1/* Definitions of target machine for GNU compiler.  MIPS version.
2   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5   Changed by Michael Meissner	(meissner@osf.org).
6   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7   Brendan Eich (brendan@microunity.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GCC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING.  If not, write to
23the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA.  */
25
26
27/* MIPS external variables defined in mips.c.  */
28
29/* Which processor to schedule for.  Since there is no difference between
30   a R2000 and R3000 in terms of the scheduler, we collapse them into
31   just an R3000.  The elements of the enumeration must match exactly
32   the cpu attribute in the mips.md machine description.  */
33
34enum processor_type {
35  PROCESSOR_R3000,
36  PROCESSOR_4KC,
37  PROCESSOR_4KP,
38  PROCESSOR_5KC,
39  PROCESSOR_5KF,
40  PROCESSOR_20KC,
41  PROCESSOR_24K,
42  PROCESSOR_24KX,
43  PROCESSOR_M4K,
44  PROCESSOR_R3900,
45  PROCESSOR_R6000,
46  PROCESSOR_R4000,
47  PROCESSOR_R4100,
48  PROCESSOR_R4111,
49  PROCESSOR_R4120,
50  PROCESSOR_R4130,
51  PROCESSOR_R4300,
52  PROCESSOR_R4600,
53  PROCESSOR_R4650,
54  PROCESSOR_R5000,
55  PROCESSOR_R5400,
56  PROCESSOR_R5500,
57  PROCESSOR_R7000,
58  PROCESSOR_R8000,
59  PROCESSOR_R9000,
60  PROCESSOR_SB1,
61  PROCESSOR_SR71000,
62  PROCESSOR_MAX
63};
64
65/* Costs of various operations on the different architectures.  */
66
67struct mips_rtx_cost_data
68{
69  unsigned short fp_add;
70  unsigned short fp_mult_sf;
71  unsigned short fp_mult_df;
72  unsigned short fp_div_sf;
73  unsigned short fp_div_df;
74  unsigned short int_mult_si;
75  unsigned short int_mult_di;
76  unsigned short int_div_si;
77  unsigned short int_div_di;
78  unsigned short branch_cost;
79  unsigned short memory_latency;
80};
81
82/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
83   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
84   to work on a 64 bit machine.  */
85
86#define ABI_32  0
87#define ABI_N32 1
88#define ABI_64  2
89#define ABI_EABI 3
90#define ABI_O64  4
91
92/* Information about one recognized processor.  Defined here for the
93   benefit of TARGET_CPU_CPP_BUILTINS.  */
94struct mips_cpu_info {
95  /* The 'canonical' name of the processor as far as GCC is concerned.
96     It's typically a manufacturer's prefix followed by a numerical
97     designation.  It should be lower case.  */
98  const char *name;
99
100  /* The internal processor number that most closely matches this
101     entry.  Several processors can have the same value, if there's no
102     difference between them from GCC's point of view.  */
103  enum processor_type cpu;
104
105  /* The ISA level that the processor implements.  */
106  int isa;
107};
108
109extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
110extern const char *current_function_file; /* filename current function is in */
111extern int num_source_filenames;	/* current .file # */
112extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
113extern int sym_lineno;			/* sgi next label # for each stmt */
114extern int set_noreorder;		/* # of nested .set noreorder's  */
115extern int set_nomacro;			/* # of nested .set nomacro's  */
116extern int set_noat;			/* # of nested .set noat's  */
117extern int set_volatile;		/* # of nested .set volatile's  */
118extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
119extern int mips_dbx_regno[];		/* Map register # to debug register # */
120extern GTY(()) rtx cmp_operands[2];
121extern enum processor_type mips_arch;   /* which cpu to codegen for */
122extern enum processor_type mips_tune;   /* which cpu to schedule for */
123extern int mips_isa;			/* architectural level */
124extern int mips_abi;			/* which ABI to use */
125extern int mips16_hard_float;		/* mips16 without -msoft-float */
126extern const struct mips_cpu_info mips_cpu_info_table[];
127extern const struct mips_cpu_info *mips_arch_info;
128extern const struct mips_cpu_info *mips_tune_info;
129extern const struct mips_rtx_cost_data *mips_cost;
130
131/* Macros to silence warnings about numbers being signed in traditional
132   C and unsigned in ISO C when compiled on 32-bit hosts.  */
133
134#define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
135#define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
136#define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
137
138
139/* Run-time compilation parameters selecting different hardware subsets.  */
140
141/* True if the call patterns should be split into a jalr followed by
142   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
143   in which $gp is call-clobbered.  It is only safe to split the load
144   from the call when every use of $gp is explicit.  */
145
146#define TARGET_SPLIT_CALLS \
147  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
148
149/* True if we can optimize sibling calls.  For simplicity, we only
150   handle cases in which call_insn_operand will reject invalid
151   sibcall addresses.  There are two cases in which this isn't true:
152
153      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
154	but there is no direct jump instruction.  It isn't worth
155	using sibling calls in this case anyway; they would usually
156	be longer than normal calls.
157
158      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
159	accepts global constants, but "jr $25" is the only allowed
160	sibcall.  */
161
162#define TARGET_SIBCALLS \
163  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
164
165/* True if .gpword or .gpdword should be used for switch tables.
166
167   Although GAS does understand .gpdword, the SGI linker mishandles
168   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
170#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
171
172/* Generate mips16 code */
173#define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
174/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64/mips64r2 */
175#define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
176
177/* Generic ISA defines.  */
178#define ISA_MIPS1		    (mips_isa == 1)
179#define ISA_MIPS2		    (mips_isa == 2)
180#define ISA_MIPS3                   (mips_isa == 3)
181#define ISA_MIPS4		    (mips_isa == 4)
182#define ISA_MIPS32		    (mips_isa == 32)
183#define ISA_MIPS32R2		    (mips_isa == 33)
184#define ISA_MIPS64                  (mips_isa == 64)
185#define ISA_MIPS64R2		    (mips_isa == 65)
186
187/* Architecture target defines.  */
188#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
189#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
190#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
191#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
192#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
193#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
194#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
195#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
196#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1)
197#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
198
199/* Scheduling target defines.  */
200#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
201#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
202#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
203#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
204#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
205#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
206#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
207#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
208#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
209#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
210#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
211#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1)
212
213/* True if the pre-reload scheduler should try to create chains of
214   multiply-add or multiply-subtract instructions.  For example,
215   suppose we have:
216
217	t1 = a * b
218	t2 = t1 + c * d
219	t3 = e * f
220	t4 = t3 - g * h
221
222   t1 will have a higher priority than t2 and t3 will have a higher
223   priority than t4.  However, before reload, there is no dependence
224   between t1 and t3, and they can often have similar priorities.
225   The scheduler will then tend to prefer:
226
227	t1 = a * b
228	t3 = e * f
229	t2 = t1 + c * d
230	t4 = t3 - g * h
231
232   which stops us from making full use of macc/madd-style instructions.
233   This sort of situation occurs frequently in Fourier transforms and
234   in unrolled loops.
235
236   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
237   queue so that chained multiply-add and multiply-subtract instructions
238   appear ahead of any other instruction that is likely to clobber lo.
239   In the example above, if t2 and t3 become ready at the same time,
240   the code ensures that t2 is scheduled first.
241
242   Multiply-accumulate instructions are a bigger win for some targets
243   than others, so this macro is defined on an opt-in basis.  */
244#define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
245				     || TUNE_MIPS4120		\
246				     || TUNE_MIPS4130)
247
248#define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
249#define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
250
251/* IRIX specific stuff.  */
252#define TARGET_IRIX	   0
253#define TARGET_IRIX6	   0
254
255/* Define preprocessor macros for the -march and -mtune options.
256   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
257   processor.  If INFO's canonical name is "foo", define PREFIX to
258   be "foo", and define an additional macro PREFIX_FOO.  */
259#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
260  do								\
261    {								\
262      char *macro, *p;						\
263								\
264      macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
265      for (p = macro; *p != 0; p++)				\
266	*p = TOUPPER (*p);					\
267								\
268      builtin_define (macro);					\
269      builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
270      free (macro);						\
271    }								\
272  while (0)
273
274/* Target CPU builtins.  */
275#define TARGET_CPU_CPP_BUILTINS()				\
276  do								\
277    {								\
278      /* Everyone but IRIX defines this to mips.  */            \
279      if (!TARGET_IRIX)                                         \
280        builtin_assert ("machine=mips");                        \
281                                                                \
282      builtin_assert ("cpu=mips");				\
283      builtin_define ("__mips__");     				\
284      builtin_define ("_mips");					\
285								\
286      /* We do this here because __mips is defined below	\
287	 and so we can't use builtin_define_std.  */		\
288      if (!flag_iso)						\
289	builtin_define ("mips");				\
290								\
291      if (TARGET_64BIT)						\
292	builtin_define ("__mips64");				\
293								\
294      if (!TARGET_IRIX)						\
295	{							\
296	  /* Treat _R3000 and _R4000 like register-size		\
297	     defines, which is how they've historically		\
298	     been used.  */					\
299	  if (TARGET_64BIT)					\
300	    {							\
301	      builtin_define_std ("R4000");			\
302	      builtin_define ("_R4000");			\
303	    }							\
304	  else							\
305	    {							\
306	      builtin_define_std ("R3000");			\
307	      builtin_define ("_R3000");			\
308	    }							\
309	}							\
310      if (TARGET_FLOAT64)					\
311	builtin_define ("__mips_fpr=64");			\
312      else							\
313	builtin_define ("__mips_fpr=32");			\
314								\
315      if (TARGET_MIPS16)					\
316	builtin_define ("__mips16");				\
317								\
318      if (TARGET_MIPS3D)					\
319	builtin_define ("__mips3d");				\
320								\
321      if (TARGET_DSP)						\
322	builtin_define ("__mips_dsp");				\
323								\
324      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
325      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
326								\
327      if (ISA_MIPS1)						\
328	{							\
329	  builtin_define ("__mips=1");				\
330	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
331	}							\
332      else if (ISA_MIPS2)					\
333	{							\
334	  builtin_define ("__mips=2");				\
335	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
336	}							\
337      else if (ISA_MIPS3)					\
338	{							\
339	  builtin_define ("__mips=3");				\
340	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
341	}							\
342      else if (ISA_MIPS4)					\
343	{							\
344	  builtin_define ("__mips=4");				\
345	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
346	}							\
347      else if (ISA_MIPS32)					\
348	{							\
349	  builtin_define ("__mips=32");				\
350	  builtin_define ("__mips_isa_rev=1");			\
351	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
352	}							\
353      else if (ISA_MIPS32R2)					\
354	{							\
355	  builtin_define ("__mips=32");				\
356	  builtin_define ("__mips_isa_rev=2");			\
357	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
358	}							\
359      else if (ISA_MIPS64)					\
360	{							\
361	  builtin_define ("__mips=64");				\
362	  builtin_define ("__mips_isa_rev=1");			\
363	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
364	}							\
365      else if (ISA_MIPS64R2)					\
366	{							\
367	  builtin_define ("__mips=64");				\
368	  builtin_define ("__mips_isa_rev=2");			\
369	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
370	}							\
371								\
372      if (TARGET_HARD_FLOAT)					\
373	builtin_define ("__mips_hard_float");			\
374      else if (TARGET_SOFT_FLOAT)				\
375	builtin_define ("__mips_soft_float");			\
376								\
377      if (TARGET_SINGLE_FLOAT)					\
378	builtin_define ("__mips_single_float");			\
379								\
380      if (TARGET_PAIRED_SINGLE_FLOAT)				\
381	builtin_define ("__mips_paired_single_float");		\
382								\
383      if (TARGET_BIG_ENDIAN)					\
384	{							\
385	  builtin_define_std ("MIPSEB");			\
386	  builtin_define ("_MIPSEB");				\
387	}							\
388      else							\
389	{							\
