1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Macros used in the machine description to test the flags.  */
92
93/* configure can arrange to make this 2, to force a 486.  */
94
95#ifndef TARGET_CPU_DEFAULT
96#ifdef TARGET_64BIT_DEFAULT
97#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
98#else
99#define TARGET_CPU_DEFAULT 0
100#endif
101#endif
102
103#ifndef TARGET_FPMATH_DEFAULT
104#define TARGET_FPMATH_DEFAULT \
105  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
106#endif
107
108#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
109
110/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
111   compile-time constant.  */
112#ifdef IN_LIBGCC2
113#undef TARGET_64BIT
114#ifdef __x86_64__
115#define TARGET_64BIT 1
116#else
117#define TARGET_64BIT 0
118#endif
119#else
120#ifndef TARGET_BI_ARCH
121#undef TARGET_64BIT
122#if TARGET_64BIT_DEFAULT
123#define TARGET_64BIT 1
124#else
125#define TARGET_64BIT 0
126#endif
127#endif
128#endif
129
130#define HAS_LONG_COND_BRANCH 1
131#define HAS_LONG_UNCOND_BRANCH 1
132
133#define TARGET_386 (ix86_tune == PROCESSOR_I386)
134#define TARGET_486 (ix86_tune == PROCESSOR_I486)
135#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
136#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
137#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
138#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
139#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
140#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
141#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
142#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
143
144#define TUNEMASK (1 << ix86_tune)
145extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
146extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
147extern const int x86_branch_hints, x86_unroll_strlen;
148extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
149extern const int x86_use_himode_fiop, x86_use_simode_fiop;
150extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
151extern const int x86_read_modify, x86_split_long_moves;
152extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
153extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
154extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
155extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
156extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
157extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
158extern const int x86_epilogue_using_move, x86_decompose_lea;
159extern const int x86_arch_always_fancy_math_387, x86_shift1;
160extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
161extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
162extern const int x86_use_ffreep;
163extern const int x86_inter_unit_moves, x86_schedule;
164extern const int x86_use_bt;
165extern const int x86_cmpxchg, x86_xadd;
166extern int x86_prefetch_sse;
167
168#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
169#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
170#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
171#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
172#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
173/* For sane SSE instruction set generation we need fcomi instruction.  It is
174   safe to enable all CMOVE instructions.  */
175#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
176#define TARGET_FISTTP (((x86_fisttp & (1 << ix86_arch)) || TARGET_SSE3) \
177			&& TARGET_80387)
178#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
179#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
180#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
181#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
182#define TARGET_MOVX (x86_movx & TUNEMASK)
183#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
184#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
185#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
186#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
187#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
188#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
189#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
190#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
191#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
192#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
193#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
194#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
195#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
196#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
197#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
198#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
199#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
200#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
201#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
202#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
203#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
204#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
205				      (x86_sse_partial_reg_dependency & TUNEMASK)
206#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
207#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
208#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
209#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
210#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
211#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
212#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
213#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
214#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
215#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
216#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
217#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
218#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
219#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
220#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
221
222#define ASSEMBLER_DIALECT (ix86_asm_dialect)
223
224#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
225#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
226			     && (ix86_fpmath & FPMATH_387))
227
228#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
229#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
230
231#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
232#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
233
234#ifndef TARGET_64BIT_DEFAULT
235#define TARGET_64BIT_DEFAULT 0
236#endif
237#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
238#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
239#endif
240
241/* Once GDB has been enhanced to deal with functions without frame
242   pointers, we can change this to allow for elimination of
243   the frame pointer in leaf functions.  */
244#define TARGET_DEFAULT 0
245
246/* This is not really a target flag, but is done this way so that
247   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
248   redefines this to 1.  */
249#define TARGET_MACHO 0
250
251/* Subtargets may reset this to 1 in order to enable 96-bit long double
252   with the rounding mode forced to 53 bits.  */
253#define TARGET_96_ROUND_53_LONG_DOUBLE 0
254
255/* Sometimes certain combinations of command options do not make
256   sense on a particular target machine.  You can define a macro
257   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
258   defined, is executed once just after all the command options have
259   been parsed.
260
261   Don't use this macro to turn on various extra optimizations for
262   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
263
264#define OVERRIDE_OPTIONS override_options ()
265
266/* Define this to change the optimizations performed by default.  */
267#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
268  optimization_options ((LEVEL), (SIZE))
269
270/* Support for configure-time defaults of some command line options.  */
271#define OPTION_DEFAULT_SPECS \
272  {"arch", "%{!march=*:-march=%(VALUE)}"}, \
273  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
274  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
275
276/* Specs for the compiler proper */
277
278#ifndef CC1_CPU_SPEC
279#define CC1_CPU_SPEC "\
280%{!mtune*: \
281%{m386:mtune=i386 \
282%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
283%{m486:-mtune=i486 \
284%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
285%{mpentium:-mtune=pentium \
286%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
287%{mpentiumpro:-mtune=pentiumpro \
288%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
289%{mcpu=*:-mtune=%* \
290%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
291%<mcpu=* \
292%{mintel-syntax:-masm=intel \
293%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
294%{mno-intel-syntax:-masm=att \
295%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
296#endif
297
298/* Target CPU builtins.  */
299#define TARGET_CPU_CPP_BUILTINS()				\
300  do								\
301    {								\
302      size_t arch_len = strlen (ix86_arch_string);		\
303      size_t tune_len = strlen (ix86_tune_string);		\
304      int last_arch_char = ix86_arch_string[arch_len - 1];	\
305      int last_tune_char = ix86_tune_string[tune_len - 1];		\
306								\
307      if (TARGET_64BIT)						\
308	{							\
309	  builtin_assert ("cpu=x86_64");			\
310	  builtin_assert ("machine=x86_64");			\
311	  builtin_define ("__amd64");				\
312	  builtin_define ("__amd64__");				\
313	  builtin_define ("__x86_64");				\
314	  builtin_define ("__x86_64__");			\
315	}							\
316      else							\
317	{							\
318	  builtin_assert ("cpu=i386");				\
319	  builtin_assert ("machine=i386");			\
320	  builtin_define_std ("i386");				\
321	}							\
322								\
323      /* Built-ins based on -mtune= (or -march= if no		\
324	 -mtune= given).  */					\
325      if (TARGET_386)						\
326	builtin_define ("__tune_i386__");			\
327      else if (TARGET_486)					\
328	builtin_define ("__tune_i486__");			\
329      else if (TARGET_PENTIUM)					\
330	{							\
331	  builtin_define ("__tune_i586__");			\
332	  builtin_define ("__tune_pentium__");			\
333	  if (last_tune_char == 'x')				\
334	    builtin_define ("__tune_pentium_mmx__");		\
335	}							\
336      else if (TARGET_PENTIUMPRO)				\
337	{							\
338	  builtin_define ("__tune_i686__");			\
339	  builtin_define ("__tune_pentiumpro__");		\
340	  switch (last_tune_char)				\
341	    {							\
342	    case '3':						\
343	      builtin_define ("__tune_pentium3__");		\
344	      /* FALLTHRU */					\
345	    case '2':						\
