577      return value;
578    }
579
580  /* From here on we can assume that the field to be stored in is
581     a full-word (whatever type that is), since it is shorter than a word.  */
582
583  /* OFFSET is the number of words or bytes (UNIT says which)
584     from STR_RTX to the first word or byte containing part of the field.  */
585
586  if (!MEM_P (op0))
587    {
588      if (offset != 0
589	  || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
590	{
591	  if (!REG_P (op0))
592	    {
593	      /* Since this is a destination (lvalue), we can't copy
594		 it to a pseudo.  We can remove a SUBREG that does not
595		 change the size of the operand.  Such a SUBREG may
596		 have been added above.  */
597	      gcc_assert (GET_CODE (op0) == SUBREG
598			  && (GET_MODE_SIZE (GET_MODE (op0))
599			      == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
600	      op0 = SUBREG_REG (op0);
601	    }
602	  op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
603		                op0, (offset * UNITS_PER_WORD));
604	}
605      offset = 0;
606    }
607
608  /* If VALUE has a floating-point or complex mode, access it as an
609     integer of the corresponding size.  This can occur on a machine
610     with 64 bit registers that uses SFmode for float.  It can also
611     occur for unaligned float or complex fields.  */
612  orig_value = value;
613  if (GET_MODE (value) != VOIDmode
614      && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
615      && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
616    {
617      value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
618      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
619    }
620
621  /* Now OFFSET is nonzero only if OP0 is memory
622     and is therefore always measured in bytes.  */
623
624  if (HAVE_insv
625      && GET_MODE (value) != BLKmode
626      && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
627      && bitsize > 0
628      && GET_MODE_BITSIZE (op_mode) >= bitsize
629      && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
630	    && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
631      && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
632							VOIDmode))
633    {
634      int xbitpos = bitpos;
635      rtx value1;
636      rtx xop0 = op0;
637      rtx last = get_last_insn ();
638      rtx pat;
639      enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
640      int save_volatile_ok = volatile_ok;
641
642      volatile_ok = 1;
643
644      /* If this machine's insv can only insert into a register, copy OP0
645	 into a register and save it back later.  */
646      if (MEM_P (op0)
647	  && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
648		(op0, VOIDmode)))
649	{
650	  rtx tempreg;
651	  enum machine_mode bestmode;
652
653	  /* Get the mode to use for inserting into this field.  If OP0 is
654	     BLKmode, get the smallest mode consistent with the alignment. If
655	     OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
656	     mode. Otherwise, use the smallest mode containing the field.  */
657
658	  if (GET_MODE (op0) == BLKmode
659	      || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
660	    bestmode
661	      = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
662			       MEM_VOLATILE_P (op0));
663	  else
664	    bestmode = GET_MODE (op0);
665
666	  if (bestmode == VOIDmode
667	      || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
668	      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
669		  && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
670	    goto insv_loses;
671
672	  /* Adjust address to point to the containing unit of that mode.
673	     Compute offset as multiple of this unit, counting in bytes.  */
674	  unit = GET_MODE_BITSIZE (bestmode);
675	  offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
676	  bitpos = bitnum % unit;
677	  op0 = adjust_address (op0, bestmode,  offset);
678
679	  /* Fetch that unit, store the bitfield in it, then store
680	     the unit.  */
681	  tempreg = copy_to_reg (op0);
682	  store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
683	  emit_move_insn (op0, tempreg);
684	  return value;
685	}
686      volatile_ok = save_volatile_ok;
687
688      /* Add OFFSET into OP0's address.  */
689      if (MEM_P (xop0))
690	xop0 = adjust_address (xop0, byte_mode, offset);
691
692      /* If xop0 is a register, we need it in MAXMODE
693	 to make it acceptable to the format of insv.  */
694      if (GET_CODE (xop0) == SUBREG)
695	/* We can't just change the mode, because this might clobber op0,
696	   and we will need the original value of op0 if insv fails.  */
697	xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
698      if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
699	xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
700
701      /* On big-endian machines, we count bits from the most significant.
702	 If the bit field insn does not, we must invert.  */
703
704      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
705	xbitpos = unit - bitsize - xbitpos;
706
707      /* We have been counting XBITPOS within UNIT.
708	 Count instead within the size of the register.  */
709      if (BITS_BIG_ENDIAN && !MEM_P (xop0))
710	xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
711
712      unit = GET_MODE_BITSIZE (maxmode);
713
714      /* Convert VALUE to maxmode (which insv insn wants) in VALUE1.  */
715      value1 = value;
716      if (GET_MODE (value) != maxmode)
717	{
718	  if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
719	    {
720	      /* Optimization: Don't bother really extending VALUE
721		 if it has all the bits we will actually use.  However,
722		 if we must narrow it, be sure we do it correctly.  */
723
724	      if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
725		{
726		  rtx tmp;
727
728		  tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
729		  if (! tmp)
730		    tmp = simplify_gen_subreg (maxmode,
731					       force_reg (GET_MODE (value),
732							  value1),
733					       GET_MODE (value), 0);
734		  value1 = tmp;
735		}
736	      else
737		value1 = gen_lowpart (maxmode, value1);
738	    }
739	  else if (GET_CODE (value) == CONST_INT)
740	    value1 = gen_int_mode (INTVAL (value), maxmode);
741	  else
742	    /* Parse phase is supposed to make VALUE's data type
743	       match that of the component reference, which is a type
744	       at least as wide as the field; so VALUE should have
745	       a mode that corresponds to that type.  */
746	    gcc_assert (CONSTANT_P (value));
747	}
748
749      /* If this machine's insv insists on a register,
750	 get VALUE1 into a register.  */
751      if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
752	     (value1, maxmode)))
753	value1 = force_reg (maxmode, value1);
754
755      pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
756      if (pat)
757	emit_insn (pat);
758      else
759	{
760	  delete_insns_since (last);
761	  store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
762	}
763    }
764  else
765    insv_loses:
766    /* Insv is not available; store using shifts and boolean ops.  */
767    store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
768  return value;
769}
770
771/* Use shifts and boolean operations to store VALUE
772   into a bit field of width BITSIZE
773   in a memory location specified by OP0 except offset by OFFSET bytes.
774     (OFFSET must be 0 if OP0 is a register.)
775   The field starts at position BITPOS within the byte.
776    (If OP0 is a register, it may be a full word or a narrower mode,
777     but BITPOS still counts within a full word,
778     which is significant on bigendian machines.)  */
779
780static void
781store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
782		       unsigned HOST_WIDE_INT bitsize,
783		       unsigned HOST_WIDE_INT bitpos, rtx value)
784{
785  enum machine_mode mode;
786  unsigned int total_bits = BITS_PER_WORD;
787  rtx temp;
788  int all_zero = 0;
789  int all_one = 0;
790
791  /* There is a case not handled here:
792     a structure with a known alignment of just a halfword
793     and a field split across two aligned halfwords within the structure.
794     Or likewise a structure with a known alignment of just a byte
795     and a field split across two bytes.
796     Such cases are not supposed to be able to occur.  */
797
798  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
799    {
800      gcc_assert (!offset);
801      /* Special treatment for a bit field split across two registers.  */
802      if (bitsize + bitpos > BITS_PER_WORD)
803	{
804	  store_split_bit_field (op0, bitsize, bitpos, value);
805	  return;
806	}
807    }
808  else
809    {
810      /* Get the proper mode to use for this field.  We want a mode that
811	 includes the entire field.  If such a mode would be larger than
812	 a word, we won't be doing the extraction the normal way.
813	 We don't want a mode bigger than the destination.  */
814
815      mode = GET_MODE (op0);
816      if (GET_MODE_BITSIZE (mode) == 0
817	  || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
818	mode = word_mode;
819      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
820			    MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
821
822      if (mode == VOIDmode)
823	{
824	  /* The only way this should occur is if the field spans word
825	     boundaries.  */
826	  store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
827				 value);
828	  return;
829	}
830
831      total_bits = GET_MODE_BITSIZE (mode);
832
833      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
834	 be in the range 0 to total_bits-1, and put any excess bytes in
835	 OFFSET.  */
836      if (bitpos >= total_bits)
837	{
838	  offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
839	  bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
840		     * BITS_PER_UNIT);
841	}
842
843      /* Get ref to an aligned byte, halfword, or word containing the field.
844	 Adjust BITPOS to be position within a word,
845	 and OFFSET to be the offset of that word.
846	 Then alter OP0 to refer to that word.  */
847      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
848      offset -= (offset % (total_bits / BITS_PER_UNIT));
849      op0 = adjust_address (op0, mode, offset);
850    }
851
852  mode = GET_MODE (op0);
853
854  /* Now MODE is either some integral mode for a MEM as OP0,
855     or is a full-word for a REG as OP0.  TOTAL_BITS corresponds.
856     The bit field is contained entirely within OP0.
857     BITPOS is the starting bit number within OP0.
858     (OP0's mode may actually be narrower than MODE.)  */
859
860  if (BYTES_BIG_ENDIAN)
861      /* BITPOS is the distance between our msb
862	 and that of the containing datum.
863	 Convert it to the distance from the lsb.  */
864      bitpos = total_bits - bitsize - bitpos;
865
866  /* Now BITPOS is always the distance between our lsb
867     and that of OP0.  */
868
869  /* Shift VALUE left by BITPOS bits.  If VALUE is not constant,
870     we must first convert its mode to MODE.  */
871
872  if (GET_CODE (value) == CONST_INT)
873    {
874      HOST_WIDE_INT v = INTVAL (value);
875
876      if (bitsize < HOST_BITS_PER_WIDE_INT)
877	v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
878
879      if (v == 0)
880	all_zero = 1;
881      else if ((bitsize < HOST_BITS_PER_WIDE_INT
882		&& v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
883	       || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
884	all_one = 1;
885
886      value = lshift_value (mode, value, bitpos, bitsize);
887    }
888  else
889    {
890      int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
891		      && bitpos + bitsize != GET_MODE_BITSIZE (mode));
892
893      if (GET_MODE (value) != mode)
894	{
895	  if ((REG_P (value) || GET_CODE (value) == SUBREG)
896	      && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
897	    value = gen_lowpart (mode, value);
898	  else
899	    value = convert_to_mode (mode, value, 1);
900	}
901
902      if (must_and)
903	value = expand_binop (mode, and_optab, value,
904			      mask_rtx (mode, 0, bitsize, 0),
905			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
906      if (bitpos > 0)
907	value = expand_shift (LSHIFT_EXPR, mode, value,
908			      build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
909    }
910
911  /* Now clear the chosen bits in OP0,
912     except that if VALUE is -1 we need not bother.  */
913  /* We keep the intermediates in registers to allow CSE to combine
914     consecutive bitfield assignments.  */
915
916  temp = force_reg (mode, op0);
917
918  if (! all_one)
919    {
920      temp = expand_binop (mode, and_optab, temp,
921			   mask_rtx (mode, bitpos, bitsize, 1),
922			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
923      temp = force_reg (mode, temp);
924    }
925
926  /* Now logical-or VALUE into OP0, unless it is zero.  */
927
928  if (! all_zero)
929    {
930      temp = expand_binop (mode, ior_optab, temp, value,
931			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
932      temp = force_reg (mode, temp);
933    }
934
935  if (op0 != temp)
936    emit_move_insn (op0, temp);
937}
938
939/* Store a bit field that is split across multiple accessible memory objects.
940
941   OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
942   BITSIZE is the field width; BITPOS the position of its first bit
943   (within the word).
944   VALUE is the value to store.
945
946   This does not yet handle fields wider than BITS_PER_WORD.  */
947
948static void
949store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
950		       unsigned HOST_WIDE_INT bitpos, rtx value)
951{
952  unsigned int unit;
953  unsigned int bitsdone = 0;
954
955  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
956     much at a time.  */
957  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
958    unit = BITS_PER_WORD;
959  else
960    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
961
962  /* If VALUE is a constant other than a CONST_INT, get it into a register in
963     WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
964     that VALUE might be a floating-point constant.  */
965  if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
966    {
967      rtx word = gen_lowpart_common (word_mode, value);
968
969      if (word && (value != word))
970	value = word;
971      else
972	value = gen_lowpart_common (word_mode,
973				    force_reg (GET_MODE (value) != VOIDmode
974					       ? GET_MODE (value)
975					       : word_mode, value));
976    }
977
978  while (bitsdone < bitsize)
979    {
980      unsigned HOST_WIDE_INT thissize;
981      rtx part, word;
982      unsigned HOST_WIDE_INT thispos;
983      unsigned HOST_WIDE_INT offset;
984
985      offset = (bitpos + bitsdone) / unit;
986      thispos = (bitpos + bitsdone) % unit;
987
988      /* THISSIZE must not overrun a word boundary.  Otherwise,
989	 store_fixed_bit_field will call us again, and we will mutually
990	 recurse forever.  */
991      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
992      thissize = MIN (thissize, unit - thispos);
993
994      if (BYTES_BIG_ENDIAN)
995	{
996	  int total_bits;
997
998	  /* We must do an endian conversion exactly the same way as it is
999	     done in extract_bit_field, so that the two calls to
1000	     extract_fixed_bit_field will have comparable arguments.  */
1001	  if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1002	    total_bits = BITS_PER_WORD;
1003	  else
1004	    total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1005
1006	  /* Fetch successively less significant portions.  */
1007	  if (GET_CODE (value) == CONST_INT)
1008	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1009			     >> (bitsize - bitsdone - thissize))
1010			    & (((HOST_WIDE_INT) 1 << thissize) - 1));
1011	  else
1012	    /* The args are chosen so that the last part includes the
1013	       lsb.  Give extract_bit_field the value it needs (with
1014	       endianness compensation) to fetch the piece we want.  */
1015	    part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1016					    total_bits - bitsize + bitsdone,
1017					    NULL_RTX, 1);
1018	}
1019      else
1020	{
1021	  /* Fetch successively more significant portions.  */
1022	  if (GET_CODE (value) == CONST_INT)
1023	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1024			     >> bitsdone)
1025			    & (((HOST_WIDE_INT) 1 << thissize) - 1));
1026	  else
1027	    part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1028					    bitsdone, NULL_RTX, 1);
1029	}
1030
1031      /* If OP0 is a register, then handle OFFSET here.
1032
1033	 When handling multiword bitfields, extract_bit_field may pass
1034	 down a word_mode SUBREG of a larger REG for a bitfield that actually
1035	 crosses a word boundary.  Thus, for a SUBREG, we must find
1036	 the current word starting from the base register.  */
1037      if (GET_CODE (op0) == SUBREG)
1038	{
1039	  int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1040	  word = operand_subword_force (SUBREG_REG (op0), word_offset,
1041					GET_MODE (SUBREG_REG (op0)));
1042	  offset = 0;
1043	}
1044      else if (REG_P (op0))
1045	{
1046	  word = operand_subword_force (op0, offset, GET_MODE (op0));
1047	  offset = 0;
1048	}
1049      else
1050	word = op0;
1051
1052      /* OFFSET is in UNITs, and UNIT is in bits.
1053         store_fixed_bit_field wants offset in bytes.  */
1054      store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1055			     thispos, part);
1056      bitsdone += thissize;
1057    }
1058}
1059
1060/* Generate code to extract a byte-field from STR_RTX
1061   containing BITSIZE bits, starting at BITNUM,
1062   and put it in TARGET if possible (if TARGET is nonzero).
1063   Regardless of TARGET, we return the rtx for where the value is placed.
1064
1065   STR_RTX is the structure containing the byte (a REG or MEM).
1066   UNSIGNEDP is nonzero if this is an unsigned bit field.
1067   MODE is the natural mode of the field value once extracted.
1068   TMODE is the mode the caller would like the value to have;
1069   but the value may be returned with type MODE instead.
1070
1071   TOTAL_SIZE is the size in bytes of the containing structure,
1072   or -1 if varying.
1073
1074   If a TARGET is specified and we can store in it at no extra cost,
1075   we do so, and return TARGET.
1076   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1077   if they are equally easy.  */
1078
1079rtx
1080extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1081		   unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1082		   enum machine_mode mode, enum machine_mode tmode)
1083{
1084  unsigned int unit
1085    = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1086  unsigned HOST_WIDE_INT offset, bitpos;
1087  rtx op0 = str_rtx;
1088  rtx spec_target = target;
1089  rtx spec_target_subreg = 0;
1090  enum machine_mode int_mode;
1091  enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1092  enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1093  enum machine_mode mode1;
1094  int byte_offset;
1095
1096  if (tmode == VOIDmode)
1097    tmode = mode;
1098
1099  while (GET_CODE (op0) == SUBREG)
1100    {
1101      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1102      op0 = SUBREG_REG (op0);
1103    }
1104
1105  /* If we have an out-of-bounds access to a register, just return an
1106     uninitialized register of the required mode.  This can occur if the
1107     source code contains an out-of-bounds access to a small array.  */
1108  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1109    return gen_reg_rtx (tmode);
1110
1111  if (REG_P (op0)
1112      && mode == GET_MODE (op0)
1113      && bitnum == 0
1114      && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1115    {
1116      /* We're trying to extract a full register from itself.  */
1117      return op0;
1118    }
1119
1120  /* Use vec_extract patterns for extracting parts of vectors whenever
1121     available.  */
1122  if (VECTOR_MODE_P (GET_MODE (op0))
1123      && !MEM_P (op0)
1124      && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1125	  != CODE_FOR_nothing)
1126      && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1127	  == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1128    {
1129      enum machine_mode outermode = GET_MODE (op0);
1130      enum machine_mode innermode = GET_MODE_INNER (outermode);
1131      int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1132      unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1133      rtx rtxpos = GEN_INT (pos);
1134      rtx src = op0;
1135      rtx dest = NULL, pat, seq;
1136      enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1137      enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1138      enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1139
1140      if (innermode == tmode || innermode == mode)
1141	dest = target;
1142
1143      if (!dest)
1144	dest = gen_reg_rtx (innermode);
1145
1146      start_sequence ();
1147
1148      if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1149	dest = copy_to_mode_reg (mode0, dest);
1150
1151      if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1152	src = copy_to_mode_reg (mode1, src);
1153
1154      if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1155	rtxpos = copy_to_mode_reg (mode1, rtxpos);
1156
1157      /* We could handle this, but we should always be called with a pseudo
1158	 for our targets and all insns should take them as outputs.  */
1159      gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1160		  && (*insn_data[icode].operand[1].predicate) (src, mode1)
1161		  && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1162
1163      pat = GEN_FCN (icode) (dest, src, rtxpos);
1164      seq = get_insns ();
1165      end_sequence ();
1166      if (pat)
1167	{
1168	  emit_insn (seq);
1169	  emit_insn (pat);
1170	  return dest;
1171	}
1172    }
1173
1174  /* Make sure we are playing with integral modes.  Pun with subregs
1175     if we aren't.  */
1176  {
1177    enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1178    if (imode != GET_MODE (op0))
1179      {
1180	if (MEM_P (op0))
1181	  op0 = adjust_address (op0, imode, 0);
1182	else
1183	  {
1184	    gcc_assert (imode != BLKmode);
1185	    op0 = gen_lowpart (imode, op0);
1186
1187	    /* If we got a SUBREG, force it into a register since we
1188	       aren't going to be able to do another SUBREG on it.  */
1189	    if (GET_CODE (op0) == SUBREG)
1190	      op0 = force_reg (imode, op0);
1191	  }
1192      }
1193  }
1194
1195  /* We may be accessing data outside the field, which means
1196     we can alias adjacent data.  */
1197  if (MEM_P (op0))
1198    {
1199      op0 = shallow_copy_rtx (op0);
1200      set_mem_alias_set (op0, 0);
1201      set_mem_expr (op0, 0);
1202    }
1203
1204  /* Extraction of a full-word or multi-word value from a structure
1205     in a register or aligned memory can be done with just a SUBREG.
1206     A subword value in the least significant part of a register
1207     can also be extracted with a SUBREG.  For this, we need the
1208     byte offset of the value in op0.  */
1209
1210  bitpos = bitnum % unit;
1211  offset = bitnum / unit;
1212  byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1213
1214  /* If OP0 is a register, BITPOS must count within a word.
1215     But as we have it, it counts within whatever size OP0 now has.
1216     On a bigendian machine, these are not the same, so convert.  */
1217  if (BYTES_BIG_ENDIAN
1218      && !MEM_P (op0)
1219      && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1220    bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1221
1222  /* ??? We currently assume TARGET is at least as big as BITSIZE.
1223     If that's wrong, the solution is to test for it and set TARGET to 0
1224     if needed.  */
1225
1226  /* Only scalar integer modes can be converted via subregs.  There is an
1227     additional problem for FP modes here in that they can have a precision
1228     which is different from the size.  mode_for_size uses precision, but
1229     we want a mode based on the size, so we must avoid calling it for FP
1230     modes.  */
1231  mode1  = (SCALAR_INT_MODE_P (tmode)
1232	    ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1233	    : mode);
1234
1235  if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1236	&& bitpos % BITS_PER_WORD == 0)
1237       || (mode1 != BLKmode
1238	   /* ??? The big endian test here is wrong.  This is correct
1239	      if the value is in a register, and if mode_for_size is not
1240	      the same mode as op0.  This causes us to get unnecessarily
1241	      inefficient code from the Thumb port when -mbig-endian.  */
1242	   && (BYTES_BIG_ENDIAN
1243	       ? bitpos + bitsize == BITS_PER_WORD
1244	       : bitpos == 0)))
1245      && ((!MEM_P (op0)
1246	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1247				     GET_MODE_BITSIZE (GET_MODE (op0)))
1248	   && GET_MODE_SIZE (mode1) != 0
1249	   && byte_offset % GET_MODE_SIZE (mode1) == 0)
1250	  || (MEM_P (op0)
1251	      && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1252		  || (offset * BITS_PER_UNIT % bitsize == 0
1253		      && MEM_ALIGN (op0) % bitsize == 0)))))
1254    {
1255      if (mode1 != GET_MODE (op0))
1256	{
1257	  if (MEM_P (op0))
1258	    op0 = adjust_address (op0, mode1, offset);
1259	  else
1260	    {
1261	      rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1262					     byte_offset);
1263	      if (sub == NULL)
1264		goto no_subreg_mode_swap;
1265	      op0 = sub;
1266	    }
1267	}
1268      if (mode1 != mode)
1269	return convert_to_mode (tmode, op0, unsignedp);
1270      return op0;
1271    }
1272 no_subreg_mode_swap:
1273
1274  /* Handle fields bigger than a word.  */
1275
1276  if (bitsize > BITS_PER_WORD)
1277    {
1278      /* Here we transfer the words of the field
1279	 in the order least significant first.
