1/* Definitions of target machine for GNU compiler, for the HP Spectrum.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5   and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6   Software Science at the University of Utah.
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2, or (at your option)
13any later version.
14
15GCC is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING.  If not, write to
22the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23Boston, MA 02110-1301, USA.  */
24
25enum cmp_type				/* comparison type */
26{
27  CMP_SI,				/* compare integers */
28  CMP_SF,				/* compare single precision floats */
29  CMP_DF,				/* compare double precision floats */
30  CMP_MAX				/* max comparison type */
31};
32
33/* For long call handling.  */
34extern unsigned long total_code_bytes;
35
36/* Which processor to schedule for.  */
37
38enum processor_type
39{
40  PROCESSOR_700,
41  PROCESSOR_7100,
42  PROCESSOR_7100LC,
43  PROCESSOR_7200,
44  PROCESSOR_7300,
45  PROCESSOR_8000
46};
47
48/* For -mschedule= option.  */
49extern enum processor_type pa_cpu;
50
51/* For -munix= option.  */
52extern int flag_pa_unix;
53
54#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
55
56/* Print subsidiary information on the compiler version in use.  */
57
58#define TARGET_VERSION fputs (" (hppa)", stderr);
59
60#define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
61
62/* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
63#ifndef TARGET_64BIT
64#define TARGET_64BIT 0
65#endif
66
67/* Generate code for ELF32 ABI.  */
68#ifndef TARGET_ELF32
69#define TARGET_ELF32 0
70#endif
71
72/* Generate code for SOM 32bit ABI.  */
73#ifndef TARGET_SOM
74#define TARGET_SOM 0
75#endif
76
77/* HP-UX UNIX features.  */
78#ifndef TARGET_HPUX
79#define TARGET_HPUX 0
80#endif
81
82/* HP-UX 10.10 UNIX 95 features.  */
83#ifndef TARGET_HPUX_10_10
84#define TARGET_HPUX_10_10 0
85#endif
86
87/* HP-UX 11i multibyte and UNIX 98 extensions.  */
88#ifndef TARGET_HPUX_11_11
89#define TARGET_HPUX_11_11 0
90#endif
91
92/* The following three defines are potential target switches.  The current
93   defines are optimal given the current capabilities of GAS and GNU ld.  */
94
95/* Define to a C expression evaluating to true to use long absolute calls.
96   Currently, only the HP assembler and SOM linker support long absolute
97   calls.  They are used only in non-pic code.  */
98#define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
99
100/* Define to a C expression evaluating to true to use long pic symbol
101   difference calls.  This is a call variant similar to the long pic
102   pc-relative call.  Long pic symbol difference calls are only used with
103   the HP SOM linker.  Currently, only the HP assembler supports these
104   calls.  GAS doesn't allow an arbitrary difference of two symbols.  */
105#define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
106
107/* Define to a C expression evaluating to true to use long pic
108   pc-relative calls.  Long pic pc-relative calls are only used with
109   GAS.  Currently, they are usable for calls within a module but
110   not for external calls.  */
111#define TARGET_LONG_PIC_PCREL_CALL 0
112
113/* Define to a C expression evaluating to true to use SOM secondary
114   definition symbols for weak support.  Linker support for secondary
115   definition symbols is buggy prior to HP-UX 11.X.  */
116#define TARGET_SOM_SDEF 0
117
118/* Define to a C expression evaluating to true to save the entry value
119   of SP in the current frame marker.  This is normally unnecessary.
120   However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
121   HP compilers don't use this flag but it is supported by the assembler.
122   We set this flag to indicate that register %r3 has been saved at the
123   start of the frame.  Thus, when the HP unwind library is used, we
124   need to generate additional code to save SP into the frame marker.  */
125#define TARGET_HPUX_UNWIND_LIBRARY 0
126
127#ifndef TARGET_DEFAULT
128#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
129#endif
130
131#ifndef TARGET_CPU_DEFAULT
132#define TARGET_CPU_DEFAULT 0
133#endif
134
135#ifndef TARGET_SCHED_DEFAULT
136#define TARGET_SCHED_DEFAULT PROCESSOR_8000
137#endif
138
139/* Support for a compile-time default CPU, et cetera.  The rules are:
140   --with-schedule is ignored if -mschedule is specified.
141   --with-arch is ignored if -march is specified.  */
142#define OPTION_DEFAULT_SPECS \
143  {"arch", "%{!march=*:-march=%(VALUE)}" }, \
144  {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
145
146/* Specify the dialect of assembler to use.  New mnemonics is dialect one
147   and the old mnemonics are dialect zero.  */
148#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
149
150#define OVERRIDE_OPTIONS override_options ()
151
152/* Override some settings from dbxelf.h.  */
153
154/* We do not have to be compatible with dbx, so we enable gdb extensions
155   by default.  */
156#define DEFAULT_GDB_EXTENSIONS 1
157
158/* This used to be zero (no max length), but big enums and such can
159   cause huge strings which killed gas.
160
161   We also have to avoid lossage in dbxout.c -- it does not compute the
162   string size accurately, so we are real conservative here.  */
163#undef DBX_CONTIN_LENGTH
164#define DBX_CONTIN_LENGTH 3000
165
166/* GDB always assumes the current function's frame begins at the value
167   of the stack pointer upon entry to the current function.  Accessing
168   local variables and parameters passed on the stack is done using the
169   base of the frame + an offset provided by GCC.
170
171   For functions which have frame pointers this method works fine;
172   the (frame pointer) == (stack pointer at function entry) and GCC provides
173   an offset relative to the frame pointer.
174
175   This loses for functions without a frame pointer; GCC provides an offset
176   which is relative to the stack pointer after adjusting for the function's
177   frame size.  GDB would prefer the offset to be relative to the value of
178   the stack pointer at the function's entry.  Yuk!  */
179#define DEBUGGER_AUTO_OFFSET(X) \
180  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
181    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
182
183#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
184  ((GET_CODE (X) == PLUS ? OFFSET : 0) \
185    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
186
187#define TARGET_CPU_CPP_BUILTINS()				\
188do {								\
189     builtin_assert("cpu=hppa");				\
190     builtin_assert("machine=hppa");				\
191     builtin_define("__hppa");					\
192     builtin_define("__hppa__");				\
193     if (TARGET_PA_20)						\
194       builtin_define("_PA_RISC2_0");				\
195     else if (TARGET_PA_11)					\
196       builtin_define("_PA_RISC1_1");				\
197     else							\
198       builtin_define("_PA_RISC1_0");				\
199} while (0)
200
201/* An old set of OS defines for various BSD-like systems.  */
202#define TARGET_OS_CPP_BUILTINS()				\
203  do								\
204    {								\
205	builtin_define_std ("REVARGV");				\
206	builtin_define_std ("hp800");				\
207	builtin_define_std ("hp9000");				\
208	builtin_define_std ("hp9k8");				\
209	if (!c_dialect_cxx () && !flag_iso)			\
210	  builtin_define ("hppa");				\
211	builtin_define_std ("spectrum");			\
212	builtin_define_std ("unix");				\
213	builtin_assert ("system=bsd");				\
214	builtin_assert ("system=unix");				\
215    }								\
216  while (0)
217
218#define CC1_SPEC "%{pg:} %{p:}"
219
220#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
221
222/* We don't want -lg.  */
223#ifndef LIB_SPEC
224#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
225#endif
226
227/* This macro defines command-line switches that modify the default
228   target name.
229
230   The definition is be an initializer for an array of structures.  Each
231   array element has have three elements: the switch name, one of the
232   enumeration codes ADD or DELETE to indicate whether the string should be
233   inserted or deleted, and the string to be inserted or deleted.  */
234#define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
235
236/* Make gcc agree with <machine/ansi.h> */
237
238#define SIZE_TYPE "unsigned int"
239#define PTRDIFF_TYPE "int"
240#define WCHAR_TYPE "unsigned int"
241#define WCHAR_TYPE_SIZE 32
242
243/* Show we can debug even without a frame pointer.  */
244#define CAN_DEBUG_WITHOUT_FP
245
246/* target machine storage layout */
247typedef struct machine_function GTY(())
248{
249  /* Flag indicating that a .NSUBSPA directive has been output for
250     this function.  */
251  int in_nsubspa;
252} machine_function;
253
254/* Define this macro if it is advisable to hold scalars in registers
255   in a wider mode than that declared by the program.  In such cases,
256   the value is constrained to be within the bounds of the declared
257   type, but kept valid in the wider mode.  The signedness of the
258   extension may differ from that of the type.  */
259
260#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
261  if (GET_MODE_CLASS (MODE) == MODE_INT	\
262      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
263    (MODE) = word_mode;
264
265/* Define this if most significant bit is lowest numbered
266   in instructions that operate on numbered bit-fields.  */
267#define BITS_BIG_ENDIAN 1
268
269/* Define this if most significant byte of a word is the lowest numbered.  */
270/* That is true on the HP-PA.  */
271#define BYTES_BIG_ENDIAN 1
272
273/* Define this if most significant word of a multiword number is lowest
274   numbered.  */
275#define WORDS_BIG_ENDIAN 1
276
277#define MAX_BITS_PER_WORD 64
278
279/* Width of a word, in units (bytes).  */
280#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
281
282/* Minimum number of units in a word.  If this is undefined, the default
283   is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
284   smallest value that UNITS_PER_WORD can have at run-time.