346	      builtin_define ("__tune_pentium2__");		\
347	      break;						\
348	    }							\
349	}							\
350      else if (TARGET_K6)					\
351	{							\
352	  builtin_define ("__tune_k6__");			\
353	  if (last_tune_char == '2')				\
354	    builtin_define ("__tune_k6_2__");			\
355	  else if (last_tune_char == '3')			\
356	    builtin_define ("__tune_k6_3__");			\
357	}							\
358      else if (TARGET_ATHLON)					\
359	{							\
360	  builtin_define ("__tune_athlon__");			\
361	  /* Only plain "athlon" lacks SSE.  */			\
362	  if (last_tune_char != 'n')				\
363	    builtin_define ("__tune_athlon_sse__");		\
364	}							\
365      else if (TARGET_K8)					\
366	builtin_define ("__tune_k8__");				\
367      else if (TARGET_PENTIUM4)					\
368	builtin_define ("__tune_pentium4__");			\
369      else if (TARGET_NOCONA)					\
370	builtin_define ("__tune_nocona__");			\
371								\
372      if (TARGET_MMX)						\
373	builtin_define ("__MMX__");				\
374      if (TARGET_3DNOW)						\
375	builtin_define ("__3dNOW__");				\
376      if (TARGET_3DNOW_A)					\
377	builtin_define ("__3dNOW_A__");				\
378      if (TARGET_SSE)						\
379	builtin_define ("__SSE__");				\
380      if (TARGET_SSE2)						\
381	builtin_define ("__SSE2__");				\
382      if (TARGET_SSE3)						\
383	builtin_define ("__SSE3__");				\
384      if (TARGET_SSE_MATH && TARGET_SSE)			\
385	builtin_define ("__SSE_MATH__");			\
386      if (TARGET_SSE_MATH && TARGET_SSE2)			\
387	builtin_define ("__SSE2_MATH__");			\
388								\
389      /* Built-ins based on -march=.  */			\
390      if (ix86_arch == PROCESSOR_I486)				\
391	{							\
392	  builtin_define ("__i486");				\
393	  builtin_define ("__i486__");				\
394	}							\
395      else if (ix86_arch == PROCESSOR_PENTIUM)			\
396	{							\
397	  builtin_define ("__i586");				\
398	  builtin_define ("__i586__");				\
399	  builtin_define ("__pentium");				\
400	  builtin_define ("__pentium__");			\
401	  if (last_arch_char == 'x')				\
402	    builtin_define ("__pentium_mmx__");			\
403	}							\
404      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
405	{							\
406	  builtin_define ("__i686");				\
407	  builtin_define ("__i686__");				\
408	  builtin_define ("__pentiumpro");			\
409	  builtin_define ("__pentiumpro__");			\
410	}							\
411      else if (ix86_arch == PROCESSOR_K6)			\
412	{							\
413								\
414	  builtin_define ("__k6");				\
415	  builtin_define ("__k6__");				\
416	  if (last_arch_char == '2')				\
417	    builtin_define ("__k6_2__");			\
418	  else if (last_arch_char == '3')			\
419	    builtin_define ("__k6_3__");			\
420	}							\
421      else if (ix86_arch == PROCESSOR_ATHLON)			\
422	{							\
423	  builtin_define ("__athlon");				\
424	  builtin_define ("__athlon__");			\
425	  /* Only plain "athlon" lacks SSE.  */			\
426	  if (last_arch_char != 'n')				\
427	    builtin_define ("__athlon_sse__");			\
428	}							\
429      else if (ix86_arch == PROCESSOR_K8)			\
430	{							\
431	  builtin_define ("__k8");				\
432	  builtin_define ("__k8__");				\
433	}							\
434      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
435	{							\
436	  builtin_define ("__pentium4");			\
437	  builtin_define ("__pentium4__");			\
438	}							\
439      else if (ix86_arch == PROCESSOR_NOCONA)			\
440	{							\
441	  builtin_define ("__nocona");				\
442	  builtin_define ("__nocona__");			\
443	}							\
444    }								\
445  while (0)
446
447#define TARGET_CPU_DEFAULT_i386 0
448#define TARGET_CPU_DEFAULT_i486 1
449#define TARGET_CPU_DEFAULT_pentium 2
450#define TARGET_CPU_DEFAULT_pentium_mmx 3
451#define TARGET_CPU_DEFAULT_pentiumpro 4
452#define TARGET_CPU_DEFAULT_pentium2 5
453#define TARGET_CPU_DEFAULT_pentium3 6
454#define TARGET_CPU_DEFAULT_pentium4 7
455#define TARGET_CPU_DEFAULT_k6 8
456#define TARGET_CPU_DEFAULT_k6_2 9
457#define TARGET_CPU_DEFAULT_k6_3 10
458#define TARGET_CPU_DEFAULT_athlon 11
459#define TARGET_CPU_DEFAULT_athlon_sse 12
460#define TARGET_CPU_DEFAULT_k8 13
461#define TARGET_CPU_DEFAULT_pentium_m 14
462#define TARGET_CPU_DEFAULT_prescott 15
463#define TARGET_CPU_DEFAULT_nocona 16
464
465#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
466				  "pentiumpro", "pentium2", "pentium3", \
467				  "pentium4", "k6", "k6-2", "k6-3",\
468				  "athlon", "athlon-4", "k8", \
469				  "pentium-m", "prescott", "nocona"}
470
471#ifndef CC1_SPEC
472#define CC1_SPEC "%(cc1_cpu) "
473#endif
474
475/* This macro defines names of additional specifications to put in the
476   specs that can be used in various specifications like CC1_SPEC.  Its
477   definition is an initializer with a subgrouping for each command option.
478
479   Each subgrouping contains a string constant, that defines the
480   specification name, and a string constant that used by the GCC driver
481   program.
482
483   Do not define this macro if it does not need to do anything.  */
484
485#ifndef SUBTARGET_EXTRA_SPECS
486#define SUBTARGET_EXTRA_SPECS
487#endif
488
489#define EXTRA_SPECS							\
490  { "cc1_cpu",  CC1_CPU_SPEC },						\
491  SUBTARGET_EXTRA_SPECS
492
493/* target machine storage layout */
494
495#define LONG_DOUBLE_TYPE_SIZE 80
496
497/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
498   FPU, assume that the fpcw is set to extended precision; when using
499   only SSE, rounding is correct; when using both SSE and the FPU,
500   the rounding precision is indeterminate, since either may be chosen
501   apparently at random.  */
502#define TARGET_FLT_EVAL_METHOD \
503  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
504
505#define SHORT_TYPE_SIZE 16
506#define INT_TYPE_SIZE 32
507#define FLOAT_TYPE_SIZE 32
508#define LONG_TYPE_SIZE BITS_PER_WORD
509#define DOUBLE_TYPE_SIZE 64
510#define LONG_LONG_TYPE_SIZE 64
511
512#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
513#define MAX_BITS_PER_WORD 64
514#else
515#define MAX_BITS_PER_WORD 32
516#endif
517
518/* Define this if most significant byte of a word is the lowest numbered.  */
519/* That is true on the 80386.  */
520
521#define BITS_BIG_ENDIAN 0
522
523/* Define this if most significant byte of a word is the lowest numbered.  */
524/* That is not true on the 80386.  */
525#define BYTES_BIG_ENDIAN 0
526
527/* Define this if most significant word of a multiword number is the lowest
528   numbered.  */
529/* Not true for 80386 */
530#define WORDS_BIG_ENDIAN 0
531
532/* Width of a word, in units (bytes).  */
533#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
534#ifdef IN_LIBGCC2
535#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
536#else
537#define MIN_UNITS_PER_WORD	4
538#endif
539
540/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
541#define PARM_BOUNDARY BITS_PER_WORD
542
543/* Boundary (in *bits*) on which stack pointer should be aligned.  */
544#define STACK_BOUNDARY BITS_PER_WORD
545
546/* Boundary (in *bits*) on which the stack pointer prefers to be
547   aligned; the compiler cannot rely on having this alignment.  */
548#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
549
550/* As of July 2001, many runtimes to not align the stack properly when
551   entering main.  This causes expand_main_function to forcibly align
552   the stack, which results in aligned frames for functions called from
553   main, though it does nothing for the alignment of main itself.  */
554#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
555  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
556
557/* Minimum allocation boundary for the code of a function.  */
558#define FUNCTION_BOUNDARY 8
559
560/* C++ stores the virtual bit in the lowest bit of function pointers.  */
561#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
562
563/* Alignment of field after `int : 0' in a structure.  */
564
565#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
566
567/* Minimum size in bits of the largest boundary to which any
568   and all fundamental data types supported by the hardware
569   might need to be aligned. No data type wants to be aligned
570   rounder than this.
571
572   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
573   and Pentium Pro XFmode values at 128 bit boundaries.  */
574
575#define BIGGEST_ALIGNMENT 128
576
577/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
578#define ALIGN_MODE_128(MODE) \
579 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
580
581/* The published ABIs say that doubles should be aligned on word
582   boundaries, so lower the alignment for structure fields unless
583   -malign-double is set.  */
584
585/* ??? Blah -- this macro is used directly by libobjc.  Since it
586   supports no vector modes, cut out the complexity and fall back
587   on BIGGEST_FIELD_ALIGNMENT.  */
588#ifdef IN_TARGET_LIBS
589#ifdef __x86_64__
590#define BIGGEST_FIELD_ALIGNMENT 128
591#else
592#define BIGGEST_FIELD_ALIGNMENT 32
593#endif
594#else
595#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
596   x86_field_alignment (FIELD, COMPUTED)
597#endif
598
599/* If defined, a C expression to compute the alignment given to a
600   constant that is being placed in memory.  EXP is the constant
601   and ALIGN is the alignment that the object would ordinarily have.
602   The value of this macro is used instead of that alignment to align
603   the object.
604
605   If this macro is not defined, then ALIGN is used.
606
607   The typical use of this macro is to increase alignment for string
608   constants to be word aligned so that `strcpy' calls that copy
609   constants can be done inline.  */
610
611#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
612
613/* If defined, a C expression to compute the alignment for a static
614   variable.  TYPE is the data type, and ALIGN is the alignment that
615   the object would ordinarily have.  The value of this macro is used
616   instead of that alignment to align the object.
617
618   If this macro is not defined, then ALIGN is used.
619
620   One use of this macro is to increase alignment of medium-size
621   data to make it all fit in fewer cache lines.  Another is to
622   cause character arrays to be word-aligned so that `strcpy' calls
623   that copy constants to character arrays can be done inline.  */
624
625#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
626
627/* If defined, a C expression to compute the alignment for a local
628   variable.  TYPE is the data type, and ALIGN is the alignment that
629   the object would ordinarily have.  The value of this macro is used
630   instead of that alignment to align the object.