1280	 This is because the most significant word is the one which may
1281	 be less than full.  */
1282
1283      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1284      unsigned int i;
1285
1286      if (target == 0 || !REG_P (target))
1287	target = gen_reg_rtx (mode);
1288
1289      /* Indicate for flow that the entire target reg is being set.  */
1290      emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1291
1292      for (i = 0; i < nwords; i++)
1293	{
1294	  /* If I is 0, use the low-order word in both field and target;
1295	     if I is 1, use the next to lowest word; and so on.  */
1296	  /* Word number in TARGET to use.  */
1297	  unsigned int wordnum
1298	    = (WORDS_BIG_ENDIAN
1299	       ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1300	       : i);
1301	  /* Offset from start of field in OP0.  */
1302	  unsigned int bit_offset = (WORDS_BIG_ENDIAN
1303				     ? MAX (0, ((int) bitsize - ((int) i + 1)
1304						* (int) BITS_PER_WORD))
1305				     : (int) i * BITS_PER_WORD);
1306	  rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1307	  rtx result_part
1308	    = extract_bit_field (op0, MIN (BITS_PER_WORD,
1309					   bitsize - i * BITS_PER_WORD),
1310				 bitnum + bit_offset, 1, target_part, mode,
1311				 word_mode);
1312
1313	  gcc_assert (target_part);
1314
1315	  if (result_part != target_part)
1316	    emit_move_insn (target_part, result_part);
1317	}
1318
1319      if (unsignedp)
1320	{
1321	  /* Unless we've filled TARGET, the upper regs in a multi-reg value
1322	     need to be zero'd out.  */
1323	  if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1324	    {
1325	      unsigned int i, total_words;
1326
1327	      total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1328	      for (i = nwords; i < total_words; i++)
1329		emit_move_insn
1330		  (operand_subword (target,
1331				    WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1332				    1, VOIDmode),
1333		   const0_rtx);
1334	    }
1335	  return target;
1336	}
1337
1338      /* Signed bit field: sign-extend with two arithmetic shifts.  */
1339      target = expand_shift (LSHIFT_EXPR, mode, target,
1340			     build_int_cst (NULL_TREE,
1341					    GET_MODE_BITSIZE (mode) - bitsize),
1342			     NULL_RTX, 0);
1343      return expand_shift (RSHIFT_EXPR, mode, target,
1344			   build_int_cst (NULL_TREE,
1345					  GET_MODE_BITSIZE (mode) - bitsize),
1346			   NULL_RTX, 0);
1347    }
1348
1349  /* From here on we know the desired field is smaller than a word.  */
1350
1351  /* Check if there is a correspondingly-sized integer field, so we can
1352     safely extract it as one size of integer, if necessary; then
1353     truncate or extend to the size that is wanted; then use SUBREGs or
1354     convert_to_mode to get one of the modes we really wanted.  */
1355
1356  int_mode = int_mode_for_mode (tmode);
1357  if (int_mode == BLKmode)
1358    int_mode = int_mode_for_mode (mode);
1359  /* Should probably push op0 out to memory and then do a load.  */
1360  gcc_assert (int_mode != BLKmode);
1361
1362  /* OFFSET is the number of words or bytes (UNIT says which)
1363     from STR_RTX to the first word or byte containing part of the field.  */
1364  if (!MEM_P (op0))
1365    {
1366      if (offset != 0
1367	  || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1368	{
1369	  if (!REG_P (op0))
1370	    op0 = copy_to_reg (op0);
1371	  op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1372		                op0, (offset * UNITS_PER_WORD));
1373	}
1374      offset = 0;
1375    }
1376
1377  /* Now OFFSET is nonzero only for memory operands.  */
1378
1379  if (unsignedp)
1380    {
1381      if (HAVE_extzv
1382	  && bitsize > 0
1383	  && GET_MODE_BITSIZE (extzv_mode) >= bitsize
1384	  && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1385		&& (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1386	{
1387	  unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1388	  rtx bitsize_rtx, bitpos_rtx;
1389	  rtx last = get_last_insn ();
1390	  rtx xop0 = op0;
1391	  rtx xtarget = target;
1392	  rtx xspec_target = spec_target;
1393	  rtx xspec_target_subreg = spec_target_subreg;
1394	  rtx pat;
1395	  enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1396
1397	  if (MEM_P (xop0))
1398	    {
1399	      int save_volatile_ok = volatile_ok;
1400	      volatile_ok = 1;
1401
1402	      /* Is the memory operand acceptable?  */
1403	      if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1404		     (xop0, GET_MODE (xop0))))
1405		{
1406		  /* No, load into a reg and extract from there.  */
1407		  enum machine_mode bestmode;
1408
1409		  /* Get the mode to use for inserting into this field.  If
1410		     OP0 is BLKmode, get the smallest mode consistent with the
1411		     alignment. If OP0 is a non-BLKmode object that is no
1412		     wider than MAXMODE, use its mode. Otherwise, use the
1413		     smallest mode containing the field.  */
1414
1415		  if (GET_MODE (xop0) == BLKmode
1416		      || (GET_MODE_SIZE (GET_MODE (op0))
1417			  > GET_MODE_SIZE (maxmode)))
1418		    bestmode = get_best_mode (bitsize, bitnum,
1419					      MEM_ALIGN (xop0), maxmode,
1420					      MEM_VOLATILE_P (xop0));
1421		  else
1422		    bestmode = GET_MODE (xop0);
1423
1424		  if (bestmode == VOIDmode
1425		      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1426			  && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1427		    goto extzv_loses;
1428
1429		  /* Compute offset as multiple of this unit,
1430		     counting in bytes.  */
1431		  unit = GET_MODE_BITSIZE (bestmode);
1432		  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1433		  xbitpos = bitnum % unit;
1434		  xop0 = adjust_address (xop0, bestmode, xoffset);
1435
1436		  /* Make sure register is big enough for the whole field. */
1437		  if (xoffset * BITS_PER_UNIT + unit
1438		      < offset * BITS_PER_UNIT + bitsize)
1439		    goto extzv_loses;
1440
1441		  /* Fetch it to a register in that size.  */
1442		  xop0 = force_reg (bestmode, xop0);
1443
1444		  /* XBITPOS counts within UNIT, which is what is expected.  */
1445		}
1446	      else
1447		/* Get ref to first byte containing part of the field.  */
1448		xop0 = adjust_address (xop0, byte_mode, xoffset);
1449
1450	      volatile_ok = save_volatile_ok;
1451	    }
1452
1453	  /* If op0 is a register, we need it in MAXMODE (which is usually
1454	     SImode). to make it acceptable to the format of extzv.  */
1455	  if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1456	    goto extzv_loses;
1457	  if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1458	    xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1459
1460	  /* On big-endian machines, we count bits from the most significant.
1461	     If the bit field insn does not, we must invert.  */
1462	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1463	    xbitpos = unit - bitsize - xbitpos;
1464
1465	  /* Now convert from counting within UNIT to counting in MAXMODE.  */
1466	  if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1467	    xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1468
1469	  unit = GET_MODE_BITSIZE (maxmode);
1470
1471	  if (xtarget == 0)
1472	    xtarget = xspec_target = gen_reg_rtx (tmode);
1473
1474	  if (GET_MODE (xtarget) != maxmode)
1475	    {
1476	      if (REG_P (xtarget))
1477		{
1478		  int wider = (GET_MODE_SIZE (maxmode)
1479			       > GET_MODE_SIZE (GET_MODE (xtarget)));
1480		  xtarget = gen_lowpart (maxmode, xtarget);
1481		  if (wider)
1482		    xspec_target_subreg = xtarget;
1483		}
1484	      else
1485		xtarget = gen_reg_rtx (maxmode);
1486	    }
1487
1488	  /* If this machine's extzv insists on a register target,
1489	     make sure we have one.  */
1490	  if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1491		 (xtarget, maxmode)))
1492	    xtarget = gen_reg_rtx (maxmode);
1493
1494	  bitsize_rtx = GEN_INT (bitsize);
1495	  bitpos_rtx = GEN_INT (xbitpos);
1496
1497	  pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1498	  if (pat)
1499	    {
1500	      emit_insn (pat);
1501	      target = xtarget;
1502	      spec_target = xspec_target;
1503	      spec_target_subreg = xspec_target_subreg;
1504	    }
1505	  else
1506	    {
1507	      delete_insns_since (last);
1508	      target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1509						bitpos, target, 1);
1510	    }
1511	}
1512      else
1513      extzv_loses:
1514	target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1515					  bitpos, target, 1);
1516    }
1517  else
1518    {
1519      if (HAVE_extv
1520	  && bitsize > 0
1521	  && GET_MODE_BITSIZE (extv_mode) >= bitsize
1522	  && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1523		&& (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1524	{
1525	  int xbitpos = bitpos, xoffset = offset;
1526	  rtx bitsize_rtx, bitpos_rtx;
1527	  rtx last = get_last_insn ();
1528	  rtx xop0 = op0, xtarget = target;
1529	  rtx xspec_target = spec_target;
1530	  rtx xspec_target_subreg = spec_target_subreg;
1531	  rtx pat;
1532	  enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1533
1534	  if (MEM_P (xop0))
1535	    {
1536	      /* Is the memory operand acceptable?  */
1537	      if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1538		     (xop0, GET_MODE (xop0))))
1539		{
1540		  /* No, load into a reg and extract from there.  */
1541		  enum machine_mode bestmode;
1542
1543		  /* Get the mode to use for inserting into this field.  If
1544		     OP0 is BLKmode, get the smallest mode consistent with the
1545		     alignment. If OP0 is a non-BLKmode object that is no
1546		     wider than MAXMODE, use its mode. Otherwise, use the
1547		     smallest mode containing the field.  */
1548
1549		  if (GET_MODE (xop0) == BLKmode
1550		      || (GET_MODE_SIZE (GET_MODE (op0))
1551			  > GET_MODE_SIZE (maxmode)))
1552		    bestmode = get_best_mode (bitsize, bitnum,
1553					      MEM_ALIGN (xop0), maxmode,
1554					      MEM_VOLATILE_P (xop0));
1555		  else
1556		    bestmode = GET_MODE (xop0);
1557
1558		  if (bestmode == VOIDmode
1559		      || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1560			  && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1561		    goto extv_loses;
1562
1563		  /* Compute offset as multiple of this unit,
1564		     counting in bytes.  */
1565		  unit = GET_MODE_BITSIZE (bestmode);
1566		  xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1567		  xbitpos = bitnum % unit;
1568		  xop0 = adjust_address (xop0, bestmode, xoffset);
1569
1570		  /* Make sure register is big enough for the whole field. */
1571		  if (xoffset * BITS_PER_UNIT + unit
1572		      < offset * BITS_PER_UNIT + bitsize)
1573		    goto extv_loses;
1574
1575		  /* Fetch it to a register in that size.  */
1576		  xop0 = force_reg (bestmode, xop0);
1577
1578		  /* XBITPOS counts within UNIT, which is what is expected.  */
1579		}
1580	      else
1581		/* Get ref to first byte containing part of the field.  */
1582		xop0 = adjust_address (xop0, byte_mode, xoffset);
1583	    }
1584
1585	  /* If op0 is a register, we need it in MAXMODE (which is usually
1586	     SImode) to make it acceptable to the format of extv.  */
1587	  if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1588	    goto extv_loses;
1589	  if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1590	    xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1591
1592	  /* On big-endian machines, we count bits from the most significant.
1593	     If the bit field insn does not, we must invert.  */
1594	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1595	    xbitpos = unit - bitsize - xbitpos;
1596
1597	  /* XBITPOS counts within a size of UNIT.
1598	     Adjust to count within a size of MAXMODE.  */
1599	  if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1600	    xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1601
1602	  unit = GET_MODE_BITSIZE (maxmode);
1603
1604	  if (xtarget == 0)
1605	    xtarget = xspec_target = gen_reg_rtx (tmode);
1606
1607	  if (GET_MODE (xtarget) != maxmode)
1608	    {
1609	      if (REG_P (xtarget))
1610		{
1611		  int wider = (GET_MODE_SIZE (maxmode)
1612			       > GET_MODE_SIZE (GET_MODE (xtarget)));
1613		  xtarget = gen_lowpart (maxmode, xtarget);
1614		  if (wider)
1615		    xspec_target_subreg = xtarget;
1616		}
1617	      else
1618		xtarget = gen_reg_rtx (maxmode);
1619	    }
1620
1621	  /* If this machine's extv insists on a register target,
1622	     make sure we have one.  */
1623	  if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1624		 (xtarget, maxmode)))
1625	    xtarget = gen_reg_rtx (maxmode);
1626
1627	  bitsize_rtx = GEN_INT (bitsize);
1628	  bitpos_rtx = GEN_INT (xbitpos);
1629
1630	  pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1631	  if (pat)
1632	    {
1633	      emit_insn (pat);
1634	      target = xtarget;
1635	      spec_target = xspec_target;
1636	      spec_target_subreg = xspec_target_subreg;
1637	    }
1638	  else
1639	    {
1640	      delete_insns_since (last);
1641	      target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1642						bitpos, target, 0);
1643	    }
1644	}
1645      else
1646      extv_loses:
1647	target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1648					  bitpos, target, 0);
1649    }
1650  if (target == spec_target)
1651    return target;
1652  if (target == spec_target_subreg)
1653    return spec_target;
1654  if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1655    {
1656      /* If the target mode is not a scalar integral, first convert to the
1657	 integer mode of that size and then access it as a floating-point
1658	 value via a SUBREG.  */
1659      if (!SCALAR_INT_MODE_P (tmode))
1660	{
1661	  enum machine_mode smode
1662	    = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1663	  target = convert_to_mode (smode, target, unsignedp);
1664	  target = force_reg (smode, target);
1665	  return gen_lowpart (tmode, target);
1666	}
1667
1668      return convert_to_mode (tmode, target, unsignedp);
1669    }
1670  return target;
1671}
1672
1673/* Extract a bit field using shifts and boolean operations
1674   Returns an rtx to represent the value.
1675   OP0 addresses a register (word) or memory (byte).
1676   BITPOS says which bit within the word or byte the bit field starts in.
1677   OFFSET says how many bytes farther the bit field starts;
1678    it is 0 if OP0 is a register.
1679   BITSIZE says how many bits long the bit field is.
1680    (If OP0 is a register, it may be narrower than a full word,
1681     but BITPOS still counts within a full word,
1682     which is significant on bigendian machines.)
1683
1684   UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1685   If TARGET is nonzero, attempts to store the value there
1686   and return TARGET, but this is not guaranteed.
1687   If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */
1688
1689static rtx
1690extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1691			 unsigned HOST_WIDE_INT offset,
1692			 unsigned HOST_WIDE_INT bitsize,
1693			 unsigned HOST_WIDE_INT bitpos, rtx target,
1694			 int unsignedp)
1695{
1696  unsigned int total_bits = BITS_PER_WORD;
1697  enum machine_mode mode;
1698
1699  if (GET_CODE (op0) == SUBREG || REG_P (op0))
1700    {
1701      /* Special treatment for a bit field split across two registers.  */
1702      if (bitsize + bitpos > BITS_PER_WORD)
1703	return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1704    }
1705  else
1706    {
1707      /* Get the proper mode to use for this field.  We want a mode that
1708	 includes the entire field.  If such a mode would be larger than
1709	 a word, we won't be doing the extraction the normal way.  */
1710
1711      mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1712			    MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1713
1714      if (mode == VOIDmode)
1715	/* The only way this should occur is if the field spans word
1716	   boundaries.  */
1717	return extract_split_bit_field (op0, bitsize,
1718					bitpos + offset * BITS_PER_UNIT,
1719					unsignedp);
1720
1721      total_bits = GET_MODE_BITSIZE (mode);
1722
1723      /* Make sure bitpos is valid for the chosen mode.  Adjust BITPOS to
1724	 be in the range 0 to total_bits-1, and put any excess bytes in
1725	 OFFSET.  */
1726      if (bitpos >= total_bits)
1727	{
1728	  offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1729	  bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1730		     * BITS_PER_UNIT);
1731	}
1732
1733      /* Get ref to an aligned byte, halfword, or word containing the field.
1734	 Adjust BITPOS to be position within a word,
1735	 and OFFSET to be the offset of that word.
1736	 Then alter OP0 to refer to that word.  */
1737      bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1738      offset -= (offset % (total_bits / BITS_PER_UNIT));
1739      op0 = adjust_address (op0, mode, offset);
1740    }
1741
1742  mode = GET_MODE (op0);
1743
1744  if (BYTES_BIG_ENDIAN)
1745    /* BITPOS is the distance between our msb and that of OP0.
1746       Convert it to the distance from the lsb.  */
1747    bitpos = total_bits - bitsize - bitpos;
1748
1749  /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1750     We have reduced the big-endian case to the little-endian case.  */
1751
1752  if (unsignedp)
1753    {
1754      if (bitpos)
1755	{
1756	  /* If the field does not already start at the lsb,
1757	     shift it so it does.  */
1758	  tree amount = build_int_cst (NULL_TREE, bitpos);
1759	  /* Maybe propagate the target for the shift.  */
1760	  /* But not if we will return it--could confuse integrate.c.  */
1761	  rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1762	  if (tmode != mode) subtarget = 0;
1763	  op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1764	}
1765      /* Convert the value to the desired mode.  */
1766      if (mode != tmode)
1767	op0 = convert_to_mode (tmode, op0, 1);
1768
1769      /* Unless the msb of the field used to be the msb when we shifted,
1770	 mask out the upper bits.  */
1771
1772      if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1773	return expand_binop (GET_MODE (op0), and_optab, op0,
1774			     mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1775			     target, 1, OPTAB_LIB_WIDEN);
1776      return op0;
1777    }
1778
1779  /* To extract a signed bit-field, first shift its msb to the msb of the word,
1780     then arithmetic-shift its lsb to the lsb of the word.  */
1781  op0 = force_reg (mode, op0);
1782  if (mode != tmode)
1783    target = 0;
1784
1785  /* Find the narrowest integer mode that contains the field.  */
1786
1787  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1788       mode = GET_MODE_WIDER_MODE (mode))
1789    if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1790      {
1791	op0 = convert_to_mode (mode, op0, 0);
1792	break;
1793      }
1794
1795  if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1796    {
1797      tree amount
1798	= build_int_cst (NULL_TREE,
1799			 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1800      /* Maybe propagate the target for the shift.  */
1801      rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1802      op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1803    }
1804
1805  return expand_shift (RSHIFT_EXPR, mode, op0,
1806		       build_int_cst (NULL_TREE,
1807				      GET_MODE_BITSIZE (mode) - bitsize),
1808		       target, 0);
1809}
1810
1811/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1812   of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1813   complement of that if COMPLEMENT.  The mask is truncated if
1814   necessary to the width of mode MODE.  The mask is zero-extended if
1815   BITSIZE+BITPOS is too small for MODE.  */
1816
1817static rtx
1818mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1819{
1820  HOST_WIDE_INT masklow, maskhigh;
1821
1822  if (bitsize == 0)
1823    masklow = 0;
1824  else if (bitpos < HOST_BITS_PER_WIDE_INT)
1825    masklow = (HOST_WIDE_INT) -1 << bitpos;
1826  else
1827    masklow = 0;
1828
1829  if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1830    masklow &= ((unsigned HOST_WIDE_INT) -1
1831		>> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1832
1833  if (bitpos <= HOST_BITS_PER_WIDE_INT)
1834    maskhigh = -1;
1835  else
1836    maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1837
1838  if (bitsize == 0)
1839    maskhigh = 0;
1840  else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1841    maskhigh &= ((unsigned HOST_WIDE_INT) -1
1842		 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1843  else
1844    maskhigh = 0;
1845
1846  if (complement)
1847    {
1848      maskhigh = ~maskhigh;
1849      masklow = ~masklow;
1850    }
1851
1852  return immed_double_const (masklow, maskhigh, mode);
1853}
1854
1855/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1856   VALUE truncated to BITSIZE bits and then shifted left BITPOS bits.  */
1857
1858static rtx
1859lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1860{
1861  unsigned HOST_WIDE_INT v = INTVAL (value);
1862  HOST_WIDE_INT low, high;
1863
1864  if (bitsize < HOST_BITS_PER_WIDE_INT)
1865    v &= ~((HOST_WIDE_INT) -1 << bitsize);
1866
1867  if (bitpos < HOST_BITS_PER_WIDE_INT)
1868    {
1869      low = v << bitpos;
1870      high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1871    }
1872  else
1873    {
1874      low = 0;
1875      high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1876    }
1877
1878  return immed_double_const (low, high, mode);
1879}
1880
1881/* Extract a bit field from a memory by forcing the alignment of the
1882   memory.  This efficient only if the field spans at least 4 boundaries.
