1/* Subroutines for manipulating rtx's in semantically interesting ways.
2   Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "toplev.h"
28#include "rtl.h"
29#include "tree.h"
30#include "tm_p.h"
31#include "flags.h"
32#include "function.h"
33#include "expr.h"
34#include "optabs.h"
35#include "hard-reg-set.h"
36#include "insn-config.h"
37#include "ggc.h"
38#include "recog.h"
39#include "langhooks.h"
40#include "target.h"
41
42static rtx break_out_memory_refs (rtx);
43static void emit_stack_probe (rtx);
44
45
46/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
47
48HOST_WIDE_INT
49trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50{
51  int width = GET_MODE_BITSIZE (mode);
52
53  /* You want to truncate to a _what_?  */
54  gcc_assert (SCALAR_INT_MODE_P (mode));
55
56  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
57  if (mode == BImode)
58    return c & 1 ? STORE_FLAG_VALUE : 0;
59
60  /* Sign-extend for the requested mode.  */
61
62  if (width < HOST_BITS_PER_WIDE_INT)
63    {
64      HOST_WIDE_INT sign = 1;
65      sign <<= width - 1;
66      c &= (sign << 1) - 1;
67      c ^= sign;
68      c -= sign;
69    }
70
71  return c;
72}
73
74/* Return an rtx for the sum of X and the integer C.  */
75
76rtx
77plus_constant (rtx x, HOST_WIDE_INT c)
78{
79  RTX_CODE code;
80  rtx y;
81  enum machine_mode mode;
82  rtx tem;
83  int all_constant = 0;
84
85  if (c == 0)
86    return x;
87
88 restart:
89
90  code = GET_CODE (x);
91  mode = GET_MODE (x);
92  y = x;
93
94  switch (code)
95    {
96    case CONST_INT:
97      return GEN_INT (INTVAL (x) + c);
98
99    case CONST_DOUBLE:
100      {
101	unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102	HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103	unsigned HOST_WIDE_INT l2 = c;
104	HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105	unsigned HOST_WIDE_INT lv;
106	HOST_WIDE_INT hv;
107
108	add_double (l1, h1, l2, h2, &lv, &hv);
109
110	return immed_double_const (lv, hv, VOIDmode);
111      }
112
113    case MEM:
114      /* If this is a reference to the constant pool, try replacing it with
115	 a reference to a new constant.  If the resulting address isn't
116	 valid, don't return it because we have no way to validize it.  */
117      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119	{
120	  tem
121	    = force_const_mem (GET_MODE (x),
122			       plus_constant (get_pool_constant (XEXP (x, 0)),
123					      c));
124	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125	    return tem;
126	}
127      break;
128
129    case CONST:
130      /* If adding to something entirely constant, set a flag
131	 so that we can add a CONST around the result.  */
132      x = XEXP (x, 0);
133      all_constant = 1;
134      goto restart;
135
136    case SYMBOL_REF:
137    case LABEL_REF:
138      all_constant = 1;
139      break;
140
141    case PLUS:
142      /* The interesting case is adding the integer to a sum.
143	 Look for constant term in the sum and combine
144	 with C.  For an integer constant term, we make a combined
145	 integer.  For a constant term that is not an explicit integer,
146	 we cannot really combine, but group them together anyway.
147
148	 Restart or use a recursive call in case the remaining operand is
149	 something that we handle specially, such as a SYMBOL_REF.
150
151	 We may not immediately return from the recursive call here, lest
152	 all_constant gets lost.  */
153
154      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155	{
156	  c += INTVAL (XEXP (x, 1));
157
158	  if (GET_MODE (x) != VOIDmode)
159	    c = trunc_int_for_mode (c, GET_MODE (x));
160
161	  x = XEXP (x, 0);
162	  goto restart;
163	}
164      else if (CONSTANT_P (XEXP (x, 1)))
165	{
166	  x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167	  c = 0;
168	}
169      else if (find_constant_term_loc (&y))
170	{
171	  /* We need to be careful since X may be shared and we can't
172	     modify it in place.  */
173	  rtx copy = copy_rtx (x);
174	  rtx *const_loc = find_constant_term_loc (&copy);
175
176	  *const_loc = plus_constant (*const_loc, c);
177	  x = copy;
178	  c = 0;
179	}
180      break;
181
182    default:
183      break;
184    }
185
186  if (c != 0)
187    x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188
189  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190    return x;
191  else if (all_constant)
192    return gen_rtx_CONST (mode, x);
193  else
194    return x;
195}
196
197/* If X is a sum, return a new sum like X but lacking any constant terms.