631
632   If this macro is not defined, then ALIGN is used.
633
634   One use of this macro is to increase alignment of medium-size
635   data to make it all fit in fewer cache lines.  */
636
637#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
638
639/* If defined, a C expression that gives the alignment boundary, in
640   bits, of an argument with the specified mode and type.  If it is
641   not defined, `PARM_BOUNDARY' is used for all arguments.  */
642
643#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
644  ix86_function_arg_boundary ((MODE), (TYPE))
645
646/* Set this nonzero if move instructions will actually fail to work
647   when given unaligned data.  */
648#define STRICT_ALIGNMENT 0
649
650/* If bit field type is int, don't let it cross an int,
651   and give entire struct the alignment of an int.  */
652/* Required on the 386 since it doesn't have bit-field insns.  */
653#define PCC_BITFIELD_TYPE_MATTERS 1
654
655/* Standard register usage.  */
656
657/* This processor has special stack-like registers.  See reg-stack.c
658   for details.  */
659
660#define STACK_REGS
661#define IS_STACK_MODE(MODE)					\
662  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode)	\
663
664/* Number of actual hardware registers.
665   The hardware registers are assigned numbers for the compiler
666   from 0 to just below FIRST_PSEUDO_REGISTER.
667   All registers that the compiler knows about must be given numbers,
668   even those that are not normally considered general registers.
669
670   In the 80386 we give the 8 general purpose registers the numbers 0-7.
671   We number the floating point registers 8-15.
672   Note that registers 0-7 can be accessed as a  short or int,
673   while only 0-3 may be used with byte `mov' instructions.
674
675   Reg 16 does not correspond to any hardware register, but instead
676   appears in the RTL as an argument pointer prior to reload, and is
677   eliminated during reloading in favor of either the stack or frame
678   pointer.  */
679
680#define FIRST_PSEUDO_REGISTER 53
681
682/* Number of hardware registers that go into the DWARF-2 unwind info.
683   If not defined, equals FIRST_PSEUDO_REGISTER.  */
684
685#define DWARF_FRAME_REGISTERS 17
686
687/* 1 for registers that have pervasive standard uses
688   and are not available for the register allocator.
689   On the 80386, the stack pointer is such, as is the arg pointer.
690
691   The value is zero if the register is not fixed on either 32 or
692   64 bit targets, one if the register if fixed on both 32 and 64
693   bit targets, two if it is only fixed on 32bit targets and three
694   if its only fixed on 64bit targets.
695   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
696 */
697#define FIXED_REGISTERS						\
698/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
699{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
700/*arg,flags,fpsr,dir,frame*/					\
701    1,    1,   1,  1,    1,					\
702/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
703     0,   0,   0,   0,   0,   0,   0,   0,			\
704/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
705     0,   0,   0,   0,   0,   0,   0,   0,			\
706/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
707     2,   2,   2,   2,   2,   2,   2,   2,			\
708/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
709     2,   2,    2,    2,    2,    2,    2,    2}
710
711
712/* 1 for registers not available across function calls.
713   These must include the FIXED_REGISTERS and also any
714   registers that can be used without being saved.
715   The latter must include the registers where values are returned
716   and the register where structure-value addresses are passed.
717   Aside from that, you can include as many other registers as you like.
718
719   The value is zero if the register is not call used on either 32 or
720   64 bit targets, one if the register if call used on both 32 and 64
721   bit targets, two if it is only call used on 32bit targets and three
722   if its only call used on 64bit targets.
723   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
724*/
725#define CALL_USED_REGISTERS					\
726/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
727{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
728/*arg,flags,fpsr,dir,frame*/					\
729     1,   1,   1,  1,    1,					\
730/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
731     1,   1,   1,   1,   1,  1,    1,   1,			\
732/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
733     1,   1,   1,   1,   1,   1,   1,   1,			\
734/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
735     1,   1,   1,   1,   2,   2,   2,   2,			\
736/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
737     1,   1,    1,    1,    1,    1,    1,    1}		\
738
739/* Order in which to allocate registers.  Each register must be
740   listed once, even those in FIXED_REGISTERS.  List frame pointer
741   late and fixed registers last.  Note that, in general, we prefer
742   registers listed in CALL_USED_REGISTERS, keeping the others
743   available for storage of persistent values.
744
745   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
746   so this is just empty initializer for array.  */
747
748#define REG_ALLOC_ORDER 					\
749{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
750   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
751   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
752   48, 49, 50, 51, 52 }
753
754/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
755   to be rearranged based on a particular function.  When using sse math,
756   we want to allocate SSE before x87 registers and vice vera.  */
757
758#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
759
760
761/* Macro to conditionally modify fixed_regs/call_used_regs.  */
762#define CONDITIONAL_REGISTER_USAGE					\
763do {									\
764    int i;								\
765    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
766      {									\
767	if (fixed_regs[i] > 1)						\
768	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
769	if (call_used_regs[i] > 1)					\
770	  call_used_regs[i] = (call_used_regs[i]			\
771			       == (TARGET_64BIT ? 3 : 2));		\
772      }									\
773    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
774      {									\
775	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
776	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
777      }									\
778    if (! TARGET_MMX)							\
779      {									\
780	int i;								\
781        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
782          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
783	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
784      }									\
785    if (! TARGET_SSE)							\
786      {									\
787	int i;								\
788        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
789          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
790	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
791      }									\
792    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
793      {									\
794	int i;								\
795	HARD_REG_SET x;							\
796        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
797        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
798          if (TEST_HARD_REG_BIT (x, i)) 				\
799	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
800      }									\
801    if (! TARGET_64BIT)							\
802      {									\
803	int i;								\
804	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
805	  reg_names[i] = "";						\
806	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
807	  reg_names[i] = "";						\
808      }									\
809  } while (0)
810
811/* Return number of consecutive hard regs needed starting at reg REGNO
812   to hold something of mode MODE.
813   This is ordinarily the length in words of a value of mode MODE
814   but can be less for certain modes in special long registers.
815
816   Actually there are no two word move instructions for consecutive
817   registers.  And only registers 0-3 may have mov byte instructions
818   applied to them.
819   */
820
821#define HARD_REGNO_NREGS(REGNO, MODE)   \
822  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
823   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
824   : ((MODE) == XFmode							\
825      ? (TARGET_64BIT ? 2 : 3)						\
826      : (MODE) == XCmode						\
827      ? (TARGET_64BIT ? 4 : 6)						\
828      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
829
830#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
831  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
832   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
833      ? 0								\
834      : ((MODE) == XFmode || (MODE) == XCmode))				\
835   : 0)
836
837#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
838
839#define VALID_SSE2_REG_MODE(MODE) \
840    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
841     || (MODE) == V2DImode || (MODE) == DFmode)
842
843#define VALID_SSE_REG_MODE(MODE)					\
844    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
845     || (MODE) == SFmode || (MODE) == TFmode)
846
847#define VALID_MMX_REG_MODE_3DNOW(MODE) \
848    ((MODE) == V2SFmode || (MODE) == SFmode)
849
850#define VALID_MMX_REG_MODE(MODE)					\
851    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
852     || (MODE) == V2SImode || (MODE) == SImode)
853
854/* ??? No autovectorization into MMX or 3DNOW until we can reliably
855   place emms and femms instructions.  */
856#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
857
858#define VALID_FP_MODE_P(MODE)						\
859    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
860     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
861
862#define VALID_INT_MODE_P(MODE)						\
863    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
864     || (MODE) == DImode						\
865     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
866     || (MODE) == CDImode						\
867     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
868         || (MODE) == TFmode || (MODE) == TCmode)))
869
870/* Return true for modes passed in SSE registers.  */
871#define SSE_REG_MODE_P(MODE) \
872 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
873   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
874   || (MODE) == V4SFmode || (MODE) == V4SImode)
875
876/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
877
878#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
879   ix86_hard_regno_mode_ok ((REGNO), (MODE))
880
881/* Value is 1 if it is a good idea to tie two pseudo registers
882   when one has mode MODE1 and one has mode MODE2.
883   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
884   for any hard reg, then this must be 0 for correct output.  */
885
886#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
887
888/* It is possible to write patterns to move flags; but until someone
889   does it,  */
890#define AVOID_CCMODE_COPIES
891
892/* Specify the modes required to caller save a given hard regno.
893   We do this on i386 to prevent flags from being saved at all.
894
895   Kill any attempts to combine saving of modes.  */
896
897#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
898  (CC_REGNO_P (REGNO) ? VOIDmode					\
899   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
900   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
901   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
902   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
903   : (MODE))
904/* Specify the registers used for certain standard purposes.
905   The values of these macros are register numbers.  */
906
907/* on the 386 the pc register is %eip, and is not usable as a general
908   register.  The ordinary mov instructions won't work */
909/* #define PC_REGNUM  */
910
911/* Register to use for pushing function arguments.  */
912#define STACK_POINTER_REGNUM 7
913
914/* Base register for access to local variables of the function.  */
915#define HARD_FRAME_POINTER_REGNUM 6
916
917/* Base register for access to local variables of the function.  */
918#define FRAME_POINTER_REGNUM 20
919
920/* First floating point reg */
921#define FIRST_FLOAT_REG 8
922
923/* First & last stack-like regs */
924#define FIRST_STACK_REG FIRST_FLOAT_REG
925#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
926
927#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
928#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
929
930#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
931#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
932
933#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
934#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
935
936#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
937#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
938
939/* Value should be nonzero if functions must have frame pointers.