1883
1884   OP0 is the MEM.
1885   BITSIZE is the field width; BITPOS is the position of the first bit.
1886   UNSIGNEDP is true if the result should be zero-extended.  */
1887
1888static rtx
1889extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1890				   unsigned HOST_WIDE_INT bitpos,
1891				   int unsignedp)
1892{
1893  enum machine_mode mode, dmode;
1894  unsigned int m_bitsize, m_size;
1895  unsigned int sign_shift_up, sign_shift_dn;
1896  rtx base, a1, a2, v1, v2, comb, shift, result, start;
1897
1898  /* Choose a mode that will fit BITSIZE.  */
1899  mode = smallest_mode_for_size (bitsize, MODE_INT);
1900  m_size = GET_MODE_SIZE (mode);
1901  m_bitsize = GET_MODE_BITSIZE (mode);
1902
1903  /* Choose a mode twice as wide.  Fail if no such mode exists.  */
1904  dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1905  if (dmode == BLKmode)
1906    return NULL;
1907
1908  do_pending_stack_adjust ();
1909  start = get_last_insn ();
1910
1911  /* At the end, we'll need an additional shift to deal with sign/zero
1912     extension.  By default this will be a left+right shift of the
1913     appropriate size.  But we may be able to eliminate one of them.  */
1914  sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1915
1916  if (STRICT_ALIGNMENT)
1917    {
1918      base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1919      bitpos %= BITS_PER_UNIT;
1920
1921      /* We load two values to be concatenate.  There's an edge condition
1922	 that bears notice -- an aligned value at the end of a page can
1923	 only load one value lest we segfault.  So the two values we load
1924	 are at "base & -size" and "(base + size - 1) & -size".  If base
1925	 is unaligned, the addresses will be aligned and sequential; if
1926	 base is aligned, the addresses will both be equal to base.  */
1927
1928      a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1929				GEN_INT (-(HOST_WIDE_INT)m_size),
1930				NULL, true, OPTAB_LIB_WIDEN);
1931      mark_reg_pointer (a1, m_bitsize);
1932      v1 = gen_rtx_MEM (mode, a1);
1933      set_mem_align (v1, m_bitsize);
1934      v1 = force_reg (mode, validize_mem (v1));
1935
1936      a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1937      a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1938				GEN_INT (-(HOST_WIDE_INT)m_size),
1939				NULL, true, OPTAB_LIB_WIDEN);
1940      v2 = gen_rtx_MEM (mode, a2);
1941      set_mem_align (v2, m_bitsize);
1942      v2 = force_reg (mode, validize_mem (v2));
1943
1944      /* Combine these two values into a double-word value.  */
1945      if (m_bitsize == BITS_PER_WORD)
1946	{
1947	  comb = gen_reg_rtx (dmode);
1948	  emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1949	  emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1950	  emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1951	}
1952      else
1953	{
1954	  if (BYTES_BIG_ENDIAN)
1955	    comb = v1, v1 = v2, v2 = comb;
1956	  v1 = convert_modes (dmode, mode, v1, true);
1957	  if (v1 == NULL)
1958	    goto fail;
1959	  v2 = convert_modes (dmode, mode, v2, true);
1960	  v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1961				    NULL, true, OPTAB_LIB_WIDEN);
1962	  if (v2 == NULL)
1963	    goto fail;
1964	  comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1965				      true, OPTAB_LIB_WIDEN);
1966	  if (comb == NULL)
1967	    goto fail;
1968	}
1969
1970      shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1971				   NULL, true, OPTAB_LIB_WIDEN);
1972      shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1973
1974      if (bitpos != 0)
1975	{
1976	  if (sign_shift_up <= bitpos)
1977	    bitpos -= sign_shift_up, sign_shift_up = 0;
1978	  shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1979				       NULL, true, OPTAB_LIB_WIDEN);
1980	}
1981    }
1982  else
1983    {
1984      unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1985      bitpos %= BITS_PER_UNIT;
1986
1987      /* When strict alignment is not required, we can just load directly
1988	 from memory without masking.  If the remaining BITPOS offset is
1989	 small enough, we may be able to do all operations in MODE as
1990	 opposed to DMODE.  */
1991      if (bitpos + bitsize <= m_bitsize)
1992	dmode = mode;
1993      comb = adjust_address (op0, dmode, offset);
1994
1995      if (sign_shift_up <= bitpos)
1996	bitpos -= sign_shift_up, sign_shift_up = 0;
1997      shift = GEN_INT (bitpos);
1998    }
1999
2000  /* Shift down the double-word such that the requested value is at bit 0.  */
2001  if (shift != const0_rtx)
2002    comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
2003				comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
2004  if (comb == NULL)
2005    goto fail;
2006
2007  /* If the field exactly matches MODE, then all we need to do is return the
2008     lowpart.  Otherwise, shift to get the sign bits set properly.  */
2009  result = force_reg (mode, gen_lowpart (mode, comb));
2010
2011  if (sign_shift_up)
2012    result = expand_simple_binop (mode, ASHIFT, result,
2013				  GEN_INT (sign_shift_up),
2014				  NULL_RTX, 0, OPTAB_LIB_WIDEN);
2015  if (sign_shift_dn)
2016    result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
2017				  result, GEN_INT (sign_shift_dn),
2018				  NULL_RTX, 0, OPTAB_LIB_WIDEN);
2019
2020  return result;
2021
2022 fail:
2023  delete_insns_since (start);
2024  return NULL;
2025}
2026
2027/* Extract a bit field that is split across two words
2028   and return an RTX for the result.
2029
2030   OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2031   BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2032   UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.  */
2033
2034static rtx
2035extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2036			 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2037{
2038  unsigned int unit;
2039  unsigned int bitsdone = 0;
2040  rtx result = NULL_RTX;
2041  int first = 1;
2042
2043  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2044     much at a time.  */
2045  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2046    unit = BITS_PER_WORD;
2047  else
2048    {
2049      unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2050      if (0 && bitsize / unit > 2)
2051	{
2052	  rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2053						       unsignedp);
2054	  if (tmp)
2055	    return tmp;
2056	}
2057    }
2058
2059  while (bitsdone < bitsize)
2060    {
2061      unsigned HOST_WIDE_INT thissize;
2062      rtx part, word;
2063      unsigned HOST_WIDE_INT thispos;
2064      unsigned HOST_WIDE_INT offset;
2065
2066      offset = (bitpos + bitsdone) / unit;
2067      thispos = (bitpos + bitsdone) % unit;
2068
2069      /* THISSIZE must not overrun a word boundary.  Otherwise,
2070	 extract_fixed_bit_field will call us again, and we will mutually
2071	 recurse forever.  */
2072      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2073      thissize = MIN (thissize, unit - thispos);
2074
2075      /* If OP0 is a register, then handle OFFSET here.
2076
2077	 When handling multiword bitfields, extract_bit_field may pass
2078	 down a word_mode SUBREG of a larger REG for a bitfield that actually
2079	 crosses a word boundary.  Thus, for a SUBREG, we must find
2080	 the current word starting from the base register.  */
2081      if (GET_CODE (op0) == SUBREG)
2082	{
2083	  int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2084	  word = operand_subword_force (SUBREG_REG (op0), word_offset,
2085					GET_MODE (SUBREG_REG (op0)));
2086	  offset = 0;
2087	}
2088      else if (REG_P (op0))
2089	{
2090	  word = operand_subword_force (op0, offset, GET_MODE (op0));
2091	  offset = 0;
2092	}
2093      else
2094	word = op0;
2095
2096      /* Extract the parts in bit-counting order,
2097	 whose meaning is determined by BYTES_PER_UNIT.
2098	 OFFSET is in UNITs, and UNIT is in bits.
2099	 extract_fixed_bit_field wants offset in bytes.  */
2100      part = extract_fixed_bit_field (word_mode, word,
2101				      offset * unit / BITS_PER_UNIT,
2102				      thissize, thispos, 0, 1);
2103      bitsdone += thissize;
2104
2105      /* Shift this part into place for the result.  */
2106      if (BYTES_BIG_ENDIAN)
2107	{
2108	  if (bitsize != bitsdone)
2109	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
2110				 build_int_cst (NULL_TREE, bitsize - bitsdone),
2111				 0, 1);
2112	}
2113      else
2114	{
2115	  if (bitsdone != thissize)
2116	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
2117				 build_int_cst (NULL_TREE,
2118						bitsdone - thissize), 0, 1);
2119	}
2120
2121      if (first)
2122	result = part;
2123      else
2124	/* Combine the parts with bitwise or.  This works
2125	   because we extracted each part as an unsigned bit field.  */
2126	result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2127			       OPTAB_LIB_WIDEN);
2128
2129      first = 0;
2130    }
2131
2132  /* Unsigned bit field: we are done.  */
2133  if (unsignedp)
2134    return result;
2135  /* Signed bit field: sign-extend with two arithmetic shifts.  */
2136  result = expand_shift (LSHIFT_EXPR, word_mode, result,
2137			 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2138			 NULL_RTX, 0);
2139  return expand_shift (RSHIFT_EXPR, word_mode, result,
2140		       build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2141		       NULL_RTX, 0);
2142}
2143
2144/* Add INC into TARGET.  */
2145
2146void
2147expand_inc (rtx target, rtx inc)
2148{
2149  rtx value = expand_binop (GET_MODE (target), add_optab,
2150			    target, inc,
2151			    target, 0, OPTAB_LIB_WIDEN);
2152  if (value != target)
2153    emit_move_insn (target, value);
2154}
2155
2156/* Subtract DEC from TARGET.  */
2157
2158void
2159expand_dec (rtx target, rtx dec)
2160{
2161  rtx value = expand_binop (GET_MODE (target), sub_optab,
2162			    target, dec,
2163			    target, 0, OPTAB_LIB_WIDEN);
2164  if (value != target)
2165    emit_move_insn (target, value);
2166}
2167
2168/* Output a shift instruction for expression code CODE,
2169   with SHIFTED being the rtx for the value to shift,
2170   and AMOUNT the tree for the amount to shift by.
2171   Store the result in the rtx TARGET, if that is convenient.
2172   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2173   Return the rtx for where the value is.  */
2174
2175rtx
2176expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2177	      tree amount, rtx target, int unsignedp)
2178{
2179  rtx op1, temp = 0;
2180  int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2181  int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2182  int try;
2183
2184  /* Previously detected shift-counts computed by NEGATE_EXPR
2185     and shifted in the other direction; but that does not work
2186     on all machines.  */
2187
2188  op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2189
2190  if (SHIFT_COUNT_TRUNCATED)
2191    {
2192      if (GET_CODE (op1) == CONST_INT
2193	  && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2194	      (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2195	op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2196		       % GET_MODE_BITSIZE (mode));
2197      else if (GET_CODE (op1) == SUBREG
2198	       && subreg_lowpart_p (op1))
2199	op1 = SUBREG_REG (op1);
2200    }
2201
2202  if (op1 == const0_rtx)
2203    return shifted;
2204
2205  /* Check whether its cheaper to implement a left shift by a constant
2206     bit count by a sequence of additions.  */
2207  if (code == LSHIFT_EXPR
2208      && GET_CODE (op1) == CONST_INT
2209      && INTVAL (op1) > 0
2210      && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2211      && INTVAL (op1) < MAX_BITS_PER_WORD
2212      && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2213      && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2214    {
2215      int i;
2216      for (i = 0; i < INTVAL (op1); i++)
2217	{
2218	  temp = force_reg (mode, shifted);
2219	  shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2220				  unsignedp, OPTAB_LIB_WIDEN);
2221	}
2222      return shifted;
2223    }
2224
2225  for (try = 0; temp == 0 && try < 3; try++)
2226    {
2227      enum optab_methods methods;
2228
2229      if (try == 0)
2230	methods = OPTAB_DIRECT;
2231      else if (try == 1)
2232	methods = OPTAB_WIDEN;
2233      else
2234	methods = OPTAB_LIB_WIDEN;
2235
2236      if (rotate)
2237	{
2238	  /* Widening does not work for rotation.  */
2239	  if (methods == OPTAB_WIDEN)
2240	    continue;
2241	  else if (methods == OPTAB_LIB_WIDEN)
2242	    {
2243	      /* If we have been unable to open-code this by a rotation,
2244		 do it as the IOR of two shifts.  I.e., to rotate A
2245		 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2246		 where C is the bitsize of A.
2247
2248		 It is theoretically possible that the target machine might
2249		 not be able to perform either shift and hence we would
2250		 be making two libcalls rather than just the one for the
2251		 shift (similarly if IOR could not be done).  We will allow
2252		 this extremely unlikely lossage to avoid complicating the
2253		 code below.  */
2254
2255	      rtx subtarget = target == shifted ? 0 : target;
2256	      tree new_amount, other_amount;
2257	      rtx temp1;
2258	      tree type = TREE_TYPE (amount);
2259	      if (GET_MODE (op1) != TYPE_MODE (type)
2260		  && GET_MODE (op1) != VOIDmode)
2261		op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2262	      new_amount = make_tree (type, op1);
2263	      other_amount
2264		= fold_build2 (MINUS_EXPR, type,
2265			       build_int_cst (type, GET_MODE_BITSIZE (mode)),
2266			       new_amount);
2267
2268	      shifted = force_reg (mode, shifted);
2269
2270	      temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2271				   mode, shifted, new_amount, 0, 1);
2272	      temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2273				    mode, shifted, other_amount, subtarget, 1);
2274	      return expand_binop (mode, ior_optab, temp, temp1, target,
2275				   unsignedp, methods);
2276	    }
2277
2278	  temp = expand_binop (mode,
2279			       left ? rotl_optab : rotr_optab,
2280			       shifted, op1, target, unsignedp, methods);
2281	}
2282      else if (unsignedp)
2283	temp = expand_binop (mode,
2284			     left ? ashl_optab : lshr_optab,
2285			     shifted, op1, target, unsignedp, methods);
2286
2287      /* Do arithmetic shifts.
2288	 Also, if we are going to widen the operand, we can just as well
2289	 use an arithmetic right-shift instead of a logical one.  */
2290      if (temp == 0 && ! rotate
2291	  && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2292	{
2293	  enum optab_methods methods1 = methods;
2294
2295	  /* If trying to widen a log shift to an arithmetic shift,
2296	     don't accept an arithmetic shift of the same size.  */
2297	  if (unsignedp)
2298	    methods1 = OPTAB_MUST_WIDEN;
2299
2300	  /* Arithmetic shift */
2301
2302	  temp = expand_binop (mode,
2303			       left ? ashl_optab : ashr_optab,
2304			       shifted, op1, target, unsignedp, methods1);
2305	}
2306
2307      /* We used to try extzv here for logical right shifts, but that was
2308	 only useful for one machine, the VAX, and caused poor code
2309	 generation there for lshrdi3, so the code was deleted and a
2310	 define_expand for lshrsi3 was added to vax.md.  */
2311    }
2312
2313  gcc_assert (temp);
2314  return temp;
2315}
2316
2317enum alg_code {
2318  alg_unknown,
2319  alg_zero,
2320  alg_m, alg_shift,
2321  alg_add_t_m2,
2322  alg_sub_t_m2,
2323  alg_add_factor,
2324  alg_sub_factor,
2325  alg_add_t2_m,
2326  alg_sub_t2_m,
2327  alg_impossible
2328};
2329
2330/* This structure holds the "cost" of a multiply sequence.  The
2331   "cost" field holds the total rtx_cost of every operator in the
2332   synthetic multiplication sequence, hence cost(a op b) is defined
2333   as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2334   The "latency" field holds the minimum possible latency of the
2335   synthetic multiply, on a hypothetical infinitely parallel CPU.
2336   This is the critical path, or the maximum height, of the expression
2337   tree which is the sum of rtx_costs on the most expensive path from
2338   any leaf to the root.  Hence latency(a op b) is defined as zero for
2339   leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
2340
2341struct mult_cost {
2342  short cost;     /* Total rtx_cost of the multiplication sequence.  */
2343  short latency;  /* The latency of the multiplication sequence.  */
2344};
2345
2346/* This macro is used to compare a pointer to a mult_cost against an
2347   single integer "rtx_cost" value.  This is equivalent to the macro
2348   CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
2349#define MULT_COST_LESS(X,Y) ((X)->cost < (Y)	\
2350			     || ((X)->cost == (Y) && (X)->latency < (Y)))
2351
2352/* This macro is used to compare two pointers to mult_costs against
2353   each other.  The macro returns true if X is cheaper than Y.
2354   Currently, the cheaper of two mult_costs is the one with the
2355   lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
2356#define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost		\
2357				 || ((X)->cost == (Y)->cost	\
2358				     && (X)->latency < (Y)->latency))
2359
2360/* This structure records a sequence of operations.
2361   `ops' is the number of operations recorded.
2362   `cost' is their total cost.
2363   The operations are stored in `op' and the corresponding
2364   logarithms of the integer coefficients in `log'.
2365
2366   These are the operations:
2367   alg_zero		total := 0;
2368   alg_m		total := multiplicand;
2369   alg_shift		total := total * coeff
2370   alg_add_t_m2		total := total + multiplicand * coeff;
2371   alg_sub_t_m2		total := total - multiplicand * coeff;
2372   alg_add_factor	total := total * coeff + total;
2373   alg_sub_factor	total := total * coeff - total;
2374   alg_add_t2_m		total := total * coeff + multiplicand;
2375   alg_sub_t2_m		total := total * coeff - multiplicand;
2376
2377   The first operand must be either alg_zero or alg_m.  */
2378
2379struct algorithm
2380{
2381  struct mult_cost cost;
2382  short ops;
2383  /* The size of the OP and LOG fields are not directly related to the
2384     word size, but the worst-case algorithms will be if we have few
2385     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2386     In that case we will generate shift-by-2, add, shift-by-2, add,...,
2387     in total wordsize operations.  */
2388  enum alg_code op[MAX_BITS_PER_WORD];
2389  char log[MAX_BITS_PER_WORD];
2390};
2391
2392/* The entry for our multiplication cache/hash table.  */
2393struct alg_hash_entry {
2394  /* The number we are multiplying by.  */
2395  unsigned HOST_WIDE_INT t;
2396
2397  /* The mode in which we are multiplying something by T.  */
2398  enum machine_mode mode;
2399
2400  /* The best multiplication algorithm for t.  */
2401  enum alg_code alg;
2402
2403  /* The cost of multiplication if ALG_CODE is not alg_impossible.
2404     Otherwise, the cost within which multiplication by T is
2405     impossible.  */
2406  struct mult_cost cost;
2407};
2408
2409/* The number of cache/hash entries.  */
2410#if HOST_BITS_PER_WIDE_INT == 64
2411#define NUM_ALG_HASH_ENTRIES 1031
2412#else
2413#define NUM_ALG_HASH_ENTRIES 307
2414#endif
2415
2416/* Each entry of ALG_HASH caches alg_code for some integer.  This is
2417   actually a hash table.  If we have a collision, that the older
2418   entry is kicked out.  */
2419static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2420
2421/* Indicates the type of fixup needed after a constant multiplication.
2422   BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2423   the result should be negated, and ADD_VARIANT means that the
2424   multiplicand should be added to the result.  */
2425enum mult_variant {basic_variant, negate_variant, add_variant};
2426
2427static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2428			const struct mult_cost *, enum machine_mode mode);
2429static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2430				 struct algorithm *, enum mult_variant *, int);
2431static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2432			      const struct algorithm *, enum mult_variant);
2433static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2434						 int, rtx *, int *, int *);
2435static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2436static rtx extract_high_half (enum machine_mode, rtx);
2437static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2438static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2439				       int, int);
2440/* Compute and return the best algorithm for multiplying by T.
2441   The algorithm must cost less than cost_limit
2442   If retval.cost >= COST_LIMIT, no algorithm was found and all
2443   other field of the returned struct are undefined.