285
286   FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
287   building of various TImode routines in libgcc.  The HP runtime
288   specification doesn't provide the alignment requirements and calling
289   conventions for TImode variables.  */
290#define MIN_UNITS_PER_WORD 4
291
292/* The widest floating point format supported by the hardware.  Note that
293   setting this influences some Ada floating point type sizes, currently
294   required for GNAT to operate properly.  */
295#define WIDEST_HARDWARE_FP_SIZE 64
296
297/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
298#define PARM_BOUNDARY BITS_PER_WORD
299
300/* Largest alignment required for any stack parameter, in bits.
301   Don't define this if it is equal to PARM_BOUNDARY */
302#define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
303
304/* Boundary (in *bits*) on which stack pointer is always aligned;
305   certain optimizations in combine depend on this.
306
307   The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
308   the stack on the 32 and 64-bit ports, respectively.  However, we
309   are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
310   in main.  Thus, we treat the former as the preferred alignment.  */
311#define STACK_BOUNDARY BIGGEST_ALIGNMENT
312#define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
313
314/* Allocation boundary (in *bits*) for the code of a function.  */
315#define FUNCTION_BOUNDARY BITS_PER_WORD
316
317/* Alignment of field after `int : 0' in a structure.  */
318#define EMPTY_FIELD_BOUNDARY 32
319
320/* Every structure's size must be a multiple of this.  */
321#define STRUCTURE_SIZE_BOUNDARY 8
322
323/* A bit-field declared as `int' forces `int' alignment for the struct.  */
324#define PCC_BITFIELD_TYPE_MATTERS 1
325
326/* No data type wants to be aligned rounder than this.  */
327#define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
328
329/* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
330#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
331  ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
332
333/* Make arrays of chars word-aligned for the same reasons.  */
334#define DATA_ALIGNMENT(TYPE, ALIGN)		\
335  (TREE_CODE (TYPE) == ARRAY_TYPE		\
336   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
337   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
338
339/* Set this nonzero if move instructions will actually fail to work
340   when given unaligned data.  */
341#define STRICT_ALIGNMENT 1
342
343/* Value is 1 if it is a good idea to tie two pseudo registers
344   when one has mode MODE1 and one has mode MODE2.
345   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
346   for any hard reg, then this must be 0 for correct output.  */
347#define MODES_TIEABLE_P(MODE1, MODE2) \
348  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
349
350/* Specify the registers used for certain standard purposes.
351   The values of these macros are register numbers.  */
352
353/* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
354/* #define PC_REGNUM  */
355
356/* Register to use for pushing function arguments.  */
357#define STACK_POINTER_REGNUM 30
358
359/* Base register for access to local variables of the function.  */
360#define FRAME_POINTER_REGNUM 3
361
362/* Value should be nonzero if functions must have frame pointers.  */
363#define FRAME_POINTER_REQUIRED \
364  (current_function_calls_alloca)
365
366/* Don't allow hard registers to be renamed into r2 unless r2
367   is already live or already being saved (due to eh).  */
368
369#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
370  ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return)
371
372/* C statement to store the difference between the frame pointer
373   and the stack pointer values immediately after the function prologue.
374
375   Note, we always pretend that this is a leaf function because if
376   it's not, there's no point in trying to eliminate the
377   frame pointer.  If it is a leaf function, we guessed right!  */
378#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
379  do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
380
381/* Base register for access to arguments of the function.  */
382#define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
383
384/* Register in which static-chain is passed to a function.  */
385#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
386
387/* Register used to address the offset table for position-independent
388   data references.  */
389#define PIC_OFFSET_TABLE_REGNUM \
390  (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
391
392#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
393
394/* Function to return the rtx used to save the pic offset table register
395   across function calls.  */
396extern struct rtx_def *hppa_pic_save_rtx (void);
397
398#define DEFAULT_PCC_STRUCT_RETURN 0
399
400/* Register in which address to store a structure value
401   is passed to a function.  */
402#define PA_STRUCT_VALUE_REGNUM 28
403
404/* Describe how we implement __builtin_eh_return.  */
405#define EH_RETURN_DATA_REGNO(N)	\
406  ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
407#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
408#define EH_RETURN_HANDLER_RTX \
409  gen_rtx_MEM (word_mode,						\
410	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
411			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
412
413/* Offset from the frame pointer register value to the top of stack.  */
414#define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
415
416/* A C expression whose value is RTL representing the location of the
417   incoming return address at the beginning of any function, before the
418   prologue.  You only need to define this macro if you want to support
419   call frame debugging information like that provided by DWARF 2.  */
420#define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
421#define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
422
423/* A C expression whose value is an integer giving a DWARF 2 column
424   number that may be used as an alternate return column.  This should
425   be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
426   register, but an alternate column needs to be used for signal frames.
427
428   Column 0 is not used but unfortunately its register size is set to
429   4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
430#define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
431
432/* This macro chooses the encoding of pointers embedded in the exception
433   handling sections.  If at all possible, this should be defined such
434   that the exception handling section will not require dynamic relocations,
435   and so may be read-only.
436
437   Because the HP assembler auto aligns, it is necessary to use
438   DW_EH_PE_aligned.  It's not possible to make the data read-only
439   on the HP-UX SOM port since the linker requires fixups for label
440   differences in different sections to be word aligned.  However,
441   the SOM linker can do unaligned fixups for absolute pointers.
442   We also need aligned pointers for global and function pointers.
443
444   Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
445   fixups, the runtime doesn't have a consistent relationship between
446   text and data for dynamically loaded objects.  Thus, it's not possible
447   to use pc-relative encoding for pointers on this target.  It may be
448   possible to use segment relative encodings but GAS doesn't currently
449   have a mechanism to generate these encodings.  For other targets, we
450   use pc-relative encoding for pointers.  If the pointer might require
451   dynamic relocation, we make it indirect.  */
452#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
453  (TARGET_GAS && !TARGET_HPUX						\
454   ? (DW_EH_PE_pcrel							\
455      | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
456      | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
457   : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
458      ? DW_EH_PE_aligned : DW_EH_PE_absptr))
459
460/* Handle special EH pointer encodings.  Absolute, pc-relative, and
461   indirect are handled automatically.  We output pc-relative, and
462   indirect pc-relative ourself since we need some special magic to
463   generate pc-relative relocations, and to handle indirect function
464   pointers.  */
465#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
466  do {									\
467    if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
468      {									\
469	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
470	if ((ENCODING) & DW_EH_PE_indirect)				\
471	  output_addr_const (FILE, get_deferred_plabel (ADDR));		\
472	else								\
473	  assemble_name (FILE, XSTR ((ADDR), 0));			\
474	fputs ("+8-$PIC_pcrel$0", FILE);				\
475	goto DONE;							\
476      }									\
477    } while (0)
478
479/* The letters I, J, K, L and M in a register constraint string
480   can be used to stand for particular ranges of immediate operands.
481   This macro defines what the ranges are.
482   C is the letter, and VALUE is a constant value.
483   Return 1 if VALUE is in the range specified by C.
484
485   `I' is used for the 11 bit constants.
486   `J' is used for the 14 bit constants.
487   `K' is used for values that can be moved with a zdepi insn.
488   `L' is used for the 5 bit constants.
489   `M' is used for 0.
490   `N' is used for values with the least significant 11 bits equal to zero
491	                  and when sign extended from 32 to 64 bits the
492			  value does not change.
493   `O' is used for numbers n such that n+1 is a power of 2.
494   */
495
496#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
497  ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
498   : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
499   : (C) == 'K' ? zdepi_cint_p (VALUE)					\
500   : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
501   : (C) == 'M' ? (VALUE) == 0						\
502   : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
503		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
504		       == (HOST_WIDE_INT) -1 << 31))			\
505   : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
506   : (C) == 'P' ? and_mask_p (VALUE)					\
507   : 0)
508
509/* Similar, but for floating or large integer constants, and defining letters
510   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
511
512   For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
513
514#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
515  ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
516		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
517   : 0)
518
519/* The class value for index registers, and the one for base regs.  */
520#define INDEX_REG_CLASS GENERAL_REGS
521#define BASE_REG_CLASS GENERAL_REGS
522
523#define FP_REG_CLASS_P(CLASS) \
524  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
525
526/* True if register is floating-point.  */
527#define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
528
529/* Given an rtx X being reloaded into a reg required to be
530   in class CLASS, return the class of reg to actually use.
531   In general this is just CLASS; but on some machines
532   in some cases it is preferable to use a more restrictive class.  */
533#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
534
535/* Return the register class of a scratch register needed to copy
536   IN into a register in CLASS in MODE, or a register in CLASS in MODE
537   to IN.  If it can be done directly NO_REGS is returned.