940   Zero means the frame pointer need not be set up (and parms
941   may be accessed via the stack pointer) in functions that seem suitable.
942   This is computed in `reload', in reload1.c.  */
943#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
944
945/* Override this in other tm.h files to cope with various OS lossage
946   requiring a frame pointer.  */
947#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
948#define SUBTARGET_FRAME_POINTER_REQUIRED 0
949#endif
950
951/* Make sure we can access arbitrary call frames.  */
952#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
953
954/* Base register for access to arguments of the function.  */
955#define ARG_POINTER_REGNUM 16
956
957/* Register in which static-chain is passed to a function.
958   We do use ECX as static chain register for 32 bit ABI.  On the
959   64bit ABI, ECX is an argument register, so we use R10 instead.  */
960#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
961
962/* Register to hold the addressing base for position independent
963   code access to data items.  We don't use PIC pointer for 64bit
964   mode.  Define the regnum to dummy value to prevent gcc from
965   pessimizing code dealing with EBX.
966
967   To avoid clobbering a call-saved register unnecessarily, we renumber
968   the pic register when possible.  The change is visible after the
969   prologue has been emitted.  */
970
971#define REAL_PIC_OFFSET_TABLE_REGNUM  3
972
973#define PIC_OFFSET_TABLE_REGNUM				\
974  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
975   || !flag_pic ? INVALID_REGNUM			\
976   : reload_completed ? REGNO (pic_offset_table_rtx)	\
977   : REAL_PIC_OFFSET_TABLE_REGNUM)
978
979#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
980
981/* A C expression which can inhibit the returning of certain function
982   values in registers, based on the type of value.  A nonzero value
983   says to return the function value in memory, just as large
984   structures are always returned.  Here TYPE will be a C expression
985   of type `tree', representing the data type of the value.
986
987   Note that values of mode `BLKmode' must be explicitly handled by
988   this macro.  Also, the option `-fpcc-struct-return' takes effect
989   regardless of this macro.  On most systems, it is possible to
990   leave the macro undefined; this causes a default definition to be
991   used, whose value is the constant 1 for `BLKmode' values, and 0
992   otherwise.
993
994   Do not use this macro to indicate that structures and unions
995   should always be returned in memory.  You should instead use
996   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
997
998#define RETURN_IN_MEMORY(TYPE) \
999  ix86_return_in_memory (TYPE)
1000
1001/* This is overridden by <cygwin.h>.  */
1002#define MS_AGGREGATE_RETURN 0
1003
1004/* This is overridden by <netware.h>.  */
1005#define KEEP_AGGREGATE_RETURN_POINTER 0
1006
1007/* Define the classes of registers for register constraints in the
1008   machine description.  Also define ranges of constants.
1009
1010   One of the classes must always be named ALL_REGS and include all hard regs.
1011   If there is more than one class, another class must be named NO_REGS
1012   and contain no registers.
1013
1014   The name GENERAL_REGS must be the name of a class (or an alias for
1015   another name such as ALL_REGS).  This is the class of registers
1016   that is allowed by "g" or "r" in a register constraint.
1017   Also, registers outside this class are allocated only when
1018   instructions express preferences for them.
1019
1020   The classes must be numbered in nondecreasing order; that is,
1021   a larger-numbered class must never be contained completely
1022   in a smaller-numbered class.
1023
1024   For any two classes, it is very desirable that there be another
1025   class that represents their union.
1026
1027   It might seem that class BREG is unnecessary, since no useful 386
1028   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1029   and the "b" register constraint is useful in asms for syscalls.
1030
1031   The flags and fpsr registers are in no class.  */
1032
1033enum reg_class
1034{
1035  NO_REGS,
1036  AREG, DREG, CREG, BREG, SIREG, DIREG,
1037  AD_REGS,			/* %eax/%edx for DImode */
1038  Q_REGS,			/* %eax %ebx %ecx %edx */
1039  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1040  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1041  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1042  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1043  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1044  FLOAT_REGS,
1045  SSE_REGS,
1046  MMX_REGS,
1047  FP_TOP_SSE_REGS,
1048  FP_SECOND_SSE_REGS,
1049  FLOAT_SSE_REGS,
1050  FLOAT_INT_REGS,
1051  INT_SSE_REGS,
1052  FLOAT_INT_SSE_REGS,
1053  ALL_REGS, LIM_REG_CLASSES
1054};
1055
1056#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1057
1058#define INTEGER_CLASS_P(CLASS) \
1059  reg_class_subset_p ((CLASS), GENERAL_REGS)
1060#define FLOAT_CLASS_P(CLASS) \
1061  reg_class_subset_p ((CLASS), FLOAT_REGS)
1062#define SSE_CLASS_P(CLASS) \
1063  ((CLASS) == SSE_REGS)
1064#define MMX_CLASS_P(CLASS) \
1065  ((CLASS) == MMX_REGS)
1066#define MAYBE_INTEGER_CLASS_P(CLASS) \
1067  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1068#define MAYBE_FLOAT_CLASS_P(CLASS) \
1069  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1070#define MAYBE_SSE_CLASS_P(CLASS) \
1071  reg_classes_intersect_p (SSE_REGS, (CLASS))
1072#define MAYBE_MMX_CLASS_P(CLASS) \
1073  reg_classes_intersect_p (MMX_REGS, (CLASS))
1074
1075#define Q_CLASS_P(CLASS) \
1076  reg_class_subset_p ((CLASS), Q_REGS)
1077
1078/* Give names of register classes as strings for dump file.  */
1079
1080#define REG_CLASS_NAMES \
1081{  "NO_REGS",				\
1082   "AREG", "DREG", "CREG", "BREG",	\
1083   "SIREG", "DIREG",			\
1084   "AD_REGS",				\
1085   "Q_REGS", "NON_Q_REGS",		\
1086   "INDEX_REGS",			\
1087   "LEGACY_REGS",			\
1088   "GENERAL_REGS",			\
1089   "FP_TOP_REG", "FP_SECOND_REG",	\
1090   "FLOAT_REGS",			\
1091   "SSE_REGS",				\
1092   "MMX_REGS",				\
1093   "FP_TOP_SSE_REGS",			\
1094   "FP_SECOND_SSE_REGS",		\
1095   "FLOAT_SSE_REGS",			\
1096   "FLOAT_INT_REGS",			\
1097   "INT_SSE_REGS",			\
1098   "FLOAT_INT_SSE_REGS",		\
1099   "ALL_REGS" }
1100
1101/* Define which registers fit in which classes.
1102   This is an initializer for a vector of HARD_REG_SET
1103   of length N_REG_CLASSES.  */
1104
1105#define REG_CLASS_CONTENTS						\
1106{     { 0x00,     0x0 },						\
1107      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1108      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1109      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1110      { 0x03,     0x0 },		/* AD_REGS */			\
1111      { 0x0f,     0x0 },		/* Q_REGS */			\
1112  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1113      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1114  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1115  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1116     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1117    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1118{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1119{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1120{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1121{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1122{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1123   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1124{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1125{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1126{ 0xffffffff,0x1fffff }							\
1127}
1128
1129/* The same information, inverted:
1130   Return the class number of the smallest class containing
1131   reg number REGNO.  This could be a conditional expression
1132   or could index an array.  */
1133
1134#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1135
1136/* When defined, the compiler allows registers explicitly used in the
1137   rtl to be used as spill registers but prevents the compiler from
1138   extending the lifetime of these registers.  */
1139
1140#define SMALL_REGISTER_CLASSES 1
1141
1142#define QI_REG_P(X) \
1143  (REG_P (X) && REGNO (X) < 4)
1144
1145#define GENERAL_REGNO_P(N) \
1146  ((N) < 8 || REX_INT_REGNO_P (N))
1147
1148#define GENERAL_REG_P(X) \
1149  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1150
1151#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1152
1153#define NON_QI_REG_P(X) \
1154  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1155
1156#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1157#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1158
1159#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1160#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1161#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1162#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1163
1164#define SSE_REGNO_P(N) \
1165  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1166   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1167
1168#define REX_SSE_REGNO_P(N) \
1169   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1170
1171#define SSE_REGNO(N) \
1172  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1173#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1174
1175#define SSE_FLOAT_MODE_P(MODE) \
1176  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1177
1178#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1179#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1180
1181#define STACK_REG_P(XOP)		\
1182  (REG_P (XOP) &&		       	\
1183   REGNO (XOP) >= FIRST_STACK_REG &&	\
1184   REGNO (XOP) <= LAST_STACK_REG)
1185
1186#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1187
1188#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1189
1190#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1191#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1192
1193/* The class value for index registers, and the one for base regs.  */
1194
1195#define INDEX_REG_CLASS INDEX_REGS
1196#define BASE_REG_CLASS GENERAL_REGS
1197
1198/* Unused letters:
1199    B                 TU W
1200          h jk          vw  z
1201*/
1202
1203/* Get reg_class from a letter such as appears in the machine description.  */
1204
1205#define REG_CLASS_FROM_LETTER(C)	\
1206  ((C) == 'r' ? GENERAL_REGS :					\
1207   (C) == 'R' ? LEGACY_REGS :					\
1208   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1209   (C) == 'Q' ? Q_REGS :					\
1210   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1211		 ? FLOAT_REGS					\
1212		 : NO_REGS) :					\
1213   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1214		 ? FP_TOP_REG					\
1215		 : NO_REGS) :					\
1216   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1217		 ? FP_SECOND_REG				\
1218		 : NO_REGS) :					\
1219   (C) == 'a' ? AREG :						\
1220   (C) == 'b' ? BREG :						\
1221   (C) == 'c' ? CREG :						\
1222   (C) == 'd' ? DREG :						\
1223   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1224   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1225   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1226   (C) == 'A' ? AD_REGS :					\
1227   (C) == 'D' ? DIREG :						\
1228   (C) == 'S' ? SIREG :						\
1229   (C) == 'l' ? INDEX_REGS :					\
1230   NO_REGS)
1231
1232/* The letters I, J, K, L, M, N, and O in a register constraint string
1233   can be used to stand for particular ranges of immediate operands.