390	  builtin_define_std ("MIPSEL");			\
391	  builtin_define ("_MIPSEL");				\
392	}							\
393								\
394        /* Macros dependent on the C dialect.  */		\
395      if (preprocessing_asm_p ())				\
396	{							\
397          builtin_define_std ("LANGUAGE_ASSEMBLY");		\
398	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
399	}							\
400      else if (c_dialect_cxx ())				\
401        {							\
402	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
403          builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
404          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
405        }							\
406      else							\
407	{							\
408          builtin_define_std ("LANGUAGE_C");			\
409	  builtin_define ("_LANGUAGE_C");			\
410	}							\
411      if (c_dialect_objc ())					\
412        {							\
413	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
414          builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
415	  /* Bizarre, but needed at least for Irix.  */		\
416	  builtin_define_std ("LANGUAGE_C");			\
417	  builtin_define ("_LANGUAGE_C");			\
418        }							\
419								\
420      if (mips_abi == ABI_EABI)					\
421	builtin_define ("__mips_eabi");				\
422								\
423} while (0)
424
425/* Default target_flags if no switches are specified  */
426
427#ifndef TARGET_DEFAULT
428#define TARGET_DEFAULT 0
429#endif
430
431#ifndef TARGET_CPU_DEFAULT
432#define TARGET_CPU_DEFAULT 0
433#endif
434
435#ifndef TARGET_ENDIAN_DEFAULT
436#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
437#endif
438
439#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
440#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
441#endif
442
443/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
444#ifndef MIPS_ISA_DEFAULT
445#ifndef MIPS_CPU_STRING_DEFAULT
446#define MIPS_CPU_STRING_DEFAULT "from-abi"
447#endif
448#endif
449
450#ifdef IN_LIBGCC2
451#undef TARGET_64BIT
452/* Make this compile time constant for libgcc2 */
453#ifdef __mips64
454#define TARGET_64BIT		1
455#else
456#define TARGET_64BIT		0
457#endif
458#endif /* IN_LIBGCC2 */
459
460#ifndef MULTILIB_ENDIAN_DEFAULT
461#if TARGET_ENDIAN_DEFAULT == 0
462#define MULTILIB_ENDIAN_DEFAULT "EL"
463#else
464#define MULTILIB_ENDIAN_DEFAULT "EB"
465#endif
466#endif
467
468#ifndef MULTILIB_ISA_DEFAULT
469#  if MIPS_ISA_DEFAULT == 1
470#    define MULTILIB_ISA_DEFAULT "mips1"
471#  else
472#    if MIPS_ISA_DEFAULT == 2
473#      define MULTILIB_ISA_DEFAULT "mips2"
474#    else
475#      if MIPS_ISA_DEFAULT == 3
476#        define MULTILIB_ISA_DEFAULT "mips3"
477#      else
478#        if MIPS_ISA_DEFAULT == 4
479#          define MULTILIB_ISA_DEFAULT "mips4"
480#        else
481#          if MIPS_ISA_DEFAULT == 32
482#            define MULTILIB_ISA_DEFAULT "mips32"
483#          else
484#            if MIPS_ISA_DEFAULT == 33
485#              define MULTILIB_ISA_DEFAULT "mips32r2"
486#            else
487#              if MIPS_ISA_DEFAULT == 64
488#                define MULTILIB_ISA_DEFAULT "mips64"
489#              else
490#               if MIPS_ISA_DEFAULT == 65
491#                 define MULTILIB_ISA_DEFAULT "mips64r2"
492#               else
493#                 define MULTILIB_ISA_DEFAULT "mips1"
494#               endif
495#              endif
496#            endif
497#          endif
498#        endif
499#      endif
500#    endif
501#  endif
502#endif
503
504#ifndef MULTILIB_DEFAULTS
505#define MULTILIB_DEFAULTS \
506    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
507#endif
508
509/* We must pass -EL to the linker by default for little endian embedded
510   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
511   linker will default to using big-endian output files.  The OUTPUT_FORMAT
512   line must be in the linker script, otherwise -EB/-EL will not work.  */
513
514#ifndef ENDIAN_SPEC
515#if TARGET_ENDIAN_DEFAULT == 0
516#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
517#else
518#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
519#endif
520#endif
521
522/* Support for a compile-time default CPU, et cetera.  The rules are:
523   --with-arch is ignored if -march is specified or a -mips is specified
524     (other than -mips16).
525   --with-tune is ignored if -mtune is specified.
526   --with-abi is ignored if -mabi is specified.
527   --with-float is ignored if -mhard-float or -msoft-float are
528     specified.
529   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
530     specified. */
531#define OPTION_DEFAULT_SPECS \
532  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
533  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
534  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
535  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
536  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
537
538
539#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
540                               && ISA_HAS_COND_TRAP)
541
542#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
543				 && !TARGET_SR71K                       \
544				 && !TARGET_MIPS16)
545
546/* Generate three-operand multiply instructions for SImode.  */
547#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
548                                  || TARGET_MIPS5400                    \
549                                  || TARGET_MIPS5500                    \
550                                  || TARGET_MIPS7000                    \
551                                  || TARGET_MIPS9000                    \
552				  || TARGET_MAD				\
553                                  || ISA_MIPS32	                        \
554                                  || ISA_MIPS32R2                       \
555                                  || ISA_MIPS64                         \
556                                  || ISA_MIPS64R2                       \
557                                  ) && !TARGET_MIPS16)
558
559/* Generate three-operand multiply instructions for DImode.  */
560#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
561				 && !TARGET_MIPS16)
562
563/* True if the ABI can only work with 64-bit integer registers.  We
564   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
565   otherwise floating-point registers must also be 64-bit.  */
566#define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
567
568/* Likewise for 32-bit regs.  */
569#define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
570
571/* True if symbols are 64 bits wide.  At present, n64 is the only
572   ABI for which this is true.  */
573#define ABI_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64 && !TARGET_SYM32)
574
575/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
576#define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
577				 || ISA_MIPS4				\
578                                 || ISA_MIPS64				\
579				 || ISA_MIPS64R2)
580
581/* ISA has branch likely instructions (e.g. mips2).  */
582/* Disable branchlikely for tx39 until compare rewrite.  They haven't
583   been generated up to this point.  */
584#define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
585
586/* ISA has the conditional move instructions introduced in mips4.  */
587#define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
588				  || ISA_MIPS32	                        \
589				  || ISA_MIPS32R2                       \
590				  || ISA_MIPS64                         \
591				  || ISA_MIPS64R2			\
592                                  ) && !TARGET_MIPS5500                 \
593				 && !TARGET_MIPS16)
594
595/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
596   branch on CC, and move (both FP and non-FP) on CC.  */
597#define ISA_HAS_8CC		(ISA_MIPS4				\
598                         	 || ISA_MIPS32	                        \
599                         	 || ISA_MIPS32R2                        \
600                         	 || ISA_MIPS64                          \
601				 || ISA_MIPS64R2)
602
603/* This is a catch all for other mips4 instructions: indexed load, the
604   FP madd and msub instructions, and the FP recip and recip sqrt
605   instructions.  */
606#define ISA_HAS_FP4             ((ISA_MIPS4				\
607				  || ISA_MIPS64       			\
608				  || ISA_MIPS64R2       		\
609 				  ) && !TARGET_MIPS16)
610
611/* ISA has conditional trap instructions.  */
612#define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
613				 && !TARGET_MIPS16)
614
615/* ISA has integer multiply-accumulate instructions, madd and msub.  */
616#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
617				  || ISA_MIPS32R2			\
618				  || ISA_MIPS64				\
619				  || ISA_MIPS64R2			\
620				  ) && !TARGET_MIPS16)
621
622/* ISA has floating-point nmadd and nmsub instructions.  */
623#define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
624				  || ISA_MIPS64       			\
625				  || ISA_MIPS64R2      			\
626                                  ) && (!TARGET_MIPS5400 || TARGET_MAD) \
627				 && ! TARGET_MIPS16)
628
629/* ISA has count leading zeroes/ones instruction (not implemented).  */
630#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
631                                  || ISA_MIPS32R2			\
632                                  || ISA_MIPS64				\
633                                  || ISA_MIPS64R2			\
634                                  ) && !TARGET_MIPS16)
635
636/* ISA has double-word count leading zeroes/ones instruction (not
637   implemented).  */
638#define ISA_HAS_DCLZ_DCLO       ((ISA_MIPS64				\
639                                  || ISA_MIPS64R2			\
640				  ) && !TARGET_MIPS16)
641
642/* ISA has three operand multiply instructions that put
643   the high part in an accumulator: mulhi or mulhiu.  */
644#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
645                                 || TARGET_MIPS5500                     \
646                                 || TARGET_SR71K                        \
647                                 )
648
649/* ISA has three operand multiply instructions that
650   negates the result and puts the result in an accumulator.  */
651#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
652                                 || TARGET_MIPS5500                     \
653                                 || TARGET_SR71K                        \
654                                 )
655
656/* ISA has three operand multiply instructions that subtracts the
657   result from a 4th operand and puts the result in an accumulator.  */
658#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
659                                 || TARGET_MIPS5500                     \
660                                 || TARGET_SR71K                        \
661                                 )
662/* ISA has three operand multiply instructions that  the result
663   from a 4th operand and puts the result in an accumulator.  */
664#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)	\
665                                 || (TARGET_MIPS4130 && !TARGET_MIPS16)	\
666                                 || TARGET_MIPS5400                     \
667                                 || TARGET_MIPS5500                     \
668                                 || TARGET_SR71K                        \
669                                 )
670
671/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
672#define ISA_HAS_MACCHI		(!TARGET_MIPS16				\
673				 && (TARGET_MIPS4120			\
674				     || TARGET_MIPS4130))
675
676/* ISA has 32-bit rotate right instruction.  */
677#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
678                                 && (ISA_MIPS32R2                       \
679                                     || ISA_MIPS64R2                    \
680                                     || TARGET_MIPS5400                 \
681                                     || TARGET_MIPS5500                 \
682                                     || TARGET_SR71K                    \
683                                     ))
684
685/* ISA has 64-bit rotate right instruction.  */
686#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
687                                 && !TARGET_MIPS16                      \
688                                 && (TARGET_MIPS5400                    \
689                                     || TARGET_MIPS5500                 \
690                                     || TARGET_SR71K                    \
691                                     || ISA_MIPS64R2                    \
692                                     ))
693
694/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
695#define ISA_HAS_PREFETCH	((ISA_MIPS4				\
696				  || ISA_MIPS32				\
697				  || ISA_MIPS32R2			\
698				  || ISA_MIPS64 	       		\
699				  || ISA_MIPS64R2	       		\
700				  ) && !TARGET_MIPS16)
701
702/* ISA has data indexed prefetch instructions.  This controls use of
703   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
704   (prefx is a cop1x instruction, so can only be used if FP is
705   enabled.)  */
706#define ISA_HAS_PREFETCHX       ((ISA_MIPS4				\
707				  || ISA_MIPS64        			\
708				  || ISA_MIPS64R2      			\
709 				  ) && !TARGET_MIPS16)
710
711/* True if trunc.w.s and trunc.w.d are real (not synthetic)
712   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
713   also requires TARGET_DOUBLE_FLOAT.  */
714#define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
715
716/* ISA includes the MIPS32/64 rev2 seb and seh instructions.  */
717#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
718                                 && (ISA_MIPS32R2                      \
719                                     || ISA_MIPS64R2                   \
720                                     ))
721
722/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
723#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
724                                 && (ISA_MIPS32R2                      \
725                                     || ISA_MIPS64R2                   \
726                                     ))
727
728/* True if the result of a load is not available to the next instruction.