538
539  Avoid doing any work for the common case calls.  */
540#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
541  ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG		\
542    && REGNO (IN) < FIRST_PSEUDO_REGISTER)			\
543   ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
544
545#define MAYBE_FP_REG_CLASS_P(CLASS) \
546  reg_classes_intersect_p ((CLASS), FP_REGS)
547
548/* On the PA it is not possible to directly move data between
549   GENERAL_REGS and FP_REGS.  On the 32-bit port, we use the
550   location at SP-16.  We don't expose this location in the RTL to
551   avoid scheduling related problems.  For example, the store and
552   load could be separated by a call to a pure or const function
553   which has no frame and uses SP-16.  */
554#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
555  (TARGET_64BIT								\
556   && (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)		\
557       || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1)))
558
559
560/* Stack layout; function entry, exit and calling.  */
561
562/* Define this if pushing a word on the stack
563   makes the stack pointer a smaller address.  */
564/* #define STACK_GROWS_DOWNWARD */
565
566/* Believe it or not.  */
567#define ARGS_GROW_DOWNWARD
568
569/* Define this to nonzero if the nominal address of the stack frame
570   is at the high-address end of the local variables;
571   that is, each additional local variable allocated
572   goes at a more negative offset in the frame.  */
573#define FRAME_GROWS_DOWNWARD 0
574
575/* Offset within stack frame to start allocating local variables at.
576   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
577   first local allocated.  Otherwise, it is the offset to the BEGINNING
578   of the first local allocated.
579
580   On the 32-bit ports, we reserve one slot for the previous frame
581   pointer and one fill slot.  The fill slot is for compatibility
582   with HP compiled programs.  On the 64-bit ports, we reserve one
583   slot for the previous frame pointer.  */
584#define STARTING_FRAME_OFFSET 8
585
586/* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
587   of the stack.  The default is to align it to STACK_BOUNDARY.  */
588#define STACK_ALIGNMENT_NEEDED 0
589
590/* If we generate an insn to push BYTES bytes,
591   this says how many the stack pointer really advances by.
592   On the HP-PA, don't define this because there are no push insns.  */
593/*  #define PUSH_ROUNDING(BYTES) */
594
595/* Offset of first parameter from the argument pointer register value.
596   This value will be negated because the arguments grow down.
597   Also note that on STACK_GROWS_UPWARD machines (such as this one)
598   this is the distance from the frame pointer to the end of the first
599   argument, not it's beginning.  To get the real offset of the first
600   argument, the size of the argument must be added.  */
601
602#define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
603
604/* When a parameter is passed in a register, stack space is still
605   allocated for it.  */
606#define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
607
608/* Define this if the above stack space is to be considered part of the
609   space allocated by the caller.  */
610#define OUTGOING_REG_PARM_STACK_SPACE
611
612/* Keep the stack pointer constant throughout the function.
613   This is both an optimization and a necessity: longjmp
614   doesn't behave itself when the stack pointer moves within
615   the function!  */
616#define ACCUMULATE_OUTGOING_ARGS 1
617
618/* The weird HPPA calling conventions require a minimum of 48 bytes on
619   the stack: 16 bytes for register saves, and 32 bytes for magic.
620   This is the difference between the logical top of stack and the
621   actual sp.
622
623   On the 64-bit port, the HP C compiler allocates a 48-byte frame
624   marker, although the runtime documentation only describes a 16
625   byte marker.  For compatibility, we allocate 48 bytes.  */
626#define STACK_POINTER_OFFSET \
627  (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
628
629#define STACK_DYNAMIC_OFFSET(FNDECL)	\
630  (TARGET_64BIT				\
631   ? (STACK_POINTER_OFFSET)		\
632   : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
633
634/* Value is 1 if returning from a function call automatically
635   pops the arguments described by the number-of-args field in the call.
636   FUNDECL is the declaration node of the function (as a tree),
637   FUNTYPE is the data type of the function (as a tree),
638   or for a library call it is an identifier node for the subroutine name.  */
639
640#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
641
642/* Define how to find the value returned by a function.
643   VALTYPE is the data type of the value (as a tree).
644   If the precise function being called is known, FUNC is its FUNCTION_DECL;
645   otherwise, FUNC is 0.  */
646
647#define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
648
649/* Define how to find the value returned by a library function
650   assuming the value has mode MODE.  */
651
652#define LIBCALL_VALUE(MODE)	\
653  gen_rtx_REG (MODE,							\
654	       (! TARGET_SOFT_FLOAT					\
655		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
656
657/* 1 if N is a possible register number for a function value
658   as seen by the caller.  */
659
660#define FUNCTION_VALUE_REGNO_P(N) \
661  ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
662
663
664/* Define a data type for recording info about an argument list
665   during the scan of that argument list.  This data type should
666   hold all necessary information about the function itself
667   and about the args processed so far, enough to enable macros
668   such as FUNCTION_ARG to determine where the next arg should go.
669
670   On the HP-PA, the WORDS field holds the number of words
671   of arguments scanned so far (including the invisible argument,
672   if any, which holds the structure-value-address).  Thus, 4 or
673   more means all following args should go on the stack.
674
675   The INCOMING field tracks whether this is an "incoming" or
676   "outgoing" argument.
677
678   The INDIRECT field indicates whether this is is an indirect
679   call or not.
680
681   The NARGS_PROTOTYPE field indicates that an argument does not
682   have a prototype when it less than or equal to 0.  */
683
684struct hppa_args {int words, nargs_prototype, incoming, indirect; };
685
686#define CUMULATIVE_ARGS struct hppa_args
687
688/* Initialize a variable CUM of type CUMULATIVE_ARGS
689   for a call to a function whose data type is FNTYPE.
690   For a library call, FNTYPE is 0.  */
691
692#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
693  (CUM).words = 0, 							\
694  (CUM).incoming = 0,							\
695  (CUM).indirect = (FNTYPE) && !(FNDECL),				\
696  (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
697			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
698			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
699				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
700			   : 0)
701
702
703
704/* Similar, but when scanning the definition of a procedure.  We always
705   set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
706
707#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
708  (CUM).words = 0,				\
709  (CUM).incoming = 1,				\
710  (CUM).indirect = 0,				\
711  (CUM).nargs_prototype = 1000
712
713/* Figure out the size in words of the function argument.  The size
714   returned by this macro should always be greater than zero because
715   we pass variable and zero sized objects by reference.  */
716
717#define FUNCTION_ARG_SIZE(MODE, TYPE)	\
718  ((((MODE) != BLKmode \
719     ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
720     : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
721
722/* Update the data in CUM to advance over an argument
723   of mode MODE and data type TYPE.
724   (TYPE is null for libcalls where that information may not be available.)  */
725
726#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
727{ (CUM).nargs_prototype--;						\
728  (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
729    + (((CUM).words & 01) && (TYPE) != 0				\
730	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
731}
732
733/* Determine where to put an argument to a function.
734   Value is zero to push the argument on the stack,
735   or a hard register in which to store the argument.
736
737   MODE is the argument's machine mode.
738   TYPE is the data type of the argument (as a tree).
739    This is null for libcalls where that information may
740    not be available.
741   CUM is a variable of type CUMULATIVE_ARGS which gives info about
742    the preceding args and about the function being called.
743   NAMED is nonzero if this argument is a named parameter
744    (otherwise it is an extra parameter matching an ellipsis).
745
746   On the HP-PA the first four words of args are normally in registers
747   and the rest are pushed.  But any arg that won't entirely fit in regs
748   is pushed.
749
750   Arguments passed in registers are either 1 or 2 words long.
751
752   The caller must make a distinction between calls to explicitly named
753   functions and calls through pointers to functions -- the conventions
754   are different!  Calls through pointers to functions only use general
755   registers for the first four argument words.
756
757   Of course all this is different for the portable runtime model
758   HP wants everyone to use for ELF.  Ugh.  Here's a quick description
759   of how it's supposed to work.
760
761   1) callee side remains unchanged.  It expects integer args to be
762   in the integer registers, float args in the float registers and
763   unnamed args in integer registers.
764
765   2) caller side now depends on if the function being called has
766   a prototype in scope (rather than if it's being called indirectly).
767
768      2a) If there is a prototype in scope, then arguments are passed
769      according to their type (ints in integer registers, floats in float
770      registers, unnamed args in integer registers.
771
772      2b) If there is no prototype in scope, then floating point arguments
773      are passed in both integer and float registers.  egad.
774
775  FYI: The portable parameter passing conventions are almost exactly like
776  the standard parameter passing conventions on the RS6000.  That's why
777  you'll see lots of similar code in rs6000.h.  */
778
779/* If defined, a C expression which determines whether, and in which
780   direction, to pad out an argument with extra space.  */
781#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
782
783/* Specify padding for the last element of a block move between registers
784   and memory.