1234   This macro defines what the ranges are.
1235   C is the letter, and VALUE is a constant value.
1236   Return 1 if VALUE is in the range specified by C.
1237
1238   I is for non-DImode shifts.
1239   J is for DImode shifts.
1240   K is for signed imm8 operands.
1241   L is for andsi as zero-extending move.
1242   M is for shifts that can be executed by the "lea" opcode.
1243   N is for immediate operands for out/in instructions (0-255)
1244   O is for TImode shifts.
1245   */
1246
1247#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1248  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1249   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1250   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1251   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1252   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1253   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1254   : (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 127		\
1255   : 0)
1256
1257/* Similar, but for floating constants, and defining letters G and H.
1258   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1259   TARGET_387 isn't set, because the stack register converter may need to
1260   load 0.0 into the function value register.  */
1261
1262#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1263  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1264   : 0)
1265
1266/* A C expression that defines the optional machine-dependent
1267   constraint letters that can be used to segregate specific types of
1268   operands, usually memory references, for the target machine.  Any
1269   letter that is not elsewhere defined and not matched by
1270   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1271   be defined.
1272
1273   If it is required for a particular target machine, it should
1274   return 1 if VALUE corresponds to the operand type represented by
1275   the constraint letter C.  If C is not defined as an extra
1276   constraint, the value returned should be 0 regardless of VALUE.  */
1277
1278#define EXTRA_CONSTRAINT(VALUE, D)					\
1279  ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode)		\
1280   : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode)	\
1281   : (D) == 'C' ? standard_sse_constant_p (VALUE)			\
1282   : 0)
1283
1284/* Place additional restrictions on the register class to use when it
1285   is necessary to be able to hold a value of mode MODE in a reload
1286   register for which class CLASS would ordinarily be used.  */
1287
1288#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1289  ((MODE) == QImode && !TARGET_64BIT				\
1290   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1291       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1292   ? Q_REGS : (CLASS))
1293
1294/* Given an rtx X being reloaded into a reg required to be
1295   in class CLASS, return the class of reg to actually use.
1296   In general this is just CLASS; but on some machines
1297   in some cases it is preferable to use a more restrictive class.
1298   On the 80386 series, we prevent floating constants from being
1299   reloaded into floating registers (since no move-insn can do that)
1300   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1301
1302/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1303   QImode must go into class Q_REGS.
1304   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1305   movdf to do mem-to-mem moves through integer regs.  */
1306
1307#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1308   ix86_preferred_reload_class ((X), (CLASS))
1309
1310/* If we are copying between general and FP registers, we need a memory
1311   location. The same is true for SSE and MMX registers.  */
1312#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1313  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1314
1315/* QImode spills from non-QI registers need a scratch.  This does not
1316   happen often -- the only example so far requires an uninitialized
1317   pseudo.  */
1318
1319#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1320  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1321    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1322   ? Q_REGS : NO_REGS)
1323
1324/* Return the maximum number of consecutive registers
1325   needed to represent mode MODE in a register of class CLASS.  */
1326/* On the 80386, this is the size of MODE in words,
1327   except in the FP regs, where a single reg is always enough.  */
1328#define CLASS_MAX_NREGS(CLASS, MODE)					\
1329 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1330  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1331  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1332      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1333
1334/* A C expression whose value is nonzero if pseudos that have been
1335   assigned to registers of class CLASS would likely be spilled
1336   because registers of CLASS are needed for spill registers.
1337
1338   The default value of this macro returns 1 if CLASS has exactly one
1339   register and zero otherwise.  On most machines, this default
1340   should be used.  Only define this macro to some other expression
1341   if pseudo allocated by `local-alloc.c' end up in memory because
1342   their hard registers were needed for spill registers.  If this
1343   macro returns nonzero for those classes, those pseudos will only
1344   be allocated by `global.c', which knows how to reallocate the
1345   pseudo to another register.  If there would not be another
1346   register available for reallocation, you should not change the
1347   definition of this macro since the only effect of such a
1348   definition would be to slow down register allocation.  */
1349
1350#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1351  (((CLASS) == AREG)							\
1352   || ((CLASS) == DREG)							\
1353   || ((CLASS) == CREG)							\
1354   || ((CLASS) == BREG)							\
1355   || ((CLASS) == AD_REGS)						\
1356   || ((CLASS) == SIREG)						\
1357   || ((CLASS) == DIREG)						\
1358   || ((CLASS) == FP_TOP_REG)						\
1359   || ((CLASS) == FP_SECOND_REG))
1360
1361/* Return a class of registers that cannot change FROM mode to TO mode.  */
1362
1363#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1364  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1365
1366/* Stack layout; function entry, exit and calling.  */
1367
1368/* Define this if pushing a word on the stack
1369   makes the stack pointer a smaller address.  */
1370#define STACK_GROWS_DOWNWARD
1371
1372/* Define this to nonzero if the nominal address of the stack frame
1373   is at the high-address end of the local variables;
1374   that is, each additional local variable allocated
1375   goes at a more negative offset in the frame.  */
1376#define FRAME_GROWS_DOWNWARD 1
1377
1378/* Offset within stack frame to start allocating local variables at.
1379   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1380   first local allocated.  Otherwise, it is the offset to the BEGINNING
1381   of the first local allocated.  */
1382#define STARTING_FRAME_OFFSET 0
1383
1384/* If we generate an insn to push BYTES bytes,
1385   this says how many the stack pointer really advances by.
1386   On 386, we have pushw instruction that decrements by exactly 2 no
1387   matter what the position was, there is no pushb.
1388   But as CIE data alignment factor on this arch is -4, we need to make
1389   sure all stack pointer adjustments are in multiple of 4.
1390
1391   For 64bit ABI we round up to 8 bytes.
1392 */
1393
1394#define PUSH_ROUNDING(BYTES) \
1395  (TARGET_64BIT		     \
1396   ? (((BYTES) + 7) & (-8))  \
1397   : (((BYTES) + 3) & (-4)))
1398
1399/* If defined, the maximum amount of space required for outgoing arguments will
1400   be computed and placed into the variable
1401   `current_function_outgoing_args_size'.  No space will be pushed onto the
1402   stack for each call; instead, the function prologue should increase the stack
1403   frame size by this amount.  */
1404
1405#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1406
1407/* If defined, a C expression whose value is nonzero when we want to use PUSH
1408   instructions to pass outgoing arguments.  */
1409
1410#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1411
1412/* We want the stack and args grow in opposite directions, even if
1413   PUSH_ARGS is 0.  */
1414#define PUSH_ARGS_REVERSED 1
1415
1416/* Offset of first parameter from the argument pointer register value.  */
1417#define FIRST_PARM_OFFSET(FNDECL) 0
1418
1419/* Define this macro if functions should assume that stack space has been
1420   allocated for arguments even when their values are passed in registers.
1421
1422   The value of this macro is the size, in bytes, of the area reserved for
1423   arguments passed in registers for the function represented by FNDECL.
1424
1425   This space can be allocated by the caller, or be a part of the
1426   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1427   which.  */
1428#define REG_PARM_STACK_SPACE(FNDECL) 0
1429
1430/* Value is the number of bytes of arguments automatically
1431   popped when returning from a subroutine call.
1432   FUNDECL is the declaration node of the function (as a tree),
1433   FUNTYPE is the data type of the function (as a tree),
1434   or for a library call it is an identifier node for the subroutine name.
1435   SIZE is the number of bytes of arguments passed on the stack.
1436
1437   On the 80386, the RTD insn may be used to pop them if the number
1438     of args is fixed, but if the number is variable then the caller
1439     must pop them all.  RTD can't be used for library calls now
1440     because the library is compiled with the Unix compiler.
1441   Use of RTD is a selectable option, since it is incompatible with
1442   standard Unix calling sequences.  If the option is not selected,
1443   the caller must always pop the args.