198   Add all the removed constant terms into *CONSTPTR.
199   X itself is not altered.  The result != X if and only if
200   it is not isomorphic to X.  */
201
202rtx
203eliminate_constant_term (rtx x, rtx *constptr)
204{
205  rtx x0, x1;
206  rtx tem;
207
208  if (GET_CODE (x) != PLUS)
209    return x;
210
211  /* First handle constants appearing at this level explicitly.  */
212  if (GET_CODE (XEXP (x, 1)) == CONST_INT
213      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214						XEXP (x, 1)))
215      && GET_CODE (tem) == CONST_INT)
216    {
217      *constptr = tem;
218      return eliminate_constant_term (XEXP (x, 0), constptr);
219    }
220
221  tem = const0_rtx;
222  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226						*constptr, tem))
227      && GET_CODE (tem) == CONST_INT)
228    {
229      *constptr = tem;
230      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
231    }
232
233  return x;
234}
235
236/* Return an rtx for the size in bytes of the value of EXP.  */
237
238rtx
239expr_size (tree exp)
240{
241  tree size;
242
243  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
244    size = TREE_OPERAND (exp, 1);
245  else
246    size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247
248  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249}
250
251/* Return a wide integer for the size in bytes of the value of EXP, or -1
252   if the size can vary or is larger than an integer.  */
253
254HOST_WIDE_INT
255int_expr_size (tree exp)
256{
257  tree size;
258
259  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
260    size = TREE_OPERAND (exp, 1);
261  else
262    size = lang_hooks.expr_size (exp);
263
264  if (size == 0 || !host_integerp (size, 0))
265    return -1;
266
267  return tree_low_cst (size, 0);
268}
269
270/* Return a copy of X in which all memory references
271   and all constants that involve symbol refs
272   have been replaced with new temporary registers.
273   Also emit code to load the memory locations and constants
274   into those registers.
275
276   If X contains no such constants or memory references,
277   X itself (not a copy) is returned.
278
279   If a constant is found in the address that is not a legitimate constant
280   in an insn, it is left alone in the hope that it might be valid in the
281   address.
282
283   X may contain no arithmetic except addition, subtraction and multiplication.
284   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
285
286static rtx
287break_out_memory_refs (rtx x)
288{
289  if (MEM_P (x)
290      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291	  && GET_MODE (x) != VOIDmode))
292    x = force_reg (GET_MODE (x), x);
293  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294	   || GET_CODE (x) == MULT)
295    {
296      rtx op0 = break_out_memory_refs (XEXP (x, 0));
297      rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300	x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301    }
302
303  return x;
304}
305
306/* Given X, a memory address in ptr_mode, convert it to an address
307   in Pmode, or vice versa (TO_MODE says which way).  We take advantage of
308   the fact that pointers are not allowed to overflow by commuting arithmetic
309   operations over conversions so that address arithmetic insns can be
310   used.  */
311
312rtx
313convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314			rtx x)
315{
316#ifndef POINTERS_EXTEND_UNSIGNED
317  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
318  return x;
319#else /* defined(POINTERS_EXTEND_UNSIGNED) */
320  enum machine_mode from_mode;
321  rtx temp;
322  enum rtx_code code;
323
324  /* If X already has the right mode, just return it.  */
325  if (GET_MODE (x) == to_mode)
326    return x;
327
328  from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329
330  /* Here we handle some special cases.  If none of them apply, fall through
331     to the default case.  */
332  switch (GET_CODE (x))
333    {
334    case CONST_INT:
335    case CONST_DOUBLE:
336      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
337	code = TRUNCATE;
338      else if (POINTERS_EXTEND_UNSIGNED < 0)
339	break;
340      else if (POINTERS_EXTEND_UNSIGNED > 0)
341	code = ZERO_EXTEND;
342      else
343	code = SIGN_EXTEND;
344      temp = simplify_unary_operation (code, to_mode, x, from_mode);
345      if (temp)
346	return temp;
347      break;
348
349    case SUBREG:
350      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
351	  && GET_MODE (SUBREG_REG (x)) == to_mode)
352	return SUBREG_REG (x);
353      break;
354
355    case LABEL_REF:
356      temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
357      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
358      return temp;
359      break;
360
361    case SYMBOL_REF:
362      temp = shallow_copy_rtx (x);
363      PUT_MODE (temp, to_mode);
364      return temp;
365      break;
366
367    case CONST:
368      return gen_rtx_CONST (to_mode,
369			    convert_memory_address (to_mode, XEXP (x, 0)));
370      break;
371
372    case PLUS:
373    case MULT:
374      /* For addition we can safely permute the conversion and addition
375	 operation if one operand is a constant and converting the constant
376	 does not change it.  We can always safely permute them if we are
377	 making the address narrower.  */
378      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
379	  || (GET_CODE (x) == PLUS
380	      && GET_CODE (XEXP (x, 1)) == CONST_INT
381	      && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
382	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
383			       convert_memory_address (to_mode, XEXP (x, 0)),
384			       XEXP (x, 1));
385      break;
386
387    default:
388      break;
389    }
390
391  return convert_modes (to_mode, from_mode,
392			x, POINTERS_EXTEND_UNSIGNED);
393#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394}
395
396/* Return something equivalent to X but valid as a memory address
397   for something of mode MODE.  When X is not itself valid, this
398   works by copying X or subexpressions of it into registers.  */
399
400rtx
401memory_address (enum machine_mode mode, rtx x)
402{
403  rtx oldx = x;
404
405  x = convert_memory_address (Pmode, x);
406
407  /* By passing constant addresses through registers
408     we get a chance to cse them.  */
409  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
410    x = force_reg (Pmode, x);
411
412  /* We get better cse by rejecting indirect addressing at this stage.