2444   MODE is the machine mode of the multiplication.  */
2445
2446static void
2447synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2448	    const struct mult_cost *cost_limit, enum machine_mode mode)
2449{
2450  int m;
2451  struct algorithm *alg_in, *best_alg;
2452  struct mult_cost best_cost;
2453  struct mult_cost new_limit;
2454  int op_cost, op_latency;
2455  unsigned HOST_WIDE_INT q;
2456  int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2457  int hash_index;
2458  bool cache_hit = false;
2459  enum alg_code cache_alg = alg_zero;
2460
2461  /* Indicate that no algorithm is yet found.  If no algorithm
2462     is found, this value will be returned and indicate failure.  */
2463  alg_out->cost.cost = cost_limit->cost + 1;
2464  alg_out->cost.latency = cost_limit->latency + 1;
2465
2466  if (cost_limit->cost < 0
2467      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2468    return;
2469
2470  /* Restrict the bits of "t" to the multiplication's mode.  */
2471  t &= GET_MODE_MASK (mode);
2472
2473  /* t == 1 can be done in zero cost.  */
2474  if (t == 1)
2475    {
2476      alg_out->ops = 1;
2477      alg_out->cost.cost = 0;
2478      alg_out->cost.latency = 0;
2479      alg_out->op[0] = alg_m;
2480      return;
2481    }
2482
2483  /* t == 0 sometimes has a cost.  If it does and it exceeds our limit,
2484     fail now.  */
2485  if (t == 0)
2486    {
2487      if (MULT_COST_LESS (cost_limit, zero_cost))
2488	return;
2489      else
2490	{
2491	  alg_out->ops = 1;
2492	  alg_out->cost.cost = zero_cost;
2493	  alg_out->cost.latency = zero_cost;
2494	  alg_out->op[0] = alg_zero;
2495	  return;
2496	}
2497    }
2498
2499  /* We'll be needing a couple extra algorithm structures now.  */
2500
2501  alg_in = alloca (sizeof (struct algorithm));
2502  best_alg = alloca (sizeof (struct algorithm));
2503  best_cost = *cost_limit;
2504
2505  /* Compute the hash index.  */
2506  hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2507
2508  /* See if we already know what to do for T.  */
2509  if (alg_hash[hash_index].t == t
2510      && alg_hash[hash_index].mode == mode
2511      && alg_hash[hash_index].alg != alg_unknown)
2512    {
2513      cache_alg = alg_hash[hash_index].alg;
2514
2515      if (cache_alg == alg_impossible)
2516	{
2517	  /* The cache tells us that it's impossible to synthesize
2518	     multiplication by T within alg_hash[hash_index].cost.  */
2519	  if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2520	    /* COST_LIMIT is at least as restrictive as the one
2521	       recorded in the hash table, in which case we have no
2522	       hope of synthesizing a multiplication.  Just
2523	       return.  */
2524	    return;
2525
2526	  /* If we get here, COST_LIMIT is less restrictive than the
2527	     one recorded in the hash table, so we may be able to
2528	     synthesize a multiplication.  Proceed as if we didn't
2529	     have the cache entry.  */
2530	}
2531      else
2532	{
2533	  if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2534	    /* The cached algorithm shows that this multiplication
2535	       requires more cost than COST_LIMIT.  Just return.  This
2536	       way, we don't clobber this cache entry with
2537	       alg_impossible but retain useful information.  */
2538	    return;
2539
2540	  cache_hit = true;
2541
2542	  switch (cache_alg)
2543	    {
2544	    case alg_shift:
2545	      goto do_alg_shift;
2546
2547	    case alg_add_t_m2:
2548	    case alg_sub_t_m2:
2549	      goto do_alg_addsub_t_m2;
2550
2551	    case alg_add_factor:
2552	    case alg_sub_factor:
2553	      goto do_alg_addsub_factor;
2554
2555	    case alg_add_t2_m:
2556	      goto do_alg_add_t2_m;
2557
2558	    case alg_sub_t2_m:
2559	      goto do_alg_sub_t2_m;
2560
2561	    default:
2562	      gcc_unreachable ();
2563	    }
2564	}
2565    }
2566
2567  /* If we have a group of zero bits at the low-order part of T, try
2568     multiplying by the remaining bits and then doing a shift.  */
2569
2570  if ((t & 1) == 0)
2571    {
2572    do_alg_shift:
2573      m = floor_log2 (t & -t);	/* m = number of low zero bits */
2574      if (m < maxm)
2575	{
2576	  q = t >> m;
2577	  /* The function expand_shift will choose between a shift and
2578	     a sequence of additions, so the observed cost is given as
2579	     MIN (m * add_cost[mode], shift_cost[mode][m]).  */
2580	  op_cost = m * add_cost[mode];
2581	  if (shift_cost[mode][m] < op_cost)
2582	    op_cost = shift_cost[mode][m];
2583	  new_limit.cost = best_cost.cost - op_cost;
2584	  new_limit.latency = best_cost.latency - op_cost;
2585	  synth_mult (alg_in, q, &new_limit, mode);
2586
2587	  alg_in->cost.cost += op_cost;
2588	  alg_in->cost.latency += op_cost;
2589	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590	    {
2591	      struct algorithm *x;
2592	      best_cost = alg_in->cost;
2593	      x = alg_in, alg_in = best_alg, best_alg = x;
2594	      best_alg->log[best_alg->ops] = m;
2595	      best_alg->op[best_alg->ops] = alg_shift;
2596	    }
2597	}
2598      if (cache_hit)
2599	goto done;
2600    }
2601
2602  /* If we have an odd number, add or subtract one.  */
2603  if ((t & 1) != 0)
2604    {
2605      unsigned HOST_WIDE_INT w;
2606
2607    do_alg_addsub_t_m2:
2608      for (w = 1; (w & t) != 0; w <<= 1)
2609	;
2610      /* If T was -1, then W will be zero after the loop.  This is another
2611	 case where T ends with ...111.  Handling this with (T + 1) and
2612	 subtract 1 produces slightly better code and results in algorithm
2613	 selection much faster than treating it like the ...0111 case
2614	 below.  */
2615      if (w == 0
2616	  || (w > 2
2617	      /* Reject the case where t is 3.
2618		 Thus we prefer addition in that case.  */
2619	      && t != 3))
2620	{
2621	  /* T ends with ...111.  Multiply by (T + 1) and subtract 1.  */
2622
2623	  op_cost = add_cost[mode];
2624	  new_limit.cost = best_cost.cost - op_cost;
2625	  new_limit.latency = best_cost.latency - op_cost;
2626	  synth_mult (alg_in, t + 1, &new_limit, mode);
2627
2628	  alg_in->cost.cost += op_cost;
2629	  alg_in->cost.latency += op_cost;
2630	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2631	    {
2632	      struct algorithm *x;
2633	      best_cost = alg_in->cost;
2634	      x = alg_in, alg_in = best_alg, best_alg = x;
2635	      best_alg->log[best_alg->ops] = 0;
2636	      best_alg->op[best_alg->ops] = alg_sub_t_m2;
2637	    }
2638	}
2639      else
2640	{
2641	  /* T ends with ...01 or ...011.  Multiply by (T - 1) and add 1.  */
2642
2643	  op_cost = add_cost[mode];
2644	  new_limit.cost = best_cost.cost - op_cost;
2645	  new_limit.latency = best_cost.latency - op_cost;
2646	  synth_mult (alg_in, t - 1, &new_limit, mode);
2647
2648	  alg_in->cost.cost += op_cost;
2649	  alg_in->cost.latency += op_cost;
2650	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2651	    {
2652	      struct algorithm *x;
2653	      best_cost = alg_in->cost;
2654	      x = alg_in, alg_in = best_alg, best_alg = x;
2655	      best_alg->log[best_alg->ops] = 0;
2656	      best_alg->op[best_alg->ops] = alg_add_t_m2;
2657	    }
2658	}
2659      if (cache_hit)
2660	goto done;
2661    }
2662
2663  /* Look for factors of t of the form
2664     t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2665     If we find such a factor, we can multiply by t using an algorithm that
2666     multiplies by q, shift the result by m and add/subtract it to itself.
2667
2668     We search for large factors first and loop down, even if large factors
2669     are less probable than small; if we find a large factor we will find a
2670     good sequence quickly, and therefore be able to prune (by decreasing
2671     COST_LIMIT) the search.  */
2672
2673 do_alg_addsub_factor:
2674  for (m = floor_log2 (t - 1); m >= 2; m--)
2675    {
2676      unsigned HOST_WIDE_INT d;
2677
2678      d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2679      if (t % d == 0 && t > d && m < maxm
2680	  && (!cache_hit || cache_alg == alg_add_factor))
2681	{
2682	  /* If the target has a cheap shift-and-add instruction use
2683	     that in preference to a shift insn followed by an add insn.
2684	     Assume that the shift-and-add is "atomic" with a latency
2685	     equal to its cost, otherwise assume that on superscalar
2686	     hardware the shift may be executed concurrently with the
2687	     earlier steps in the algorithm.  */
2688	  op_cost = add_cost[mode] + shift_cost[mode][m];
2689	  if (shiftadd_cost[mode][m] < op_cost)
2690	    {
2691	      op_cost = shiftadd_cost[mode][m];
2692	      op_latency = op_cost;
2693	    }
2694	  else
2695	    op_latency = add_cost[mode];
2696
2697	  new_limit.cost = best_cost.cost - op_cost;
2698	  new_limit.latency = best_cost.latency - op_latency;
2699	  synth_mult (alg_in, t / d, &new_limit, mode);
2700
2701	  alg_in->cost.cost += op_cost;
2702	  alg_in->cost.latency += op_latency;
2703	  if (alg_in->cost.latency < op_cost)
2704	    alg_in->cost.latency = op_cost;
2705	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2706	    {
2707	      struct algorithm *x;
2708	      best_cost = alg_in->cost;
2709	      x = alg_in, alg_in = best_alg, best_alg = x;
2710	      best_alg->log[best_alg->ops] = m;
2711	      best_alg->op[best_alg->ops] = alg_add_factor;
2712	    }
2713	  /* Other factors will have been taken care of in the recursion.  */
2714	  break;
2715	}
2716
2717      d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2718      if (t % d == 0 && t > d && m < maxm
2719	  && (!cache_hit || cache_alg == alg_sub_factor))
2720	{
2721	  /* If the target has a cheap shift-and-subtract insn use
2722	     that in preference to a shift insn followed by a sub insn.
2723	     Assume that the shift-and-sub is "atomic" with a latency
2724	     equal to it's cost, otherwise assume that on superscalar
2725	     hardware the shift may be executed concurrently with the
2726	     earlier steps in the algorithm.  */
2727	  op_cost = add_cost[mode] + shift_cost[mode][m];
2728	  if (shiftsub_cost[mode][m] < op_cost)
2729	    {
2730	      op_cost = shiftsub_cost[mode][m];
2731	      op_latency = op_cost;
2732	    }
2733	  else
2734	    op_latency = add_cost[mode];
2735
2736	  new_limit.cost = best_cost.cost - op_cost;
2737	  new_limit.latency = best_cost.latency - op_latency;
2738	  synth_mult (alg_in, t / d, &new_limit, mode);
2739
2740	  alg_in->cost.cost += op_cost;
2741	  alg_in->cost.latency += op_latency;
2742	  if (alg_in->cost.latency < op_cost)
2743	    alg_in->cost.latency = op_cost;
2744	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2745	    {
2746	      struct algorithm *x;
2747	      best_cost = alg_in->cost;
2748	      x = alg_in, alg_in = best_alg, best_alg = x;
2749	      best_alg->log[best_alg->ops] = m;
2750	      best_alg->op[best_alg->ops] = alg_sub_factor;
2751	    }
2752	  break;
2753	}
2754    }
2755  if (cache_hit)
2756    goto done;
2757
2758  /* Try shift-and-add (load effective address) instructions,
2759     i.e. do a*3, a*5, a*9.  */
2760  if ((t & 1) != 0)
2761    {
2762    do_alg_add_t2_m:
2763      q = t - 1;
2764      q = q & -q;
2765      m = exact_log2 (q);
2766      if (m >= 0 && m < maxm)
2767	{
2768	  op_cost = shiftadd_cost[mode][m];
2769	  new_limit.cost = best_cost.cost - op_cost;
2770	  new_limit.latency = best_cost.latency - op_cost;
2771	  synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2772
2773	  alg_in->cost.cost += op_cost;
2774	  alg_in->cost.latency += op_cost;
2775	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2776	    {
2777	      struct algorithm *x;
2778	      best_cost = alg_in->cost;
2779	      x = alg_in, alg_in = best_alg, best_alg = x;
2780	      best_alg->log[best_alg->ops] = m;
2781	      best_alg->op[best_alg->ops] = alg_add_t2_m;
2782	    }
2783	}
2784      if (cache_hit)
2785	goto done;
2786
2787    do_alg_sub_t2_m:
2788      q = t + 1;
2789      q = q & -q;
2790      m = exact_log2 (q);
2791      if (m >= 0 && m < maxm)
2792	{
2793	  op_cost = shiftsub_cost[mode][m];
2794	  new_limit.cost = best_cost.cost - op_cost;
2795	  new_limit.latency = best_cost.latency - op_cost;
2796	  synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2797
2798	  alg_in->cost.cost += op_cost;
2799	  alg_in->cost.latency += op_cost;
2800	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2801	    {
2802	      struct algorithm *x;
2803	      best_cost = alg_in->cost;
2804	      x = alg_in, alg_in = best_alg, best_alg = x;
2805	      best_alg->log[best_alg->ops] = m;
2806	      best_alg->op[best_alg->ops] = alg_sub_t2_m;
2807	    }
2808	}
2809      if (cache_hit)
2810	goto done;
2811    }
2812
2813 done:
2814  /* If best_cost has not decreased, we have not found any algorithm.  */
2815  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2816    {
2817      /* We failed to find an algorithm.  Record alg_impossible for
2818	 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2819	 we are asked to find an algorithm for T within the same or
2820	 lower COST_LIMIT, we can immediately return to the
2821	 caller.  */
2822      alg_hash[hash_index].t = t;
2823      alg_hash[hash_index].mode = mode;
2824      alg_hash[hash_index].alg = alg_impossible;
2825      alg_hash[hash_index].cost = *cost_limit;
2826      return;
2827    }
2828
2829  /* Cache the result.  */
2830  if (!cache_hit)
2831    {
2832      alg_hash[hash_index].t = t;
2833      alg_hash[hash_index].mode = mode;
2834      alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2835      alg_hash[hash_index].cost.cost = best_cost.cost;
2836      alg_hash[hash_index].cost.latency = best_cost.latency;
2837    }
2838
2839  /* If we are getting a too long sequence for `struct algorithm'
2840     to record, make this search fail.  */
2841  if (best_alg->ops == MAX_BITS_PER_WORD)
2842    return;
2843
2844  /* Copy the algorithm from temporary space to the space at alg_out.
2845     We avoid using structure assignment because the majority of
2846     best_alg is normally undefined, and this is a critical function.  */
2847  alg_out->ops = best_alg->ops + 1;
2848  alg_out->cost = best_cost;
2849  memcpy (alg_out->op, best_alg->op,
2850	  alg_out->ops * sizeof *alg_out->op);
2851  memcpy (alg_out->log, best_alg->log,
2852	  alg_out->ops * sizeof *alg_out->log);
2853}
2854
2855/* Find the cheapest way of multiplying a value of mode MODE by VAL.
2856   Try three variations:
2857
2858       - a shift/add sequence based on VAL itself
2859       - a shift/add sequence based on -VAL, followed by a negation
2860       - a shift/add sequence based on VAL - 1, followed by an addition.
2861
2862   Return true if the cheapest of these cost less than MULT_COST,
2863   describing the algorithm in *ALG and final fixup in *VARIANT.  */
2864
2865static bool
2866choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2867		     struct algorithm *alg, enum mult_variant *variant,
2868		     int mult_cost)
2869{
2870  struct algorithm alg2;
2871  struct mult_cost limit;
2872  int op_cost;
2873
2874  /* Fail quickly for impossible bounds.  */
2875  if (mult_cost < 0)
2876    return false;
2877
2878  /* Ensure that mult_cost provides a reasonable upper bound.
2879     Any constant multiplication can be performed with less
2880     than 2 * bits additions.  */
2881  op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2882  if (mult_cost > op_cost)
2883    mult_cost = op_cost;
2884
2885  *variant = basic_variant;
2886  limit.cost = mult_cost;
2887  limit.latency = mult_cost;
2888  synth_mult (alg, val, &limit, mode);
2889
2890  /* This works only if the inverted value actually fits in an
2891     `unsigned int' */
2892  if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2893    {
2894      op_cost = neg_cost[mode];
2895      if (MULT_COST_LESS (&alg->cost, mult_cost))
2896	{
2897	  limit.cost = alg->cost.cost - op_cost;
2898	  limit.latency = alg->cost.latency - op_cost;
2899	}
2900      else
2901	{
2902	  limit.cost = mult_cost - op_cost;
2903	  limit.latency = mult_cost - op_cost;
2904	}
2905
2906      synth_mult (&alg2, -val, &limit, mode);
2907      alg2.cost.cost += op_cost;
2908      alg2.cost.latency += op_cost;
2909      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2910	*alg = alg2, *variant = negate_variant;
2911    }
2912
2913  /* This proves very useful for division-by-constant.  */
2914  op_cost = add_cost[mode];
2915  if (MULT_COST_LESS (&alg->cost, mult_cost))
2916    {
2917      limit.cost = alg->cost.cost - op_cost;
2918      limit.latency = alg->cost.latency - op_cost;
2919    }
2920  else
2921    {
2922      limit.cost = mult_cost - op_cost;
2923      limit.latency = mult_cost - op_cost;
2924    }
2925
2926  synth_mult (&alg2, val - 1, &limit, mode);
2927  alg2.cost.cost += op_cost;
2928  alg2.cost.latency += op_cost;
2929  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2930    *alg = alg2, *variant = add_variant;
2931
2932  return MULT_COST_LESS (&alg->cost, mult_cost);
2933}
2934
2935/* A subroutine of expand_mult, used for constant multiplications.
2936   Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2937   convenient.  Use the shift/add sequence described by ALG and apply
2938   the final fixup specified by VARIANT.  */
2939
2940static rtx
2941expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2942		   rtx target, const struct algorithm *alg,
2943		   enum mult_variant variant)
2944{
2945  HOST_WIDE_INT val_so_far;
2946  rtx insn, accum, tem;
2947  int opno;
2948  enum machine_mode nmode;
2949
2950  /* Avoid referencing memory over and over.
2951     For speed, but also for correctness when mem is volatile.  */
2952  if (MEM_P (op0))
2953    op0 = force_reg (mode, op0);
2954
2955  /* ACCUM starts out either as OP0 or as a zero, depending on
2956     the first operation.  */
2957
2958  if (alg->op[0] == alg_zero)
2959    {
2960      accum = copy_to_mode_reg (mode, const0_rtx);
2961      val_so_far = 0;
2962    }
2963  else if (alg->op[0] == alg_m)
2964    {
2965      accum = copy_to_mode_reg (mode, op0);
2966      val_so_far = 1;
2967    }
2968  else
2969    gcc_unreachable ();
2970
2971  for (opno = 1; opno < alg->ops; opno++)
2972    {
2973      int log = alg->log[opno];
2974      rtx shift_subtarget = optimize ? 0 : accum;
2975      rtx add_target
2976	= (opno == alg->ops - 1 && target != 0 && variant != add_variant
2977	   && !optimize)
2978	  ? target : 0;
2979      rtx accum_target = optimize ? 0 : accum;
2980
2981      switch (alg->op[opno])
2982	{
2983	case alg_shift:
2984	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
2985				build_int_cst (NULL_TREE, log),
2986				NULL_RTX, 0);
2987	  val_so_far <<= log;
2988	  break;
2989
2990	case alg_add_t_m2:
2991	  tem = expand_shift (LSHIFT_EXPR, mode, op0,
2992			      build_int_cst (NULL_TREE, log),
2993			      NULL_RTX, 0);
2994	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2995				 add_target ? add_target : accum_target);
2996	  val_so_far += (HOST_WIDE_INT) 1 << log;
2997	  break;
2998
2999	case alg_sub_t_m2:
3000	  tem = expand_shift (LSHIFT_EXPR, mode, op0,
3001			      build_int_cst (NULL_TREE, log),
3002			      NULL_RTX, 0);
3003	  accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3004				 add_target ? add_target : accum_target);
3005	  val_so_far -= (HOST_WIDE_INT) 1 << log;
3006	  break;
3007
3008	case alg_add_t2_m:
3009	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
3010				build_int_cst (NULL_TREE, log),
3011				shift_subtarget,
3012				0);
3013	  accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3014				 add_target ? add_target : accum_target);
3015	  val_so_far = (val_so_far << log) + 1;
3016	  break;
3017
3018	case alg_sub_t2_m:
3019	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
3020				build_int_cst (NULL_TREE, log),
3021				shift_subtarget, 0);
3022	  accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3023				 add_target ? add_target : accum_target);
3024	  val_so_far = (val_so_far << log) - 1;
3025	  break;
3026
3027	case alg_add_factor:
3028	  tem = expand_shift (LSHIFT_EXPR, mode, accum,
3029			      build_int_cst (NULL_TREE, log),
3030			      NULL_RTX, 0);
3031	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3032				 add_target ? add_target : accum_target);
3033	  val_so_far += val_so_far << log;
3034	  break;
3035
3036	case alg_sub_factor:
3037	  tem = expand_shift (LSHIFT_EXPR, mode, accum,
3038			      build_int_cst (NULL_TREE, log),
3039			      NULL_RTX, 0);
3040	  accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3041				 (add_target
3042				  ? add_target : (optimize ? 0 : tem)));
3043	  val_so_far = (val_so_far << log) - val_so_far;
3044	  break;
3045
3046	default:
3047	  gcc_unreachable ();
3048	}
3049
3050      /* Write a REG_EQUAL note on the last insn so that we can cse
3051	 multiplication sequences.  Note that if ACCUM is a SUBREG,
3052	 we've set the inner register and must properly indicate
3053	 that.  */
3054
3055      tem = op0, nmode = mode;
3056      if (GET_CODE (accum) == SUBREG)
3057	{
3058	  nmode = GET_MODE (SUBREG_REG (accum));
3059	  tem = gen_lowpart (nmode, op0);
3060	}
3061
3062      insn = get_last_insn ();
3063      set_unique_reg_note (insn, REG_EQUAL,
3064			   gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
3065    }
3066
3067  if (variant == negate_variant)
3068    {
3069      val_so_far = -val_so_far;
3070      accum = expand_unop (mode, neg_optab, accum, target, 0);
3071    }
3072  else if (variant == add_variant)
3073    {
3074      val_so_far = val_so_far + 1;
3075      accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3076    }
3077
3078  /* Compare only the bits of val and val_so_far that are significant
3079     in the result mode, to avoid sign-/zero-extension confusion.  */
3080  val &= GET_MODE_MASK (mode);
3081  val_so_far &= GET_MODE_MASK (mode);
3082  gcc_assert (val == val_so_far);
3083
3084  return accum;
3085}
3086
3087/* Perform a multiplication and return an rtx for the result.
3088   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3089   TARGET is a suggestion for where to store the result (an rtx).