1444
1445   The attribute stdcall is equivalent to RTD on a per module basis.  */
1446
1447#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1448  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1449
1450#define FUNCTION_VALUE_REGNO_P(N) \
1451  ix86_function_value_regno_p (N)
1452
1453/* Define how to find the value returned by a library function
1454   assuming the value has mode MODE.  */
1455
1456#define LIBCALL_VALUE(MODE) \
1457  ix86_libcall_value (MODE)
1458
1459/* Define the size of the result block used for communication between
1460   untyped_call and untyped_return.  The block contains a DImode value
1461   followed by the block used by fnsave and frstor.  */
1462
1463#define APPLY_RESULT_SIZE (8+108)
1464
1465/* 1 if N is a possible register number for function argument passing.  */
1466#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1467
1468/* Define a data type for recording info about an argument list
1469   during the scan of that argument list.  This data type should
1470   hold all necessary information about the function itself
1471   and about the args processed so far, enough to enable macros
1472   such as FUNCTION_ARG to determine where the next arg should go.  */
1473
1474typedef struct ix86_args {
1475  int words;			/* # words passed so far */
1476  int nregs;			/* # registers available for passing */
1477  int regno;			/* next available register number */
1478  int fastcall;			/* fastcall calling convention is used */
1479  int sse_words;		/* # sse words passed so far */
1480  int sse_nregs;		/* # sse registers available for passing */
1481  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1482  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1483  int sse_regno;		/* next available sse register number */
1484  int mmx_words;		/* # mmx words passed so far */
1485  int mmx_nregs;		/* # mmx registers available for passing */
1486  int mmx_regno;		/* next available mmx register number */
1487  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1488  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1489				   be passed in SSE registers.  Otherwise 0.  */
1490} CUMULATIVE_ARGS;
1491
1492/* Initialize a variable CUM of type CUMULATIVE_ARGS
1493   for a call to a function whose data type is FNTYPE.
1494   For a library call, FNTYPE is 0.  */
1495
1496#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1497  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1498
1499/* Update the data in CUM to advance over an argument
1500   of mode MODE and data type TYPE.
1501   (TYPE is null for libcalls where that information may not be available.)  */
1502
1503#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1504  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1505
1506/* Define where to put the arguments to a function.
1507   Value is zero to push the argument on the stack,
1508   or a hard register in which to store the argument.
1509
1510   MODE is the argument's machine mode.
1511   TYPE is the data type of the argument (as a tree).
1512    This is null for libcalls where that information may
1513    not be available.
1514   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1515    the preceding args and about the function being called.
1516   NAMED is nonzero if this argument is a named parameter
1517    (otherwise it is an extra parameter matching an ellipsis).  */
1518
1519#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1520  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1521
1522/* Implement `va_start' for varargs and stdarg.  */
1523#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1524  ix86_va_start (VALIST, NEXTARG)
1525
1526#define TARGET_ASM_FILE_END ix86_file_end
1527#define NEED_INDICATE_EXEC_STACK 0
1528
1529/* Output assembler code to FILE to increment profiler label # LABELNO
1530   for profiling a function entry.  */
1531
1532#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1533
1534#define MCOUNT_NAME "_mcount"
1535
1536#define PROFILE_COUNT_REGISTER "edx"
1537
1538/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1539   the stack pointer does not matter.  The value is tested only in
1540   functions that have frame pointers.
1541   No definition is equivalent to always zero.  */
1542/* Note on the 386 it might be more efficient not to define this since
1543   we have to restore it ourselves from the frame pointer, in order to
1544   use pop */
1545
1546#define EXIT_IGNORE_STACK 1
1547
1548/* Output assembler code for a block containing the constant parts
1549   of a trampoline, leaving space for the variable parts.  */
1550
1551/* On the 386, the trampoline contains two instructions:
1552     mov #STATIC,ecx
1553     jmp FUNCTION
1554   The trampoline is generated entirely at runtime.  The operand of JMP
1555   is the address of FUNCTION relative to the instruction following the
1556   JMP (which is 5 bytes long).  */
1557
1558/* Length in units of the trampoline for entering a nested function.  */
1559
1560#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1561
1562/* Emit RTL insns to initialize the variable parts of a trampoline.
1563   FNADDR is an RTX for the address of the function's pure code.
1564   CXT is an RTX for the static chain value for the function.  */
1565
1566#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1567  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1568
1569/* Definitions for register eliminations.
1570
1571   This is an array of structures.  Each structure initializes one pair
1572   of eliminable registers.  The "from" register number is given first,
1573   followed by "to".  Eliminations of the same "from" register are listed
1574   in order of preference.
1575
1576   There are two registers that can always be eliminated on the i386.
1577   The frame pointer and the arg pointer can be replaced by either the
1578   hard frame pointer or to the stack pointer, depending upon the
1579   circumstances.  The hard frame pointer is not used before reload and
1580   so it is not eligible for elimination.  */
1581
1582#define ELIMINABLE_REGS					\
1583{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1584 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1585 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1586 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1587
1588/* Given FROM and TO register numbers, say whether this elimination is
1589   allowed.  Frame pointer elimination is automatically handled.
1590
1591   All other eliminations are valid.  */
1592
1593#define CAN_ELIMINATE(FROM, TO) \
1594  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1595
1596/* Define the offset between two registers, one to be eliminated, and the other
1597   its replacement, at the start of a routine.  */
1598
1599#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1600  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1601
1602/* Addressing modes, and classification of registers for them.  */
1603
1604/* Macros to check register numbers against specific register classes.  */
1605
1606/* These assume that REGNO is a hard or pseudo reg number.
1607   They give nonzero only if REGNO is a hard reg of the suitable class
1608   or a pseudo reg currently allocated to a suitable hard reg.
1609   Since they use reg_renumber, they are safe only once reg_renumber
1610   has been allocated, which happens in local-alloc.c.  */
1611
1612#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1613  ((REGNO) < STACK_POINTER_REGNUM 					\
1614   || (REGNO >= FIRST_REX_INT_REG					\
1615       && (REGNO) <= LAST_REX_INT_REG)					\
1616   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1617       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1618   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1619
1620#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1621  ((REGNO) <= STACK_POINTER_REGNUM 					\
1622   || (REGNO) == ARG_POINTER_REGNUM 					\
1623   || (REGNO) == FRAME_POINTER_REGNUM 					\
1624   || (REGNO >= FIRST_REX_INT_REG					\
1625       && (REGNO) <= LAST_REX_INT_REG)					\
1626   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1627       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1628   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1629
1630#define REGNO_OK_FOR_SIREG_P(REGNO) \
1631  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1632#define REGNO_OK_FOR_DIREG_P(REGNO) \
1633  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1634
1635/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1636   and check its validity for a certain class.
1637   We have two alternate definitions for each of them.
1638   The usual definition accepts all pseudo regs; the other rejects
1639   them unless they have been allocated suitable hard regs.
1640   The symbol REG_OK_STRICT causes the latter definition to be used.
1641
1642   Most source files want to accept pseudo regs in the hope that
1643   they will get allocated to the class that the insn wants them to be in.
1644   Source files for reload pass need to be strict.
1645   After reload, it makes no difference, since pseudo regs have
1646   been eliminated by then.  */
1647
1648
1649/* Non strict versions, pseudos are ok.  */
1650#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1651  (REGNO (X) < STACK_POINTER_REGNUM					\
1652   || (REGNO (X) >= FIRST_REX_INT_REG					\
1653       && REGNO (X) <= LAST_REX_INT_REG)				\
1654   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1655
1656#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1657  (REGNO (X) <= STACK_POINTER_REGNUM					\
1658   || REGNO (X) == ARG_POINTER_REGNUM					\
1659   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1660   || (REGNO (X) >= FIRST_REX_INT_REG					\
1661       && REGNO (X) <= LAST_REX_INT_REG)				\
1662   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1663
1664/* Strict versions, hard registers only */
1665#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1666#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1667
1668#ifndef REG_OK_STRICT
1669#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1670#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1671
1672#else
1673#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1674#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1675#endif
1676
1677/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1678   that is a valid memory address for an instruction.
1679   The MODE argument is the machine mode for the MEM expression
1680   that wants to use this address.
1681
1682   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1683   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1684
1685   See legitimize_pic_address in i386.c for details as to what
1686   constitutes a legitimate address when -fpic is used.  */
1687
1688#define MAX_REGS_PER_ADDRESS 2
1689
1690#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1691
1692/* Nonzero if the constant value X is a legitimate general operand.
1693   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1694
1695#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1696
1697#ifdef REG_OK_STRICT
1698#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1699do {									\
1700  if (legitimate_address_p ((MODE), (X), 1))				\
1701    goto ADDR;								\
1702} while (0)
1703
1704#else
1705#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1706do {									\
1707  if (legitimate_address_p ((MODE), (X), 0))				\
1708    goto ADDR;								\
1709} while (0)
1710
1711#endif
1712
1713/* If defined, a C expression to determine the base term of address X.
1714   This macro is used in only one place: `find_base_term' in alias.c.
1715
1716   It is always safe for this macro to not be defined.  It exists so
1717   that alias analysis can understand machine-dependent addresses.
1718
1719   The typical use of this macro is to handle addresses containing
1720   a label_ref or symbol_ref within an UNSPEC.  */
1721
1722#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1723
1724/* Try machine-dependent ways of modifying an illegitimate address
1725   to be legitimate.  If we find one, return the new, valid address.