413     Let the combiner create indirect addresses where appropriate.
414     For now, generate the code so that the subexpressions useful to share
415     are visible.  But not if cse won't be done!  */
416  else
417    {
418      if (! cse_not_expected && !REG_P (x))
419	x = break_out_memory_refs (x);
420
421      /* At this point, any valid address is accepted.  */
422      if (memory_address_p (mode, x))
423	goto win;
424
425      /* If it was valid before but breaking out memory refs invalidated it,
426	 use it the old way.  */
427      if (memory_address_p (mode, oldx))
428	goto win2;
429
430      /* Perform machine-dependent transformations on X
431	 in certain cases.  This is not necessary since the code
432	 below can handle all possible cases, but machine-dependent
433	 transformations can make better code.  */
434      LEGITIMIZE_ADDRESS (x, oldx, mode, win);
435
436      /* PLUS and MULT can appear in special ways
437	 as the result of attempts to make an address usable for indexing.
438	 Usually they are dealt with by calling force_operand, below.
439	 But a sum containing constant terms is special
440	 if removing them makes the sum a valid address:
441	 then we generate that address in a register
442	 and index off of it.  We do this because it often makes
443	 shorter code, and because the addresses thus generated
444	 in registers often become common subexpressions.  */
445      if (GET_CODE (x) == PLUS)
446	{
447	  rtx constant_term = const0_rtx;
448	  rtx y = eliminate_constant_term (x, &constant_term);
449	  if (constant_term == const0_rtx
450	      || ! memory_address_p (mode, y))
451	    x = force_operand (x, NULL_RTX);
452	  else
453	    {
454	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
455	      if (! memory_address_p (mode, y))
456		x = force_operand (x, NULL_RTX);
457	      else
458		x = y;
459	    }
460	}
461
462      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
463	x = force_operand (x, NULL_RTX);
464
465      /* If we have a register that's an invalid address,
466	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
467      else if (REG_P (x))
468	x = copy_to_reg (x);
469
470      /* Last resort: copy the value to a register, since
471	 the register is a valid address.  */
472      else
473	x = force_reg (Pmode, x);
474
475      goto done;
476
477    win2:
478      x = oldx;
479    win:
480      if (flag_force_addr && ! cse_not_expected && !REG_P (x))
481	{
482	  x = force_operand (x, NULL_RTX);
483	  x = force_reg (Pmode, x);
484	}
485    }
486
487 done:
488
489  /* If we didn't change the address, we are done.  Otherwise, mark
490     a reg as a pointer if we have REG or REG + CONST_INT.  */
491  if (oldx == x)
492    return x;
493  else if (REG_P (x))
494    mark_reg_pointer (x, BITS_PER_UNIT);
495  else if (GET_CODE (x) == PLUS
496	   && REG_P (XEXP (x, 0))
497	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
498    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
499
500  /* OLDX may have been the address on a temporary.  Update the address
501     to indicate that X is now used.  */
502  update_temp_slot_address (oldx, x);
503
504  return x;
505}
506
507/* Like `memory_address' but pretend `flag_force_addr' is 0.  */
508
509rtx
510memory_address_noforce (enum machine_mode mode, rtx x)
511{
512  int ambient_force_addr = flag_force_addr;
513  rtx val;
514
515  flag_force_addr = 0;
516  val = memory_address (mode, x);
517  flag_force_addr = ambient_force_addr;
518  return val;
519}
520
521/* Convert a mem ref into one with a valid memory address.
522   Pass through anything else unchanged.  */
523
524rtx
525validize_mem (rtx ref)
526{
527  if (!MEM_P (ref))
528    return ref;
529  if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
530      && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
531    return ref;
532
533  /* Don't alter REF itself, since that is probably a stack slot.  */
534  return replace_equiv_address (ref, XEXP (ref, 0));
535}
536
537/* Copy the value or contents of X to a new temp reg and return that reg.  */
538
539rtx
540copy_to_reg (rtx x)
541{
542  rtx temp = gen_reg_rtx (GET_MODE (x));
543
544  /* If not an operand, must be an address with PLUS and MULT so
545     do the computation.  */
546  if (! general_operand (x, VOIDmode))
547    x = force_operand (x, temp);
548
549  if (x != temp)
550    emit_move_insn (temp, x);
551
552  return temp;
553}
554
555/* Like copy_to_reg but always give the new register mode Pmode
556   in case X is a constant.  */
557
558rtx
559copy_addr_to_reg (rtx x)
560{
561  return copy_to_mode_reg (Pmode, x);
562}
563
564/* Like copy_to_reg but always give the new register mode MODE
565   in case X is a constant.  */
566
567rtx
568copy_to_mode_reg (enum machine_mode mode, rtx x)
569{
570  rtx temp = gen_reg_rtx (mode);
571
572  /* If not an operand, must be an address with PLUS and MULT so
573     do the computation.  */
574  if (! general_operand (x, VOIDmode))
575    x = force_operand (x, temp);
576
577  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
578  if (x != temp)
579    emit_move_insn (temp, x);
580  return temp;
581}
582
583/* Load X into a register if it is not already one.
584   Use mode MODE for the register.
585   X should be valid for mode MODE, but it may be a constant which
586   is valid for all integer modes; that's why caller must specify MODE.