3090
3091   We check specially for a constant integer as OP1.
3092   If you want this check for OP0 as well, then before calling
3093   you should swap the two operands if OP0 would be constant.  */
3094
3095rtx
3096expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3097	     int unsignedp)
3098{
3099  enum mult_variant variant;
3100  struct algorithm algorithm;
3101  int max_cost;
3102
3103  /* Handling const0_rtx here allows us to use zero as a rogue value for
3104     coeff below.  */
3105  if (op1 == const0_rtx)
3106    return const0_rtx;
3107  if (op1 == const1_rtx)
3108    return op0;
3109  if (op1 == constm1_rtx)
3110    return expand_unop (mode,
3111			GET_MODE_CLASS (mode) == MODE_INT
3112			&& !unsignedp && flag_trapv
3113			? negv_optab : neg_optab,
3114			op0, target, 0);
3115
3116  /* These are the operations that are potentially turned into a sequence
3117     of shifts and additions.  */
3118  if (SCALAR_INT_MODE_P (mode)
3119      && (unsignedp || !flag_trapv))
3120    {
3121      HOST_WIDE_INT coeff = 0;
3122      rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3123
3124      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
3125	 less than or equal in size to `unsigned int' this doesn't matter.
3126	 If the mode is larger than `unsigned int', then synth_mult works
3127	 only if the constant value exactly fits in an `unsigned int' without
3128	 any truncation.  This means that multiplying by negative values does
3129	 not work; results are off by 2^32 on a 32 bit machine.  */
3130
3131      if (GET_CODE (op1) == CONST_INT)
3132	{
3133	  /* Attempt to handle multiplication of DImode values by negative
3134	     coefficients, by performing the multiplication by a positive
3135	     multiplier and then inverting the result.  */
3136	  if (INTVAL (op1) < 0
3137	      && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3138	    {
3139	      /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3140		 result is interpreted as an unsigned coefficient.
3141		 Exclude cost of op0 from max_cost to match the cost
3142		 calculation of the synth_mult.  */
3143	      max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3144			 - neg_cost[mode];
3145	      if (max_cost > 0
3146		  && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3147					  &variant, max_cost))
3148		{
3149		  rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3150						NULL_RTX, &algorithm,
3151						variant);
3152		  return expand_unop (mode, neg_optab, temp, target, 0);
3153		}
3154	    }
3155	  else coeff = INTVAL (op1);
3156	}
3157      else if (GET_CODE (op1) == CONST_DOUBLE)
3158	{
3159	  /* If we are multiplying in DImode, it may still be a win
3160	     to try to work with shifts and adds.  */
3161	  if (CONST_DOUBLE_HIGH (op1) == 0)
3162	    coeff = CONST_DOUBLE_LOW (op1);
3163	  else if (CONST_DOUBLE_LOW (op1) == 0
3164		   && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3165	    {
3166	      int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3167			  + HOST_BITS_PER_WIDE_INT;
3168	      return expand_shift (LSHIFT_EXPR, mode, op0,
3169				   build_int_cst (NULL_TREE, shift),
3170				   target, unsignedp);
3171	    }
3172	}
3173
3174      /* We used to test optimize here, on the grounds that it's better to
3175	 produce a smaller program when -O is not used.  But this causes
3176	 such a terrible slowdown sometimes that it seems better to always
3177	 use synth_mult.  */
3178      if (coeff != 0)
3179	{
3180	  /* Special case powers of two.  */
3181	  if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3182	    return expand_shift (LSHIFT_EXPR, mode, op0,
3183				 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3184				 target, unsignedp);
3185
3186	  /* Exclude cost of op0 from max_cost to match the cost
3187	     calculation of the synth_mult.  */
3188	  max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3189	  if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3190				   max_cost))
3191	    return expand_mult_const (mode, op0, coeff, target,
3192				      &algorithm, variant);
3193	}
3194    }
3195
3196  if (GET_CODE (op0) == CONST_DOUBLE)
3197    {
3198      rtx temp = op0;
3199      op0 = op1;
3200      op1 = temp;
3201    }
3202
3203  /* Expand x*2.0 as x+x.  */
3204  if (GET_CODE (op1) == CONST_DOUBLE
3205      && GET_MODE_CLASS (mode) == MODE_FLOAT)
3206    {
3207      REAL_VALUE_TYPE d;
3208      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3209
3210      if (REAL_VALUES_EQUAL (d, dconst2))
3211	{
3212	  op0 = force_reg (GET_MODE (op0), op0);
3213	  return expand_binop (mode, add_optab, op0, op0,
3214			       target, unsignedp, OPTAB_LIB_WIDEN);
3215	}
3216    }
3217
3218  /* This used to use umul_optab if unsigned, but for non-widening multiply
3219     there is no difference between signed and unsigned.  */
3220  op0 = expand_binop (mode,
3221		      ! unsignedp
3222		      && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3223		      ? smulv_optab : smul_optab,
3224		      op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3225  gcc_assert (op0);
3226  return op0;
3227}
3228
3229/* Return the smallest n such that 2**n >= X.  */
3230
3231int
3232ceil_log2 (unsigned HOST_WIDE_INT x)
3233{
3234  return floor_log2 (x - 1) + 1;
3235}
3236
3237/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3238   replace division by D, and put the least significant N bits of the result
3239   in *MULTIPLIER_PTR and return the most significant bit.
3240
3241   The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3242   needed precision is in PRECISION (should be <= N).
3243
3244   PRECISION should be as small as possible so this function can choose
3245   multiplier more freely.
3246
3247   The rounded-up logarithm of D is placed in *lgup_ptr.  A shift count that
3248   is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3249
3250   Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3251   where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier.  */
3252
3253static
3254unsigned HOST_WIDE_INT
3255choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3256		   rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3257{
3258  HOST_WIDE_INT mhigh_hi, mlow_hi;
3259  unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3260  int lgup, post_shift;
3261  int pow, pow2;
3262  unsigned HOST_WIDE_INT nl, dummy1;
3263  HOST_WIDE_INT nh, dummy2;
3264
3265  /* lgup = ceil(log2(divisor)); */
3266  lgup = ceil_log2 (d);
3267
3268  gcc_assert (lgup <= n);
3269
3270  pow = n + lgup;
3271  pow2 = n + lgup - precision;
3272
3273  /* We could handle this with some effort, but this case is much
3274     better handled directly with a scc insn, so rely on caller using
3275     that.  */
3276  gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3277
3278  /* mlow = 2^(N + lgup)/d */
3279 if (pow >= HOST_BITS_PER_WIDE_INT)
3280    {
3281      nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3282      nl = 0;
3283    }
3284  else
3285    {
3286      nh = 0;
3287      nl = (unsigned HOST_WIDE_INT) 1 << pow;
3288    }
3289  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3290			&mlow_lo, &mlow_hi, &dummy1, &dummy2);
3291
3292  /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3293  if (pow2 >= HOST_BITS_PER_WIDE_INT)
3294    nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3295  else
3296    nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3297  div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3298			&mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3299
3300  gcc_assert (!mhigh_hi || nh - d < d);
3301  gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3302  /* Assert that mlow < mhigh.  */
3303  gcc_assert (mlow_hi < mhigh_hi
3304	      || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3305
3306  /* If precision == N, then mlow, mhigh exceed 2^N
3307     (but they do not exceed 2^(N+1)).  */
3308
3309  /* Reduce to lowest terms.  */
3310  for (post_shift = lgup; post_shift > 0; post_shift--)
3311    {
3312      unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3313      unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3314      if (ml_lo >= mh_lo)
3315	break;
3316
3317      mlow_hi = 0;
3318      mlow_lo = ml_lo;
3319      mhigh_hi = 0;
3320      mhigh_lo = mh_lo;
3321    }
3322
3323  *post_shift_ptr = post_shift;
3324  *lgup_ptr = lgup;
3325  if (n < HOST_BITS_PER_WIDE_INT)
3326    {
3327      unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3328      *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3329      return mhigh_lo >= mask;
3330    }
3331  else
3332    {
3333      *multiplier_ptr = GEN_INT (mhigh_lo);
3334      return mhigh_hi;
3335    }
3336}
3337
3338/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3339   congruent to 1 (mod 2**N).  */
3340
3341static unsigned HOST_WIDE_INT
3342invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3343{
3344  /* Solve x*y == 1 (mod 2^n), where x is odd.  Return y.  */
3345
3346  /* The algorithm notes that the choice y = x satisfies
3347     x*y == 1 mod 2^3, since x is assumed odd.
3348     Each iteration doubles the number of bits of significance in y.  */
3349
3350  unsigned HOST_WIDE_INT mask;
3351  unsigned HOST_WIDE_INT y = x;
3352  int nbit = 3;
3353
3354  mask = (n == HOST_BITS_PER_WIDE_INT
3355	  ? ~(unsigned HOST_WIDE_INT) 0
3356	  : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3357
3358  while (nbit < n)
3359    {
3360      y = y * (2 - x*y) & mask;		/* Modulo 2^N */
3361      nbit *= 2;
3362    }
3363  return y;
3364}
3365
3366/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3367   flavor of OP0 and OP1.  ADJ_OPERAND is already the high half of the
3368   product OP0 x OP1.  If UNSIGNEDP is nonzero, adjust the signed product
3369   to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3370   become signed.
3371
3372   The result is put in TARGET if that is convenient.
3373
3374   MODE is the mode of operation.  */
3375
3376rtx
3377expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3378			     rtx op1, rtx target, int unsignedp)
3379{
3380  rtx tem;
3381  enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3382
3383  tem = expand_shift (RSHIFT_EXPR, mode, op0,
3384		      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3385		      NULL_RTX, 0);
3386  tem = expand_and (mode, tem, op1, NULL_RTX);
3387  adj_operand
3388    = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3389		     adj_operand);
3390
3391  tem = expand_shift (RSHIFT_EXPR, mode, op1,
3392		      build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3393		      NULL_RTX, 0);
3394  tem = expand_and (mode, tem, op0, NULL_RTX);
3395  target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3396			  target);
3397
3398  return target;
3399}
3400
3401/* Subroutine of expand_mult_highpart.  Return the MODE high part of OP.  */
3402
3403static rtx
3404extract_high_half (enum machine_mode mode, rtx op)
3405{
3406  enum machine_mode wider_mode;
3407
3408  if (mode == word_mode)
3409    return gen_highpart (mode, op);
3410
3411  wider_mode = GET_MODE_WIDER_MODE (mode);
3412  op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3413		     build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3414  return convert_modes (mode, wider_mode, op, 0);
3415}
3416
3417/* Like expand_mult_highpart, but only consider using a multiplication
3418   optab.  OP1 is an rtx for the constant operand.  */
3419
3420static rtx
3421expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3422			    rtx target, int unsignedp, int max_cost)
3423{
3424  rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3425  enum machine_mode wider_mode;
3426  optab moptab;
3427  rtx tem;
3428  int size;
3429
3430  wider_mode = GET_MODE_WIDER_MODE (mode);
3431  size = GET_MODE_BITSIZE (mode);
3432
3433  /* Firstly, try using a multiplication insn that only generates the needed
3434     high part of the product, and in the sign flavor of unsignedp.  */
3435  if (mul_highpart_cost[mode] < max_cost)
3436    {
3437      moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3438      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3439			  unsignedp, OPTAB_DIRECT);
3440      if (tem)
3441	return tem;
3442    }
3443
3444  /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3445     Need to adjust the result after the multiplication.  */
3446  if (size - 1 < BITS_PER_WORD
3447      && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3448	  + 4 * add_cost[mode] < max_cost))
3449    {
3450      moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3451      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3452			  unsignedp, OPTAB_DIRECT);
3453      if (tem)
3454	/* We used the wrong signedness.  Adjust the result.  */
3455	return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3456					    tem, unsignedp);
3457    }
3458
3459  /* Try widening multiplication.  */
3460  moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3461  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3462      && mul_widen_cost[wider_mode] < max_cost)
3463    {
3464      tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3465			  unsignedp, OPTAB_WIDEN);
3466      if (tem)
3467	return extract_high_half (mode, tem);
3468    }
3469
3470  /* Try widening the mode and perform a non-widening multiplication.  */
3471  if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3472      && size - 1 < BITS_PER_WORD
3473      && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3474    {
3475      rtx insns, wop0, wop1;
3476
3477      /* We need to widen the operands, for example to ensure the
3478	 constant multiplier is correctly sign or zero extended.
3479	 Use a sequence to clean-up any instructions emitted by
3480	 the conversions if things don't work out.  */
3481      start_sequence ();
3482      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3483      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3484      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3485			  unsignedp, OPTAB_WIDEN);
3486      insns = get_insns ();
3487      end_sequence ();
3488
3489      if (tem)
3490	{
3491	  emit_insn (insns);
3492	  return extract_high_half (mode, tem);
3493	}
3494    }
3495
3496  /* Try widening multiplication of opposite signedness, and adjust.  */
3497  moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3498  if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3499      && size - 1 < BITS_PER_WORD
3500      && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3501	  + 4 * add_cost[mode] < max_cost))
3502    {
3503      tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3504			  NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3505      if (tem != 0)
3506	{
3507	  tem = extract_high_half (mode, tem);
3508	  /* We used the wrong signedness.  Adjust the result.  */
3509	  return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3510					      target, unsignedp);
3511	}
3512    }
3513
3514  return 0;
3515}
3516
3517/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3518   putting the high half of the result in TARGET if that is convenient,
3519   and return where the result is.  If the operation can not be performed,
3520   0 is returned.
3521
3522   MODE is the mode of operation and result.
3523
3524   UNSIGNEDP nonzero means unsigned multiply.
3525
3526   MAX_COST is the total allowed cost for the expanded RTL.  */
3527
3528static rtx
3529expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3530		      rtx target, int unsignedp, int max_cost)
3531{
3532  enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3533  unsigned HOST_WIDE_INT cnst1;
3534  int extra_cost;
3535  bool sign_adjust = false;
3536  enum mult_variant variant;
3537  struct algorithm alg;
3538  rtx tem;
3539
3540  /* We can't support modes wider than HOST_BITS_PER_INT.  */
3541  gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3542
3543  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3544
3545  /* We can't optimize modes wider than BITS_PER_WORD.
3546     ??? We might be able to perform double-word arithmetic if
3547     mode == word_mode, however all the cost calculations in
3548     synth_mult etc. assume single-word operations.  */
3549  if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3550    return expand_mult_highpart_optab (mode, op0, op1, target,
3551				       unsignedp, max_cost);
3552
3553  extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3554
3555  /* Check whether we try to multiply by a negative constant.  */
3556  if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3557    {
3558      sign_adjust = true;
3559      extra_cost += add_cost[mode];
3560    }
3561
3562  /* See whether shift/add multiplication is cheap enough.  */
3563  if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3564			   max_cost - extra_cost))
3565    {
3566      /* See whether the specialized multiplication optabs are
3567	 cheaper than the shift/add version.  */
3568      tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3569					alg.cost.cost + extra_cost);
3570      if (tem)
3571	return tem;
3572
3573      tem = convert_to_mode (wider_mode, op0, unsignedp);
3574      tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3575      tem = extract_high_half (mode, tem);
3576
3577      /* Adjust result for signedness.  */
3578      if (sign_adjust)
3579	tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3580
3581      return tem;
3582    }
3583  return expand_mult_highpart_optab (mode, op0, op1, target,
3584				     unsignedp, max_cost);
3585}
3586
3587
3588/* Expand signed modulus of OP0 by a power of two D in mode MODE.  */
3589
3590static rtx
3591expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3592{
3593  unsigned HOST_WIDE_INT masklow, maskhigh;
3594  rtx result, temp, shift, label;
3595  int logd;
3596
3597  logd = floor_log2 (d);
3598  result = gen_reg_rtx (mode);
3599
3600  /* Avoid conditional branches when they're expensive.  */
3601  if (BRANCH_COST >= 2
3602      && !optimize_size)
3603    {
3604      rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3605				      mode, 0, -1);
3606      if (signmask)
3607	{
3608	  signmask = force_reg (mode, signmask);
3609	  masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3610	  shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3611
3612	  /* Use the rtx_cost of a LSHIFTRT instruction to determine
3613	     which instruction sequence to use.  If logical right shifts
3614	     are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3615	     use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */
3616
3617	  temp = gen_rtx_LSHIFTRT (mode, result, shift);
3618	  if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3619	      || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3620	    {
3621	      temp = expand_binop (mode, xor_optab, op0, signmask,
3622				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3623	      temp = expand_binop (mode, sub_optab, temp, signmask,
3624				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3625	      temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3626				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3627	      temp = expand_binop (mode, xor_optab, temp, signmask,
3628				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3629	      temp = expand_binop (mode, sub_optab, temp, signmask,
3630				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3631	    }
3632	  else
3633	    {
3634	      signmask = expand_binop (mode, lshr_optab, signmask, shift,
3635				       NULL_RTX, 1, OPTAB_LIB_WIDEN);
3636	      signmask = force_reg (mode, signmask);
3637
3638	      temp = expand_binop (mode, add_optab, op0, signmask,
3639				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3640	      temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3641				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3642	      temp = expand_binop (mode, sub_optab, temp, signmask,
3643				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644	    }
3645	  return temp;
3646	}
3647    }
3648
3649  /* Mask contains the mode's signbit and the significant bits of the
3650     modulus.  By including the signbit in the operation, many targets
3651     can avoid an explicit compare operation in the following comparison
3652     against zero.  */
3653
3654  masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3655  if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3656    {
3657      masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3658      maskhigh = -1;
3659    }
3660  else
3661    maskhigh = (HOST_WIDE_INT) -1
3662		 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3663
3664  temp = expand_binop (mode, and_optab, op0,
3665		       immed_double_const (masklow, maskhigh, mode),
3666		       result, 1, OPTAB_LIB_WIDEN);
3667  if (temp != result)
3668    emit_move_insn (result, temp);
3669
3670  label = gen_label_rtx ();
3671  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3672
3673  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3674		       0, OPTAB_LIB_WIDEN);
3675  masklow = (HOST_WIDE_INT) -1 << logd;
3676  maskhigh = -1;
3677  temp = expand_binop (mode, ior_optab, temp,
3678		       immed_double_const (masklow, maskhigh, mode),
3679		       result, 1, OPTAB_LIB_WIDEN);
3680  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3681		       0, OPTAB_LIB_WIDEN);
3682  if (temp != result)
3683    emit_move_insn (result, temp);
3684  emit_label (label);
3685  return result;
3686}
3687
3688/* Expand signed division of OP0 by a power of two D in mode MODE.
3689   This routine is only called for positive values of D.  */
3690
3691static rtx
3692expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3693{
3694  rtx temp, label;
3695  tree shift;
3696  int logd;
3697
3698  logd = floor_log2 (d);
3699  shift = build_int_cst (NULL_TREE, logd);
3700
3701  if (d == 2 && BRANCH_COST >= 1)
3702    {
3703      temp = gen_reg_rtx (mode);
3704      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3705      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3706			   0, OPTAB_LIB_WIDEN);
3707      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3708    }
3709
3710#ifdef HAVE_conditional_move
3711  if (BRANCH_COST >= 2)
3712    {
3713      rtx temp2;
3714
3715      /* ??? emit_conditional_move forces a stack adjustment via
3716	 compare_from_rtx so, if the sequence is discarded, it will
3717	 be lost.  Do it now instead.  */
3718      do_pending_stack_adjust ();
3719
3720      start_sequence ();
3721      temp2 = copy_to_mode_reg (mode, op0);
3722      temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3723			   NULL_RTX, 0, OPTAB_LIB_WIDEN);
3724      temp = force_reg (mode, temp);
3725
3726      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
3727      temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3728				     mode, temp, temp2, mode, 0);
3729      if (temp2)
3730	{
3731	  rtx seq = get_insns ();
3732	  end_sequence ();
3733	  emit_insn (seq);
3734	  return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3735	}
3736      end_sequence ();
3737    }
3738#endif
3739
3740  if (BRANCH_COST >= 2)
3741    {
3742      int ushift = GET_MODE_BITSIZE (mode) - logd;
3743
3744      temp = gen_reg_rtx (mode);
3745      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3746      if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3747	temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3748			     NULL_RTX, 0, OPTAB_LIB_WIDEN);
3749      else
3750	temp = expand_shift (RSHIFT_EXPR, mode, temp,
3751			     build_int_cst (NULL_TREE, ushift),
3752			     NULL_RTX, 1);
3753      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3754			   0, OPTAB_LIB_WIDEN);
3755      return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3756    }
3757
3758  label = gen_label_rtx ();
3759  temp = copy_to_mode_reg (mode, op0);
3760  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3761  expand_inc (temp, GEN_INT (d - 1));
3762  emit_label (label);
3763  return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3764}
3765
3766/* Emit the code to divide OP0 by OP1, putting the result in TARGET
3767   if that is convenient, and returning where the result is.
3768   You may request either the quotient or the remainder as the result;
3769   specify REM_FLAG nonzero to get the remainder.
3770
3771   CODE is the expression code for which kind of division this is;
3772   it controls how rounding is done.  MODE is the machine mode to use.
3773   UNSIGNEDP nonzero means do unsigned division.  */
3774
3775/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3776   and then correct it by or'ing in missing high bits
3777   if result of ANDI is nonzero.
3778   For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3779   This could optimize to a bfexts instruction.
3780   But C doesn't use these operations, so their optimizations are
3781   left for later.  */
3782/* ??? For modulo, we don't actually need the highpart of the first product,
3783   the low part will do nicely.  And for small divisors, the second multiply
3784   can also be a low-part only multiply or even be completely left out.
3785   E.g. to calculate the remainder of a division by 3 with a 32 bit
3786   multiply, multiply with 0x55555556 and extract the upper two bits;
3787   the result is exact for inputs up to 0x1fffffff.
3788   The input range can be reduced by using cross-sum rules.
3789   For odd divisors >= 3, the following table gives right shift counts
3790   so that if a number is shifted by an integer multiple of the given
3791   amount, the remainder stays the same:
3792   2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3793   14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3794   0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3795   20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3796   0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3797
3798   Cross-sum rules for even numbers can be derived by leaving as many bits
3799   to the right alone as the divisor has zeros to the right.