785
786   The 64-bit runtime specifies that objects need to be left justified
787   (i.e., the normal justification for a big endian target).  The 32-bit
788   runtime specifies right justification for objects smaller than 64 bits.
789   We use a DImode register in the parallel for 5 to 7 byte structures
790   so that there is only one element.  This allows the object to be
791   correctly padded.  */
792#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
793  function_arg_padding ((MODE), (TYPE))
794
795/* Do not expect to understand this without reading it several times.  I'm
796   tempted to try and simply it, but I worry about breaking something.  */
797
798#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
799  function_arg (&CUM, MODE, TYPE, NAMED)
800
801/* If defined, a C expression that gives the alignment boundary, in
802   bits, of an argument with the specified mode and type.  If it is
803   not defined,  `PARM_BOUNDARY' is used for all arguments.  */
804
805/* Arguments larger than one word are double word aligned.  */
806
807#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
808  (((TYPE)								\
809    ? (integer_zerop (TYPE_SIZE (TYPE))					\
810       || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
811       || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
812    : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
813   ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
814
815
816extern GTY(()) rtx hppa_compare_op0;
817extern GTY(()) rtx hppa_compare_op1;
818extern enum cmp_type hppa_branch_type;
819
820/* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
821   as assembly via FUNCTION_PROFILER.  Just output a local label.
822   We can't use the function label because the GAS SOM target can't
823   handle the difference of a global symbol and a local symbol.  */
824
825#ifndef FUNC_BEGIN_PROLOG_LABEL
826#define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
827#endif
828
829#define FUNCTION_PROFILER(FILE, LABEL) \
830  (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
831
832#define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
833void hppa_profile_hook (int label_no);
834
835/* The profile counter if emitted must come before the prologue.  */
836#define PROFILE_BEFORE_PROLOGUE 1
837
838/* We never want final.c to emit profile counters.  When profile
839   counters are required, we have to defer emitting them to the end
840   of the current file.  */
841#define NO_PROFILE_COUNTERS 1
842
843/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
844   the stack pointer does not matter.  The value is tested only in
845   functions that have frame pointers.
846   No definition is equivalent to always zero.  */
847
848extern int may_call_alloca;
849
850#define EXIT_IGNORE_STACK	\
851 (get_frame_size () != 0	\
852  || current_function_calls_alloca || current_function_outgoing_args_size)
853
854/* Output assembler code for a block containing the constant parts
855   of a trampoline, leaving space for the variable parts.\
856
857   The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
858   and then branches to the specified routine.
859
860   This code template is copied from text segment to stack location
861   and then patched with INITIALIZE_TRAMPOLINE to contain
862   valid values, and then entered as a subroutine.
863
864   It is best to keep this as small as possible to avoid having to
865   flush multiple lines in the cache.  */
866
867#define TRAMPOLINE_TEMPLATE(FILE) 					\
868  {									\
869    if (!TARGET_64BIT)							\
870      {									\
871	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
872	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
873	if (ASSEMBLER_DIALECT == 0)					\
874	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
875	else								\
876	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
877	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
878	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
879	if (TARGET_PA_20)						\
880	  {								\
881	    fputs ("\tbve	(%r21)\n", FILE);			\
882	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
883	    fputs ("\t.word	0\n", FILE);				\
884	    fputs ("\t.word	0\n", FILE);				\
885	  }								\
886	else								\
887	  {								\
888	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
889	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
890	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
891	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
892	  }								\
893	fputs ("\t.word	0\n", FILE);					\
894	fputs ("\t.word	0\n", FILE);					\
895	fputs ("\t.word	0\n", FILE);					\
896	fputs ("\t.word	0\n", FILE);					\
897      }									\
898    else								\
899      {									\
900	fputs ("\t.dword 0\n", FILE);					\
901	fputs ("\t.dword 0\n", FILE);					\
902	fputs ("\t.dword 0\n", FILE);					\
903	fputs ("\t.dword 0\n", FILE);					\
904	fputs ("\tmfia	%r31\n", FILE);					\
905	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
906	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
907	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
908	fputs ("\tbve	(%r1)\n", FILE);				\
909	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
910	fputs ("\t.dword 0  ; fptr\n", FILE);				\
911	fputs ("\t.dword 0  ; static link\n", FILE);			\
912      }									\
913  }
914
915/* Length in units of the trampoline for entering a nested function.  */
916
917#define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
918
919/* Length in units of the trampoline instruction code.  */
920
921#define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
922
923/* Minimum length of a cache line.  A length of 16 will work on all
924   PA-RISC processors.  All PA 1.1 processors have a cache line of
925   32 bytes.  Most but not all PA 2.0 processors have a cache line
926   of 64 bytes.  As cache flushes are expensive and we don't support
927   PA 1.0, we use a minimum length of 32.  */
928
929#define MIN_CACHELINE_SIZE 32
930
931/* Emit RTL insns to initialize the variable parts of a trampoline.
932   FNADDR is an RTX for the address of the function's pure code.
933   CXT is an RTX for the static chain value for the function.
934
935   Move the function address to the trampoline template at offset 36.
936   Move the static chain value to trampoline template at offset 40.
937   Move the trampoline address to trampoline template at offset 44.
938   Move r19 to trampoline template at offset 48.  The latter two
939   words create a plabel for the indirect call to the trampoline.
940
941   A similar sequence is used for the 64-bit port but the plabel is
942   at the beginning of the trampoline.
943
944   Finally, the cache entries for the trampoline code are flushed.
945   This is necessary to ensure that the trampoline instruction sequence
946   is written to memory prior to any attempts at prefetching the code
947   sequence.  */
948
949#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
950{									\
951  rtx start_addr = gen_reg_rtx (Pmode);					\
952  rtx end_addr = gen_reg_rtx (Pmode);					\
953  rtx line_length = gen_reg_rtx (Pmode);				\
954  rtx tmp;								\
955									\
956  if (!TARGET_64BIT)							\
957    {									\
958      tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
959      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
960      tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
961      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
962									\
963      /* Create a fat pointer for the trampoline.  */			\
964      tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
965      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
966      tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
967      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
968		      gen_rtx_REG (Pmode, 19));				\
969									\
970      /* fdc and fic only use registers for the address to flush,	\
971	 they do not accept integer displacements.  We align the	\
972	 start and end addresses to the beginning of their respective	\
973	 cache lines to minimize the number of lines flushed.  */	\
974      tmp = force_reg (Pmode, (TRAMP));					\
975      emit_insn (gen_andsi3 (start_addr, tmp,				\
976			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
977      tmp = force_reg (Pmode,						\
978		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
979      emit_insn (gen_andsi3 (end_addr, tmp,				\
980			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
981      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
982      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
983      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
984				  gen_reg_rtx (Pmode),			\
985				  gen_reg_rtx (Pmode)));		\
986    }									\
987  else									\
988    {									\
989      tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
990      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
991      tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
992      emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
993									\
994      /* Create a fat pointer for the trampoline.  */			\
995      tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
996      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
997		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
998      tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
999      emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
1000		      gen_rtx_REG (Pmode, 27));				\
1001									\
1002      /* fdc and fic only use registers for the address to flush,	\
1003	 they do not accept integer displacements.  We align the	\
1004	 start and end addresses to the beginning of their respective	\
1005	 cache lines to minimize the number of lines flushed.  */	\
1006      tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1007      emit_insn (gen_anddi3 (start_addr, tmp,				\
1008			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1009      tmp = force_reg (Pmode,						\
1010		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1011      emit_insn (gen_anddi3 (end_addr, tmp,				\
1012			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1013      emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1014      emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1015      emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1016				  gen_reg_rtx (Pmode),			\
1017				  gen_reg_rtx (Pmode)));		\
1018    }									\
1019}
1020
1021/* Perform any machine-specific adjustment in the address of the trampoline.
1022   ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1023   Adjust the trampoline address to point to the plabel at offset 44.  */
1024
1025#define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1026  if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1027
1028/* Implement `va_start' for varargs and stdarg.  */
1029
1030#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1031  hppa_va_start (valist, nextarg)
1032
1033/* Addressing modes, and classification of registers for them.
1034
1035   Using autoincrement addressing modes on PA8000 class machines is
1036   not profitable.  */
1037
1038#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1039#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1040
1041#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1042#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1043
1044/* Macros to check register numbers against specific register classes.  */
1045
1046/* The following macros assume that X is a hard or pseudo reg number.
1047   They give nonzero only if X is a hard reg of the suitable class
1048   or a pseudo reg currently allocated to a suitable hard reg.