1726   This macro is used in only one place: `memory_address' in explow.c.
1727
1728   OLDX is the address as it was before break_out_memory_refs was called.
1729   In some cases it is useful to look at this to decide what needs to be done.
1730
1731   MODE and WIN are passed so that this macro can use
1732   GO_IF_LEGITIMATE_ADDRESS.
1733
1734   It is always safe for this macro to do nothing.  It exists to recognize
1735   opportunities to optimize the output.
1736
1737   For the 80386, we handle X+REG by loading X into a register R and
1738   using R+REG.  R will go in a general reg and indexing will be used.
1739   However, if REG is a broken-out memory address or multiplication,
1740   nothing needs to be done because REG can certainly go in a general reg.
1741
1742   When -fpic is used, special handling is needed for symbolic references.
1743   See comments by legitimize_pic_address in i386.c for details.  */
1744
1745#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1746do {									\
1747  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1748  if (memory_address_p ((MODE), (X)))					\
1749    goto WIN;								\
1750} while (0)
1751
1752#define REWRITE_ADDRESS(X) rewrite_address (X)
1753
1754/* Nonzero if the constant value X is a legitimate general operand
1755   when generating PIC code.  It is given that flag_pic is on and
1756   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1757
1758#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1759
1760#define SYMBOLIC_CONST(X)	\
1761  (GET_CODE (X) == SYMBOL_REF						\
1762   || GET_CODE (X) == LABEL_REF						\
1763   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1764
1765/* Go to LABEL if ADDR (a legitimate address expression)
1766   has an effect that depends on the machine mode it is used for.
1767   On the 80386, only postdecrement and postincrement address depend thus
1768   (the amount of decrement or increment being the length of the operand).  */
1769#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1770do {							\
1771 if (GET_CODE (ADDR) == POST_INC			\
1772     || GET_CODE (ADDR) == POST_DEC)			\
1773   goto LABEL;						\
1774} while (0)
1775
1776/* Max number of args passed in registers.  If this is more than 3, we will
1777   have problems with ebx (register #4), since it is a caller save register and
1778   is also used as the pic register in ELF.  So for now, don't allow more than
1779   3 registers to be passed in registers.  */
1780
1781#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1782
1783#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1784
1785#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1786
1787
1788/* Specify the machine mode that this machine uses
1789   for the index in the tablejump instruction.  */
1790#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1791
1792/* Define this as 1 if `char' should by default be signed; else as 0.  */
1793#define DEFAULT_SIGNED_CHAR 1
1794
1795/* Number of bytes moved into a data cache for a single prefetch operation.  */
1796#define PREFETCH_BLOCK ix86_cost->prefetch_block
1797
1798/* Number of prefetch operations that can be done in parallel.  */
1799#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1800
1801/* Max number of bytes we can move from memory to memory
1802   in one reasonably fast instruction.  */
1803#define MOVE_MAX 16
1804
1805/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1806   move efficiently, as opposed to  MOVE_MAX which is the maximum
1807   number of bytes we can move with a single instruction.  */
1808#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1809
1810/* If a memory-to-memory move would take MOVE_RATIO or more simple
1811   move-instruction pairs, we will do a movmem or libcall instead.
1812   Increasing the value will always make code faster, but eventually
1813   incurs high cost in increased code size.
1814
1815   If you don't define this, a reasonable default is used.  */
1816
1817#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1818
1819/* If a clear memory operation would take CLEAR_RATIO or more simple
1820   move-instruction sequences, we will do a clrmem or libcall instead.  */
1821
1822#define CLEAR_RATIO (optimize_size ? 2 \
1823		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1824
1825/* Define if shifts truncate the shift count
1826   which implies one can omit a sign-extension or zero-extension
1827   of a shift count.  */
1828/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1829
1830/* #define SHIFT_COUNT_TRUNCATED */
1831
1832/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1833   is done just by pretending it is already truncated.  */
1834#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1835
1836/* A macro to update M and UNSIGNEDP when an object whose type is
1837   TYPE and which has the specified mode and signedness is to be
1838   stored in a register.  This macro is only called when TYPE is a
1839   scalar type.
1840
1841   On i386 it is sometimes useful to promote HImode and QImode
1842   quantities to SImode.  The choice depends on target type.  */
1843
1844#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1845do {							\
1846  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1847      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1848    (MODE) = SImode;					\
1849} while (0)
1850
1851/* Specify the machine mode that pointers have.
1852   After generation of rtl, the compiler makes no further distinction
1853   between pointers and any other objects of this machine mode.  */
1854#define Pmode (TARGET_64BIT ? DImode : SImode)
1855
1856/* A function address in a call instruction
1857   is a byte address (for indexing purposes)
1858   so give the MEM rtx a byte's mode.  */
1859#define FUNCTION_MODE QImode
1860
1861/* A C expression for the cost of moving data from a register in class FROM to
1862   one in class TO.  The classes are expressed using the enumeration values
1863   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1864   interpreted relative to that.
1865
1866   It is not required that the cost always equal 2 when FROM is the same as TO;
1867   on some machines it is expensive to move between registers if they are not
1868   general registers.  */
1869
1870#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1871   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1872
1873/* A C expression for the cost of moving data of mode M between a
1874   register and memory.  A value of 2 is the default; this cost is
1875   relative to those in `REGISTER_MOVE_COST'.
1876
1877   If moving between registers and memory is more expensive than
1878   between two registers, you should define this macro to express the
1879   relative cost.  */
1880
1881#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1882  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1883
1884/* A C expression for the cost of a branch instruction.  A value of 1
1885   is the default; other values are interpreted relative to that.  */
1886
1887#define BRANCH_COST ix86_branch_cost
1888
1889/* Define this macro as a C expression which is nonzero if accessing
1890   less than a word of memory (i.e. a `char' or a `short') is no
1891   faster than accessing a word of memory, i.e., if such access
1892   require more than one instruction or if there is no difference in
1893   cost between byte and (aligned) word loads.
1894
1895   When this macro is not defined, the compiler will access a field by
1896   finding the smallest containing object; when it is defined, a
1897   fullword load will be used if alignment permits.  Unless bytes
1898   accesses are faster than word accesses, using word accesses is
1899   preferable since it may eliminate subsequent memory access if
1900   subsequent accesses occur to other fields in the same word of the
1901   structure, but to different bytes.  */
1902
1903#define SLOW_BYTE_ACCESS 0
1904
1905/* Nonzero if access to memory by shorts is slow and undesirable.  */
1906#define SLOW_SHORT_ACCESS 0
1907
1908/* Define this macro to be the value 1 if unaligned accesses have a
1909   cost many times greater than aligned accesses, for example if they
1910   are emulated in a trap handler.
1911
1912   When this macro is nonzero, the compiler will act as if
1913   `STRICT_ALIGNMENT' were nonzero when generating code for block
1914   moves.  This can cause significantly more instructions to be
1915   produced.  Therefore, do not set this macro nonzero if unaligned
1916   accesses only add a cycle or two to the time for a memory access.
1917
1918   If the value of this macro is always zero, it need not be defined.  */
1919
1920/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1921
1922/* Define this macro if it is as good or better to call a constant
1923   function address than to call an address kept in a register.
1924
1925   Desirable on the 386 because a CALL with a constant address is
1926   faster than one with a register address.  */
1927
1928#define NO_FUNCTION_CSE
1929
1930/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1931   return the mode to be used for the comparison.
1932
1933   For floating-point equality comparisons, CCFPEQmode should be used.
1934   VOIDmode should be used in all other cases.
1935
1936   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1937   possible, to allow for more combinations.  */
1938
1939#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1940
1941/* Return nonzero if MODE implies a floating point inequality can be
1942   reversed.  */
1943
1944#define REVERSIBLE_CC_MODE(MODE) 1
1945
1946/* A C expression whose value is reversed condition code of the CODE for
1947   comparison done in CC_MODE mode.  */
1948#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1949
1950
1951/* Control the assembler format that we output, to the extent
1952   this does not vary between assemblers.  */
1953
1954/* How to refer to registers in assembler output.
1955   This sequence is indexed by compiler's hard-register-number (see above).  */
1956
1957/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1958   For non floating point regs, the following are the HImode names.
1959
1960   For float regs, the stack top is sometimes referred to as "%st(0)"
1961   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1962
1963#define HI_REGISTER_NAMES						\
1964{"ax","dx","cx","bx","si","di","bp","sp",				\
1965 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1966 "argp", "flags", "fpsr", "dirflag", "frame",				\
1967 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1968 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1969 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1970 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1971
1972#define REGISTER_NAMES HI_REGISTER_NAMES
1973
1974/* Table of additional register names to use in user input.  */
1975
1976#define ADDITIONAL_REGISTER_NAMES \
1977{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1978  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1979  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1980  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1981  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1982  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1983
1984/* Note we are omitting these since currently I don't know how
1985to get gcc to use these, since they want the same but different
1986number as al, and ax.