3800   E.g. if x is an unsigned 32 bit number:
3801   (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3802   */
3803
3804rtx
3805expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3806	       rtx op0, rtx op1, rtx target, int unsignedp)
3807{
3808  enum machine_mode compute_mode;
3809  rtx tquotient;
3810  rtx quotient = 0, remainder = 0;
3811  rtx last;
3812  int size;
3813  rtx insn, set;
3814  optab optab1, optab2;
3815  int op1_is_constant, op1_is_pow2 = 0;
3816  int max_cost, extra_cost;
3817  static HOST_WIDE_INT last_div_const = 0;
3818  static HOST_WIDE_INT ext_op1;
3819
3820  op1_is_constant = GET_CODE (op1) == CONST_INT;
3821  if (op1_is_constant)
3822    {
3823      ext_op1 = INTVAL (op1);
3824      if (unsignedp)
3825	ext_op1 &= GET_MODE_MASK (mode);
3826      op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3827		     || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3828    }
3829
3830  /*
3831     This is the structure of expand_divmod:
3832
3833     First comes code to fix up the operands so we can perform the operations
3834     correctly and efficiently.
3835
3836     Second comes a switch statement with code specific for each rounding mode.
3837     For some special operands this code emits all RTL for the desired
3838     operation, for other cases, it generates only a quotient and stores it in
3839     QUOTIENT.  The case for trunc division/remainder might leave quotient = 0,
3840     to indicate that it has not done anything.
3841
3842     Last comes code that finishes the operation.  If QUOTIENT is set and
3843     REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1.  If
3844     QUOTIENT is not set, it is computed using trunc rounding.
3845
3846     We try to generate special code for division and remainder when OP1 is a
3847     constant.  If |OP1| = 2**n we can use shifts and some other fast
3848     operations.  For other values of OP1, we compute a carefully selected
3849     fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3850     by m.
3851
3852     In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3853     half of the product.  Different strategies for generating the product are
3854     implemented in expand_mult_highpart.
3855
3856     If what we actually want is the remainder, we generate that by another
3857     by-constant multiplication and a subtraction.  */
3858
3859  /* We shouldn't be called with OP1 == const1_rtx, but some of the
3860     code below will malfunction if we are, so check here and handle
3861     the special case if so.  */
3862  if (op1 == const1_rtx)
3863    return rem_flag ? const0_rtx : op0;
3864
3865    /* When dividing by -1, we could get an overflow.
3866     negv_optab can handle overflows.  */
3867  if (! unsignedp && op1 == constm1_rtx)
3868    {
3869      if (rem_flag)
3870	return const0_rtx;
3871      return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3872			  ? negv_optab : neg_optab, op0, target, 0);
3873    }
3874
3875  if (target
3876      /* Don't use the function value register as a target
3877	 since we have to read it as well as write it,
3878	 and function-inlining gets confused by this.  */
3879      && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3880	  /* Don't clobber an operand while doing a multi-step calculation.  */
3881	  || ((rem_flag || op1_is_constant)
3882	      && (reg_mentioned_p (target, op0)
3883		  || (MEM_P (op0) && MEM_P (target))))
3884	  || reg_mentioned_p (target, op1)
3885	  || (MEM_P (op1) && MEM_P (target))))
3886    target = 0;
3887
3888  /* Get the mode in which to perform this computation.  Normally it will
3889     be MODE, but sometimes we can't do the desired operation in MODE.
3890     If so, pick a wider mode in which we can do the operation.  Convert
3891     to that mode at the start to avoid repeated conversions.
3892
3893     First see what operations we need.  These depend on the expression
3894     we are evaluating.  (We assume that divxx3 insns exist under the
3895     same conditions that modxx3 insns and that these insns don't normally
3896     fail.  If these assumptions are not correct, we may generate less
3897     efficient code in some cases.)
3898
3899     Then see if we find a mode in which we can open-code that operation
3900     (either a division, modulus, or shift).  Finally, check for the smallest
3901     mode for which we can do the operation with a library call.  */
3902
3903  /* We might want to refine this now that we have division-by-constant
3904     optimization.  Since expand_mult_highpart tries so many variants, it is
3905     not straightforward to generalize this.  Maybe we should make an array
3906     of possible modes in init_expmed?  Save this for GCC 2.7.  */
3907
3908  optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3909	    ? (unsignedp ? lshr_optab : ashr_optab)
3910	    : (unsignedp ? udiv_optab : sdiv_optab));
3911  optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3912	    ? optab1
3913	    : (unsignedp ? udivmod_optab : sdivmod_optab));
3914
3915  for (compute_mode = mode; compute_mode != VOIDmode;
3916       compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3917    if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3918	|| optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3919      break;
3920
3921  if (compute_mode == VOIDmode)
3922    for (compute_mode = mode; compute_mode != VOIDmode;
3923	 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3924      if (optab1->handlers[compute_mode].libfunc
3925	  || optab2->handlers[compute_mode].libfunc)
3926	break;
3927
3928  /* If we still couldn't find a mode, use MODE, but expand_binop will
3929     probably die.  */
3930  if (compute_mode == VOIDmode)
3931    compute_mode = mode;
3932
3933  if (target && GET_MODE (target) == compute_mode)
3934    tquotient = target;
3935  else
3936    tquotient = gen_reg_rtx (compute_mode);
3937
3938  size = GET_MODE_BITSIZE (compute_mode);
3939#if 0
3940  /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3941     (mode), and thereby get better code when OP1 is a constant.  Do that
3942     later.  It will require going over all usages of SIZE below.  */
3943  size = GET_MODE_BITSIZE (mode);
3944#endif
3945
3946  /* Only deduct something for a REM if the last divide done was
3947     for a different constant.   Then set the constant of the last
3948     divide.  */
3949  max_cost = div_cost[compute_mode]
3950    - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3951		      && INTVAL (op1) == last_div_const)
3952       ? mul_cost[compute_mode] + add_cost[compute_mode]
3953       : 0);
3954
3955  last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3956
3957  /* Now convert to the best mode to use.  */
3958  if (compute_mode != mode)
3959    {
3960      op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3961      op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3962
3963      /* convert_modes may have placed op1 into a register, so we
3964	 must recompute the following.  */
3965      op1_is_constant = GET_CODE (op1) == CONST_INT;
3966      op1_is_pow2 = (op1_is_constant
3967		     && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3968			  || (! unsignedp
3969			      && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3970    }
3971
3972  /* If one of the operands is a volatile MEM, copy it into a register.  */
3973
3974  if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3975    op0 = force_reg (compute_mode, op0);
3976  if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3977    op1 = force_reg (compute_mode, op1);
3978
3979  /* If we need the remainder or if OP1 is constant, we need to
3980     put OP0 in a register in case it has any queued subexpressions.  */
3981  if (rem_flag || op1_is_constant)
3982    op0 = force_reg (compute_mode, op0);
3983
3984  last = get_last_insn ();
3985
3986  /* Promote floor rounding to trunc rounding for unsigned operations.  */
3987  if (unsignedp)
3988    {
3989      if (code == FLOOR_DIV_EXPR)
3990	code = TRUNC_DIV_EXPR;
3991      if (code == FLOOR_MOD_EXPR)
3992	code = TRUNC_MOD_EXPR;
3993      if (code == EXACT_DIV_EXPR && op1_is_pow2)
3994	code = TRUNC_DIV_EXPR;
3995    }
3996
3997  if (op1 != const0_rtx)
3998    switch (code)
3999      {
4000      case TRUNC_MOD_EXPR:
4001      case TRUNC_DIV_EXPR:
4002	if (op1_is_constant)
4003	  {
4004	    if (unsignedp)
4005	      {
4006		unsigned HOST_WIDE_INT mh;
4007		int pre_shift, post_shift;
4008		int dummy;
4009		rtx ml;
4010		unsigned HOST_WIDE_INT d = (INTVAL (op1)
4011					    & GET_MODE_MASK (compute_mode));
4012
4013		if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4014		  {
4015		    pre_shift = floor_log2 (d);
4016		    if (rem_flag)
4017		      {
4018			remainder
4019			  = expand_binop (compute_mode, and_optab, op0,
4020					  GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4021					  remainder, 1,
4022					  OPTAB_LIB_WIDEN);
4023			if (remainder)
4024			  return gen_lowpart (mode, remainder);
4025		      }
4026		    quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4027					     build_int_cst (NULL_TREE,
4028							    pre_shift),
4029					     tquotient, 1);
4030		  }
4031		else if (size <= HOST_BITS_PER_WIDE_INT)
4032		  {
4033		    if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4034		      {
4035			/* Most significant bit of divisor is set; emit an scc
4036			   insn.  */
4037			quotient = emit_store_flag (tquotient, GEU, op0, op1,
4038						    compute_mode, 1, 1);
4039			if (quotient == 0)
4040			  goto fail1;
4041		      }
4042		    else
4043		      {
4044			/* Find a suitable multiplier and right shift count
4045			   instead of multiplying with D.  */
4046
4047			mh = choose_multiplier (d, size, size,
4048						&ml, &post_shift, &dummy);
4049
4050			/* If the suggested multiplier is more than SIZE bits,
4051			   we can do better for even divisors, using an
4052			   initial right shift.  */
4053			if (mh != 0 && (d & 1) == 0)
4054			  {
4055			    pre_shift = floor_log2 (d & -d);
4056			    mh = choose_multiplier (d >> pre_shift, size,
4057						    size - pre_shift,
4058						    &ml, &post_shift, &dummy);
4059			    gcc_assert (!mh);
4060			  }
4061			else
4062			  pre_shift = 0;
4063
4064			if (mh != 0)
4065			  {
4066			    rtx t1, t2, t3, t4;
4067
4068			    if (post_shift - 1 >= BITS_PER_WORD)
4069			      goto fail1;
4070
4071			    extra_cost
4072			      = (shift_cost[compute_mode][post_shift - 1]
4073				 + shift_cost[compute_mode][1]
4074				 + 2 * add_cost[compute_mode]);
4075			    t1 = expand_mult_highpart (compute_mode, op0, ml,
4076						       NULL_RTX, 1,
4077						       max_cost - extra_cost);
4078			    if (t1 == 0)
4079			      goto fail1;
4080			    t2 = force_operand (gen_rtx_MINUS (compute_mode,
4081							       op0, t1),
4082						NULL_RTX);
4083			    t3 = expand_shift
4084			      (RSHIFT_EXPR, compute_mode, t2,
4085			       build_int_cst (NULL_TREE, 1),
4086			       NULL_RTX,1);
4087			    t4 = force_operand (gen_rtx_PLUS (compute_mode,
4088							      t1, t3),
4089						NULL_RTX);
4090			    quotient = expand_shift
4091			      (RSHIFT_EXPR, compute_mode, t4,
4092			       build_int_cst (NULL_TREE, post_shift - 1),
4093			       tquotient, 1);
4094			  }
4095			else
4096			  {
4097			    rtx t1, t2;
4098
4099			    if (pre_shift >= BITS_PER_WORD
4100				|| post_shift >= BITS_PER_WORD)
4101			      goto fail1;
4102
4103			    t1 = expand_shift
4104			      (RSHIFT_EXPR, compute_mode, op0,
4105			       build_int_cst (NULL_TREE, pre_shift),
4106			       NULL_RTX, 1);
4107			    extra_cost
4108			      = (shift_cost[compute_mode][pre_shift]
4109				 + shift_cost[compute_mode][post_shift]);
4110			    t2 = expand_mult_highpart (compute_mode, t1, ml,
4111						       NULL_RTX, 1,
4112						       max_cost - extra_cost);
4113			    if (t2 == 0)
4114			      goto fail1;
4115			    quotient = expand_shift
4116			      (RSHIFT_EXPR, compute_mode, t2,
4117			       build_int_cst (NULL_TREE, post_shift),
4118			       tquotient, 1);
4119			  }
4120		      }
4121		  }
4122		else		/* Too wide mode to use tricky code */
4123		  break;
4124
4125		insn = get_last_insn ();
4126		if (insn != last
4127		    && (set = single_set (insn)) != 0
4128		    && SET_DEST (set) == quotient)
4129		  set_unique_reg_note (insn,
4130				       REG_EQUAL,
4131				       gen_rtx_UDIV (compute_mode, op0, op1));
4132	      }
4133	    else		/* TRUNC_DIV, signed */
4134	      {
4135		unsigned HOST_WIDE_INT ml;
4136		int lgup, post_shift;
4137		rtx mlr;
4138		HOST_WIDE_INT d = INTVAL (op1);
4139		unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4140
4141		/* n rem d = n rem -d */
4142		if (rem_flag && d < 0)
4143		  {
4144		    d = abs_d;
4145		    op1 = gen_int_mode (abs_d, compute_mode);
4146		  }
4147
4148		if (d == 1)
4149		  quotient = op0;
4150		else if (d == -1)
4151		  quotient = expand_unop (compute_mode, neg_optab, op0,
4152					  tquotient, 0);
4153		else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4154		  {
4155		    /* This case is not handled correctly below.  */
4156		    quotient = emit_store_flag (tquotient, EQ, op0, op1,
4157						compute_mode, 1, 1);
4158		    if (quotient == 0)
4159		      goto fail1;
4160		  }
4161		else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4162			 && (rem_flag ? smod_pow2_cheap[compute_mode]
4163				      : sdiv_pow2_cheap[compute_mode])
4164			 /* We assume that cheap metric is true if the
4165			    optab has an expander for this mode.  */
4166			 && (((rem_flag ? smod_optab : sdiv_optab)
4167			      ->handlers[compute_mode].insn_code
4168			      != CODE_FOR_nothing)
4169			     || (sdivmod_optab->handlers[compute_mode]
4170				 .insn_code != CODE_FOR_nothing)))
4171		  ;
4172		else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4173		  {
4174		    if (rem_flag)
4175		      {
4176			remainder = expand_smod_pow2 (compute_mode, op0, d);
4177			if (remainder)
4178			  return gen_lowpart (mode, remainder);
4179		      }
4180
4181		    if (sdiv_pow2_cheap[compute_mode]
4182			&& ((sdiv_optab->handlers[compute_mode].insn_code
4183			     != CODE_FOR_nothing)
4184			    || (sdivmod_optab->handlers[compute_mode].insn_code
4185				!= CODE_FOR_nothing)))
4186		      quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4187						compute_mode, op0,
4188						gen_int_mode (abs_d,
4189							      compute_mode),
4190						NULL_RTX, 0);
4191		    else
4192		      quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4193
4194		    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
4195		       negate the quotient.  */
4196		    if (d < 0)
4197		      {
4198			insn = get_last_insn ();
4199			if (insn != last
4200			    && (set = single_set (insn)) != 0
4201			    && SET_DEST (set) == quotient
4202			    && abs_d < ((unsigned HOST_WIDE_INT) 1
4203					<< (HOST_BITS_PER_WIDE_INT - 1)))
4204			  set_unique_reg_note (insn,
4205					       REG_EQUAL,
4206					       gen_rtx_DIV (compute_mode,
4207							    op0,
4208							    GEN_INT
4209							    (trunc_int_for_mode
4210							     (abs_d,
4211							      compute_mode))));
4212
4213			quotient = expand_unop (compute_mode, neg_optab,
4214						quotient, quotient, 0);
4215		      }
4216		  }
4217		else if (size <= HOST_BITS_PER_WIDE_INT)
4218		  {
4219		    choose_multiplier (abs_d, size, size - 1,
4220				       &mlr, &post_shift, &lgup);
4221		    ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4222		    if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4223		      {
4224			rtx t1, t2, t3;
4225
4226			if (post_shift >= BITS_PER_WORD
4227			    || size - 1 >= BITS_PER_WORD)
4228			  goto fail1;
4229
4230			extra_cost = (shift_cost[compute_mode][post_shift]
4231				      + shift_cost[compute_mode][size - 1]
4232				      + add_cost[compute_mode]);
4233			t1 = expand_mult_highpart (compute_mode, op0, mlr,
4234						   NULL_RTX, 0,
4235						   max_cost - extra_cost);
4236			if (t1 == 0)
4237			  goto fail1;
4238			t2 = expand_shift
4239			  (RSHIFT_EXPR, compute_mode, t1,
4240			   build_int_cst (NULL_TREE, post_shift),
4241			   NULL_RTX, 0);
4242			t3 = expand_shift
4243			  (RSHIFT_EXPR, compute_mode, op0,
4244			   build_int_cst (NULL_TREE, size - 1),
4245			   NULL_RTX, 0);
4246			if (d < 0)
4247			  quotient
4248			    = force_operand (gen_rtx_MINUS (compute_mode,
4249							    t3, t2),
4250					     tquotient);
4251			else
4252			  quotient
4253			    = force_operand (gen_rtx_MINUS (compute_mode,
4254							    t2, t3),
4255					     tquotient);
4256		      }
4257		    else
4258		      {
4259			rtx t1, t2, t3, t4;
4260
4261			if (post_shift >= BITS_PER_WORD
4262			    || size - 1 >= BITS_PER_WORD)
4263			  goto fail1;
4264
4265			ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4266			mlr = gen_int_mode (ml, compute_mode);
4267			extra_cost = (shift_cost[compute_mode][post_shift]
4268				      + shift_cost[compute_mode][size - 1]
4269				      + 2 * add_cost[compute_mode]);
4270			t1 = expand_mult_highpart (compute_mode, op0, mlr,
4271						   NULL_RTX, 0,
4272						   max_cost - extra_cost);
4273			if (t1 == 0)
4274			  goto fail1;
4275			t2 = force_operand (gen_rtx_PLUS (compute_mode,
4276							  t1, op0),
4277					    NULL_RTX);
4278			t3 = expand_shift
4279			  (RSHIFT_EXPR, compute_mode, t2,
4280			   build_int_cst (NULL_TREE, post_shift),
4281			   NULL_RTX, 0);
4282			t4 = expand_shift
4283			  (RSHIFT_EXPR, compute_mode, op0,
4284			   build_int_cst (NULL_TREE, size - 1),
4285			   NULL_RTX, 0);
4286			if (d < 0)
4287			  quotient
4288			    = force_operand (gen_rtx_MINUS (compute_mode,
4289							    t4, t3),
4290					     tquotient);
4291			else
4292			  quotient
4293			    = force_operand (gen_rtx_MINUS (compute_mode,
4294							    t3, t4),
4295					     tquotient);
4296		      }
4297		  }
4298		else		/* Too wide mode to use tricky code */
4299		  break;
4300
4301		insn = get_last_insn ();
4302		if (insn != last
4303		    && (set = single_set (insn)) != 0
4304		    && SET_DEST (set) == quotient)
4305		  set_unique_reg_note (insn,
4306				       REG_EQUAL,
4307				       gen_rtx_DIV (compute_mode, op0, op1));
4308	      }
4309	    break;
4310	  }
4311      fail1:
4312	delete_insns_since (last);
4313	break;
4314
4315      case FLOOR_DIV_EXPR:
4316      case FLOOR_MOD_EXPR:
4317      /* We will come here only for signed operations.  */
4318	if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4319	  {
4320	    unsigned HOST_WIDE_INT mh;
4321	    int pre_shift, lgup, post_shift;
4322	    HOST_WIDE_INT d = INTVAL (op1);
4323	    rtx ml;
4324
4325	    if (d > 0)
4326	      {
4327		/* We could just as easily deal with negative constants here,
4328		   but it does not seem worth the trouble for GCC 2.6.  */
4329		if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4330		  {
4331		    pre_shift = floor_log2 (d);
4332		    if (rem_flag)
4333		      {
4334			remainder = expand_binop (compute_mode, and_optab, op0,
4335						  GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4336						  remainder, 0, OPTAB_LIB_WIDEN);
4337			if (remainder)
4338			  return gen_lowpart (mode, remainder);
4339		      }
4340		    quotient = expand_shift
4341		      (RSHIFT_EXPR, compute_mode, op0,
4342		       build_int_cst (NULL_TREE, pre_shift),
4343		       tquotient, 0);
4344		  }
4345		else
4346		  {
4347		    rtx t1, t2, t3, t4;
4348
4349		    mh = choose_multiplier (d, size, size - 1,
4350					    &ml, &post_shift, &lgup);
4351		    gcc_assert (!mh);
4352
4353		    if (post_shift < BITS_PER_WORD
4354			&& size - 1 < BITS_PER_WORD)
4355		      {
4356			t1 = expand_shift
4357			  (RSHIFT_EXPR, compute_mode, op0,
4358			   build_int_cst (NULL_TREE, size - 1),
4359			   NULL_RTX, 0);
4360			t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4361					   NULL_RTX, 0, OPTAB_WIDEN);
4362			extra_cost = (shift_cost[compute_mode][post_shift]
4363				      + shift_cost[compute_mode][size - 1]
4364				      + 2 * add_cost[compute_mode]);
4365			t3 = expand_mult_highpart (compute_mode, t2, ml,
4366						   NULL_RTX, 1,
4367						   max_cost - extra_cost);
4368			if (t3 != 0)
4369			  {
4370			    t4 = expand_shift
4371			      (RSHIFT_EXPR, compute_mode, t3,
4372			       build_int_cst (NULL_TREE, post_shift),
4373			       NULL_RTX, 1);
4374			    quotient = expand_binop (compute_mode, xor_optab,
4375						     t4, t1, tquotient, 0,
4376						     OPTAB_WIDEN);
4377			  }
4378		      }
4379		  }
4380	      }
4381	    else
4382	      {
4383		rtx nsign, t1, t2, t3, t4;
4384		t1 = force_operand (gen_rtx_PLUS (compute_mode,
4385						  op0, constm1_rtx), NULL_RTX);
4386		t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4387				   0, OPTAB_WIDEN);
4388		nsign = expand_shift
4389		  (RSHIFT_EXPR, compute_mode, t2,
4390		   build_int_cst (NULL_TREE, size - 1),
4391		   NULL_RTX, 0);
4392		t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4393				    NULL_RTX);
4394		t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4395				    NULL_RTX, 0);
4396		if (t4)
4397		  {
4398		    rtx t5;
4399		    t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4400				      NULL_RTX, 0);
4401		    quotient = force_operand (gen_rtx_PLUS (compute_mode,
4402							    t4, t5),
4403					      tquotient);
4404		  }
4405	      }
4406	  }
4407
4408	if (quotient != 0)
4409	  break;
4410	delete_insns_since (last);
4411
4412	/* Try using an instruction that produces both the quotient and
4413	   remainder, using truncation.  We can easily compensate the quotient
4414	   or remainder to get floor rounding, once we have the remainder.