729   A nop will then be needed between instructions like "lw $4,..."
730   and "addiu $4,$4,1".  */
731#define ISA_HAS_LOAD_DELAY	(mips_isa == 1				\
732				 && !TARGET_MIPS3900			\
733				 && !TARGET_MIPS16)
734
735/* Likewise mtc1 and mfc1.  */
736#define ISA_HAS_XFER_DELAY	(mips_isa <= 3)
737
738/* Likewise floating-point comparisons.  */
739#define ISA_HAS_FCMP_DELAY	(mips_isa <= 3)
740
741/* True if mflo and mfhi can be immediately followed by instructions
742   which write to the HI and LO registers.
743
744   According to MIPS specifications, MIPS ISAs I, II, and III need
745   (at least) two instructions between the reads of HI/LO and
746   instructions which write them, and later ISAs do not.  Contradicting
747   the MIPS specifications, some MIPS IV processor user manuals (e.g.
748   the UM for the NEC Vr5000) document needing the instructions between
749   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
750   MIPS64 and later ISAs to have the interlocks, plus any specific
751   earlier-ISA CPUs for which CPU documentation declares that the
752   instructions are really interlocked.  */
753#define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
754				 || ISA_MIPS32R2			\
755				 || ISA_MIPS64				\
756				 || ISA_MIPS64R2			\
757				 || TARGET_MIPS5500)
758
759/* Add -G xx support.  */
760
761#undef  SWITCH_TAKES_ARG
762#define SWITCH_TAKES_ARG(CHAR)						\
763  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
764
765#define OVERRIDE_OPTIONS override_options ()
766
767#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
768
769/* Show we can debug even without a frame pointer.  */
770#define CAN_DEBUG_WITHOUT_FP
771
772/* Tell collect what flags to pass to nm.  */
773#ifndef NM_FLAGS
774#define NM_FLAGS "-Bn"
775#endif
776
777
778#ifndef MIPS_ABI_DEFAULT
779#define MIPS_ABI_DEFAULT ABI_32
780#endif
781
782/* Use the most portable ABI flag for the ASM specs.  */
783
784#if MIPS_ABI_DEFAULT == ABI_32
785#define MULTILIB_ABI_DEFAULT "mabi=32"
786#endif
787
788#if MIPS_ABI_DEFAULT == ABI_O64
789#define MULTILIB_ABI_DEFAULT "mabi=o64"
790#endif
791
792#if MIPS_ABI_DEFAULT == ABI_N32
793#define MULTILIB_ABI_DEFAULT "mabi=n32"
794#endif
795
796#if MIPS_ABI_DEFAULT == ABI_64
797#define MULTILIB_ABI_DEFAULT "mabi=64"
798#endif
799
800#if MIPS_ABI_DEFAULT == ABI_EABI
801#define MULTILIB_ABI_DEFAULT "mabi=eabi"
802#endif
803
804/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
805   to the assembler.  It may be overridden by subtargets.  */
806#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
807#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
808%{noasmopt:-O0} \
809%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
810#endif
811
812/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
813   the assembler.  It may be overridden by subtargets.
814
815   Beginning with gas 2.13, -mdebug must be passed to correctly handle
816   COFF debugging info.  */
817
818#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
819#define SUBTARGET_ASM_DEBUGGING_SPEC "\
820%{g} %{g0} %{g1} %{g2} %{g3} \
821%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
822%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
823%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
824%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
825%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
826#endif
827
828/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
829   overridden by subtargets.  */
830
831#ifndef SUBTARGET_ASM_SPEC
832#define SUBTARGET_ASM_SPEC ""
833#endif
834
835#undef ASM_SPEC
836#define ASM_SPEC "\
837%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
838%{mips32} %{mips32r2} %{mips64} %{mips64r2} \
839%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
840%{mips3d:-mips3d} \
841%{mdsp} \
842%{mfix-vr4120} %{mfix-vr4130} \
843%(subtarget_asm_optimizing_spec) \
844%(subtarget_asm_debugging_spec) \
845%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
846%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
847%{msym32} %{mno-sym32} \
848%{mtune=*} %{v} \
849%(subtarget_asm_spec)"
850
851/* Extra switches sometimes passed to the linker.  */
852/* ??? The bestGnum will never be passed to the linker, because the gcc driver
853  will interpret it as a -b option.  */
854
855#ifndef LINK_SPEC
856#define LINK_SPEC "\
857%(endian_spec) \
858%{G*} %{mips1} %{mips2} %{mips3} %{mips4} \
859%{mips32} %{mips32r2} %{mips64} %{mips64r2} \
860%{bestGnum} %{shared} %{non_shared}"
861#endif  /* LINK_SPEC defined */
862
863
864/* Specs for the compiler proper */
865
866/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
867   overridden by subtargets.  */
868#ifndef SUBTARGET_CC1_SPEC
869#define SUBTARGET_CC1_SPEC ""
870#endif
871
872/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
873
874#ifndef CC1_SPEC
875#define CC1_SPEC "\
876%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
877%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
878%{save-temps: } \
879%(subtarget_cc1_spec)"
880#endif
881
882/* Preprocessor specs.  */
883
884/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
885   overridden by subtargets.  */
886#ifndef SUBTARGET_CPP_SPEC
887#define SUBTARGET_CPP_SPEC ""
888#endif
889
890#define CPP_SPEC "%(subtarget_cpp_spec)"
891
892/* This macro defines names of additional specifications to put in the specs
893   that can be used in various specifications like CC1_SPEC.  Its definition
894   is an initializer with a subgrouping for each command option.
895
896   Each subgrouping contains a string constant, that defines the
897   specification name, and a string constant that used by the GCC driver
898   program.
899
900   Do not define this macro if it does not need to do anything.  */
901
902#define EXTRA_SPECS							\
903  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
904  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
905  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
906  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
907  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
908  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
909  { "endian_spec", ENDIAN_SPEC },					\
910  SUBTARGET_EXTRA_SPECS
911
912#ifndef SUBTARGET_EXTRA_SPECS
913#define SUBTARGET_EXTRA_SPECS
914#endif
915
916#define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
917#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
918#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
919
920#ifndef PREFERRED_DEBUGGING_TYPE
921#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
922#endif
923
924#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
925
926/* By default, turn on GDB extensions.  */
927#define DEFAULT_GDB_EXTENSIONS 1
928
929/* Local compiler-generated symbols must have a prefix that the assembler
930   understands.   By default, this is $, although some targets (e.g.,
931   NetBSD-ELF) need to override this.  */
932
933#ifndef LOCAL_LABEL_PREFIX
934#define LOCAL_LABEL_PREFIX	"$"
935#endif
936
937/* By default on the mips, external symbols do not have an underscore
938   prepended, but some targets (e.g., NetBSD) require this.  */
939
940#ifndef USER_LABEL_PREFIX
941#define USER_LABEL_PREFIX	""
942#endif
943
944/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
945   since the length can run past this up to a continuation point.  */
946#undef DBX_CONTIN_LENGTH
947#define DBX_CONTIN_LENGTH 1500
948
949/* How to renumber registers for dbx and gdb.  */
950#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
951
952/* The mapping from gcc register number to DWARF 2 CFA column number.  */
953#define DWARF_FRAME_REGNUM(REG)	(REG)
954
955/* The DWARF 2 CFA column which tracks the return address.  */
956#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
957
958/* The DWARF 2 CFA column which tracks the return address from a
959   signal handler context.  */
960#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
961
962/* Before the prologue, RA lives in r31.  */
963#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
964
965/* Describe how we implement __builtin_eh_return.  */
966#define EH_RETURN_DATA_REGNO(N) \
967  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
968
969#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
970
971/* Offsets recorded in opcodes are a multiple of this alignment factor.
972   The default for this in 64-bit mode is 8, which causes problems with
973   SFmode register saves.  */
974#define DWARF_CIE_DATA_ALIGNMENT -4
975
976/* Correct the offset of automatic variables and arguments.  Note that
977   the MIPS debug format wants all automatic variables and arguments
978   to be in terms of the virtual frame pointer (stack pointer before
979   any adjustment in the function), while the MIPS 3.0 linker wants
980   the frame pointer to be the stack pointer after the initial
981   adjustment.  */
982
983#define DEBUGGER_AUTO_OFFSET(X)				\
984  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
985#define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
986  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
987
988/* Target machine storage layout */
989
990#define BITS_BIG_ENDIAN 0
991#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
992#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
993
994/* Define this to set the endianness to use in libgcc2.c, which can
995   not depend on target_flags.  */
996#if !defined(MIPSEL) && !defined(__MIPSEL__)
997#define LIBGCC2_WORDS_BIG_ENDIAN 1
998#else
999#define LIBGCC2_WORDS_BIG_ENDIAN 0
1000#endif
1001
1002#define MAX_BITS_PER_WORD 64
1003
1004/* Width of a word, in units (bytes).  */
1005#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1006#ifndef IN_LIBGCC2
1007#define MIN_UNITS_PER_WORD 4
1008#endif
1009
1010/* For MIPS, width of a floating point register.  */
1011#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1012
1013/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1014   the next available register.  */
1015#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1016
1017/* The largest size of value that can be held in floating-point
1018   registers and moved with a single instruction.  */
1019#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1020
1021/* The largest size of value that can be held in floating-point
1022   registers.  */
1023#define UNITS_PER_FPVALUE			\
1024  (TARGET_SOFT_FLOAT ? 0			\
1025   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1026   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1027
1028/* The number of bytes in a double.  */
1029#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1030
1031#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1032
1033/* Set the sizes of the core types.  */
1034#define SHORT_TYPE_SIZE 16
1035#define INT_TYPE_SIZE 32
1036#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1037#define LONG_LONG_TYPE_SIZE 64
1038
1039#define FLOAT_TYPE_SIZE 32
1040#define DOUBLE_TYPE_SIZE 64
1041#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1042
1043/* long double is not a fixed mode, but the idea is that, if we
1044   support long double, we also want a 128-bit integer type.  */
1045#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1046
1047#ifdef IN_LIBGCC2
1048#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1049  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1050#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1051# else
1052#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1053# endif
1054#endif
1055
1056/* Width in bits of a pointer.  */
1057#ifndef POINTER_SIZE
1058#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1059#endif
1060
1061/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1062#define PARM_BOUNDARY BITS_PER_WORD
1063
1064/* Allocation boundary (in *bits*) for the code of a function.  */
1065#define FUNCTION_BOUNDARY 32
1066
1067/* Alignment of field after `int : 0' in a structure.  */
1068#define EMPTY_FIELD_BOUNDARY 32
1069
1070/* Every structure's size must be a multiple of this.  */
1071/* 8 is observed right on a DECstation and on riscos 4.02.  */
1072#define STRUCTURE_SIZE_BOUNDARY 8
1073
1074/* There is no point aligning anything to a rounder boundary than this.  */
1075#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1076
1077/* All accesses must be aligned.  */
1078#define STRICT_ALIGNMENT 1
1079
1080/* Define this if you wish to imitate the way many other C compilers
1081   handle alignment of bitfields and the structures that contain
1082   them.
1083
1084   The behavior is that the type written for a bit-field (`int',
1085   `short', or other integer type) imposes an alignment for the
1086   entire structure, as if the structure really did contain an
1087   ordinary field of that type.  In addition, the bit-field is placed
1088   within the structure so that it would fit within such a field,
1089   not crossing a boundary for it.
1090
1091   Thus, on most machines, a bit-field whose type is written as `int'
1092   would not cross a four-byte boundary, and would force four-byte
1093   alignment for the whole structure.  (The alignment used may not
1094   be four bytes; it is controlled by the other alignment
1095   parameters.)
1096
1097   If the macro is defined, its definition should be a C expression;
1098   a nonzero value for the expression enables this behavior.  */
1099
1100#define PCC_BITFIELD_TYPE_MATTERS 1
1101
1102/* If defined, a C expression to compute the alignment given to a
1103   constant that is being placed in memory.  CONSTANT is the constant
1104   and ALIGN is the alignment that the object would ordinarily have.