1049   Since they use reg_renumber, they are safe only once reg_renumber
1050   has been allocated, which happens in local-alloc.c.  */
1051
1052#define REGNO_OK_FOR_INDEX_P(X) \
1053  ((X) && ((X) < 32							\
1054   || (X >= FIRST_PSEUDO_REGISTER					\
1055       && reg_renumber							\
1056       && (unsigned) reg_renumber[X] < 32)))
1057#define REGNO_OK_FOR_BASE_P(X) \
1058  ((X) && ((X) < 32							\
1059   || (X >= FIRST_PSEUDO_REGISTER					\
1060       && reg_renumber							\
1061       && (unsigned) reg_renumber[X] < 32)))
1062#define REGNO_OK_FOR_FP_P(X) \
1063  (FP_REGNO_P (X)							\
1064   || (X >= FIRST_PSEUDO_REGISTER					\
1065       && reg_renumber							\
1066       && FP_REGNO_P (reg_renumber[X])))
1067
1068/* Now macros that check whether X is a register and also,
1069   strictly, whether it is in a specified class.
1070
1071   These macros are specific to the HP-PA, and may be used only
1072   in code for printing assembler insns and in conditions for
1073   define_optimization.  */
1074
1075/* 1 if X is an fp register.  */
1076
1077#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1078
1079/* Maximum number of registers that can appear in a valid memory address.  */
1080
1081#define MAX_REGS_PER_ADDRESS 2
1082
1083/* Non-TLS symbolic references.  */
1084#define PA_SYMBOL_REF_TLS_P(RTX) \
1085  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1086
1087/* Recognize any constant value that is a valid address except
1088   for symbolic addresses.  We get better CSE by rejecting them
1089   here and allowing hppa_legitimize_address to break them up.  We
1090   use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1091
1092#define CONSTANT_ADDRESS_P(X) \
1093  ((GET_CODE (X) == LABEL_REF 						\
1094   || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
1095   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1096   || GET_CODE (X) == HIGH) 						\
1097   && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1098
1099/* A C expression that is nonzero if we are using the new HP assembler.  */
1100
1101#ifndef NEW_HP_ASSEMBLER
1102#define NEW_HP_ASSEMBLER 0
1103#endif
1104
1105/* The macros below define the immediate range for CONST_INTS on
1106   the 64-bit port.  Constants in this range can be loaded in three
1107   instructions using a ldil/ldo/depdi sequence.  Constants outside
1108   this range are forced to the constant pool prior to reload.  */
1109
1110#define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1111#define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1112#define LEGITIMATE_64BIT_CONST_INT_P(X) \
1113  ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1114
1115/* A C expression that is nonzero if X is a legitimate constant for an
1116   immediate operand.
1117
1118   We include all constant integers and constant doubles, but not
1119   floating-point, except for floating-point zero.  We reject LABEL_REFs
1120   if we're not using gas or the new HP assembler.
1121
1122   In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
1123   that need more than three instructions to load prior to reload.  This
1124   limit is somewhat arbitrary.  It takes three instructions to load a
1125   CONST_INT from memory but two are memory accesses.  It may be better
1126   to increase the allowed range for CONST_INTS.  We may also be able
1127   to handle CONST_DOUBLES.  */
1128
1129#define LEGITIMATE_CONSTANT_P(X)				\
1130  ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1131    || (X) == CONST0_RTX (GET_MODE (X)))			\
1132   && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1133   && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1134   && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1135	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1136	     || (reload_in_progress || reload_completed)	\
1137	     || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))	\
1138	     || cint_ok_for_move (INTVAL (X))))			\
1139   && !function_label_operand (X, VOIDmode))
1140
1141/* Target flags set on a symbol_ref.  */
1142
1143/* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
1144#define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1145#define SYMBOL_REF_REFERENCED_P(RTX) \
1146  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1147
1148/* Subroutines for EXTRA_CONSTRAINT.
1149
1150   Return 1 iff OP is a pseudo which did not get a hard register and
1151   we are running the reload pass.  */
1152#define IS_RELOADING_PSEUDO_P(OP) \
1153  ((reload_in_progress					\
1154    && GET_CODE (OP) == REG				\
1155    && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1156    && reg_renumber [REGNO (OP)] < 0))
1157
1158/* Return 1 iff OP is a scaled or unscaled index address.  */
1159#define IS_INDEX_ADDR_P(OP) \
1160  (GET_CODE (OP) == PLUS				\
1161   && GET_MODE (OP) == Pmode				\
1162   && (GET_CODE (XEXP (OP, 0)) == MULT			\
1163       || GET_CODE (XEXP (OP, 1)) == MULT		\
1164       || (REG_P (XEXP (OP, 0))				\
1165	   && REG_P (XEXP (OP, 1)))))
1166
1167/* Return 1 iff OP is a LO_SUM DLT address.  */
1168#define IS_LO_SUM_DLT_ADDR_P(OP) \
1169  (GET_CODE (OP) == LO_SUM				\
1170   && GET_MODE (OP) == Pmode				\
1171   && REG_P (XEXP (OP, 0))				\
1172   && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
1173   && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1174
1175/* Optional extra constraints for this machine. Borrowed from sparc.h.
1176
1177   `A' is a LO_SUM DLT memory operand.
1178
1179   `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1180       memory operand.  Note that an unassigned pseudo register is such a
1181       memory operand.  Needed because reload will generate these things
1182       and then not re-recognize the insn, causing constrain_operands to
1183       fail.
1184
1185   `R' is a scaled/unscaled indexed memory operand.
1186
1187   `S' is the constant 31.
1188
1189   `T' is for floating-point loads and stores.
1190
1191   `U' is the constant 63.
1192
1193   `W' is a register indirect memory operand.  We could allow short
1194       displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1195       long displacement is valid.  This is only used for prefetch
1196       instructions with the `sl' completer.  */
1197
1198#define EXTRA_CONSTRAINT(OP, C) \
1199  ((C) == 'Q' ?								\
1200   (IS_RELOADING_PSEUDO_P (OP)						\
1201    || (GET_CODE (OP) == MEM						\
1202	&& (reload_in_progress						\
1203	    || memory_address_p (GET_MODE (OP), XEXP (OP, 0)))		\
1204	&& !symbolic_memory_operand (OP, VOIDmode)			\
1205	&& !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1206	&& !IS_INDEX_ADDR_P (XEXP (OP, 0))))				\
1207   : ((C) == 'W' ?							\
1208      (GET_CODE (OP) == MEM						\
1209       && REG_P (XEXP (OP, 0))						\
1210       && REG_OK_FOR_BASE_P (XEXP (OP, 0)))				\
1211   : ((C) == 'A' ?							\
1212      (GET_CODE (OP) == MEM						\
1213       && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)))				\
1214   : ((C) == 'R' ?							\
1215      (GET_CODE (OP) == MEM						\
1216       && IS_INDEX_ADDR_P (XEXP (OP, 0)))				\
1217   : ((C) == 'T' ? 							\
1218      (GET_CODE (OP) == MEM						\
1219       && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1220       && !IS_INDEX_ADDR_P (XEXP (OP, 0))				\
1221       /* Floating-point loads and stores are used to load		\
1222	  integer values as well as floating-point values.		\
1223	  They don't have the same set of REG+D address modes		\
1224	  as integer loads and stores.  PA 1.x supports only		\
1225	  short displacements.  PA 2.0 supports long displacements	\
1226	  but the base register needs to be aligned.			\
1227									\
1228	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1229	  DFmode test the validity of an address for use in a		\
1230	  floating point load or store.  So, we use SFmode/DFmode	\
1231	  to see if the address is valid for a floating-point		\
1232	  load/store operation.  */					\
1233       && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1234			     ? SFmode					\
1235			     : DFmode),					\
1236			    XEXP (OP, 0)))				\
1237   : ((C) == 'S' ?							\
1238      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31)			\
1239   : ((C) == 'U' ?							\
1240      (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1241
1242
1243/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1244   and check its validity for a certain class.
1245   We have two alternate definitions for each of them.
1246   The usual definition accepts all pseudo regs; the other rejects
1247   them unless they have been allocated suitable hard regs.
1248   The symbol REG_OK_STRICT causes the latter definition to be used.
1249
1250   Most source files want to accept pseudo regs in the hope that
1251   they will get allocated to the class that the insn wants them to be in.
1252   Source files for reload pass need to be strict.
1253   After reload, it makes no difference, since pseudo regs have
1254   been eliminated by then.  */
1255
1256#ifndef REG_OK_STRICT
1257
1258/* Nonzero if X is a hard reg that can be used as an index
1259   or if it is a pseudo reg.  */
1260#define REG_OK_FOR_INDEX_P(X) \
1261(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1262/* Nonzero if X is a hard reg that can be used as a base reg
1263   or if it is a pseudo reg.  */
1264#define REG_OK_FOR_BASE_P(X) \
1265(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1266
1267#else
1268
1269/* Nonzero if X is a hard reg that can be used as an index.  */
1270#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1271/* Nonzero if X is a hard reg that can be used as a base reg.  */
1272#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1273
1274#endif
1275
1276/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1277   valid memory address for an instruction.  The MODE argument is the
1278   machine mode for the MEM expression that wants to use this address.
1279
1280   On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1281   REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
1282   available with floating point loads and stores, and integer loads.