4415	   Notice that we compute also the final remainder value here,
4416	   and return the result right away.  */
4417	if (target == 0 || GET_MODE (target) != compute_mode)
4418	  target = gen_reg_rtx (compute_mode);
4419
4420	if (rem_flag)
4421	  {
4422	    remainder
4423	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4424	    quotient = gen_reg_rtx (compute_mode);
4425	  }
4426	else
4427	  {
4428	    quotient
4429	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4430	    remainder = gen_reg_rtx (compute_mode);
4431	  }
4432
4433	if (expand_twoval_binop (sdivmod_optab, op0, op1,
4434				 quotient, remainder, 0))
4435	  {
4436	    /* This could be computed with a branch-less sequence.
4437	       Save that for later.  */
4438	    rtx tem;
4439	    rtx label = gen_label_rtx ();
4440	    do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4441	    tem = expand_binop (compute_mode, xor_optab, op0, op1,
4442				NULL_RTX, 0, OPTAB_WIDEN);
4443	    do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4444	    expand_dec (quotient, const1_rtx);
4445	    expand_inc (remainder, op1);
4446	    emit_label (label);
4447	    return gen_lowpart (mode, rem_flag ? remainder : quotient);
4448	  }
4449
4450	/* No luck with division elimination or divmod.  Have to do it
4451	   by conditionally adjusting op0 *and* the result.  */
4452	{
4453	  rtx label1, label2, label3, label4, label5;
4454	  rtx adjusted_op0;
4455	  rtx tem;
4456
4457	  quotient = gen_reg_rtx (compute_mode);
4458	  adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4459	  label1 = gen_label_rtx ();
4460	  label2 = gen_label_rtx ();
4461	  label3 = gen_label_rtx ();
4462	  label4 = gen_label_rtx ();
4463	  label5 = gen_label_rtx ();
4464	  do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4465	  do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4466	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4467			      quotient, 0, OPTAB_LIB_WIDEN);
4468	  if (tem != quotient)
4469	    emit_move_insn (quotient, tem);
4470	  emit_jump_insn (gen_jump (label5));
4471	  emit_barrier ();
4472	  emit_label (label1);
4473	  expand_inc (adjusted_op0, const1_rtx);
4474	  emit_jump_insn (gen_jump (label4));
4475	  emit_barrier ();
4476	  emit_label (label2);
4477	  do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4478	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4479			      quotient, 0, OPTAB_LIB_WIDEN);
4480	  if (tem != quotient)
4481	    emit_move_insn (quotient, tem);
4482	  emit_jump_insn (gen_jump (label5));
4483	  emit_barrier ();
4484	  emit_label (label3);
4485	  expand_dec (adjusted_op0, const1_rtx);
4486	  emit_label (label4);
4487	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4488			      quotient, 0, OPTAB_LIB_WIDEN);
4489	  if (tem != quotient)
4490	    emit_move_insn (quotient, tem);
4491	  expand_dec (quotient, const1_rtx);
4492	  emit_label (label5);
4493	}
4494	break;
4495
4496      case CEIL_DIV_EXPR:
4497      case CEIL_MOD_EXPR:
4498	if (unsignedp)
4499	  {
4500	    if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4501	      {
4502		rtx t1, t2, t3;
4503		unsigned HOST_WIDE_INT d = INTVAL (op1);
4504		t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4505				   build_int_cst (NULL_TREE, floor_log2 (d)),
4506				   tquotient, 1);
4507		t2 = expand_binop (compute_mode, and_optab, op0,
4508				   GEN_INT (d - 1),
4509				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
4510		t3 = gen_reg_rtx (compute_mode);
4511		t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4512				      compute_mode, 1, 1);
4513		if (t3 == 0)
4514		  {
4515		    rtx lab;
4516		    lab = gen_label_rtx ();
4517		    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4518		    expand_inc (t1, const1_rtx);
4519		    emit_label (lab);
4520		    quotient = t1;
4521		  }
4522		else
4523		  quotient = force_operand (gen_rtx_PLUS (compute_mode,
4524							  t1, t3),
4525					    tquotient);
4526		break;
4527	      }
4528
4529	    /* Try using an instruction that produces both the quotient and
4530	       remainder, using truncation.  We can easily compensate the
4531	       quotient or remainder to get ceiling rounding, once we have the
4532	       remainder.  Notice that we compute also the final remainder
4533	       value here, and return the result right away.  */
4534	    if (target == 0 || GET_MODE (target) != compute_mode)
4535	      target = gen_reg_rtx (compute_mode);
4536
4537	    if (rem_flag)
4538	      {
4539		remainder = (REG_P (target)
4540			     ? target : gen_reg_rtx (compute_mode));
4541		quotient = gen_reg_rtx (compute_mode);
4542	      }
4543	    else
4544	      {
4545		quotient = (REG_P (target)
4546			    ? target : gen_reg_rtx (compute_mode));
4547		remainder = gen_reg_rtx (compute_mode);
4548	      }
4549
4550	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4551				     remainder, 1))
4552	      {
4553		/* This could be computed with a branch-less sequence.
4554		   Save that for later.  */
4555		rtx label = gen_label_rtx ();
4556		do_cmp_and_jump (remainder, const0_rtx, EQ,
4557				 compute_mode, label);
4558		expand_inc (quotient, const1_rtx);
4559		expand_dec (remainder, op1);
4560		emit_label (label);
4561		return gen_lowpart (mode, rem_flag ? remainder : quotient);
4562	      }
4563
4564	    /* No luck with division elimination or divmod.  Have to do it
4565	       by conditionally adjusting op0 *and* the result.  */
4566	    {
4567	      rtx label1, label2;
4568	      rtx adjusted_op0, tem;
4569
4570	      quotient = gen_reg_rtx (compute_mode);
4571	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4572	      label1 = gen_label_rtx ();
4573	      label2 = gen_label_rtx ();
4574	      do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4575			       compute_mode, label1);
4576	      emit_move_insn  (quotient, const0_rtx);
4577	      emit_jump_insn (gen_jump (label2));
4578	      emit_barrier ();
4579	      emit_label (label1);
4580	      expand_dec (adjusted_op0, const1_rtx);
4581	      tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4582				  quotient, 1, OPTAB_LIB_WIDEN);
4583	      if (tem != quotient)
4584		emit_move_insn (quotient, tem);
4585	      expand_inc (quotient, const1_rtx);
4586	      emit_label (label2);
4587	    }
4588	  }
4589	else /* signed */
4590	  {
4591	    if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4592		&& INTVAL (op1) >= 0)
4593	      {
4594		/* This is extremely similar to the code for the unsigned case
4595		   above.  For 2.7 we should merge these variants, but for
4596		   2.6.1 I don't want to touch the code for unsigned since that
4597		   get used in C.  The signed case will only be used by other
4598		   languages (Ada).  */
4599
4600		rtx t1, t2, t3;
4601		unsigned HOST_WIDE_INT d = INTVAL (op1);
4602		t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4603				   build_int_cst (NULL_TREE, floor_log2 (d)),
4604				   tquotient, 0);
4605		t2 = expand_binop (compute_mode, and_optab, op0,
4606				   GEN_INT (d - 1),
4607				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
4608		t3 = gen_reg_rtx (compute_mode);
4609		t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4610				      compute_mode, 1, 1);
4611		if (t3 == 0)
4612		  {
4613		    rtx lab;
4614		    lab = gen_label_rtx ();
4615		    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4616		    expand_inc (t1, const1_rtx);
4617		    emit_label (lab);
4618		    quotient = t1;
4619		  }
4620		else
4621		  quotient = force_operand (gen_rtx_PLUS (compute_mode,
4622							  t1, t3),
4623					    tquotient);
4624		break;
4625	      }
4626
4627	    /* Try using an instruction that produces both the quotient and
4628	       remainder, using truncation.  We can easily compensate the
4629	       quotient or remainder to get ceiling rounding, once we have the
4630	       remainder.  Notice that we compute also the final remainder
4631	       value here, and return the result right away.  */
4632	    if (target == 0 || GET_MODE (target) != compute_mode)
4633	      target = gen_reg_rtx (compute_mode);
4634	    if (rem_flag)
4635	      {
4636		remainder= (REG_P (target)
4637			    ? target : gen_reg_rtx (compute_mode));
4638		quotient = gen_reg_rtx (compute_mode);
4639	      }
4640	    else
4641	      {
4642		quotient = (REG_P (target)
4643			    ? target : gen_reg_rtx (compute_mode));
4644		remainder = gen_reg_rtx (compute_mode);
4645	      }
4646
4647	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4648				     remainder, 0))
4649	      {
4650		/* This could be computed with a branch-less sequence.
4651		   Save that for later.  */
4652		rtx tem;
4653		rtx label = gen_label_rtx ();
4654		do_cmp_and_jump (remainder, const0_rtx, EQ,
4655				 compute_mode, label);
4656		tem = expand_binop (compute_mode, xor_optab, op0, op1,
4657				    NULL_RTX, 0, OPTAB_WIDEN);
4658		do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4659		expand_inc (quotient, const1_rtx);
4660		expand_dec (remainder, op1);
4661		emit_label (label);
4662		return gen_lowpart (mode, rem_flag ? remainder : quotient);
4663	      }
4664
4665	    /* No luck with division elimination or divmod.  Have to do it
4666	       by conditionally adjusting op0 *and* the result.  */
4667	    {
4668	      rtx label1, label2, label3, label4, label5;
4669	      rtx adjusted_op0;
4670	      rtx tem;
4671
4672	      quotient = gen_reg_rtx (compute_mode);
4673	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4674	      label1 = gen_label_rtx ();
4675	      label2 = gen_label_rtx ();
4676	      label3 = gen_label_rtx ();
4677	      label4 = gen_label_rtx ();
4678	      label5 = gen_label_rtx ();
4679	      do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4680	      do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4681			       compute_mode, label1);
4682	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4683				  quotient, 0, OPTAB_LIB_WIDEN);
4684	      if (tem != quotient)
4685		emit_move_insn (quotient, tem);
4686	      emit_jump_insn (gen_jump (label5));
4687	      emit_barrier ();
4688	      emit_label (label1);
4689	      expand_dec (adjusted_op0, const1_rtx);
4690	      emit_jump_insn (gen_jump (label4));
4691	      emit_barrier ();
4692	      emit_label (label2);
4693	      do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4694			       compute_mode, label3);
4695	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4696				  quotient, 0, OPTAB_LIB_WIDEN);
4697	      if (tem != quotient)
4698		emit_move_insn (quotient, tem);
4699	      emit_jump_insn (gen_jump (label5));
4700	      emit_barrier ();
4701	      emit_label (label3);
4702	      expand_inc (adjusted_op0, const1_rtx);
4703	      emit_label (label4);
4704	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4705				  quotient, 0, OPTAB_LIB_WIDEN);
4706	      if (tem != quotient)
4707		emit_move_insn (quotient, tem);
4708	      expand_inc (quotient, const1_rtx);
4709	      emit_label (label5);
4710	    }
4711	  }
4712	break;
4713
4714      case EXACT_DIV_EXPR:
4715	if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4716	  {
4717	    HOST_WIDE_INT d = INTVAL (op1);
4718	    unsigned HOST_WIDE_INT ml;
4719	    int pre_shift;
4720	    rtx t1;
4721
4722	    pre_shift = floor_log2 (d & -d);
4723	    ml = invert_mod2n (d >> pre_shift, size);
4724	    t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4725			       build_int_cst (NULL_TREE, pre_shift),
4726			       NULL_RTX, unsignedp);
4727	    quotient = expand_mult (compute_mode, t1,
4728				    gen_int_mode (ml, compute_mode),
4729				    NULL_RTX, 1);
4730
4731	    insn = get_last_insn ();
4732	    set_unique_reg_note (insn,
4733				 REG_EQUAL,
4734				 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4735						 compute_mode,
4736						 op0, op1));
4737	  }
4738	break;
4739
4740      case ROUND_DIV_EXPR:
4741      case ROUND_MOD_EXPR:
4742	if (unsignedp)
4743	  {
4744	    rtx tem;
4745	    rtx label;
4746	    label = gen_label_rtx ();
4747	    quotient = gen_reg_rtx (compute_mode);
4748	    remainder = gen_reg_rtx (compute_mode);
4749	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4750	      {
4751		rtx tem;
4752		quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4753					 quotient, 1, OPTAB_LIB_WIDEN);
4754		tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4755		remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4756					  remainder, 1, OPTAB_LIB_WIDEN);
4757	      }
4758	    tem = plus_constant (op1, -1);
4759	    tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4760				build_int_cst (NULL_TREE, 1),
4761				NULL_RTX, 1);
4762	    do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4763	    expand_inc (quotient, const1_rtx);
4764	    expand_dec (remainder, op1);
4765	    emit_label (label);
4766	  }
4767	else
4768	  {
4769	    rtx abs_rem, abs_op1, tem, mask;
4770	    rtx label;
4771	    label = gen_label_rtx ();
4772	    quotient = gen_reg_rtx (compute_mode);
4773	    remainder = gen_reg_rtx (compute_mode);
4774	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4775	      {
4776		rtx tem;
4777		quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4778					 quotient, 0, OPTAB_LIB_WIDEN);
4779		tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4780		remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4781					  remainder, 0, OPTAB_LIB_WIDEN);
4782	      }
4783	    abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4784	    abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4785	    tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4786				build_int_cst (NULL_TREE, 1),
4787				NULL_RTX, 1);
4788	    do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4789	    tem = expand_binop (compute_mode, xor_optab, op0, op1,
4790				NULL_RTX, 0, OPTAB_WIDEN);
4791	    mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4792				 build_int_cst (NULL_TREE, size - 1),
4793				 NULL_RTX, 0);
4794	    tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4795				NULL_RTX, 0, OPTAB_WIDEN);
4796	    tem = expand_binop (compute_mode, sub_optab, tem, mask,
4797				NULL_RTX, 0, OPTAB_WIDEN);
4798	    expand_inc (quotient, tem);
4799	    tem = expand_binop (compute_mode, xor_optab, mask, op1,
4800				NULL_RTX, 0, OPTAB_WIDEN);
4801	    tem = expand_binop (compute_mode, sub_optab, tem, mask,
4802				NULL_RTX, 0, OPTAB_WIDEN);
4803	    expand_dec (remainder, tem);
4804	    emit_label (label);
4805	  }
4806	return gen_lowpart (mode, rem_flag ? remainder : quotient);
4807
4808      default:
4809	gcc_unreachable ();
4810      }
4811
4812  if (quotient == 0)
4813    {
4814      if (target && GET_MODE (target) != compute_mode)
4815	target = 0;
4816
4817      if (rem_flag)
4818	{
4819	  /* Try to produce the remainder without producing the quotient.
4820	     If we seem to have a divmod pattern that does not require widening,
4821	     don't try widening here.  We should really have a WIDEN argument
4822	     to expand_twoval_binop, since what we'd really like to do here is
4823	     1) try a mod insn in compute_mode
4824	     2) try a divmod insn in compute_mode
4825	     3) try a div insn in compute_mode and multiply-subtract to get
4826	        remainder
4827	     4) try the same things with widening allowed.  */
4828	  remainder
4829	    = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4830				 op0, op1, target,
4831				 unsignedp,
4832				 ((optab2->handlers[compute_mode].insn_code
4833				   != CODE_FOR_nothing)
4834				  ? OPTAB_DIRECT : OPTAB_WIDEN));
4835	  if (remainder == 0)
4836	    {
4837	      /* No luck there.  Can we do remainder and divide at once
4838		 without a library call?  */
4839	      remainder = gen_reg_rtx (compute_mode);
4840	      if (! expand_twoval_binop ((unsignedp
4841					  ? udivmod_optab
4842					  : sdivmod_optab),
4843					 op0, op1,
4844					 NULL_RTX, remainder, unsignedp))
4845		remainder = 0;
4846	    }
4847
4848	  if (remainder)
4849	    return gen_lowpart (mode, remainder);
4850	}
4851
4852      /* Produce the quotient.  Try a quotient insn, but not a library call.
4853	 If we have a divmod in this mode, use it in preference to widening
4854	 the div (for this test we assume it will not fail). Note that optab2
4855	 is set to the one of the two optabs that the call below will use.  */
4856      quotient
4857	= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4858			     op0, op1, rem_flag ? NULL_RTX : target,
4859			     unsignedp,
4860			     ((optab2->handlers[compute_mode].insn_code
4861			       != CODE_FOR_nothing)
4862			      ? OPTAB_DIRECT : OPTAB_WIDEN));
4863
4864      if (quotient == 0)
4865	{
4866	  /* No luck there.  Try a quotient-and-remainder insn,
4867	     keeping the quotient alone.  */
4868	  quotient = gen_reg_rtx (compute_mode);
4869	  if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4870				     op0, op1,
4871				     quotient, NULL_RTX, unsignedp))
4872	    {
4873	      quotient = 0;
4874	      if (! rem_flag)
4875		/* Still no luck.  If we are not computing the remainder,
4876		   use a library call for the quotient.  */
4877		quotient = sign_expand_binop (compute_mode,
4878					      udiv_optab, sdiv_optab,
4879					      op0, op1, target,
4880					      unsignedp, OPTAB_LIB_WIDEN);
4881	    }
4882	}
4883    }
4884
4885  if (rem_flag)
4886    {
4887      if (target && GET_MODE (target) != compute_mode)
4888	target = 0;
4889
4890      if (quotient == 0)
4891	{
4892	  /* No divide instruction either.  Use library for remainder.  */
4893	  remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4894					 op0, op1, target,
4895					 unsignedp, OPTAB_LIB_WIDEN);
4896	  /* No remainder function.  Try a quotient-and-remainder
4897	     function, keeping the remainder.  */
4898	  if (!remainder)
4899	    {
4900	      remainder = gen_reg_rtx (compute_mode);
4901	      if (!expand_twoval_binop_libfunc
4902		  (unsignedp ? udivmod_optab : sdivmod_optab,
4903		   op0, op1,
4904		   NULL_RTX, remainder,
4905		   unsignedp ? UMOD : MOD))
4906		remainder = NULL_RTX;
4907	    }
4908	}
4909      else
4910	{
4911	  /* We divided.  Now finish doing X - Y * (X / Y).  */
4912	  remainder = expand_mult (compute_mode, quotient, op1,
4913				   NULL_RTX, unsignedp);
4914	  remainder = expand_binop (compute_mode, sub_optab, op0,
4915				    remainder, target, unsignedp,
4916				    OPTAB_LIB_WIDEN);
4917	}
4918    }
4919
4920  return gen_lowpart (mode, rem_flag ? remainder : quotient);
4921}
4922
4923/* Return a tree node with data type TYPE, describing the value of X.
4924   Usually this is an VAR_DECL, if there is no obvious better choice.
4925   X may be an expression, however we only support those expressions
4926   generated by loop.c.  */
4927
4928tree
4929make_tree (tree type, rtx x)
4930{
4931  tree t;
4932
4933  switch (GET_CODE (x))
4934    {
4935    case CONST_INT:
4936      {
4937	HOST_WIDE_INT hi = 0;
4938
4939	if (INTVAL (x) < 0
4940	    && !(TYPE_UNSIGNED (type)
4941		 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4942		     < HOST_BITS_PER_WIDE_INT)))
4943	  hi = -1;
4944
4945	t = build_int_cst_wide (type, INTVAL (x), hi);
4946
4947	return t;
4948      }
4949
4950    case CONST_DOUBLE:
4951      if (GET_MODE (x) == VOIDmode)
4952	t = build_int_cst_wide (type,
4953				CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4954      else
4955	{
4956	  REAL_VALUE_TYPE d;
4957
4958	  REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4959	  t = build_real (type, d);
4960	}
4961
4962      return t;
4963
4964    case CONST_VECTOR:
4965      {
4966	int i, units;
4967	rtx elt;
4968	tree t = NULL_TREE;
4969
4970	units = CONST_VECTOR_NUNITS (x);
4971
4972	/* Build a tree with vector elements.  */
4973	for (i = units - 1; i >= 0; --i)
4974	  {
4975	    elt = CONST_VECTOR_ELT (x, i);
4976	    t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4977	  }
4978
4979	return build_vector (type, t);
4980      }
4981
4982    case PLUS:
4983      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4984			  make_tree (type, XEXP (x, 1)));
4985
4986    case MINUS:
4987      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4988			  make_tree (type, XEXP (x, 1)));
4989
4990    case NEG:
4991      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4992
4993    case MULT:
4994      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4995			  make_tree (type, XEXP (x, 1)));
4996
4997    case ASHIFT:
4998      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4999			  make_tree (type, XEXP (x, 1)));
5000
5001    case LSHIFTRT:
5002      t = lang_hooks.types.unsigned_type (type);
5003      return fold_convert (type, build2 (RSHIFT_EXPR, t,
5004			    		 make_tree (t, XEXP (x, 0)),
5005				    	 make_tree (type, XEXP (x, 1))));
5006
5007    case ASHIFTRT:
5008      t = lang_hooks.types.signed_type (type);
5009      return fold_convert (type, build2 (RSHIFT_EXPR, t,
5010					 make_tree (t, XEXP (x, 0)),
5011				    	 make_tree (type, XEXP (x, 1))));
5012
5013    case DIV:
5014      if (TREE_CODE (type) != REAL_TYPE)
5015	t = lang_hooks.types.signed_type (type);
5016      else
5017	t = type;
5018
5019      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5020				    	 make_tree (t, XEXP (x, 0)),
5021				    	 make_tree (t, XEXP (x, 1))));
5022    case UDIV:
5023      t = lang_hooks.types.unsigned_type (type);
5024      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5025				    	 make_tree (t, XEXP (x, 0)),
5026				    	 make_tree (t, XEXP (x, 1))));
5027
5028    case SIGN_EXTEND:
5029    case ZERO_EXTEND:
5030      t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5031					  GET_CODE (x) == ZERO_EXTEND);
5032      return fold_convert (type, make_tree (t, XEXP (x, 0)));
5033
5034    default:
5035      t = build_decl (VAR_DECL, NULL_TREE, type);
5036
5037      /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5038	 ptr_mode.  So convert.  */
5039      if (POINTER_TYPE_P (type))
5040	x = convert_memory_address (TYPE_MODE (type), x);
5041
5042      /* Note that we do *not* use SET_DECL_RTL here, because we do not
5043	 want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
5044      t->decl_with_rtl.rtl = x;
5045
5046      return t;
5047    }
5048}
5049
5050/* Check whether the multiplication X * MULT + ADD overflows.