1105   The value of this macro is used instead of that alignment to align
1106   the object.
1107
1108   If this macro is not defined, then ALIGN is used.
1109
1110   The typical use of this macro is to increase alignment for string
1111   constants to be word aligned so that `strcpy' calls that copy
1112   constants can be done inline.  */
1113
1114#define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1115  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1116   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1117
1118/* If defined, a C expression to compute the alignment for a static
1119   variable.  TYPE is the data type, and ALIGN is the alignment that
1120   the object would ordinarily have.  The value of this macro is used
1121   instead of that alignment to align the object.
1122
1123   If this macro is not defined, then ALIGN is used.
1124
1125   One use of this macro is to increase alignment of medium-size
1126   data to make it all fit in fewer cache lines.  Another is to
1127   cause character arrays to be word-aligned so that `strcpy' calls
1128   that copy constants to character arrays can be done inline.  */
1129
1130#undef DATA_ALIGNMENT
1131#define DATA_ALIGNMENT(TYPE, ALIGN)					\
1132  ((((ALIGN) < BITS_PER_WORD)						\
1133    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1134	|| TREE_CODE (TYPE) == UNION_TYPE				\
1135	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1136
1137
1138#define PAD_VARARGS_DOWN \
1139  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1140
1141/* Define if operations between registers always perform the operation
1142   on the full register even if a narrower mode is specified.  */
1143#define WORD_REGISTER_OPERATIONS
1144
1145/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1146   moves.  All other references are zero extended.  */
1147#define LOAD_EXTEND_OP(MODE) \
1148  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1149   ? SIGN_EXTEND : ZERO_EXTEND)
1150
1151/* Define this macro if it is advisable to hold scalars in registers
1152   in a wider mode than that declared by the program.  In such cases,
1153   the value is constrained to be within the bounds of the declared
1154   type, but kept valid in the wider mode.  The signedness of the
1155   extension may differ from that of the type.  */
1156
1157#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1158  if (GET_MODE_CLASS (MODE) == MODE_INT		\
1159      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1160    {                                           \
1161      if ((MODE) == SImode)                     \
1162        (UNSIGNEDP) = 0;                        \
1163      (MODE) = Pmode;                           \
1164    }
1165
1166/* Define if loading short immediate values into registers sign extends.  */
1167#define SHORT_IMMEDIATES_SIGN_EXTEND
1168
1169/* The [d]clz instructions have the natural values at 0.  */
1170
1171#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1172  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1173
1174/* Standard register usage.  */
1175
1176/* Number of hardware registers.  We have:
1177
1178   - 32 integer registers
1179   - 32 floating point registers
1180   - 8 condition code registers
1181   - 2 accumulator registers (hi and lo)
1182   - 32 registers each for coprocessors 0, 2 and 3
1183   - 3 fake registers:
1184	- ARG_POINTER_REGNUM
1185	- FRAME_POINTER_REGNUM
1186	- FAKE_CALL_REGNO (see the comment above load_callsi for details)
1187   - 3 dummy entries that were used at various times in the past.
1188   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1189   - 6 DSP control registers  */
1190
1191#define FIRST_PSEUDO_REGISTER 188
1192
1193/* By default, fix the kernel registers ($26 and $27), the global
1194   pointer ($28) and the stack pointer ($29).  This can change
1195   depending on the command-line options.
1196
1197   Regarding coprocessor registers: without evidence to the contrary,
1198   it's best to assume that each coprocessor register has a unique
1199   use.  This can be overridden, in, e.g., override_options() or
1200   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1201   for a particular target.  */
1202
1203#define FIXED_REGISTERS							\
1204{									\
1205  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1206  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1207  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1208  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1209  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1210  /* COP0 registers */							\
1211  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1212  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1213  /* COP2 registers */							\
1214  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1215  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1216  /* COP3 registers */							\
1217  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1218  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1219  /* 6 DSP accumulator registers & 6 control registers */		\
1220  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1221}
1222
1223
1224/* Set up this array for o32 by default.
1225
1226   Note that we don't mark $31 as a call-clobbered register.  The idea is
1227   that it's really the call instructions themselves which clobber $31.
1228   We don't care what the called function does with it afterwards.
1229
1230   This approach makes it easier to implement sibcalls.  Unlike normal
1231   calls, sibcalls don't clobber $31, so the register reaches the
1232   called function in tact.  EPILOGUE_USES says that $31 is useful
1233   to the called function.  */
1234
1235#define CALL_USED_REGISTERS						\
1236{									\
1237  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1238  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1239  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1240  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1241  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1242  /* COP0 registers */							\
1243  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1244  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1245  /* COP2 registers */							\
1246  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1247  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1248  /* COP3 registers */							\
1249  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1250  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1251  /* 6 DSP accumulator registers & 6 control registers */		\
1252  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1253}
1254
1255
1256/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1257
1258#define CALL_REALLY_USED_REGISTERS                                      \
1259{ /* General registers.  */                                             \
1260  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1261  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1262  /* Floating-point registers.  */                                      \
1263  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1264  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1265  /* Others.  */                                                        \
1266  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1267  /* COP0 registers */							\
1268  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1269  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1270  /* COP2 registers */							\
1271  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1272  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1273  /* COP3 registers */							\
1274  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1275  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1276  /* 6 DSP accumulator registers & 6 control registers */		\
1277  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1278}
1279
1280/* Internal macros to classify a register number as to whether it's a
1281   general purpose register, a floating point register, a
1282   multiply/divide register, or a status register.  */
1283
1284#define GP_REG_FIRST 0
1285#define GP_REG_LAST  31
1286#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1287#define GP_DBX_FIRST 0
1288
1289#define FP_REG_FIRST 32
1290#define FP_REG_LAST  63
1291#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1292#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1293
1294#define MD_REG_FIRST 64
1295#define MD_REG_LAST  65
1296#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1297#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1298
1299#define ST_REG_FIRST 67
1300#define ST_REG_LAST  74
1301#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1302
1303
1304/* FIXME: renumber.  */
1305#define COP0_REG_FIRST 80
1306#define COP0_REG_LAST 111
1307#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1308
1309#define COP2_REG_FIRST 112
1310#define COP2_REG_LAST 143
1311#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1312
1313#define COP3_REG_FIRST 144
1314#define COP3_REG_LAST 175
1315#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1316/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1317#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1318
1319#define DSP_ACC_REG_FIRST 176
1320#define DSP_ACC_REG_LAST 181
1321#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1322
1323#define AT_REGNUM	(GP_REG_FIRST + 1)
1324#define HI_REGNUM	(MD_REG_FIRST + 0)
1325#define LO_REGNUM	(MD_REG_FIRST + 1)
1326#define AC1HI_REGNUM	(DSP_ACC_REG_FIRST + 0)
1327#define AC1LO_REGNUM	(DSP_ACC_REG_FIRST + 1)
1328#define AC2HI_REGNUM	(DSP_ACC_REG_FIRST + 2)
1329#define AC2LO_REGNUM	(DSP_ACC_REG_FIRST + 3)
1330#define AC3HI_REGNUM	(DSP_ACC_REG_FIRST + 4)
1331#define AC3LO_REGNUM	(DSP_ACC_REG_FIRST + 5)
1332
1333/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1334   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1335   should be used instead.  */
1336#define FPSW_REGNUM	ST_REG_FIRST
1337
1338#define GP_REG_P(REGNO)	\
1339  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1340#define M16_REG_P(REGNO) \
1341  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1342#define FP_REG_P(REGNO)  \
1343  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1344#define MD_REG_P(REGNO) \
1345  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1346#define ST_REG_P(REGNO) \
1347  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1348#define COP0_REG_P(REGNO) \
1349  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1350#define COP2_REG_P(REGNO) \
1351  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1352#define COP3_REG_P(REGNO) \
1353  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1354#define ALL_COP_REG_P(REGNO) \
1355  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1356/* Test if REGNO is one of the 6 new DSP accumulators.  */
1357#define DSP_ACC_REG_P(REGNO) \
1358  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1359/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1360#define ACC_REG_P(REGNO) \
1361  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1362/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1363#define ACC_HI_REG_P(REGNO) \
1364  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1365   || (REGNO) == AC3HI_REGNUM)
1366
1367#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1368
1369/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1370   to initialize the mips16 gp pseudo register.  */
1371#define CONST_GP_P(X)				\
1372  (GET_CODE (X) == CONST			\
1373   && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1374   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1375
1376/* Return coprocessor number from register number.  */
1377
1378#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1379  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1380   : COP3_REG_P (REGNO) ? '3' : '?')
1381
1382
1383#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1384
1385/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1386   array built in override_options.  Because machmodes.h is not yet
1387   included before this file is processed, the MODE bound can't be
1388   expressed here.  */
1389
1390extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1391
1392#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1393  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1394
1395/* Value is 1 if it is a good idea to tie two pseudo registers
1396   when one has mode MODE1 and one has mode MODE2.
1397   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1398   for any hard reg, then this must be 0 for correct output.  */
1399#define MODES_TIEABLE_P(MODE1, MODE2)					\
1400  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
1401    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
1402   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
1403       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1404
1405/* Register to use for pushing function arguments.  */
1406#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1407
1408/* These two registers don't really exist: they get eliminated to either
1409   the stack or hard frame pointer.  */
1410#define ARG_POINTER_REGNUM 77
1411#define FRAME_POINTER_REGNUM 78
1412
1413/* $30 is not available on the mips16, so we use $17 as the frame
1414   pointer.  */
1415#define HARD_FRAME_POINTER_REGNUM \
1416  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1417
1418/* Value should be nonzero if functions must have frame pointers.
1419   Zero means the frame pointer need not be set up (and parms
1420   may be accessed via the stack pointer) in functions that seem suitable.
1421   This is computed in `reload', in reload1.c.  */
1422#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1423
1424/* Register in which static-chain is passed to a function.  */
1425#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1426
1427/* Registers used as temporaries in prologue/epilogue code.  If we're
1428   generating mips16 code, these registers must come from the core set
1429   of 8.  The prologue register mustn't conflict with any incoming
1430   arguments, the static chain pointer, or the frame pointer.  The
1431   epilogue temporary mustn't conflict with the return registers, the
1432   frame pointer, the EH stack adjustment, or the EH data registers.  */
1433
1434#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1435#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1436
1437#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1438#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1439
1440/* Define this macro if it is as good or better to call a constant
1441   function address than to call an address kept in a register.  */
1442#define NO_FUNCTION_CSE 1
1443
1444/* The ABI-defined global pointer.  Sometimes we use a different
1445   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1446#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1447
1448/* We normally use $28 as the global pointer.  However, when generating
1449   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1450   register instead.  They can then avoid saving and restoring $28
1451   and perhaps avoid using a frame at all.
1452
1453   When a leaf function uses something other than $28, mips_expand_prologue
1454   will modify pic_offset_table_rtx in place.  Take the register number
1455   from there after reload.  */
1456#define PIC_OFFSET_TABLE_REGNUM \
1457  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1458
1459#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1460
1461/* Define the classes of registers for register constraints in the
1462   machine description.  Also define ranges of constants.
1463
1464   One of the classes must always be named ALL_REGS and include all hard regs.
1465   If there is more than one class, another class must be named NO_REGS
1466   and contain no registers.
1467
1468   The name GENERAL_REGS must be the name of a class (or an alias for
1469   another name such as ALL_REGS).  This is the class of registers
1470   that is allowed by "g" or "r" in a register constraint.
1471   Also, registers outside this class are allocated only when
1472   instructions express preferences for them.
1473
1474   The classes must be numbered in nondecreasing order; that is,
1475   a larger-numbered class must never be contained completely
1476   in a smaller-numbered class.