587
588   The caller must not alter the value in the register we return,
589   since we mark it as a "constant" register.  */
590
591rtx
592force_reg (enum machine_mode mode, rtx x)
593{
594  rtx temp, insn, set;
595
596  if (REG_P (x))
597    return x;
598
599  if (general_operand (x, mode))
600    {
601      temp = gen_reg_rtx (mode);
602      insn = emit_move_insn (temp, x);
603    }
604  else
605    {
606      temp = force_operand (x, NULL_RTX);
607      if (REG_P (temp))
608	insn = get_last_insn ();
609      else
610	{
611	  rtx temp2 = gen_reg_rtx (mode);
612	  insn = emit_move_insn (temp2, temp);
613	  temp = temp2;
614	}
615    }
616
617  /* Let optimizers know that TEMP's value never changes
618     and that X can be substituted for it.  Don't get confused
619     if INSN set something else (such as a SUBREG of TEMP).  */
620  if (CONSTANT_P (x)
621      && (set = single_set (insn)) != 0
622      && SET_DEST (set) == temp
623      && ! rtx_equal_p (x, SET_SRC (set)))
624    set_unique_reg_note (insn, REG_EQUAL, x);
625
626  /* Let optimizers know that TEMP is a pointer, and if so, the
627     known alignment of that pointer.  */
628  {
629    unsigned align = 0;
630    if (GET_CODE (x) == SYMBOL_REF)
631      {
632        align = BITS_PER_UNIT;
633	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
634	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
635      }
636    else if (GET_CODE (x) == LABEL_REF)
637      align = BITS_PER_UNIT;
638    else if (GET_CODE (x) == CONST
639	     && GET_CODE (XEXP (x, 0)) == PLUS
640	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
641	     && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
642      {
643	rtx s = XEXP (XEXP (x, 0), 0);
644	rtx c = XEXP (XEXP (x, 0), 1);
645	unsigned sa, ca;
646
647	sa = BITS_PER_UNIT;
648	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
649	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
650
651	ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
652
653	align = MIN (sa, ca);
654      }
655
656    if (align)
657      mark_reg_pointer (temp, align);
658  }
659
660  return temp;
661}
662
663/* If X is a memory ref, copy its contents to a new temp reg and return
664   that reg.  Otherwise, return X.  */
665
666rtx
667force_not_mem (rtx x)
668{
669  rtx temp;
670
671  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
672    return x;
673
674  temp = gen_reg_rtx (GET_MODE (x));
675
676  if (MEM_POINTER (x))
677    REG_POINTER (temp) = 1;
678
679  emit_move_insn (temp, x);
680  return temp;
681}
682
683/* Copy X to TARGET (if it's nonzero and a reg)
684   or to a new temp reg and return that reg.
685   MODE is the mode to use for X in case it is a constant.  */
686
687rtx
688copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
689{
690  rtx temp;
691
692  if (target && REG_P (target))
693    temp = target;
694  else
695    temp = gen_reg_rtx (mode);
696
697  emit_move_insn (temp, x);
698  return temp;
699}
700
701/* Return the mode to use to store a scalar of TYPE and MODE.
702   PUNSIGNEDP points to the signedness of the type and may be adjusted
703   to show what signedness to use on extension operations.
704
705   FOR_CALL is nonzero if this call is promoting args for a call.  */
706
707#if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
708#define PROMOTE_FUNCTION_MODE PROMOTE_MODE
709#endif
710
711enum machine_mode
712promote_mode (tree type, enum machine_mode mode, int *punsignedp,
713	      int for_call ATTRIBUTE_UNUSED)
714{
715  enum tree_code code = TREE_CODE (type);
716  int unsignedp = *punsignedp;
717
718#ifndef PROMOTE_MODE
719  if (! for_call)
720    return mode;
721#endif
722
723  switch (code)
724    {
725#ifdef PROMOTE_FUNCTION_MODE
726    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
727    case CHAR_TYPE:      case REAL_TYPE:       case OFFSET_TYPE:
728#ifdef PROMOTE_MODE
729      if (for_call)
730	{
731#endif
732	  PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
733#ifdef PROMOTE_MODE
734	}
735      else
736	{
737	  PROMOTE_MODE (mode, unsignedp, type);
738	}
739#endif
740      break;
741#endif
742
743#ifdef POINTERS_EXTEND_UNSIGNED
744    case REFERENCE_TYPE:
745    case POINTER_TYPE:
746      mode = Pmode;
747      unsignedp = POINTERS_EXTEND_UNSIGNED;
748      break;
749#endif
750
751    default:
752      break;
753    }
754
755  *punsignedp = unsignedp;
756  return mode;
757}
758
759/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
760   This pops when ADJUST is positive.  ADJUST need not be constant.  */
761
762void
763adjust_stack (rtx adjust)
764{
765  rtx temp;
766
767  if (adjust == const0_rtx)
768    return;
769
770  /* We expect all variable sized adjustments to be multiple of
771     PREFERRED_STACK_BOUNDARY.  */
772  if (GET_CODE (adjust) == CONST_INT)
773    stack_pointer_delta -= INTVAL (adjust);
774
775  temp = expand_binop (Pmode,
776#ifdef STACK_GROWS_DOWNWARD
777		       add_optab,
778#else
779		       sub_optab,
780#endif
781		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
782		       OPTAB_LIB_WIDEN);
783
784  if (temp != stack_pointer_rtx)
785    emit_move_insn (stack_pointer_rtx, temp);
786}
787
788/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
789   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
790
791void
792anti_adjust_stack (rtx adjust)
793{
794  rtx temp;
795
796  if (adjust == const0_rtx)
797    return;
798
799  /* We expect all variable sized adjustments to be multiple of
800     PREFERRED_STACK_BOUNDARY.  */
801  if (GET_CODE (adjust) == CONST_INT)
802    stack_pointer_delta += INTVAL (adjust);
803
804  temp = expand_binop (Pmode,
805#ifdef STACK_GROWS_DOWNWARD
806		       sub_optab,
807#else
808		       add_optab,
809#endif
810		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
811		       OPTAB_LIB_WIDEN);
812
813  if (temp != stack_pointer_rtx)
814    emit_move_insn (stack_pointer_rtx, temp);
815}
816
817/* Round the size of a block to be pushed up to the boundary required
818   by this machine.  SIZE is the desired size, which need not be constant.  */
819
820static rtx
821round_push (rtx size)
822{
823  int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
824
825  if (align == 1)
826    return size;
827
828  if (GET_CODE (size) == CONST_INT)
829    {
830      HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
831
832      if (INTVAL (size) != new)
833	size = GEN_INT (new);
834    }
835  else
836    {
837      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
838	 but we know it can't.  So add ourselves and then do
839	 TRUNC_DIV_EXPR.  */
840      size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
841			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
842      size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
843			    NULL_RTX, 1);
844      size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
845    }
846
847  return size;
848}
849
850/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
851   to a previously-created save area.  If no save area has been allocated,
852   this function will allocate one.  If a save area is specified, it
853   must be of the proper mode.