1283   We get better code by allowing indexed addresses in the initial
1284   RTL generation.
1285
1286   The acceptance of indexed addresses as legitimate implies that we
1287   must provide patterns for doing indexed integer stores, or the move
1288   expanders must force the address of an indexed store to a register.
1289   We have adopted the latter approach.
1290
1291   Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1292   the base register is a valid pointer for indexed instructions.
1293   On targets that have non-equivalent space registers, we have to
1294   know at the time of assembler output which register in a REG+REG
1295   pair is the base register.  The REG_POINTER flag is sometimes lost
1296   in reload and the following passes, so it can't be relied on during
1297   code generation.  Thus, we either have to canonicalize the order
1298   of the registers in REG+REG indexed addresses, or treat REG+REG
1299   addresses separately and provide patterns for both permutations.
1300
1301   The latter approach requires several hundred additional lines of
1302   code in pa.md.  The downside to canonicalizing is that a PLUS
1303   in the wrong order can't combine to form to make a scaled indexed
1304   memory operand.  As we won't need to canonicalize the operands if
1305   the REG_POINTER lossage can be fixed, it seems better canonicalize.
1306
1307   We initially break out scaled indexed addresses in canonical order
1308   in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1309   scaled indexed addresses during RTL generation.  However, fold_rtx
1310   has its own opinion on how the operands of a PLUS should be ordered.
1311   If one of the operands is equivalent to a constant, it will make
1312   that operand the second operand.  As the base register is likely to
1313   be equivalent to a SYMBOL_REF, we have made it the second operand.
1314
1315   GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1316   operands are in the order INDEX+BASE on targets with non-equivalent
1317   space registers, and in any order on targets with equivalent space
1318   registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1319
1320   We treat a SYMBOL_REF as legitimate if it is part of the current
1321   function's constant-pool, because such addresses can actually be
1322   output as REG+SMALLINT.
1323
1324   Note we only allow 5 bit immediates for access to a constant address;
1325   doing so avoids losing for loading/storing a FP register at an address
1326   which will not fit in 5 bits.  */
1327
1328#define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1329#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1330
1331#define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1332#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1333
1334#define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1335#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1336
1337#define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1338#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1339
1340#if HOST_BITS_PER_WIDE_INT > 32
1341#define VAL_32_BITS_P(X) \
1342  ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1343   < (unsigned HOST_WIDE_INT) 2 << 31)
1344#else
1345#define VAL_32_BITS_P(X) 1
1346#endif
1347#define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1348
1349/* These are the modes that we allow for scaled indexing.  */
1350#define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1351  ((TARGET_64BIT && (MODE) == DImode)					\
1352   || (MODE) == SImode							\
1353   || (MODE) == HImode							\
1354   || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1355
1356/* These are the modes that we allow for unscaled indexing.  */
1357#define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1358  ((TARGET_64BIT && (MODE) == DImode)					\
1359   || (MODE) == SImode							\
1360   || (MODE) == HImode							\
1361   || (MODE) == QImode							\
1362   || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1363
1364#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1365{									\
1366  if ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
1367      || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1368	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1369	  && REG_P (XEXP (X, 0))					\
1370	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))				\
1371    goto ADDR;								\
1372  else if (GET_CODE (X) == PLUS)					\
1373    {									\
1374      rtx base = 0, index = 0;						\
1375      if (REG_P (XEXP (X, 1))						\
1376	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))				\
1377	base = XEXP (X, 1), index = XEXP (X, 0);			\
1378      else if (REG_P (XEXP (X, 0))					\
1379	       && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
1380	base = XEXP (X, 0), index = XEXP (X, 1);			\
1381      if (base								\
1382	  && GET_CODE (index) == CONST_INT				\
1383	  && ((INT_14_BITS (index)					\
1384	       && (((MODE) != DImode					\
1385		    && (MODE) != SFmode					\
1386		    && (MODE) != DFmode)				\
1387		   /* The base register for DImode loads and stores	\
1388		      with long displacements must be aligned because	\
1389		      the lower three bits in the displacement are	\
1390		      assumed to be zero.  */				\
1391		   || ((MODE) == DImode					\
1392		       && (!TARGET_64BIT				\
1393			   || (INTVAL (index) % 8) == 0))		\
1394		   /* Similarly, the base register for SFmode/DFmode	\
1395		      loads and stores with long displacements must	\
1396		      be aligned.					\
1397									\
1398		      FIXME: the ELF32 linker clobbers the LSB of	\
1399		      the FP register number in PA 2.0 floating-point	\
1400		      insns with long displacements.  This is because	\
1401		      R_PARISC_DPREL14WR and other relocations like	\
1402		      it are not supported.  For now, we reject long	\
1403		      displacements on this target.  */			\
1404		   || (((MODE) == SFmode || (MODE) == DFmode)		\
1405		       && (TARGET_SOFT_FLOAT				\
1406			   || (TARGET_PA_20				\
1407			       && !TARGET_ELF32				\
1408			       && (INTVAL (index)			\
1409				   % GET_MODE_SIZE (MODE)) == 0)))))	\
1410	       || INT_5_BITS (index)))					\
1411	goto ADDR;							\
1412      if (!TARGET_DISABLE_INDEXING					\
1413	  /* Only accept the "canonical" INDEX+BASE operand order	\
1414	     on targets with non-equivalent space registers.  */	\
1415	  && (TARGET_NO_SPACE_REGS					\
1416	      ? (base && REG_P (index))					\
1417	      : (base == XEXP (X, 1) && REG_P (index)			\
1418		 && (reload_completed					\
1419		     || (reload_in_progress && HARD_REGISTER_P (base))	\
1420		     || REG_POINTER (base))				\
1421		 && (reload_completed					\
1422		     || (reload_in_progress && HARD_REGISTER_P (index))	\
1423		     || !REG_POINTER (index))))				\
1424	  && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)			\
1425	  && REG_OK_FOR_INDEX_P (index)					\
1426	  && borx_reg_operand (base, Pmode)				\
1427	  && borx_reg_operand (index, Pmode))				\
1428	goto ADDR;							\
1429      if (!TARGET_DISABLE_INDEXING					\
1430	  && base							\
1431	  && GET_CODE (index) == MULT					\
1432	  && MODE_OK_FOR_SCALED_INDEXING_P (MODE)			\
1433	  && REG_P (XEXP (index, 0))					\
1434	  && GET_MODE (XEXP (index, 0)) == Pmode			\
1435	  && REG_OK_FOR_INDEX_P (XEXP (index, 0))			\
1436	  && GET_CODE (XEXP (index, 1)) == CONST_INT			\
1437	  && INTVAL (XEXP (index, 1))					\
1438	     == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)			\
1439	  && borx_reg_operand (base, Pmode))				\
1440	goto ADDR;							\
1441    }									\
1442  else if (GET_CODE (X) == LO_SUM					\
1443	   && GET_CODE (XEXP (X, 0)) == REG				\
1444	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1445	   && CONSTANT_P (XEXP (X, 1))					\
1446	   && (TARGET_SOFT_FLOAT					\
1447	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1448	       || (TARGET_PA_20						\
1449		   && !TARGET_ELF32					\
1450	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1451	       || ((MODE) != SFmode					\
1452		   && (MODE) != DFmode)))				\
1453    goto ADDR;								\
1454  else if (GET_CODE (X) == LO_SUM					\
1455	   && GET_CODE (XEXP (X, 0)) == SUBREG				\
1456	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG		\
1457	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))		\
1458	   && CONSTANT_P (XEXP (X, 1))					\
1459	   && (TARGET_SOFT_FLOAT					\
1460	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1461	       || (TARGET_PA_20						\
1462		   && !TARGET_ELF32					\
1463	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1464	       || ((MODE) != SFmode					\
1465		   && (MODE) != DFmode)))				\
1466    goto ADDR;								\
1467  else if (GET_CODE (X) == LABEL_REF					\
1468	   || (GET_CODE (X) == CONST_INT				\
1469	       && INT_5_BITS (X)))					\
1470    goto ADDR;								\
1471  /* Needed for -fPIC */						\
1472  else if (GET_CODE (X) == LO_SUM					\
1473	   && GET_CODE (XEXP (X, 0)) == REG             		\
1474	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1475	   && GET_CODE (XEXP (X, 1)) == UNSPEC				\
1476	   && (TARGET_SOFT_FLOAT					\
1477	       || (TARGET_PA_20	&& !TARGET_ELF32)			\
1478	       || ((MODE) != SFmode					\
1479		   && (MODE) != DFmode)))				\
1480    goto ADDR;								\
1481}
1482
1483/* Look for machine dependent ways to make the invalid address AD a
1484   valid address.
1485
1486   For the PA, transform:
1487
1488        memory(X + <large int>)
1489
1490   into:
1491
1492        if (<large int> & mask) >= 16
1493          Y = (<large int> & ~mask) + mask + 1  Round up.
1494        else
1495          Y = (<large int> & ~mask)             Round down.
1496        Z = X + Y
1497        memory (Z + (<large int> - Y));
1498
1499   This makes reload inheritance and reload_cse work better since Z
1500   can be reused.