1477
1478   For any two classes, it is very desirable that there be another
1479   class that represents their union.  */
1480
1481enum reg_class
1482{
1483  NO_REGS,			/* no registers in set */
1484  M16_NA_REGS,			/* mips16 regs not used to pass args */
1485  M16_REGS,			/* mips16 directly accessible registers */
1486  T_REG,			/* mips16 T register ($24) */
1487  M16_T_REGS,			/* mips16 registers plus T register */
1488  PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1489  V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1490  LEA_REGS,			/* Every GPR except $25 */
1491  GR_REGS,			/* integer registers */
1492  FP_REGS,			/* floating point registers */
1493  HI_REG,			/* hi register */
1494  LO_REG,			/* lo register */
1495  MD_REGS,			/* multiply/divide registers (hi/lo) */
1496  COP0_REGS,			/* generic coprocessor classes */
1497  COP2_REGS,
1498  COP3_REGS,
1499  HI_AND_GR_REGS,		/* union classes */
1500  LO_AND_GR_REGS,
1501  HI_AND_FP_REGS,
1502  COP0_AND_GR_REGS,
1503  COP2_AND_GR_REGS,
1504  COP3_AND_GR_REGS,
1505  ALL_COP_REGS,
1506  ALL_COP_AND_GR_REGS,
1507  ST_REGS,			/* status registers (fp status) */
1508  DSP_ACC_REGS,			/* DSP accumulator registers */
1509  ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1510  ALL_REGS,			/* all registers */
1511  LIM_REG_CLASSES		/* max value + 1 */
1512};
1513
1514#define N_REG_CLASSES (int) LIM_REG_CLASSES
1515
1516#define GENERAL_REGS GR_REGS
1517
1518/* An initializer containing the names of the register classes as C
1519   string constants.  These names are used in writing some of the
1520   debugging dumps.  */
1521
1522#define REG_CLASS_NAMES							\
1523{									\
1524  "NO_REGS",								\
1525  "M16_NA_REGS",							\
1526  "M16_REGS",								\
1527  "T_REG",								\
1528  "M16_T_REGS",								\
1529  "PIC_FN_ADDR_REG",							\
1530  "V1_REG",								\
1531  "LEA_REGS",								\
1532  "GR_REGS",								\
1533  "FP_REGS",								\
1534  "HI_REG",								\
1535  "LO_REG",								\
1536  "MD_REGS",								\
1537  /* coprocessor registers */						\
1538  "COP0_REGS",								\
1539  "COP2_REGS",								\
1540  "COP3_REGS",								\
1541  "HI_AND_GR_REGS",							\
1542  "LO_AND_GR_REGS",							\
1543  "HI_AND_FP_REGS",							\
1544  "COP0_AND_GR_REGS",							\
1545  "COP2_AND_GR_REGS",							\
1546  "COP3_AND_GR_REGS",							\
1547  "ALL_COP_REGS",							\
1548  "ALL_COP_AND_GR_REGS",						\
1549  "ST_REGS",								\
1550  "DSP_ACC_REGS",							\
1551  "ACC_REGS",								\
1552  "ALL_REGS"								\
1553}
1554
1555/* An initializer containing the contents of the register classes,
1556   as integers which are bit masks.  The Nth integer specifies the
1557   contents of class N.  The way the integer MASK is interpreted is
1558   that register R is in the class if `MASK & (1 << R)' is 1.
1559
1560   When the machine has more than 32 registers, an integer does not
1561   suffice.  Then the integers are replaced by sub-initializers,
1562   braced groupings containing several integers.  Each
1563   sub-initializer must be suitable as an initializer for the type
1564   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1565
1566#define REG_CLASS_CONTENTS						                                \
1567{									                                \
1568  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
1569  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
1570  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
1571  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
1572  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
1573  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SVR4 PIC function address register */ \
1574  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* only $v1 */ \
1575  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* Every other GPR except $25 */   \
1576  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
1577  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
1578  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
1579  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
1580  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
1581  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1582  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1583  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1584  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
1585  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
1586  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
1587  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			        \
1588  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	                        \
1589  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1590  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1591  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1592  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
1593  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* dsp accumulator registers */	\
1594  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* hi/lo and dsp accumulator registers */	\
1595  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* all registers */	\
1596}
1597
1598
1599/* A C expression whose value is a register class containing hard
1600   register REGNO.  In general there is more that one such class;
1601   choose a class which is "minimal", meaning that no smaller class
1602   also contains the register.  */
1603
1604extern const enum reg_class mips_regno_to_class[];
1605
1606#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1607
1608/* A macro whose definition is the name of the class to which a
1609   valid base register must belong.  A base register is one used in
1610   an address which is the register value plus a displacement.  */
1611
1612#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1613
1614/* A macro whose definition is the name of the class to which a
1615   valid index register must belong.  An index register is one used
1616   in an address where its value is either multiplied by a scale
1617   factor or added to another register (as well as added to a
1618   displacement).  */
1619
1620#define INDEX_REG_CLASS NO_REGS
1621
1622/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1623   registers explicitly used in the rtl to be used as spill registers
1624   but prevents the compiler from extending the lifetime of these
1625   registers.  */
1626
1627#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1628
1629/* This macro is used later on in the file.  */
1630#define GR_REG_CLASS_P(CLASS)						\
1631  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
1632   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS			\
1633   || (CLASS) == V1_REG							\
1634   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1635
1636/* This macro is also used later on in the file.  */
1637#define COP_REG_CLASS_P(CLASS)						\
1638  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1639
1640/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1641   is the default value (allocate the registers in numeric order).  We
1642   define it just so that we can override it for the mips16 target in
1643   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1644
1645#define REG_ALLOC_ORDER							\
1646{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
1647  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1648  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1649  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1650  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
1651  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
1652  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
1653  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
1654  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
1655  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
1656  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
1657  176,177,178,179,180,181,182,183,184,185,186,187			\
1658}
1659
1660/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1661   to be rearranged based on a particular function.  On the mips16, we
1662   want to allocate $24 (T_REG) before other registers for
1663   instructions for which it is possible.  */
1664
1665#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1666
1667/* REGISTER AND CONSTANT CLASSES */
1668
1669/* Get reg_class from a letter such as appears in the machine
1670   description.
1671
1672   DEFINED REGISTER CLASSES:
1673
1674   'd'  General (aka integer) registers
1675        Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1676   'y'  General registers (in both mips16 and non mips16 mode)
1677   'e'	Effective address registers (general registers except $25)
1678   't'  mips16 temporary register ($24)
1679   'f'	Floating point registers
1680   'h'	Hi register
1681   'l'	Lo register
1682   'v'	$v1 only
1683   'x'	Multiply/divide registers
1684   'z'	FP Status register
1685   'B'  Cop0 register
1686   'C'  Cop2 register
1687   'D'  Cop3 register
1688   'A'  DSP accumulator registers
1689   'a'  MD registers and DSP accumulator registers
1690   'b'	All registers */
1691
1692extern enum reg_class mips_char_to_class[256];
1693
1694#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
1695
1696/* True if VALUE is an unsigned 6-bit number.  */
1697
1698#define UIMM6_OPERAND(VALUE) \
1699  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1700
1701/* True if VALUE is a signed 10-bit number.  */
1702
1703#define IMM10_OPERAND(VALUE) \
1704  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1705
1706/* True if VALUE is a signed 16-bit number.  */
1707
1708#define SMALL_OPERAND(VALUE) \
1709  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1710
1711/* True if VALUE is an unsigned 16-bit number.  */
1712
1713#define SMALL_OPERAND_UNSIGNED(VALUE) \
1714  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1715
1716/* True if VALUE can be loaded into a register using LUI.  */
1717
1718#define LUI_OPERAND(VALUE)					\
1719  (((VALUE) | 0x7fff0000) == 0x7fff0000				\
1720   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1721
1722/* Return a value X with the low 16 bits clear, and such that
1723   VALUE - X is a signed 16-bit value.  */
1724
1725#define CONST_HIGH_PART(VALUE) \
1726  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1727
1728#define CONST_LOW_PART(VALUE) \
1729  ((VALUE) - CONST_HIGH_PART (VALUE))
1730
1731#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1732#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1733#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1734
1735/* The letters I, J, K, L, M, N, O, and P in a register constraint
1736   string can be used to stand for particular ranges of immediate
1737   operands.  This macro defines what the ranges are.  C is the
1738   letter, and VALUE is a constant value.  Return 1 if VALUE is
1739   in the range specified by C.  */
1740
1741/* For MIPS:
1742
1743   `I'	is used for the range of constants an arithmetic insn can
1744	actually contain (16 bits signed integers).
1745
1746   `J'	is used for the range which is just zero (i.e., $r0).
1747
1748   `K'	is used for the range of constants a logical insn can actually
1749	contain (16 bit zero-extended integers).
1750
1751   `L'	is used for the range of constants that be loaded with lui
1752	(i.e., the bottom 16 bits are zero).
1753
1754   `M'	is used for the range of constants that take two words to load
1755	(i.e., not matched by `I', `K', and `L').
1756
1757   `N'	is used for negative 16 bit constants other than -65536.
1758
1759   `O'	is a 15 bit signed integer.
1760
1761   `P'	is used for positive 16 bit constants.  */
1762
1763#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1764  ((C) == 'I' ? SMALL_OPERAND (VALUE)					\
1765   : (C) == 'J' ? ((VALUE) == 0)					\
1766   : (C) == 'K' ? SMALL_OPERAND_UNSIGNED (VALUE)			\
1767   : (C) == 'L' ? LUI_OPERAND (VALUE)					\
1768   : (C) == 'M' ? (!SMALL_OPERAND (VALUE)				\
1769		   && !SMALL_OPERAND_UNSIGNED (VALUE)			\
1770		   && !LUI_OPERAND (VALUE))				\
1771   : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
1772   : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
1773   : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0))	\
1774   : 0)
1775
1776/* Similar, but for floating constants, and defining letters G and H.
1777   Here VALUE is the CONST_DOUBLE rtx itself.  */
1778
1779/* For MIPS
1780
1781  'G'	: Floating point 0 */
1782
1783#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1784  ((C) == 'G'								\
1785   && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1786
1787/* Letters in the range `Q' through `U' may be defined in a
1788   machine-dependent fashion to stand for arbitrary operand types.
1789   The machine description macro `EXTRA_CONSTRAINT' is passed the
1790   operand as its first argument and the constraint letter as its
1791   second operand.
1792
1793   `Q' is for signed 16-bit constants.
1794   `R' is for single-instruction memory references.  Note that this
1795	 constraint has often been used in linux and glibc code.
1796   `S' is for legitimate constant call addresses.
1797   `T' is for constant move_operands that cannot be safely loaded into $25.
1798   `U' is for constant move_operands that can be safely loaded into $25.
1799   `W' is for memory references that are based on a member of BASE_REG_CLASS.
1800	 This is true for all non-mips16 references (although it can sometimes
1801	 be indirect if !TARGET_EXPLICIT_RELOCS).  For mips16, it excludes
1802	 stack and constant-pool references.
1803   `YG' is for 0 valued vector constants.
1804   `YA' is for unsigned 6-bit constants.