854
855   The insns are emitted after insn AFTER, if nonzero, otherwise the insns
856   are emitted at the current position.  */
857
858void
859emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
860{
861  rtx sa = *psave;
862  /* The default is that we use a move insn and save in a Pmode object.  */
863  rtx (*fcn) (rtx, rtx) = gen_move_insn;
864  enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
865
866  /* See if this machine has anything special to do for this kind of save.  */
867  switch (save_level)
868    {
869#ifdef HAVE_save_stack_block
870    case SAVE_BLOCK:
871      if (HAVE_save_stack_block)
872	fcn = gen_save_stack_block;
873      break;
874#endif
875#ifdef HAVE_save_stack_function
876    case SAVE_FUNCTION:
877      if (HAVE_save_stack_function)
878	fcn = gen_save_stack_function;
879      break;
880#endif
881#ifdef HAVE_save_stack_nonlocal
882    case SAVE_NONLOCAL:
883      if (HAVE_save_stack_nonlocal)
884	fcn = gen_save_stack_nonlocal;
885      break;
886#endif
887    default:
888      break;
889    }
890
891  /* If there is no save area and we have to allocate one, do so.  Otherwise
892     verify the save area is the proper mode.  */
893
894  if (sa == 0)
895    {
896      if (mode != VOIDmode)
897	{
898	  if (save_level == SAVE_NONLOCAL)
899	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
900	  else
901	    *psave = sa = gen_reg_rtx (mode);
902	}
903    }
904
905  if (after)
906    {
907      rtx seq;
908
909      start_sequence ();
910      do_pending_stack_adjust ();
911      /* We must validize inside the sequence, to ensure that any instructions
912	 created by the validize call also get moved to the right place.  */
913      if (sa != 0)
914	sa = validize_mem (sa);
915      emit_insn (fcn (sa, stack_pointer_rtx));
916      seq = get_insns ();
917      end_sequence ();
918      emit_insn_after (seq, after);
919    }
920  else
921    {
922      do_pending_stack_adjust ();
923      if (sa != 0)
924	sa = validize_mem (sa);
925      emit_insn (fcn (sa, stack_pointer_rtx));
926    }
927}
928
929/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
930   area made by emit_stack_save.  If it is zero, we have nothing to do.
931
932   Put any emitted insns after insn AFTER, if nonzero, otherwise at
933   current position.  */
934
935void
936emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
937{
938  /* The default is that we use a move insn.  */
939  rtx (*fcn) (rtx, rtx) = gen_move_insn;
940
941  /* See if this machine has anything special to do for this kind of save.  */
942  switch (save_level)
943    {
944#ifdef HAVE_restore_stack_block
945    case SAVE_BLOCK:
946      if (HAVE_restore_stack_block)
947	fcn = gen_restore_stack_block;
948      break;
949#endif
950#ifdef HAVE_restore_stack_function
951    case SAVE_FUNCTION:
952      if (HAVE_restore_stack_function)
953	fcn = gen_restore_stack_function;
954      break;
955#endif
956#ifdef HAVE_restore_stack_nonlocal
957    case SAVE_NONLOCAL:
958      if (HAVE_restore_stack_nonlocal)
959	fcn = gen_restore_stack_nonlocal;
960      break;
961#endif
962    default:
963      break;
964    }
965
966  if (sa != 0)
967    {
968      sa = validize_mem (sa);
969      /* These clobbers prevent the scheduler from moving
970	 references to variable arrays below the code
971	 that deletes (pops) the arrays.  */
972      emit_insn (gen_rtx_CLOBBER (VOIDmode,
973		    gen_rtx_MEM (BLKmode,
974			gen_rtx_SCRATCH (VOIDmode))));
975      emit_insn (gen_rtx_CLOBBER (VOIDmode,
976		    gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
977    }
978
979  discard_pending_stack_adjust ();
980
981  if (after)
982    {
983      rtx seq;
984
985      start_sequence ();
986      emit_insn (fcn (stack_pointer_rtx, sa));
987      seq = get_insns ();
988      end_sequence ();
989      emit_insn_after (seq, after);
990    }
991  else
992    emit_insn (fcn (stack_pointer_rtx, sa));
993}
994
995/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
996   function.  This function should be called whenever we allocate or
997   deallocate dynamic stack space.  */
998
999void
1000update_nonlocal_goto_save_area (void)
1001{
1002  tree t_save;
1003  rtx r_save;
1004
1005  /* The nonlocal_goto_save_area object is an array of N pointers.  The
1006     first one is used for the frame pointer save; the rest are sized by
1007     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1008     of the stack save area slots.  */
1009  t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1010		   integer_one_node, NULL_TREE, NULL_TREE);
1011  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1012
1013  emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1014}
1015
1016/* Return an rtx representing the address of an area of memory dynamically
1017   pushed on the stack.  This region of memory is always aligned to
1018   a multiple of BIGGEST_ALIGNMENT.