1987*/
1988
1989#define QI_REGISTER_NAMES \
1990{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1991
1992/* These parallel the array above, and can be used to access bits 8:15
1993   of regs 0 through 3.  */
1994
1995#define QI_HIGH_REGISTER_NAMES \
1996{"ah", "dh", "ch", "bh", }
1997
1998/* How to renumber registers for dbx and gdb.  */
1999
2000#define DBX_REGISTER_NUMBER(N) \
2001  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2002
2003extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2004extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2005extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2006
2007/* Before the prologue, RA is at 0(%esp).  */
2008#define INCOMING_RETURN_ADDR_RTX \
2009  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2010
2011/* After the prologue, RA is at -4(AP) in the current frame.  */
2012#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2013  ((COUNT) == 0								   \
2014   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2015   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2016
2017/* PC is dbx register 8; let's use that column for RA.  */
2018#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2019
2020/* Before the prologue, the top of the frame is at 4(%esp).  */
2021#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2022
2023/* Describe how we implement __builtin_eh_return.  */
2024#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2025#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2026
2027
2028/* Select a format to encode pointers in exception handling data.  CODE
2029   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2030   true if the symbol may be affected by dynamic relocations.
2031
2032   ??? All x86 object file formats are capable of representing this.
2033   After all, the relocation needed is the same as for the call insn.
2034   Whether or not a particular assembler allows us to enter such, I
2035   guess we'll have to see.  */
2036#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2037  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2038
2039/* This is how to output an insn to push a register on the stack.
2040   It need not be very fast code.  */
2041
2042#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2043do {									\
2044  if (TARGET_64BIT)							\
2045    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2046		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2047  else									\
2048    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2049} while (0)
2050
2051/* This is how to output an insn to pop a register from the stack.
2052   It need not be very fast code.  */
2053
2054#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2055do {									\
2056  if (TARGET_64BIT)							\
2057    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2058		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2059  else									\
2060    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2061} while (0)
2062
2063/* This is how to output an element of a case-vector that is absolute.  */
2064
2065#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2066  ix86_output_addr_vec_elt ((FILE), (VALUE))
2067
2068/* This is how to output an element of a case-vector that is relative.  */
2069
2070#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2071  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2072
2073/* Under some conditions we need jump tables in the text section, because
2074   the assembler cannot handle label differences between sections.  */
2075
2076#define JUMP_TABLES_IN_TEXT_SECTION \
2077  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2078
2079/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2080   and switch back.  For x86 we do this only to save a few bytes that
2081   would otherwise be unused in the text section.  */
2082#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2083   asm (SECTION_OP "\n\t"				\
2084	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2085	TEXT_SECTION_ASM_OP);
2086
2087/* Print operand X (an rtx) in assembler syntax to file FILE.
2088   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2089   Effect of various CODE letters is described in i386.c near
2090   print_operand function.  */
2091
2092#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2093  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2094
2095#define PRINT_OPERAND(FILE, X, CODE)  \
2096  print_operand ((FILE), (X), (CODE))
2097
2098#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2099  print_operand_address ((FILE), (ADDR))
2100
2101#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2102do {						\
2103  if (! output_addr_const_extra (FILE, (X)))	\
2104    goto FAIL;					\
2105} while (0);
2106
2107/* a letter which is not needed by the normal asm syntax, which
2108   we can use for operand syntax in the extended asm */
2109
2110#define ASM_OPERAND_LETTER '#'
2111#define RET return ""
2112#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2113
2114/* Which processor to schedule for. The cpu attribute defines a list that
2115   mirrors this list, so changes to i386.md must be made at the same time.  */
2116
2117enum processor_type
2118{
2119  PROCESSOR_I386,			/* 80386 */
2120  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2121  PROCESSOR_PENTIUM,
2122  PROCESSOR_PENTIUMPRO,
2123  PROCESSOR_K6,
2124  PROCESSOR_ATHLON,
2125  PROCESSOR_PENTIUM4,
2126  PROCESSOR_K8,
2127  PROCESSOR_NOCONA,
2128  PROCESSOR_max
2129};
2130
2131extern enum processor_type ix86_tune;
2132extern enum processor_type ix86_arch;
2133
2134enum fpmath_unit
2135{
2136  FPMATH_387 = 1,
2137  FPMATH_SSE = 2
2138};
2139
2140extern enum fpmath_unit ix86_fpmath;
2141
2142enum tls_dialect
2143{
2144  TLS_DIALECT_GNU,
2145  TLS_DIALECT_SUN
2146};
2147
2148extern enum tls_dialect ix86_tls_dialect;
2149
2150enum cmodel {
2151  CM_32,	/* The traditional 32-bit ABI.  */
2152  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2153  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2154  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2155  CM_LARGE,	/* No assumptions.  */
2156  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2157  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2158};
2159
2160extern enum cmodel ix86_cmodel;
2161
2162/* Size of the RED_ZONE area.  */
2163#define RED_ZONE_SIZE 128
2164/* Reserved area of the red zone for temporaries.  */
2165#define RED_ZONE_RESERVE 8
2166
2167enum asm_dialect {
2168  ASM_ATT,
2169  ASM_INTEL
2170};
2171
2172extern enum asm_dialect ix86_asm_dialect;
2173extern unsigned int ix86_preferred_stack_boundary;
2174extern int ix86_branch_cost, ix86_section_threshold;
2175
2176/* Smallest class containing REGNO.  */
2177extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2178
2179extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2180extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2181extern rtx ix86_compare_emitted;
2182
2183/* To properly truncate FP values into integers, we need to set i387 control
2184   word.  We can't emit proper mode switching code before reload, as spills
2185   generated by reload may truncate values incorrectly, but we still can avoid
2186   redundant computation of new control word by the mode switching pass.
2187   The fldcw instructions are still emitted redundantly, but this is probably
2188   not going to be noticeable problem, as most CPUs do have fast path for
2189   the sequence.
2190
2191   The machinery is to emit simple truncation instructions and split them
2192   before reload to instructions having USEs of two memory locations that
2193   are filled by this code to old and new control word.
2194
2195   Post-reload pass may be later used to eliminate the redundant fildcw if
2196   needed.  */
2197
2198enum ix86_entity
2199{
2200  I387_TRUNC = 0,
2201  I387_FLOOR,
2202  I387_CEIL,
2203  I387_MASK_PM,
2204  MAX_386_ENTITIES
2205};
2206
2207enum ix86_stack_slot
2208{
2209  SLOT_VIRTUAL = 0,
2210  SLOT_TEMP,
2211  SLOT_CW_STORED,
2212  SLOT_CW_TRUNC,
2213  SLOT_CW_FLOOR,
2214  SLOT_CW_CEIL,
2215  SLOT_CW_MASK_PM,
2216  MAX_386_STACK_LOCALS
2217};
2218
2219/* Define this macro if the port needs extra instructions inserted
2220   for mode switching in an optimizing compilation.  */
2221
2222#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2223   ix86_optimize_mode_switching[(ENTITY)]
2224
2225/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2226   initializer for an array of integers.  Each initializer element N
2227   refers to an entity that needs mode switching, and specifies the
2228   number of different modes that might need to be set for this
2229   entity.  The position of the initializer in the initializer -
2230   starting counting at zero - determines the integer that is used to
2231   refer to the mode-switched entity in question.  */
2232
2233#define NUM_MODES_FOR_MODE_SWITCHING \
2234   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2235
2236/* ENTITY is an integer specifying a mode-switched entity.  If
2237   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2238   return an integer value not larger than the corresponding element
2239   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2240   must be switched into prior to the execution of INSN. */
2241
2242#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2243
2244/* This macro specifies the order in which modes for ENTITY are
2245   processed.  0 is the highest priority.  */
2246
2247#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2248
2249/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2250   is the set of hard registers live at the point where the insn(s)
2251   are to be inserted.  */
2252
2253#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2254  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2255   ? emit_i387_cw_initialization (MODE), 0				\
2256   : 0)
2257
2258
2259/* Avoid renaming of stack registers, as doing so in combination with
2260   scheduling just increases amount of live registers at time and in
2261   the turn amount of fxch instructions needed.
2262
2263   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2264
2265#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2266   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2267
2268
2269#define DLL_IMPORT_EXPORT_PREFIX '#'
2270
2271#define FASTCALL_PREFIX '@'
2272
2273struct machine_function GTY(())
2274{
2275  struct stack_local_entry *stack_locals;
2276  const char *some_ld_name;
2277  rtx force_align_arg_pointer;
2278  int save_varrargs_registers;
2279  int accesses_prev_frame;
2280  int optimize_mode_switching[MAX_386_ENTITIES];
2281  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2282     determine the style used.  */
2283  int use_fast_prologue_epilogue;
2284  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2285     for.  */
2286  int use_fast_prologue_epilogue_nregs;
2287};
2288
2289#define ix86_stack_locals (cfun->machine->stack_locals)
2290#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2291#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2292
2293/* Control behavior of x86_file_start.  */
2294#define X86_FILE_START_VERSION_DIRECTIVE false
2295#define X86_FILE_START_FLTUSED false
2296
2297/* Flag to mark data that is in the large address area.  */
2298#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2299#define SYMBOL_REF_FAR_ADDR_P(X)	\
2300	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2301/*
2302Local variables:
2303version-control: t
2304End:
2305*/
2306