1805   `YB' is for signed 10-bit constants.  */
1806
1807#define EXTRA_CONSTRAINT_Y(OP,STR)					\
1808  (((STR)[1] == 'G')	  ? (GET_CODE (OP) == CONST_VECTOR		\
1809			     && (OP) == CONST0_RTX (GET_MODE (OP)))	\
1810   : ((STR)[1] == 'A')	  ? (GET_CODE (OP) == CONST_INT			\
1811			     && UIMM6_OPERAND (INTVAL (OP)))		\
1812   : ((STR)[1] == 'B')	  ? (GET_CODE (OP) == CONST_INT			\
1813			     && IMM10_OPERAND (INTVAL (OP)))		\
1814   : FALSE)
1815
1816
1817#define EXTRA_CONSTRAINT_STR(OP,CODE,STR)				\
1818  (((CODE) == 'Q')	  ? const_arith_operand (OP, VOIDmode)		\
1819   : ((CODE) == 'R')	  ? (MEM_P (OP)					\
1820			     && mips_fetch_insns (OP) == 1)		\
1821   : ((CODE) == 'S')	  ? (CONSTANT_P (OP)				\
1822			     && call_insn_operand (OP, VOIDmode))	\
1823   : ((CODE) == 'T')	  ? (CONSTANT_P (OP)				\
1824			     && move_operand (OP, VOIDmode)		\
1825			     && mips_dangerous_for_la25_p (OP))		\
1826   : ((CODE) == 'U')	  ? (CONSTANT_P (OP)				\
1827			     && move_operand (OP, VOIDmode)		\
1828			     && !mips_dangerous_for_la25_p (OP))	\
1829   : ((CODE) == 'W')	  ? (MEM_P (OP)					\
1830			     && memory_operand (OP, VOIDmode)		\
1831			     && (!TARGET_MIPS16				\
1832				 || (!stack_operand (OP, VOIDmode)	\
1833				     && !CONSTANT_P (XEXP (OP, 0)))))	\
1834   : ((CODE) == 'Y')	  ? EXTRA_CONSTRAINT_Y (OP, STR)		\
1835   : FALSE)
1836
1837/* Y is the only multi-letter constraint, and has length 2.  */
1838
1839#define CONSTRAINT_LEN(C,STR)						\
1840  (((C) == 'Y') ? 2							\
1841   : DEFAULT_CONSTRAINT_LEN (C, STR))
1842
1843/* Say which of the above are memory constraints.  */
1844#define EXTRA_MEMORY_CONSTRAINT(C, STR) ((C) == 'R' || (C) == 'W')
1845
1846#define PREFERRED_RELOAD_CLASS(X,CLASS)					\
1847  mips_preferred_reload_class (X, CLASS)
1848
1849/* Certain machines have the property that some registers cannot be
1850   copied to some other registers without using memory.  Define this
1851   macro on those machines to be a C expression that is nonzero if
1852   objects of mode MODE in registers of CLASS1 can only be copied to
1853   registers of class CLASS2 by storing a register of CLASS1 into
1854   memory and loading that memory location into a register of CLASS2.
1855
1856   Do not define this macro if its value would always be zero.  */
1857#if 0
1858#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1859  ((!TARGET_DEBUG_H_MODE						\
1860    && GET_MODE_CLASS (MODE) == MODE_INT				\
1861    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
1862	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
1863   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
1864       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
1865	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1866#endif
1867/* The HI and LO registers can only be reloaded via the general
1868   registers.  Condition code registers can only be loaded to the
1869   general registers, and from the floating point registers.  */
1870
1871#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1872  mips_secondary_reload_class (CLASS, MODE, X, 1)
1873#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1874  mips_secondary_reload_class (CLASS, MODE, X, 0)
1875
1876/* Return the maximum number of consecutive registers
1877   needed to represent mode MODE in a register of class CLASS.  */
1878
1879#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1880
1881#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1882  mips_cannot_change_mode_class (FROM, TO, CLASS)
1883
1884/* Stack layout; function entry, exit and calling.  */
1885
1886#define STACK_GROWS_DOWNWARD
1887
1888/* The offset of the first local variable from the beginning of the frame.
1889   See compute_frame_size for details about the frame layout.
1890
1891   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1892   we assume that we will need 16 bytes of argument space.  This is because
1893   the value profiling code may emit calls to cmpdi2 in leaf functions.
1894   Without this hack, the local variables will start at sp+8 and the gp save
1895   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1896   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1897   will end up as 24 instead of 8.  This won't be needed if profiling code is
1898   inserted before virtual register instantiation.  */
1899
1900#define STARTING_FRAME_OFFSET						\
1901  ((flag_profile_values && ! TARGET_64BIT				\
1902    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1903    : current_function_outgoing_args_size)				\
1904   + (TARGET_ABICALLS && !TARGET_NEWABI					\
1905      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1906
1907#define RETURN_ADDR_RTX mips_return_addr
1908
1909/* Since the mips16 ISA mode is encoded in the least-significant bit
1910   of the address, mask it off return addresses for purposes of
1911   finding exception handling regions.  */
1912
1913#define MASK_RETURN_ADDR GEN_INT (-2)
1914
1915
1916/* Similarly, don't use the least-significant bit to tell pointers to
1917   code from vtable index.  */
1918
1919#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1920
1921/* The eliminations to $17 are only used for mips16 code.  See the
1922   definition of HARD_FRAME_POINTER_REGNUM.  */
1923
1924#define ELIMINABLE_REGS							\
1925{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
1926 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
1927 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
1928 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1929 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
1930 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1931
1932/* We can always eliminate to the hard frame pointer.  We can eliminate
1933   to the stack pointer unless a frame pointer is needed.
1934
1935   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1936   reload may be unable to compute the address of a local variable,
1937   since there is no way to add a large constant to the stack pointer
1938   without using a temporary register.  */
1939#define CAN_ELIMINATE(FROM, TO)						\
1940  ((TO) == HARD_FRAME_POINTER_REGNUM 				        \
1941   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed		\
1942       && (!TARGET_MIPS16						\
1943	   || compute_frame_size (get_frame_size ()) < 32768)))
1944
1945#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1946  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1947
1948/* Allocate stack space for arguments at the beginning of each function.  */
1949#define ACCUMULATE_OUTGOING_ARGS 1
1950
1951/* The argument pointer always points to the first argument.  */
1952#define FIRST_PARM_OFFSET(FNDECL) 0
1953
1954/* o32 and o64 reserve stack space for all argument registers.  */
1955#define REG_PARM_STACK_SPACE(FNDECL) 			\
1956  (TARGET_OLDABI					\
1957   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
1958   : 0)
1959
1960/* Define this if it is the responsibility of the caller to
1961   allocate the area reserved for arguments passed in registers.
1962   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1963   of this macro is to determine whether the space is included in
1964   `current_function_outgoing_args_size'.  */
1965#define OUTGOING_REG_PARM_STACK_SPACE
1966
1967#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1968
1969#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1970
1971/* Symbolic macros for the registers used to return integer and floating
1972   point values.  */
1973
1974#define GP_RETURN (GP_REG_FIRST + 2)
1975#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1976
1977#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1978
1979/* Symbolic macros for the first/last argument registers.  */
1980
1981#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1982#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1983#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1984#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1985
1986#define LIBCALL_VALUE(MODE) \
1987  mips_function_value (NULL_TREE, NULL, (MODE))
1988
1989#define FUNCTION_VALUE(VALTYPE, FUNC) \
1990  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1991
1992/* 1 if N is a possible register number for a function value.
1993   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1994   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1995
1996#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1997  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1998      && (N) == FP_RETURN + 2))
1999
2000/* 1 if N is a possible register number for function argument passing.
2001   We have no FP argument registers when soft-float.  When FP registers
2002   are 32 bits, we can't directly reference the odd numbered ones.  */
2003
2004#define FUNCTION_ARG_REGNO_P(N)					\
2005  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
2006    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
2007   && !fixed_regs[N])
2008
2009/* This structure has to cope with two different argument allocation
2010   schemes.  Most MIPS ABIs view the arguments as a structure, of which
2011   the first N words go in registers and the rest go on the stack.  If I
2012   < N, the Ith word might go in Ith integer argument register or in a
2013   floating-point register.  For these ABIs, we only need to remember
2014   the offset of the current argument into the structure.
2015
2016   The EABI instead allocates the integer and floating-point arguments
2017   separately.  The first N words of FP arguments go in FP registers,
2018   the rest go on the stack.  Likewise, the first N words of the other
2019   arguments go in integer registers, and the rest go on the stack.  We
2020   need to maintain three counts: the number of integer registers used,
2021   the number of floating-point registers used, and the number of words
2022   passed on the stack.
2023
2024   We could keep separate information for the two ABIs (a word count for
2025   the standard ABIs, and three separate counts for the EABI).  But it
2026   seems simpler to view the standard ABIs as forms of EABI that do not
2027   allocate floating-point registers.
2028
2029   So for the standard ABIs, the first N words are allocated to integer
2030   registers, and function_arg decides on an argument-by-argument basis
2031   whether that argument should really go in an integer register, or in
2032   a floating-point one.  */
2033
2034typedef struct mips_args {
2035  /* Always true for varargs functions.  Otherwise true if at least
2036     one argument has been passed in an integer register.  */
2037  int gp_reg_found;
2038
2039  /* The number of arguments seen so far.  */
2040  unsigned int arg_number;
2041
2042  /* The number of integer registers used so far.  For all ABIs except
2043     EABI, this is the number of words that have been added to the
2044     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2045  unsigned int num_gprs;
2046
2047  /* For EABI, the number of floating-point registers used so far.  */
2048  unsigned int num_fprs;
2049
2050  /* The number of words passed on the stack.  */
2051  unsigned int stack_words;
2052
2053  /* On the mips16, we need to keep track of which floating point
2054     arguments were passed in general registers, but would have been
2055     passed in the FP regs if this were a 32 bit function, so that we
2056     can move them to the FP regs if we wind up calling a 32 bit
2057     function.  We record this information in fp_code, encoded in base
2058     four.  A zero digit means no floating point argument, a one digit
2059     means an SFmode argument, and a two digit means a DFmode argument,
2060     and a three digit is not used.  The low order digit is the first
2061     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2062     an SFmode argument.  ??? A more sophisticated approach will be
2063     needed if MIPS_ABI != ABI_32.  */
2064  int fp_code;
2065
2066  /* True if the function has a prototype.  */
2067  int prototype;
2068} CUMULATIVE_ARGS;
2069
2070/* Initialize a variable CUM of type CUMULATIVE_ARGS
2071   for a call to a function whose data type is FNTYPE.
2072   For a library call, FNTYPE is 0.  */
2073
2074#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2075  init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\
2076
2077/* Update the data in CUM to advance over an argument
2078   of mode MODE and data type TYPE.
2079   (TYPE is null for libcalls where that information may not be available.)  */
2080
2081#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
2082  function_arg_advance (&CUM, MODE, TYPE, NAMED)
2083
2084/* Determine where to put an argument to a function.
2085   Value is zero to push the argument on the stack,
2086   or a hard register in which to store the argument.
2087
2088   MODE is the argument's machine mode.
2089   TYPE is the data type of the argument (as a tree).
2090    This is null for libcalls where that information may
2091    not be available.
2092   CUM is a variable of type CUMULATIVE_ARGS which gives info about
2093    the preceding args and about the function being called.