1019
1020   Any required stack pointer alignment is preserved.
1021
1022   SIZE is an rtx representing the size of the area.
1023   TARGET is a place in which the address can be placed.
1024
1025   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
1026
1027rtx
1028allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1029{
1030  /* If we're asking for zero bytes, it doesn't matter what we point
1031     to since we can't dereference it.  But return a reasonable
1032     address anyway.  */
1033  if (size == const0_rtx)
1034    return virtual_stack_dynamic_rtx;
1035
1036  /* Otherwise, show we're calling alloca or equivalent.  */
1037  current_function_calls_alloca = 1;
1038
1039  /* Ensure the size is in the proper mode.  */
1040  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1041    size = convert_to_mode (Pmode, size, 1);
1042
1043  /* We can't attempt to minimize alignment necessary, because we don't
1044     know the final value of preferred_stack_boundary yet while executing
1045     this code.  */
1046  cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1047
1048  /* We will need to ensure that the address we return is aligned to
1049     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
1050     always know its final value at this point in the compilation (it
1051     might depend on the size of the outgoing parameter lists, for
1052     example), so we must align the value to be returned in that case.
1053     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1054     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1055     We must also do an alignment operation on the returned value if
1056     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1057
1058     If we have to align, we must leave space in SIZE for the hole
1059     that might result from the alignment operation.  */
1060
1061#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1062#define MUST_ALIGN 1
1063#else
1064#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1065#endif
1066
1067  if (MUST_ALIGN)
1068    size
1069      = force_operand (plus_constant (size,
1070				      BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1071		       NULL_RTX);
1072
1073#ifdef SETJMP_VIA_SAVE_AREA
1074  /* If setjmp restores regs from a save area in the stack frame,
1075     avoid clobbering the reg save area.  Note that the offset of
1076     virtual_incoming_args_rtx includes the preallocated stack args space.
1077     It would be no problem to clobber that, but it's on the wrong side
1078     of the old save area.
1079
1080     What used to happen is that, since we did not know for sure
1081     whether setjmp() was invoked until after RTL generation, we
1082     would use reg notes to store the "optimized" size and fix things
1083     up later.  These days we know this information before we ever
1084     start building RTL so the reg notes are unnecessary.  */
1085  if (!current_function_calls_setjmp)
1086    {
1087      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1088
1089      /* ??? Code below assumes that the save area needs maximal
1090	 alignment.  This constraint may be too strong.  */
1091      gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1092
1093      if (GET_CODE (size) == CONST_INT)
1094	{
1095	  HOST_WIDE_INT new = INTVAL (size) / align * align;
1096
1097	  if (INTVAL (size) != new)
1098	    size = GEN_INT (new);
1099	}
1100      else
1101	{
1102	  /* Since we know overflow is not possible, we avoid using
1103	     CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead.  */
1104	  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1105				GEN_INT (align), NULL_RTX, 1);
1106	  size = expand_mult (Pmode, size,
1107			      GEN_INT (align), NULL_RTX, 1);
1108	}
1109    }
1110  else
1111    {
1112      rtx dynamic_offset
1113	= expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1114			stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1115
1116      size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1117			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
1118    }
1119#endif /* SETJMP_VIA_SAVE_AREA */
1120
1121  /* Round the size to a multiple of the required stack alignment.
1122     Since the stack if presumed to be rounded before this allocation,
1123     this will maintain the required alignment.