1501
1502   There may be more opportunities to improve code with this hook.  */
1503#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1504do { 									\
1505  HOST_WIDE_INT offset, newoffset, mask;				\
1506  rtx new, temp = NULL_RTX;						\
1507									\
1508  mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1509	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1510									\
1511  if (optimize && GET_CODE (AD) == PLUS)				\
1512    temp = simplify_binary_operation (PLUS, Pmode,			\
1513				      XEXP (AD, 0), XEXP (AD, 1));	\
1514									\
1515  new = temp ? temp : AD;						\
1516									\
1517  if (optimize								\
1518      && GET_CODE (new) == PLUS						\
1519      && GET_CODE (XEXP (new, 0)) == REG				\
1520      && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1521    {									\
1522      offset = INTVAL (XEXP ((new), 1));				\
1523									\
1524      /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1525      if ((offset & mask) >= ((mask + 1) / 2))				\
1526	newoffset = (offset & ~mask) + mask + 1;			\
1527      else								\
1528	newoffset = offset & ~mask;					\
1529									\
1530      /* Ensure that long displacements are aligned.  */		\
1531      if (!VAL_5_BITS_P (newoffset)					\
1532	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1533	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1534									\
1535      if (newoffset != 0 && VAL_14_BITS_P (newoffset))			\
1536	{								\
1537	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1538			       GEN_INT (newoffset));			\
1539	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1540	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1541		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,		\
1542		       (OPNUM), (TYPE));				\
1543	  goto WIN;							\
1544	}								\
1545    }									\
1546} while (0)
1547
1548
1549
1550
1551/* Try machine-dependent ways of modifying an illegitimate address
1552   to be legitimate.  If we find one, return the new, valid address.
1553   This macro is used in only one place: `memory_address' in explow.c.
1554
1555   OLDX is the address as it was before break_out_memory_refs was called.
1556   In some cases it is useful to look at this to decide what needs to be done.
1557
1558   MODE and WIN are passed so that this macro can use
1559   GO_IF_LEGITIMATE_ADDRESS.
1560
1561   It is always safe for this macro to do nothing.  It exists to recognize
1562   opportunities to optimize the output.  */
1563
1564#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1565{ rtx orig_x = (X);				\
1566  (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1567  if ((X) != orig_x && memory_address_p (MODE, X)) \
1568    goto WIN; }
1569
1570/* Go to LABEL if ADDR (a legitimate address expression)
1571   has an effect that depends on the machine mode it is used for.  */
1572
1573#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1574  if (GET_CODE (ADDR) == PRE_DEC	\
1575      || GET_CODE (ADDR) == POST_DEC	\
1576      || GET_CODE (ADDR) == PRE_INC	\
1577      || GET_CODE (ADDR) == POST_INC)	\
1578    goto LABEL
1579
1580#define TARGET_ASM_SELECT_SECTION  pa_select_section
1581
1582/* Return a nonzero value if DECL has a section attribute.  */
1583#define IN_NAMED_SECTION_P(DECL) \
1584  ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1585   && DECL_SECTION_NAME (DECL) != NULL_TREE)
1586
1587/* The following extra sections and extra section functions are only used
1588   for SOM, but they must be provided unconditionally because pa.c's calls
1589   to the functions might not get optimized out when other object formats
1590   are in use.  */
1591
1592#define EXTRA_SECTIONS							\
1593  in_som_readonly_data,							\
1594  in_som_one_only_readonly_data,					\
1595  in_som_one_only_data
1596
1597#define EXTRA_SECTION_FUNCTIONS						\
1598  SOM_READONLY_DATA_SECTION_FUNCTION					\
1599  SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION				\
1600  SOM_ONE_ONLY_DATA_SECTION_FUNCTION					\
1601  FORGET_SECTION_FUNCTION
1602
1603/* SOM puts readonly data in the default $LIT$ subspace when PIC code
1604   is not being generated.  */
1605#define SOM_READONLY_DATA_SECTION_FUNCTION				\
1606void									\
1607som_readonly_data_section (void)					\
1608{									\
1609  if (!TARGET_SOM)							\
1610    return;								\
1611  if (in_section != in_som_readonly_data)				\
1612    {									\
1613      in_section = in_som_readonly_data;				\
1614      fputs ("\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n", asm_out_file);	\
1615    }									\
1616}
1617
1618/* When secondary definitions are not supported, SOM makes readonly data one
1619   only by creating a new $LIT$ subspace in $TEXT$ with the comdat flag.  */
1620#define SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION			\
1621void									\
1622som_one_only_readonly_data_section (void)				\
1623{									\
1624  if (!TARGET_SOM)							\
1625    return;								\
1626  in_section = in_som_one_only_readonly_data;				\
1627  fputs ("\t.SPACE $TEXT$\n"						\
1628	 "\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=16,COMDAT\n",\
1629	 asm_out_file);							\
1630}
1631
1632/* When secondary definitions are not supported, SOM makes data one only by
1633   creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag.  */
1634#define SOM_ONE_ONLY_DATA_SECTION_FUNCTION				\
1635void									\
1636som_one_only_data_section (void)					\
1637{									\
1638  if (!TARGET_SOM)							\
1639    return;								\
1640  in_section = in_som_one_only_data;					\
1641  fputs ("\t.SPACE $PRIVATE$\n"						\
1642	 "\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=24,COMDAT\n",	\
1643	 asm_out_file);							\
1644}
1645
1646#define FORGET_SECTION_FUNCTION						\
1647void									\
1648forget_section (void)							\
1649{									\
1650  in_section = no_section;						\
1651}
1652
1653/* Define this macro if references to a symbol must be treated
1654   differently depending on something about the variable or
1655   function named by the symbol (such as what section it is in).
1656
1657   The macro definition, if any, is executed immediately after the
1658   rtl for DECL or other node is created.
1659   The value of the rtl will be a `mem' whose address is a
1660   `symbol_ref'.
1661
1662   The usual thing for this macro to do is to a flag in the
1663   `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1664   name string in the `symbol_ref' (if one bit is not enough
1665   information).
1666
1667   On the HP-PA we use this to indicate if a symbol is in text or
1668   data space.  Also, function labels need special treatment.  */
1669
1670#define TEXT_SPACE_P(DECL)\
1671  (TREE_CODE (DECL) == FUNCTION_DECL					\
1672   || (TREE_CODE (DECL) == VAR_DECL					\
1673       && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1674       && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1675       && !flag_pic)							\
1676   || CONSTANT_CLASS_P (DECL))
1677
1678#define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1679
1680/* Specify the machine mode that this machine uses for the index in the
1681   tablejump instruction.  For small tables, an element consists of a
1682   ia-relative branch and its delay slot.  When -mbig-switch is specified,
1683   we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1684   for both 32 and 64-bit pic code.  */
1685#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1686
1687/* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1688#define ADDR_VEC_ALIGN(ADDR_VEC) 2
1689
1690/* Define this as 1 if `char' should by default be signed; else as 0.  */
1691#define DEFAULT_SIGNED_CHAR 1
1692
1693/* Max number of bytes we can move from memory to memory
1694   in one reasonably fast instruction.  */
1695#define MOVE_MAX 8
1696
1697/* Higher than the default as we prefer to use simple move insns
1698   (better scheduling and delay slot filling) and because our
1699   built-in block move is really a 2X unrolled loop.
1700
1701   Believe it or not, this has to be big enough to allow for copying all
1702   arguments passed in registers to avoid infinite recursion during argument
1703   setup for a function call.  Why?  Consider how we copy the stack slots
1704   reserved for parameters when they may be trashed by a call.  */
1705#define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1706
1707/* Define if operations between registers always perform the operation
1708   on the full register even if a narrower mode is specified.  */
1709#define WORD_REGISTER_OPERATIONS
1710
1711/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1712   will either zero-extend or sign-extend.  The value of this macro should
1713   be the code that says which one of the two operations is implicitly
1714   done, UNKNOWN if none.  */
1715#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1716
1717/* Nonzero if access to memory by bytes is slow and undesirable.  */
1718#define SLOW_BYTE_ACCESS 1
1719
1720/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1721   is done just by pretending it is already truncated.  */
1722#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1723
1724/* Specify the machine mode that pointers have.
1725   After generation of rtl, the compiler makes no further distinction
1726   between pointers and any other objects of this machine mode.  */
1727#define Pmode word_mode
1728
1729/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1730   return the mode to be used for the comparison.  For floating-point, CCFPmode
1731   should be used.  CC_NOOVmode should be used when the first operand is a
1732   PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1733   needed.  */
1734#define SELECT_CC_MODE(OP,X,Y) \
1735  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1736
1737/* A function address in a call instruction
1738   is a byte address (for indexing purposes)
1739   so give the MEM rtx a byte's mode.  */
1740#define FUNCTION_MODE SImode
1741
1742/* Define this if addresses of constant functions
1743   shouldn't be put through pseudo regs where they can be cse'd.