2094   NAMED is nonzero if this argument is a named parameter
2095    (otherwise it is an extra parameter matching an ellipsis).  */
2096
2097#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2098  function_arg( &CUM, MODE, TYPE, NAMED)
2099
2100#define FUNCTION_ARG_BOUNDARY function_arg_boundary
2101
2102#define FUNCTION_ARG_PADDING(MODE, TYPE)		\
2103  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2104
2105#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)		\
2106  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2107
2108/* True if using EABI and varargs can be passed in floating-point
2109   registers.  Under these conditions, we need a more complex form
2110   of va_list, which tracks GPR, FPR and stack arguments separately.  */
2111#define EABI_FLOAT_VARARGS_P \
2112	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2113
2114
2115/* Say that the epilogue uses the return address register.  Note that
2116   in the case of sibcalls, the values "used by the epilogue" are
2117   considered live at the start of the called function.  */
2118#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2119
2120/* Treat LOC as a byte offset from the stack pointer and round it up
2121   to the next fully-aligned offset.  */
2122#define MIPS_STACK_ALIGN(LOC) \
2123  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2124
2125
2126/* Implement `va_start' for varargs and stdarg.  */
2127#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2128  mips_va_start (valist, nextarg)
2129
2130/* Output assembler code to FILE to increment profiler label # LABELNO
2131   for profiling a function entry.  */
2132
2133#define FUNCTION_PROFILER(FILE, LABELNO)				\
2134{									\
2135  if (TARGET_MIPS16)							\
2136    sorry ("mips16 function profiling");				\
2137  fprintf (FILE, "\t.set\tnoat\n");					\
2138  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
2139	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
2140  if (!TARGET_NEWABI)							\
2141    {									\
2142      fprintf (FILE,							\
2143	       "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
2144	       TARGET_64BIT ? "dsubu" : "subu",				\
2145	       reg_names[STACK_POINTER_REGNUM],				\
2146	       reg_names[STACK_POINTER_REGNUM],				\
2147	       Pmode == DImode ? 16 : 8);				\
2148    }									\
2149  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2150  fprintf (FILE, "\t.set\tat\n");					\
2151}
2152
2153/* No mips port has ever used the profiler counter word, so don't emit it
2154   or the label for it.  */
2155
2156#define NO_PROFILE_COUNTERS 1
2157
2158/* Define this macro if the code for function profiling should come
2159   before the function prologue.  Normally, the profiling code comes
2160   after.  */
2161
2162/* #define PROFILE_BEFORE_PROLOGUE */
2163
2164/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2165   the stack pointer does not matter.  The value is tested only in
2166   functions that have frame pointers.
2167   No definition is equivalent to always zero.  */
2168
2169#define EXIT_IGNORE_STACK 1
2170
2171
2172/* A C statement to output, on the stream FILE, assembler code for a
2173   block of data that contains the constant parts of a trampoline.
2174   This code should not include a label--the label is taken care of
2175   automatically.  */
2176
2177#define TRAMPOLINE_TEMPLATE(STREAM)					 \
2178{									 \
2179  fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");		\
2180  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
2181  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
2182  if (ptr_mode == DImode)						\
2183    {									\
2184      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
2185      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
2186    }									\
2187  else									\
2188    {									\
2189      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
2190      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
2191    }									\
2192  fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n"); \
2193  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
2194  fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");		\
2195  if (ptr_mode == DImode)						\
2196    {									\
2197      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2198      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2199    }									\
2200  else									\
2201    {									\
2202      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2203      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2204    }									\
2205}
2206
2207/* A C expression for the size in bytes of the trampoline, as an
2208   integer.  */
2209
2210#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2211
2212/* Alignment required for trampolines, in bits.  */
2213
2214#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2215
2216/* INITIALIZE_TRAMPOLINE calls this library function to flush
2217   program and data caches.  */
2218
2219#ifndef CACHE_FLUSH_FUNC
2220#define CACHE_FLUSH_FUNC "_flush_cache"
2221#endif
2222
2223/* A C statement to initialize the variable parts of a trampoline.
2224   ADDR is an RTX for the address of the trampoline; FNADDR is an
2225   RTX for the address of the nested function; STATIC_CHAIN is an
2226   RTX for the static chain value that should be passed to the
2227   function when it is called.  */
2228
2229#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
2230{									    \
2231  rtx func_addr, chain_addr;						    \
2232									    \
2233  func_addr = plus_constant (ADDR, 32);					    \
2234  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));	    \
2235  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);		    \
2236  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);		    \
2237									    \
2238  /* Flush both caches.  We need to flush the data cache in case	    \
2239     the system has a write-back cache.  */				    \
2240  /* ??? Should check the return value for errors.  */			    \
2241  if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
2242    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2243		       0, VOIDmode, 3, ADDR, Pmode,			    \
2244		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2245		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
2246}
2247
2248/* Addressing modes, and classification of registers for them.  */
2249
2250#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2251#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2252  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2253
2254/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2255   and check its validity for a certain class.
2256   We have two alternate definitions for each of them.
2257   The usual definition accepts all pseudo regs; the other rejects them all.
2258   The symbol REG_OK_STRICT causes the latter definition to be used.
2259
2260   Most source files want to accept pseudo regs in the hope that
2261   they will get allocated to the class that the insn wants them to be in.
2262   Some source files that are used after register allocation
2263   need to be strict.  */
2264
2265#ifndef REG_OK_STRICT
2266#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2267  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2268#else
2269#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2270  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2271#endif
2272
2273#define REG_OK_FOR_INDEX_P(X) 0
2274
2275
2276/* Maximum number of registers that can appear in a valid memory address.  */
2277
2278#define MAX_REGS_PER_ADDRESS 1
2279
2280#ifdef REG_OK_STRICT
2281#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2282{						\
2283  if (mips_legitimate_address_p (MODE, X, 1))	\
2284    goto ADDR;					\
2285}
2286#else
2287#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2288{						\
2289  if (mips_legitimate_address_p (MODE, X, 0))	\
2290    goto ADDR;					\
2291}
2292#endif
2293
2294/* Check for constness inline but use mips_legitimate_address_p
2295   to check whether a constant really is an address.  */
2296
2297#define CONSTANT_ADDRESS_P(X) \
2298  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2299
2300#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2301
2302#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2303  do {								\
2304    if (mips_legitimize_address (&(X), MODE))			\
2305      goto WIN;							\
2306  } while (0)
2307
2308
2309/* A C statement or compound statement with a conditional `goto
2310   LABEL;' executed if memory address X (an RTX) can have different
2311   meanings depending on the machine mode of the memory reference it
2312   is used for.
2313
2314   Autoincrement and autodecrement addresses typically have
2315   mode-dependent effects because the amount of the increment or
2316   decrement is the size of the operand being addressed.  Some
2317   machines have other mode-dependent addresses.  Many RISC machines
2318   have no mode-dependent addresses.
2319
2320   You may assume that ADDR is a valid address for the machine.  */
2321
2322#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2323
2324/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2325   'the start of the function that this code is output in'.  */
2326
2327#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2328  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2329    asm_fprintf ((FILE), "%U%s",					\
2330		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2331  else									\
2332    asm_fprintf ((FILE), "%U%s", (NAME))
2333
2334/* Flag to mark a function decl symbol that requires a long call.  */
2335#define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2336#define SYMBOL_REF_LONG_CALL_P(X)					\
2337  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2338
2339/* Specify the machine mode that this machine uses
2340   for the index in the tablejump instruction.
2341   ??? Using HImode in mips16 mode can cause overflow.  */
2342#define CASE_VECTOR_MODE \
2343  (TARGET_MIPS16 ? HImode : ptr_mode)
2344
2345/* Define as C expression which evaluates to nonzero if the tablejump
2346   instruction expects the table to contain offsets from the address of the
2347   table.
2348   Do not define this if the table should contain absolute addresses.  */
2349#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2350
2351/* Define this as 1 if `char' should by default be signed; else as 0.  */
2352#ifndef DEFAULT_SIGNED_CHAR
2353#define DEFAULT_SIGNED_CHAR 1
2354#endif
2355
2356/* Max number of bytes we can move from memory to memory
2357   in one reasonably fast instruction.  */
2358#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2359#define MAX_MOVE_MAX 8
2360
2361/* Define this macro as a C expression which is nonzero if
2362   accessing less than a word of memory (i.e. a `char' or a
2363   `short') is no faster than accessing a word of memory, i.e., if
2364   such access require more than one instruction or if there is no
2365   difference in cost between byte and (aligned) word loads.
2366
2367   On RISC machines, it tends to generate better code to define
2368   this as 1, since it avoids making a QI or HI mode register.  */
2369#define SLOW_BYTE_ACCESS 1
2370
2371/* Define this to be nonzero if shift instructions ignore all but the low-order
2372   few bits.  */
2373#define SHIFT_COUNT_TRUNCATED 1
2374
2375/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2376   is done just by pretending it is already truncated.  */
2377#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2378  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2379
2380
2381/* Specify the machine mode that pointers have.
2382   After generation of rtl, the compiler makes no further distinction
2383   between pointers and any other objects of this machine mode.  */
2384
2385#ifndef Pmode
2386#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2387#endif
2388
2389/* Give call MEMs SImode since it is the "most permissive" mode
2390   for both 32-bit and 64-bit targets.  */
2391
2392#define FUNCTION_MODE SImode
2393
2394
2395/* The cost of loading values from the constant pool.  It should be
2396   larger than the cost of any constant we want to synthesize in-line.  */
2397
2398#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2399
2400/* A C expression for the cost of moving data from a register in
2401   class FROM to one in class TO.  The classes are expressed using
2402   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2403   the default; other values are interpreted relative to that.
2404
2405   It is not required that the cost always equal 2 when FROM is the
2406   same as TO; on some machines it is expensive to move between
2407   registers if they are not general registers.
2408
2409   If reload sees an insn consisting of a single `set' between two
2410   hard registers, and if `REGISTER_MOVE_COST' applied to their
2411   classes returns a value of 2, reload does not check to ensure
2412   that the constraints of the insn are met.  Setting a cost of
2413   other than 2 will allow reload to verify that the constraints are
2414   met.  You should do this if the `movM' pattern's constraints do
2415   not allow such copying.  */
2416
2417#define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2418  mips_register_move_cost (MODE, FROM, TO)
2419
2420#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2421  (mips_cost->memory_latency	      		\
2422   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2423
2424/* Define if copies to/from condition code registers should be avoided.
2425
2426   This is needed for the MIPS because reload_outcc is not complete;
2427   it needs to handle cases where the source is a general or another
2428   condition code register.  */
2429#define AVOID_CCMODE_COPIES
2430
2431/* A C expression for the cost of a branch instruction.  A value of
2432   1 is the default; other values are interpreted relative to that.  */
2433
2434#define BRANCH_COST mips_cost->branch_cost
2435#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2436
2437/* If defined, modifies the length assigned to instruction INSN as a
2438   function of the context in which it is used.  LENGTH is an lvalue
2439   that contains the initially computed length of the insn and should
2440   be updated with the correct length of the insn.  */
2441#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2442  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2443
2444/* Control the assembler format that we output.  */
2445
2446/* Output to assembler file text saying following lines
2447   may contain character constants, extra white space, comments, etc.  */
2448
2449#ifndef ASM_APP_ON
2450#define ASM_APP_ON " #APP\n"
2451#endif
2452
2453/* Output to assembler file text saying following lines
2454   no longer contain unusual constructs.  */
2455
2456#ifndef ASM_APP_OFF
2457#define ASM_APP_OFF " #NO_APP\n"
2458#endif
2459
2460#define REGISTER_NAMES							   \
2461{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2462  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2463  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2464  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2465  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2466  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2467  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2468  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2469  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2470  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",		   \
2471  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2472  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2473  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2474  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2475  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2476  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2477  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2478  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2479  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2480  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2481  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2482  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2483  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2484  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2485
2486/* List the "software" names for each register.  Also list the numerical
2487   names for $fp and $sp.  */
2488
2489#define ADDITIONAL_REGISTER_NAMES					\
2490{									\
2491  { "$29",	29 + GP_REG_FIRST },					\
2492  { "$30",	30 + GP_REG_FIRST },					\
2493  { "at",	 1 + GP_REG_FIRST },					\
2494  { "v0",	 2 + GP_REG_FIRST },					\
2495  { "v1",	 3 + GP_REG_FIRST },					\
2496  { "a0",	 4 + GP_REG_FIRST },					\
2497  { "a1",	 5 + GP_REG_FIRST },					\
2498  { "a2",	 6 + GP_REG_FIRST },					\
2499  { "a3",	 7 + GP_REG_FIRST },					\
2500  { "t0",	 8 + GP_REG_FIRST },					\
2501  { "t1",	 9 + GP_REG_FIRST },					\
2502  { "t2",	10 + GP_REG_FIRST },					\
2503  { "t3",	11 + GP_REG_FIRST },					\
2504  { "t4",	12 + GP_REG_FIRST },					\
2505  { "t5",	13 + GP_REG_FIRST },					\
2506  { "t6",	14 + GP_REG_FIRST },					\
2507  { "t7",	15 + GP_REG_FIRST },					\
2508  { "s0",	16 + GP_REG_FIRST },					\
2509  { "s1",	17 + GP_REG_FIRST },					\
2510  { "s2",	18 + GP_REG_FIRST },					\
2511  { "s3",	19 + GP_REG_FIRST },					\
2512  { "s4",	20 + GP_REG_FIRST },					\
2513  { "s5",	21 + GP_REG_FIRST },					\
2514  { "s6",	22 + GP_REG_FIRST },					\
2515  { "s7",	23 + GP_REG_FIRST },					\
2516  { "t8",	24 + GP_REG_FIRST },					\
2517  { "t9",	25 + GP_REG_FIRST },					\
2518  { "k0",	26 + GP_REG_FIRST },					\
2519  { "k1",	27 + GP_REG_FIRST },					\
2520  { "gp",	28 + GP_REG_FIRST },					\
2521  { "sp",	29 + GP_REG_FIRST },					\
2522  { "fp",	30 + GP_REG_FIRST },					\
2523  { "ra",	31 + GP_REG_FIRST },					\
2524  ALL_COP_ADDITIONAL_REGISTER_NAMES					\
2525}
2526
2527/* This is meant to be redefined in the host dependent files.  It is a
2528   set of alternative names and regnums for mips coprocessors.  */
2529
2530#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2531
2532/* A C compound statement to output to stdio stream STREAM the
2533   assembler syntax for an instruction operand X.  X is an RTL
2534   expression.