5051   X, MULT and ADD must be CONST_*.
5052   MODE is the machine mode for the computation.
5053   X and MULT must have mode MODE.  ADD may have a different mode.
5054   So can X (defaults to same as MODE).
5055   UNSIGNEDP is nonzero to do unsigned multiplication.  */
5056
5057bool
5058const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
5059			   enum machine_mode mode, int unsignedp)
5060{
5061  tree type, mult_type, add_type, result;
5062
5063  type = lang_hooks.types.type_for_mode (mode, unsignedp);
5064
5065  /* In order to get a proper overflow indication from an unsigned
5066     type, we have to pretend that it's a sizetype.  */
5067  mult_type = type;
5068  if (unsignedp)
5069    {
5070      /* FIXME:It would be nice if we could step directly from this
5071	 type to its sizetype equivalent.  */
5072      mult_type = build_distinct_type_copy (type);
5073      TYPE_IS_SIZETYPE (mult_type) = 1;
5074    }
5075
5076  add_type = (GET_MODE (add) == VOIDmode ? mult_type
5077	      : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
5078
5079  result = fold_build2 (PLUS_EXPR, mult_type,
5080			fold_build2 (MULT_EXPR, mult_type,
5081				     make_tree (mult_type, x),
5082				     make_tree (mult_type, mult)),
5083			make_tree (add_type, add));
5084
5085  return TREE_CONSTANT_OVERFLOW (result);
5086}
5087
5088/* Return an rtx representing the value of X * MULT + ADD.
5089   TARGET is a suggestion for where to store the result (an rtx).
5090   MODE is the machine mode for the computation.
5091   X and MULT must have mode MODE.  ADD may have a different mode.
5092   So can X (defaults to same as MODE).
5093   UNSIGNEDP is nonzero to do unsigned multiplication.
5094   This may emit insns.  */
5095
5096rtx
5097expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
5098		 int unsignedp)
5099{
5100  tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
5101  tree add_type = (GET_MODE (add) == VOIDmode
5102		   ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
5103							   unsignedp));
5104  tree result = fold_build2 (PLUS_EXPR, type,
5105			     fold_build2 (MULT_EXPR, type,
5106					  make_tree (type, x),
5107					  make_tree (type, mult)),
5108			     make_tree (add_type, add));
5109
5110  return expand_expr (result, target, VOIDmode, 0);
5111}
5112
5113/* Compute the logical-and of OP0 and OP1, storing it in TARGET
5114   and returning TARGET.
5115
5116   If TARGET is 0, a pseudo-register or constant is returned.  */
5117
5118rtx
5119expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5120{
5121  rtx tem = 0;
5122
5123  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5124    tem = simplify_binary_operation (AND, mode, op0, op1);
5125  if (tem == 0)
5126    tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5127
5128  if (target == 0)
5129    target = tem;
5130  else if (tem != target)
5131    emit_move_insn (target, tem);
5132  return target;
5133}
5134
5135/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5136   and storing in TARGET.  Normally return TARGET.
5137   Return 0 if that cannot be done.
5138
5139   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
5140   it is VOIDmode, they cannot both be CONST_INT.
5141
5142   UNSIGNEDP is for the case where we have to widen the operands
5143   to perform the operation.  It says to use zero-extension.
5144
5145   NORMALIZEP is 1 if we should convert the result to be either zero
5146   or one.  Normalize is -1 if we should convert the result to be
5147   either zero or -1.  If NORMALIZEP is zero, the result will be left
5148   "raw" out of the scc insn.  */
5149
5150rtx
5151emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5152		 enum machine_mode mode, int unsignedp, int normalizep)
5153{
5154  rtx subtarget;
5155  enum insn_code icode;
5156  enum machine_mode compare_mode;
5157  enum machine_mode target_mode = GET_MODE (target);
5158  rtx tem;
5159  rtx last = get_last_insn ();
5160  rtx pattern, comparison;
5161
5162  if (unsignedp)
5163    code = unsigned_condition (code);
5164
5165  /* If one operand is constant, make it the second one.  Only do this
5166     if the other operand is not constant as well.  */
5167
5168  if (swap_commutative_operands_p (op0, op1))
5169    {
5170      tem = op0;
5171      op0 = op1;
5172      op1 = tem;
5173      code = swap_condition (code);
5174    }
5175
5176  if (mode == VOIDmode)
5177    mode = GET_MODE (op0);
5178
5179  /* For some comparisons with 1 and -1, we can convert this to
5180     comparisons with zero.  This will often produce more opportunities for
5181     store-flag insns.  */
5182
5183  switch (code)
5184    {
5185    case LT:
5186      if (op1 == const1_rtx)
5187	op1 = const0_rtx, code = LE;
5188      break;
5189    case LE:
5190      if (op1 == constm1_rtx)
5191	op1 = const0_rtx, code = LT;
5192      break;
5193    case GE:
5194      if (op1 == const1_rtx)
5195	op1 = const0_rtx, code = GT;
5196      break;
5197    case GT:
5198      if (op1 == constm1_rtx)
5199	op1 = const0_rtx, code = GE;
5200      break;
5201    case GEU:
5202      if (op1 == const1_rtx)
5203	op1 = const0_rtx, code = NE;
5204      break;
5205    case LTU:
5206      if (op1 == const1_rtx)
5207	op1 = const0_rtx, code = EQ;
5208      break;
5209    default:
5210      break;
5211    }
5212
5213  /* If we are comparing a double-word integer with zero or -1, we can
5214     convert the comparison into one involving a single word.  */
5215  if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5216      && GET_MODE_CLASS (mode) == MODE_INT
5217      && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5218    {
5219      if ((code == EQ || code == NE)
5220	  && (op1 == const0_rtx || op1 == constm1_rtx))
5221	{
5222	  rtx op00, op01, op0both;
5223
5224	  /* Do a logical OR or AND of the two words and compare the result.  */
5225	  op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5226	  op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5227	  op0both = expand_binop (word_mode,
5228				  op1 == const0_rtx ? ior_optab : and_optab,
5229				  op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5230
5231	  if (op0both != 0)
5232	    return emit_store_flag (target, code, op0both, op1, word_mode,
5233				    unsignedp, normalizep);
5234	}
5235      else if ((code == LT || code == GE) && op1 == const0_rtx)
5236	{
5237	  rtx op0h;
5238
5239	  /* If testing the sign bit, can just test on high word.  */
5240	  op0h = simplify_gen_subreg (word_mode, op0, mode,
5241				      subreg_highpart_offset (word_mode, mode));
5242	  return emit_store_flag (target, code, op0h, op1, word_mode,
5243				  unsignedp, normalizep);
5244	}
5245    }
5246
5247  /* From now on, we won't change CODE, so set ICODE now.  */
5248  icode = setcc_gen_code[(int) code];
5249
5250  /* If this is A < 0 or A >= 0, we can do this by taking the ones
5251     complement of A (for GE) and shifting the sign bit to the low bit.  */
5252  if (op1 == const0_rtx && (code == LT || code == GE)
5253      && GET_MODE_CLASS (mode) == MODE_INT
5254      && (normalizep || STORE_FLAG_VALUE == 1
5255	  || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5256	      && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5257		  == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5258    {
5259      subtarget = target;
5260
5261      /* If the result is to be wider than OP0, it is best to convert it
5262	 first.  If it is to be narrower, it is *incorrect* to convert it
5263	 first.  */
5264      if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5265	{
5266	  op0 = convert_modes (target_mode, mode, op0, 0);
5267	  mode = target_mode;
5268	}
5269
5270      if (target_mode != mode)
5271	subtarget = 0;
5272
5273      if (code == GE)
5274	op0 = expand_unop (mode, one_cmpl_optab, op0,
5275			   ((STORE_FLAG_VALUE == 1 || normalizep)
5276			    ? 0 : subtarget), 0);
5277
5278      if (STORE_FLAG_VALUE == 1 || normalizep)
5279	/* If we are supposed to produce a 0/1 value, we want to do
5280	   a logical shift from the sign bit to the low-order bit; for
5281	   a -1/0 value, we do an arithmetic shift.  */
5282	op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5283			    size_int (GET_MODE_BITSIZE (mode) - 1),
5284			    subtarget, normalizep != -1);
5285
5286      if (mode != target_mode)
5287	op0 = convert_modes (target_mode, mode, op0, 0);
5288
5289      return op0;
5290    }
5291
5292  if (icode != CODE_FOR_nothing)
5293    {
5294      insn_operand_predicate_fn pred;
5295
5296      /* We think we may be able to do this with a scc insn.  Emit the
5297	 comparison and then the scc insn.  */
5298
5299      do_pending_stack_adjust ();
5300      last = get_last_insn ();
5301
5302      comparison
5303	= compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5304      if (CONSTANT_P (comparison))
5305	{
5306	  switch (GET_CODE (comparison))
5307	    {
5308	    case CONST_INT:
5309	      if (comparison == const0_rtx)
5310		return const0_rtx;
5311	      break;
5312
5313#ifdef FLOAT_STORE_FLAG_VALUE
5314	    case CONST_DOUBLE:
5315	      if (comparison == CONST0_RTX (GET_MODE (comparison)))
5316		return const0_rtx;
5317	      break;
5318#endif
5319	    default:
5320	      gcc_unreachable ();
5321	    }
5322
5323	  if (normalizep == 1)
5324	    return const1_rtx;
5325	  if (normalizep == -1)
5326	    return constm1_rtx;
5327	  return const_true_rtx;
5328	}
5329
5330      /* The code of COMPARISON may not match CODE if compare_from_rtx
5331	 decided to swap its operands and reverse the original code.
5332
5333	 We know that compare_from_rtx returns either a CONST_INT or
5334	 a new comparison code, so it is safe to just extract the
5335	 code from COMPARISON.  */
5336      code = GET_CODE (comparison);
5337
5338      /* Get a reference to the target in the proper mode for this insn.  */
5339      compare_mode = insn_data[(int) icode].operand[0].mode;
5340      subtarget = target;
5341      pred = insn_data[(int) icode].operand[0].predicate;
5342      if (optimize || ! (*pred) (subtarget, compare_mode))
5343	subtarget = gen_reg_rtx (compare_mode);
5344
5345      pattern = GEN_FCN (icode) (subtarget);
5346      if (pattern)
5347	{
5348	  emit_insn (pattern);
5349
5350	  /* If we are converting to a wider mode, first convert to
5351	     TARGET_MODE, then normalize.  This produces better combining
5352	     opportunities on machines that have a SIGN_EXTRACT when we are
5353	     testing a single bit.  This mostly benefits the 68k.
5354
5355	     If STORE_FLAG_VALUE does not have the sign bit set when
5356	     interpreted in COMPARE_MODE, we can do this conversion as
5357	     unsigned, which is usually more efficient.  */
5358	  if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5359	    {
5360	      convert_move (target, subtarget,
5361			    (GET_MODE_BITSIZE (compare_mode)
5362			     <= HOST_BITS_PER_WIDE_INT)
5363			    && 0 == (STORE_FLAG_VALUE
5364				     & ((HOST_WIDE_INT) 1
5365					<< (GET_MODE_BITSIZE (compare_mode) -1))));
5366	      op0 = target;
5367	      compare_mode = target_mode;
5368	    }
5369	  else
5370	    op0 = subtarget;
5371
5372	  /* If we want to keep subexpressions around, don't reuse our
5373	     last target.  */
5374
5375	  if (optimize)
5376	    subtarget = 0;
5377
5378	  /* Now normalize to the proper value in COMPARE_MODE.  Sometimes
5379	     we don't have to do anything.  */
5380	  if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5381	    ;
5382	  /* STORE_FLAG_VALUE might be the most negative number, so write
5383	     the comparison this way to avoid a compiler-time warning.  */
5384	  else if (- normalizep == STORE_FLAG_VALUE)
5385	    op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5386
5387	  /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5388	     makes it hard to use a value of just the sign bit due to
5389	     ANSI integer constant typing rules.  */
5390	  else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5391		   && (STORE_FLAG_VALUE
5392		       & ((HOST_WIDE_INT) 1
5393			  << (GET_MODE_BITSIZE (compare_mode) - 1))))
5394	    op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5395				size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5396				subtarget, normalizep == 1);
5397	  else
5398	    {
5399	      gcc_assert (STORE_FLAG_VALUE & 1);
5400
5401	      op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5402	      if (normalizep == -1)
5403		op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5404	    }
5405
5406	  /* If we were converting to a smaller mode, do the
5407	     conversion now.  */
5408	  if (target_mode != compare_mode)
5409	    {
5410	      convert_move (target, op0, 0);
5411	      return target;
5412	    }
5413	  else
5414	    return op0;
5415	}
5416    }
5417
5418  delete_insns_since (last);
5419
5420  /* If optimizing, use different pseudo registers for each insn, instead
5421     of reusing the same pseudo.  This leads to better CSE, but slows
5422     down the compiler, since there are more pseudos */
5423  subtarget = (!optimize
5424	       && (target_mode == mode)) ? target : NULL_RTX;
5425
5426  /* If we reached here, we can't do this with a scc insn.  However, there
5427     are some comparisons that can be done directly.  For example, if
5428     this is an equality comparison of integers, we can try to exclusive-or
5429     (or subtract) the two operands and use a recursive call to try the
5430     comparison with zero.  Don't do any of these cases if branches are
5431     very cheap.  */
5432
5433  if (BRANCH_COST > 0
5434      && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5435      && op1 != const0_rtx)
5436    {
5437      tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5438			  OPTAB_WIDEN);
5439
5440      if (tem == 0)
5441	tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5442			    OPTAB_WIDEN);
5443      if (tem != 0)
5444	tem = emit_store_flag (target, code, tem, const0_rtx,
5445			       mode, unsignedp, normalizep);
5446      if (tem == 0)
5447	delete_insns_since (last);
5448      return tem;
5449    }
5450
5451  /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5452     the constant zero.  Reject all other comparisons at this point.  Only
5453     do LE and GT if branches are expensive since they are expensive on
5454     2-operand machines.  */
5455
5456  if (BRANCH_COST == 0
5457      || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5458      || (code != EQ && code != NE
5459	  && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5460    return 0;
5461
5462  /* See what we need to return.  We can only return a 1, -1, or the
5463     sign bit.  */
5464
5465  if (normalizep == 0)
5466    {
5467      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5468	normalizep = STORE_FLAG_VALUE;
5469
5470      else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5471	       && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5472		   == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5473	;
5474      else
5475	return 0;
5476    }
5477
5478  /* Try to put the result of the comparison in the sign bit.  Assume we can't
5479     do the necessary operation below.  */
5480
5481  tem = 0;
5482
5483  /* To see if A <= 0, compute (A | (A - 1)).  A <= 0 iff that result has
5484     the sign bit set.  */
5485
5486  if (code == LE)
5487    {
5488      /* This is destructive, so SUBTARGET can't be OP0.  */
5489      if (rtx_equal_p (subtarget, op0))
5490	subtarget = 0;
5491
5492      tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5493			  OPTAB_WIDEN);
5494      if (tem)
5495	tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5496			    OPTAB_WIDEN);
5497    }
5498
5499  /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5500     number of bits in the mode of OP0, minus one.  */
5501
5502  if (code == GT)
5503    {
5504      if (rtx_equal_p (subtarget, op0))
5505	subtarget = 0;
5506
5507      tem = expand_shift (RSHIFT_EXPR, mode, op0,
5508			  size_int (GET_MODE_BITSIZE (mode) - 1),
5509			  subtarget, 0);
5510      tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5511			  OPTAB_WIDEN);
5512    }
5513
5514  if (code == EQ || code == NE)
5515    {
5516      /* For EQ or NE, one way to do the comparison is to apply an operation
5517	 that converts the operand into a positive number if it is nonzero
5518	 or zero if it was originally zero.  Then, for EQ, we subtract 1 and
5519	 for NE we negate.  This puts the result in the sign bit.  Then we
5520	 normalize with a shift, if needed.
5521
5522	 Two operations that can do the above actions are ABS and FFS, so try
5523	 them.  If that doesn't work, and MODE is smaller than a full word,
5524	 we can use zero-extension to the wider mode (an unsigned conversion)
5525	 as the operation.  */
5526
5527      /* Note that ABS doesn't yield a positive number for INT_MIN, but
5528	 that is compensated by the subsequent overflow when subtracting
5529	 one / negating.  */
5530
5531      if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5532	tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5533      else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5534	tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5535      else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5536	{
5537	  tem = convert_modes (word_mode, mode, op0, 1);
5538	  mode = word_mode;
5539	}
5540
5541      if (tem != 0)
5542	{
5543	  if (code == EQ)
5544	    tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5545				0, OPTAB_WIDEN);
5546	  else
5547	    tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5548	}
5549
5550      /* If we couldn't do it that way, for NE we can "or" the two's complement
5551	 of the value with itself.  For EQ, we take the one's complement of
5552	 that "or", which is an extra insn, so we only handle EQ if branches
5553	 are expensive.  */
5554
5555      if (tem == 0 && (code == NE || BRANCH_COST > 1))
5556	{
5557	  if (rtx_equal_p (subtarget, op0))
5558	    subtarget = 0;
5559
5560	  tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5561	  tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5562			      OPTAB_WIDEN);
5563
5564	  if (tem && code == EQ)
5565	    tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5566	}
5567    }
5568
5569  if (tem && normalizep)
5570    tem = expand_shift (RSHIFT_EXPR, mode, tem,
5571			size_int (GET_MODE_BITSIZE (mode) - 1),
5572			subtarget, normalizep == 1);
5573
5574  if (tem)
5575    {
5576      if (GET_MODE (tem) != target_mode)
5577	{
5578	  convert_move (target, tem, 0);
5579	  tem = target;
5580	}
5581      else if (!subtarget)
5582	{
5583	  emit_move_insn (target, tem);
5584	  tem = target;
5585	}
5586    }
5587  else
5588    delete_insns_since (last);
5589
5590  return tem;
5591}
5592
5593/* Like emit_store_flag, but always succeeds.  */
5594
5595rtx
5596emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5597		       enum machine_mode mode, int unsignedp, int normalizep)
5598{
5599  rtx tem, label;
5600
5601  /* First see if emit_store_flag can do the job.  */
5602  tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5603  if (tem != 0)
5604    return tem;
5605
5606  if (normalizep == 0)
5607    normalizep = 1;
5608
5609  /* If this failed, we have to do this with set/compare/jump/set code.  */
5610
5611  if (!REG_P (target)
5612      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5613    target = gen_reg_rtx (GET_MODE (target));
5614
5615  emit_move_insn (target, const1_rtx);
5616  label = gen_label_rtx ();
5617  do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5618			   NULL_RTX, label);
5619
5620  emit_move_insn (target, const0_rtx);
5621  emit_label (label);
5622
5623  return target;
5624}
5625
5626/* Perform possibly multi-word comparison and conditional jump to LABEL
5627   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5628
5629   The algorithm is based on the code in expr.c:do_jump.
5630
5631   Note that this does not perform a general comparison.  Only
5632   variants generated within expmed.c are correctly handled, others
5633   could be handled if needed.  */
5634
5635static void
5636do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5637		 rtx label)
5638{
5639  /* If this mode is an integer too wide to compare properly,
5640     compare word by word.  Rely on cse to optimize constant cases.  */
5641
5642  if (GET_MODE_CLASS (mode) == MODE_INT
5643      && ! can_compare_p (op, mode, ccp_jump))
5644    {
5645      rtx label2 = gen_label_rtx ();
5646
5647      switch (op)
5648	{
5649	case LTU:
5650	  do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5651	  break;
5652
5653	case LEU:
5654	  do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5655	  break;
5656
5657	case LT:
5658	  do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5659	  break;
5660
5661	case GT:
5662	  do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5663	  break;
5664
5665	case GE:
5666	  do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5667	  break;
5668
5669	  /* do_jump_by_parts_equality_rtx compares with zero.  Luckily
5670	     that's the only equality operations we do */
5671	case EQ:
5672	  gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5673	  do_jump_by_parts_equality_rtx (arg1, label2, label);
5674	  break;
5675
5676	case NE:
5677	  gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5678	  do_jump_by_parts_equality_rtx (arg1, label, label2);
5679	  break;
5680
5681	default:
5682	  gcc_unreachable ();
5683	}
5684
5685      emit_label (label2);
5686    }
5687  else
5688    emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);
5689}
5690