1124
1125     If the stack grows downward, we could save an insn by subtracting
1126     SIZE from the stack pointer and then aligning the stack pointer.
1127     The problem with this is that the stack pointer may be unaligned
1128     between the execution of the subtraction and alignment insns and
1129     some machines do not allow this.  Even on those that do, some
1130     signal handlers malfunction if a signal should occur between those
1131     insns.  Since this is an extremely rare event, we have no reliable
1132     way of knowing which systems have this problem.  So we avoid even
1133     momentarily mis-aligning the stack.  */
1134
1135  /* If we added a variable amount to SIZE,
1136     we can no longer assume it is aligned.  */
1137#if !defined (SETJMP_VIA_SAVE_AREA)
1138  if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1139#endif
1140    size = round_push (size);
1141
1142  do_pending_stack_adjust ();
1143
1144 /* We ought to be called always on the toplevel and stack ought to be aligned
1145    properly.  */
1146  gcc_assert (!(stack_pointer_delta
1147		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1148
1149  /* If needed, check that we have the required amount of stack.  Take into
1150     account what has already been checked.  */
1151  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1152    probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1153
1154  /* Don't use a TARGET that isn't a pseudo or is the wrong mode.  */
1155  if (target == 0 || !REG_P (target)
1156      || REGNO (target) < FIRST_PSEUDO_REGISTER
1157      || GET_MODE (target) != Pmode)
1158    target = gen_reg_rtx (Pmode);
1159
1160  mark_reg_pointer (target, known_align);
1161
1162  /* Perform the required allocation from the stack.  Some systems do
1163     this differently than simply incrementing/decrementing from the
1164     stack pointer, such as acquiring the space by calling malloc().  */
1165#ifdef HAVE_allocate_stack
1166  if (HAVE_allocate_stack)
1167    {
1168      enum machine_mode mode = STACK_SIZE_MODE;
1169      insn_operand_predicate_fn pred;
1170
1171      /* We don't have to check against the predicate for operand 0 since
1172	 TARGET is known to be a pseudo of the proper mode, which must
1173	 be valid for the operand.  For operand 1, convert to the
1174	 proper mode and validate.  */
1175      if (mode == VOIDmode)
1176	mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1177
1178      pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1179      if (pred && ! ((*pred) (size, mode)))
1180	size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1181
1182      emit_insn (gen_allocate_stack (target, size));
1183    }
1184  else
1185#endif
1186    {
1187#ifndef STACK_GROWS_DOWNWARD
1188      emit_move_insn (target, virtual_stack_dynamic_rtx);
1189#endif
1190
1191      /* Check stack bounds if necessary.  */
1192      if (current_function_limit_stack)
1193	{
1194	  rtx available;
1195	  rtx space_available = gen_label_rtx ();
1196#ifdef STACK_GROWS_DOWNWARD
1197	  available = expand_binop (Pmode, sub_optab,
1198				    stack_pointer_rtx, stack_limit_rtx,
1199				    NULL_RTX, 1, OPTAB_WIDEN);
1200#else
1201	  available = expand_binop (Pmode, sub_optab,
1202				    stack_limit_rtx, stack_pointer_rtx,
1203				    NULL_RTX, 1, OPTAB_WIDEN);
1204#endif
1205	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1206				   space_available);
1207#ifdef HAVE_trap
1208	  if (HAVE_trap)
1209	    emit_insn (gen_trap ());
1210	  else
1211#endif
1212	    error ("stack limits not supported on this target");
1213	  emit_barrier ();
1214	  emit_label (space_available);
1215	}
1216
1217      anti_adjust_stack (size);
1218
1219#ifdef STACK_GROWS_DOWNWARD
1220      emit_move_insn (target, virtual_stack_dynamic_rtx);
1221#endif
1222    }
1223
1224  if (MUST_ALIGN)
1225    {
1226      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1227	 but we know it can't.  So add ourselves and then do
1228	 TRUNC_DIV_EXPR.  */
1229      target = expand_binop (Pmode, add_optab, target,
1230			     GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1231			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1232      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1233			      GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1234			      NULL_RTX, 1);
1235      target = expand_mult (Pmode, target,
1236			    GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1237			    NULL_RTX, 1);
1238    }
1239
1240  /* Record the new stack level for nonlocal gotos.  */
1241  if (cfun->nonlocal_goto_save_area != 0)
1242    update_nonlocal_goto_save_area ();
1243
1244  return target;
1245}
1246
1247/* A front end may want to override GCC's stack checking by providing a
1248   run-time routine to call to check the stack, so provide a mechanism for
1249   calling that routine.  */
1250
1251static GTY(()) rtx stack_check_libfunc;
1252
1253void
1254set_stack_check_libfunc (rtx libfunc)
1255{
1256  stack_check_libfunc = libfunc;
1257}
1258
1259/* Emit one stack probe at ADDRESS, an address within the stack.  */
1260
1261static void
1262emit_stack_probe (rtx address)
1263{
1264  rtx memref = gen_rtx_MEM (word_mode, address);
1265
1266  MEM_VOLATILE_P (memref) = 1;
1267
1268  if (STACK_CHECK_PROBE_LOAD)
1269    emit_move_insn (gen_reg_rtx (word_mode), memref);
1270  else
1271    emit_move_insn (memref, const0_rtx);
1272}
1273
1274/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1275   FIRST is a constant and size is a Pmode RTX.  These are offsets from the
1276   current stack pointer.  STACK_GROWS_DOWNWARD says whether to add or
1277   subtract from the stack.  If SIZE is constant, this is done
1278   with a fixed number of probes.  Otherwise, we must make a loop.  */
1279
1280#ifdef STACK_GROWS_DOWNWARD
1281#define STACK_GROW_OP MINUS
1282#else
1283#define STACK_GROW_OP PLUS
1284#endif
1285
1286void
1287probe_stack_range (HOST_WIDE_INT first, rtx size)
1288{
1289  /* First ensure SIZE is Pmode.  */
1290  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1291    size = convert_to_mode (Pmode, size, 1);
1292
1293  /* Next see if the front end has set up a function for us to call to
1294     check the stack.  */