2535
2536   CODE is a value that can be used to specify one of several ways
2537   of printing the operand.  It is used when identical operands
2538   must be printed differently depending on the context.  CODE
2539   comes from the `%' specification that was used to request
2540   printing of the operand.  If the specification was just `%DIGIT'
2541   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2542   is the ASCII code for LTR.
2543
2544   If X is a register, this macro should print the register's name.
2545   The names can be found in an array `reg_names' whose type is
2546   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2547
2548   When the machine description has a specification `%PUNCT' (a `%'
2549   followed by a punctuation character), this macro is called with
2550   a null pointer for X and the punctuation character for CODE.
2551
2552   See mips.c for the MIPS specific codes.  */
2553
2554#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2555
2556/* A C expression which evaluates to true if CODE is a valid
2557   punctuation character for use in the `PRINT_OPERAND' macro.  If
2558   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2559   punctuation characters (except for the standard one, `%') are
2560   used in this way.  */
2561
2562#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2563
2564/* A C compound statement to output to stdio stream STREAM the
2565   assembler syntax for an instruction operand that is a memory
2566   reference whose address is ADDR.  ADDR is an RTL expression.  */
2567
2568#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2569
2570
2571/* A C statement, to be executed after all slot-filler instructions
2572   have been output.  If necessary, call `dbr_sequence_length' to
2573   determine the number of slots filled in a sequence (zero if not
2574   currently outputting a sequence), to decide how many no-ops to
2575   output, or whatever.
2576
2577   Don't define this macro if it has nothing to do, but it is
2578   helpful in reading assembly output if the extent of the delay
2579   sequence is made explicit (e.g. with white space).
2580
2581   Note that output routines for instructions with delay slots must
2582   be prepared to deal with not being output as part of a sequence
2583   (i.e.  when the scheduling pass is not run, or when no slot
2584   fillers could be found.)  The variable `final_sequence' is null
2585   when not processing a sequence, otherwise it contains the
2586   `sequence' rtx being output.  */
2587
2588#define DBR_OUTPUT_SEQEND(STREAM)					\
2589do									\
2590  {									\
2591    if (set_nomacro > 0 && --set_nomacro == 0)				\
2592      fputs ("\t.set\tmacro\n", STREAM);				\
2593									\
2594    if (set_noreorder > 0 && --set_noreorder == 0)			\
2595      fputs ("\t.set\treorder\n", STREAM);				\
2596									\
2597    fputs ("\n", STREAM);						\
2598  }									\
2599while (0)
2600
2601
2602/* How to tell the debugger about changes of source files.  */
2603#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2604  mips_output_filename (STREAM, NAME)
2605
2606/* mips-tfile does not understand .stabd directives.  */
2607#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {	\
2608  dbxout_begin_stabn_sline (LINE);				\
2609  dbxout_stab_value_internal_label ("LM", &COUNTER);		\
2610} while (0)
2611
2612/* Use .loc directives for SDB line numbers.  */
2613#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)			\
2614  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2615
2616/* The MIPS implementation uses some labels for its own purpose.  The
2617   following lists what labels are created, and are all formed by the
2618   pattern $L[a-z].*.  The machine independent portion of GCC creates
2619   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2620
2621	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2622	$Lb[0-9]+	Begin blocks for MIPS debug support
2623	$Lc[0-9]+	Label for use in s<xx> operation.
2624	$Le[0-9]+	End blocks for MIPS debug support  */
2625
2626#undef ASM_DECLARE_OBJECT_NAME
2627#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2628  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2629
2630/* Globalizing directive for a label.  */
2631#define GLOBAL_ASM_OP "\t.globl\t"
2632
2633/* This says how to define a global common symbol.  */
2634
2635#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2636
2637/* This says how to define a local common symbol (i.e., not visible to
2638   linker).  */
2639
2640#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2641#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2642  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2643#endif
2644
2645/* This says how to output an external.  It would be possible not to
2646   output anything and let undefined symbol become external. However
2647   the assembler uses length information on externals to allocate in
2648   data/sdata bss/sbss, thereby saving exec time.  */
2649
2650#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2651  mips_output_external(STREAM,DECL,NAME)
2652
2653/* This is how to declare a function name.  The actual work of
2654   emitting the label is moved to function_prologue, so that we can
2655   get the line number correctly emitted before the .ent directive,
2656   and after any .file directives.  Define as empty so that the function
2657   is not declared before the .ent directive elsewhere.  */
2658
2659#undef ASM_DECLARE_FUNCTION_NAME
2660#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2661
2662#ifndef FUNCTION_NAME_ALREADY_DECLARED
2663#define FUNCTION_NAME_ALREADY_DECLARED 0
2664#endif
2665
2666/* This is how to store into the string LABEL
2667   the symbol_ref name of an internal numbered label where
2668   PREFIX is the class of label and NUM is the number within the class.
2669   This is suitable for output with `assemble_name'.  */
2670
2671#undef ASM_GENERATE_INTERNAL_LABEL
2672#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2673  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2674
2675/* This is how to output an element of a case-vector that is absolute.  */
2676
2677#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2678  fprintf (STREAM, "\t%s\t%sL%d\n",					\
2679	   ptr_mode == DImode ? ".dword" : ".word",			\
2680	   LOCAL_LABEL_PREFIX,						\
2681	   VALUE)
2682
2683/* This is how to output an element of a case-vector.  We can make the
2684   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2685   is supported.  */
2686
2687#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2688do {									\
2689  if (TARGET_MIPS16)							\
2690    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
2691	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2692  else if (TARGET_GPWORD)						\
2693    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2694	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2695	     LOCAL_LABEL_PREFIX, VALUE);				\
2696  else									\
2697    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2698	     ptr_mode == DImode ? ".dword" : ".word",			\
2699	     LOCAL_LABEL_PREFIX, VALUE);				\
2700} while (0)
2701
2702/* When generating MIPS16 code, we want the jump table to be in the text
2703   section so that we can load its address using a PC-relative addition.  */
2704#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2705
2706/* This is how to output an assembler line
2707   that says to advance the location counter
2708   to a multiple of 2**LOG bytes.  */
2709
2710#define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2711  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2712
2713/* This is how to output an assembler line to advance the location
2714   counter by SIZE bytes.  */
2715
2716#undef ASM_OUTPUT_SKIP
2717#define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2718  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2719
2720/* This is how to output a string.  */
2721#undef ASM_OUTPUT_ASCII
2722#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
2723  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2724
2725/* Output #ident as a in the read-only data section.  */
2726#undef  ASM_OUTPUT_IDENT
2727#define ASM_OUTPUT_IDENT(FILE, STRING)					\
2728{									\
2729  const char *p = STRING;						\
2730  int size = strlen (p) + 1;						\
2731  readonly_data_section ();						\
2732  assemble_string (p, size);						\
2733}
2734
2735/* Default to -G 8 */
2736#ifndef MIPS_DEFAULT_GVALUE
2737#define MIPS_DEFAULT_GVALUE 8
2738#endif
2739
2740/* Define the strings to put out for each section in the object file.  */
2741#define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2742#define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2743#define SDATA_SECTION_ASM_OP	"\t.sdata"	/* small data */
2744
2745#undef READONLY_DATA_SECTION_ASM_OP
2746#define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2747
2748#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2749do									\
2750  {									\
2751    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
2752	     TARGET_64BIT ? "dsubu" : "subu",				\
2753	     reg_names[STACK_POINTER_REGNUM],				\
2754	     reg_names[STACK_POINTER_REGNUM],				\
2755	     TARGET_64BIT ? "sd" : "sw",				\
2756	     reg_names[REGNO],						\
2757	     reg_names[STACK_POINTER_REGNUM]);				\
2758  }									\
2759while (0)
2760
2761#define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2762do									\
2763  {									\
2764    if (! set_noreorder)						\
2765      fprintf (STREAM, "\t.set\tnoreorder\n");				\
2766									\
2767    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2768	     TARGET_64BIT ? "ld" : "lw",				\
2769	     reg_names[REGNO],						\
2770	     reg_names[STACK_POINTER_REGNUM],				\
2771	     TARGET_64BIT ? "daddu" : "addu",				\
2772	     reg_names[STACK_POINTER_REGNUM],				\
2773	     reg_names[STACK_POINTER_REGNUM]);				\
2774									\
2775    if (! set_noreorder)						\
2776      fprintf (STREAM, "\t.set\treorder\n");				\
2777  }									\
2778while (0)
2779
2780/* How to start an assembler comment.
2781   The leading space is important (the mips native assembler requires it).  */
2782#ifndef ASM_COMMENT_START
2783#define ASM_COMMENT_START " #"
2784#endif
2785
2786/* Default definitions for size_t and ptrdiff_t.  We must override the
2787   definitions from ../svr4.h on mips-*-linux-gnu.  */
2788
2789#undef SIZE_TYPE
2790#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2791
2792#undef PTRDIFF_TYPE
2793#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2794
2795#ifndef __mips16
2796/* Since the bits of the _init and _fini function is spread across
2797   many object files, each potentially with its own GP, we must assume
2798   we need to load our GP.  We don't preserve $gp or $ra, since each
2799   init/fini chunk is supposed to initialize $gp, and crti/crtn
2800   already take care of preserving $ra and, when appropriate, $gp.  */
2801#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2802#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2803   asm (SECTION_OP "\n\
2804	.set noreorder\n\
2805	bal 1f\n\
2806	nop\n\
28071:	.cpload $31\n\
2808	.set reorder\n\
2809	jal " USER_LABEL_PREFIX #FUNC "\n\
2810	" TEXT_SECTION_ASM_OP);
2811#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2812#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2813   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2814#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2815   asm (SECTION_OP "\n\
2816	.set noreorder\n\
2817	bal 1f\n\
2818	nop\n\
28191:	.set reorder\n\
2820	.cpsetup $31, $2, 1b\n\
2821	jal " USER_LABEL_PREFIX #FUNC "\n\
2822	" TEXT_SECTION_ASM_OP);
2823#endif
2824#endif
2825
2826#ifndef HAVE_AS_TLS
2827#define HAVE_AS_TLS 0
2828#endif
2829