1744   Desirable on machines where ordinary constants are expensive
1745   but a CALL with constant address is cheap.  */
1746#define NO_FUNCTION_CSE
1747
1748/* Define this to be nonzero if shift instructions ignore all but the low-order
1749   few bits.  */
1750#define SHIFT_COUNT_TRUNCATED 1
1751
1752/* Compute extra cost of moving data between one register class
1753   and another.
1754
1755   Make moves from SAR so expensive they should never happen.  We used to
1756   have 0xffff here, but that generates overflow in rare cases.
1757
1758   Copies involving a FP register and a non-FP register are relatively
1759   expensive because they must go through memory.
1760
1761   Other copies are reasonably cheap.  */
1762#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1763 (CLASS1 == SHIFT_REGS ? 0x100					\
1764  : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1765  : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1766  : 2)
1767
1768/* Adjust the cost of branches.  */
1769#define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1770
1771/* Handling the special cases is going to get too complicated for a macro,
1772   just call `pa_adjust_insn_length' to do the real work.  */
1773#define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1774  LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1775
1776/* Millicode insns are actually function calls with some special
1777   constraints on arguments and register usage.
1778
1779   Millicode calls always expect their arguments in the integer argument
1780   registers, and always return their result in %r29 (ret1).  They
1781   are expected to clobber their arguments, %r1, %r29, and the return
1782   pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1783
1784   This macro tells reorg that the references to arguments and
1785   millicode calls do not appear to happen until after the millicode call.
1786   This allows reorg to put insns which set the argument registers into the
1787   delay slot of the millicode call -- thus they act more like traditional
1788   CALL_INSNs.
1789
1790   Note we cannot consider side effects of the insn to be delayed because
1791   the branch and link insn will clobber the return pointer.  If we happened
1792   to use the return pointer in the delay slot of the call, then we lose.
1793
1794   get_attr_type will try to recognize the given insn, so make sure to
1795   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1796   in particular.  */
1797#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1798
1799
1800/* Control the assembler format that we output.  */
1801
1802/* A C string constant describing how to begin a comment in the target
1803   assembler language.  The compiler assumes that the comment will end at
1804   the end of the line.  */
1805
1806#define ASM_COMMENT_START ";"
1807
1808/* Output to assembler file text saying following lines
1809   may contain character constants, extra white space, comments, etc.  */
1810
1811#define ASM_APP_ON ""
1812
1813/* Output to assembler file text saying following lines
1814   no longer contain unusual constructs.  */
1815
1816#define ASM_APP_OFF ""
1817
1818/* This is how to output the definition of a user-level label named NAME,
1819   such as the label on a static function or variable NAME.  */
1820
1821#define ASM_OUTPUT_LABEL(FILE,NAME) \
1822  do {							\
1823    assemble_name ((FILE), (NAME));			\
1824    if (TARGET_GAS)					\
1825      fputs (":\n", (FILE));				\
1826    else						\
1827      fputc ('\n', (FILE));				\
1828  } while (0)
1829
1830/* This is how to output a reference to a user-level label named NAME.
1831   `assemble_name' uses this.  */
1832
1833#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1834  do {					\
1835    const char *xname = (NAME);		\
1836    if (FUNCTION_NAME_P (NAME))		\
1837      xname += 1;			\
1838    if (xname[0] == '*')		\
1839      xname += 1;			\
1840    else				\
1841      fputs (user_label_prefix, FILE);	\
1842    fputs (xname, FILE);		\
1843  } while (0)
1844
1845/* This how we output the symbol_ref X.  */
1846
1847#define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1848  do {                                                 \
1849    SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1850    assemble_name (FILE, XSTR (X, 0));                 \
1851  } while (0)
1852
1853/* This is how to store into the string LABEL
1854   the symbol_ref name of an internal numbered label where
1855   PREFIX is the class of label and NUM is the number within the class.
1856   This is suitable for output with `assemble_name'.  */
1857
1858#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1859  sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1860
1861/* Output the definition of a compiler-generated label named NAME.  */
1862
1863#define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1864  do {							\
1865    assemble_name_raw ((FILE), (NAME));			\
1866    if (TARGET_GAS)					\
1867      fputs (":\n", (FILE));				\
1868    else						\
1869      fputc ('\n', (FILE));				\
1870  } while (0)
1871
1872#define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1873
1874#define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1875  output_ascii ((FILE), (P), (SIZE))
1876
1877/* Jump tables are always placed in the text section.  Technically, it
1878   is possible to put them in the readonly data section when -mbig-switch
1879   is specified.  This has the benefit of getting the table out of .text
1880   and reducing branch lengths as a result.  The downside is that an
1881   additional insn (addil) is needed to access the table when generating
1882   PIC code.  The address difference table also has to use 32-bit
1883   pc-relative relocations.  Currently, GAS does not support these
1884   relocations, although it is easily modified to do this operation.
1885   The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1886   when using ELF GAS.  A simple difference can be used when using
1887   SOM GAS or the HP assembler.  The final downside is GDB complains
1888   about the nesting of the label for the table when debugging.  */
1889
1890#define JUMP_TABLES_IN_TEXT_SECTION 1
1891
1892/* This is how to output an element of a case-vector that is absolute.  */
1893
1894#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1895  if (TARGET_BIG_SWITCH)						\
1896    fprintf (FILE, "\t.word L$%04d\n", VALUE);				\
1897  else									\
1898    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1899
1900/* This is how to output an element of a case-vector that is relative.
1901   Since we always place jump tables in the text section, the difference
1902   is absolute and requires no relocation.  */
1903
1904#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1905  if (TARGET_BIG_SWITCH)						\
1906    fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);		\
1907  else									\
1908    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1909
1910/* This is how to output an assembler line that says to advance the
1911   location counter to a multiple of 2**LOG bytes.  */
1912
1913#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1914    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1915
1916#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1917  fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1918	   (unsigned HOST_WIDE_INT)(SIZE))
1919
1920/* This says how to output an assembler line to define an uninitialized
1921   global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1922   This macro exists to properly support languages like C++ which do not
1923   have common data.  */
1924
1925#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
1926  pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1927
1928/* This says how to output an assembler line to define a global common symbol
1929   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1930
1931#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
1932  pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1933
1934/* This says how to output an assembler line to define a local common symbol
1935   with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1936   controls how the assembler definitions of uninitialized static variables
1937   are output.  */
1938
1939#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1940  pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1941
1942
1943#define ASM_PN_FORMAT "%s___%lu"
1944
1945/* All HP assemblers use "!" to separate logical lines.  */
1946#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1947
1948#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1949  ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1950
1951/* Print operand X (an rtx) in assembler syntax to file FILE.
1952   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1953   For `%' followed by punctuation, CODE is the punctuation and X is null.
1954
1955   On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1956   and an immediate zero should be represented as `r0'.
1957
1958   Several % codes are defined:
1959   O an operation
1960   C compare conditions
1961   N extract conditions
1962   M modifier to handle preincrement addressing for memory refs.
1963   F modifier to handle preincrement addressing for fp memory refs */
1964
1965#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1966
1967
1968/* Print a memory address as an operand to reference that memory location.  */
1969
1970#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1971{ rtx addr = ADDR;							\
1972  switch (GET_CODE (addr))						\
1973    {									\
1974    case REG:								\
1975      fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1976      break;								\
1977    case PLUS:								\
1978      gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
1979      fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
1980	       reg_names [REGNO (XEXP (addr, 0))]);			\
1981      break;								\
1982    case LO_SUM:							\
1983      if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1984	fputs ("R'", FILE);						\
1985      else if (flag_pic == 0)						\
1986	fputs ("RR'", FILE);						\
1987      else								\
1988	fputs ("RT'", FILE);						\
1989      output_global_address (FILE, XEXP (addr, 1), 0);			\
1990      fputs ("(", FILE);						\
1991      output_operand (XEXP (addr, 0), 0);				\
1992      fputs (")", FILE);						\
1993      break;								\
1994    case CONST_INT:							\
1995      fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
1996      break;								\
1997    default:								\
1998      output_addr_const (FILE, addr);					\
1999    }}
2000
2001
2002/* Find the return address associated with the frame given by
2003   FRAMEADDR.  */
2004#define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
2005  (return_addr_rtx (COUNT, FRAMEADDR))
2006
2007/* Used to mask out junk bits from the return address, such as
2008   processor state, interrupt status, condition codes and the like.  */
2009#define MASK_RETURN_ADDR						\
2010  /* The privilege level is in the two low order bits, mask em out	\
2011     of the return address.  */						\
2012  (GEN_INT (-4))
2013
2014/* The number of Pmode words for the setjmp buffer.  */
2015#define JMP_BUF_SIZE 50
2016
2017/* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
2018#define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2019  "__canonicalize_funcptr_for_compare"
2020
2021#ifdef HAVE_AS_TLS
2022#undef TARGET_HAVE_TLS
2023#define TARGET_HAVE_TLS true
2024#endif
2025