1295  if (stack_check_libfunc != 0)
1296    {
1297      rtx addr = memory_address (QImode,
1298				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1299					         stack_pointer_rtx,
1300					         plus_constant (size, first)));
1301
1302      addr = convert_memory_address (ptr_mode, addr);
1303      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1304			 ptr_mode);
1305    }
1306
1307  /* Next see if we have an insn to check the stack.  Use it if so.  */
1308#ifdef HAVE_check_stack
1309  else if (HAVE_check_stack)
1310    {
1311      insn_operand_predicate_fn pred;
1312      rtx last_addr
1313	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1314					 stack_pointer_rtx,
1315					 plus_constant (size, first)),
1316			 NULL_RTX);
1317
1318      pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1319      if (pred && ! ((*pred) (last_addr, Pmode)))
1320	last_addr = copy_to_mode_reg (Pmode, last_addr);
1321
1322      emit_insn (gen_check_stack (last_addr));
1323    }
1324#endif
1325
1326  /* If we have to generate explicit probes, see if we have a constant
1327     small number of them to generate.  If so, that's the easy case.  */
1328  else if (GET_CODE (size) == CONST_INT
1329	   && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1330    {
1331      HOST_WIDE_INT offset;
1332
1333      /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1334	 for values of N from 1 until it exceeds LAST.  If only one
1335	 probe is needed, this will not generate any code.  Then probe
1336	 at LAST.  */
1337      for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1338	   offset < INTVAL (size);
1339	   offset = offset + STACK_CHECK_PROBE_INTERVAL)
1340	emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1341					  stack_pointer_rtx,
1342					  GEN_INT (offset)));
1343
1344      emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1345					stack_pointer_rtx,
1346					plus_constant (size, first)));
1347    }
1348
1349  /* In the variable case, do the same as above, but in a loop.  We emit loop
1350     notes so that loop optimization can be done.  */
1351  else
1352    {
1353      rtx test_addr
1354	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1355					 stack_pointer_rtx,
1356					 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1357			 NULL_RTX);
1358      rtx last_addr
1359	= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1360					 stack_pointer_rtx,
1361					 plus_constant (size, first)),
1362			 NULL_RTX);
1363      rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1364      rtx loop_lab = gen_label_rtx ();
1365      rtx test_lab = gen_label_rtx ();
1366      rtx end_lab = gen_label_rtx ();
1367      rtx temp;
1368
1369      if (!REG_P (test_addr)
1370	  || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1371	test_addr = force_reg (Pmode, test_addr);
1372
1373      emit_jump (test_lab);
1374
1375      emit_label (loop_lab);
1376      emit_stack_probe (test_addr);
1377
1378#ifdef STACK_GROWS_DOWNWARD
1379#define CMP_OPCODE GTU
1380      temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1381			   1, OPTAB_WIDEN);
1382#else
1383#define CMP_OPCODE LTU
1384      temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1385			   1, OPTAB_WIDEN);
1386#endif
1387
1388      gcc_assert (temp == test_addr);
1389
1390      emit_label (test_lab);
1391      emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1392			       NULL_RTX, Pmode, 1, loop_lab);
1393      emit_jump (end_lab);
1394      emit_label (end_lab);
1395
1396      emit_stack_probe (last_addr);
1397    }
1398}
1399
1400/* Return an rtx representing the register or memory location
1401   in which a scalar value of data type VALTYPE
1402   was returned by a function call to function FUNC.
1403   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1404   function is known, otherwise 0.
1405   OUTGOING is 1 if on a machine with register windows this function
1406   should return the register in which the function will put its result
1407   and 0 otherwise.  */
1408
1409rtx
1410hard_function_value (tree valtype, tree func, tree fntype,
1411		     int outgoing ATTRIBUTE_UNUSED)
1412{
1413  rtx val;
1414
1415  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1416
1417  if (REG_P (val)
1418      && GET_MODE (val) == BLKmode)
1419    {
1420      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1421      enum machine_mode tmpmode;
1422
1423      /* int_size_in_bytes can return -1.  We don't need a check here
1424	 since the value of bytes will then be large enough that no
1425	 mode will match anyway.  */
1426
1427      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1428	   tmpmode != VOIDmode;
1429	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1430	{
1431	  /* Have we found a large enough mode?  */
1432	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1433	    break;
1434	}
1435
1436      /* No suitable mode found.  */
1437      gcc_assert (tmpmode != VOIDmode);
1438
1439      PUT_MODE (val, tmpmode);
1440    }
1441  return val;
1442}
1443
1444/* Return an rtx representing the register or memory location
1445   in which a scalar value of mode MODE was returned by a library call.  */
1446
1447rtx
1448hard_libcall_value (enum machine_mode mode)
1449{
1450  return LIBCALL_VALUE (mode);
1451}
1452
1453/* Look up the tree code for a given rtx code
1454   to provide the arithmetic operation for REAL_ARITHMETIC.
1455   The function returns an int because the caller may not know
1456   what `enum tree_code' means.  */
1457
1458int
1459rtx_to_tree_code (enum rtx_code code)
1460{
1461  enum tree_code tcode;
1462
1463  switch (code)
1464    {
1465    case PLUS:
1466      tcode = PLUS_EXPR;
1467      break;
1468    case MINUS:
1469      tcode = MINUS_EXPR;
1470      break;
1471    case MULT:
1472      tcode = MULT_EXPR;
1473      break;
1474    case DIV:
1475      tcode = RDIV_EXPR;
1476      break;
1477    case SMIN:
1478      tcode = MIN_EXPR;
1479      break;
1480    case SMAX:
1481      tcode = MAX_EXPR;
1482      break;
1483    default:
1484      tcode = LAST_AND_UNUSED_TREE_CODE;
1485      break;
1486    }
1487  return ((int) tcode);
1488}
1489
1490#include "gt-explow.h"
1491