1/* Control flow graph manipulation code for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* This file contains low level functions to manipulate the CFG and analyze it
23   that are aware of the RTL intermediate language.
24
25   Available functionality:
26     - Basic CFG/RTL manipulation API documented in cfghooks.h
27     - CFG-aware instruction chain manipulation
28	 delete_insn, delete_insn_chain
29     - Edge splitting and committing to edges
30	 insert_insn_on_edge, commit_edge_insertions
31     - CFG updating after insn simplification
32	 purge_dead_edges, purge_all_dead_edges
33
34   Functions not supposed for generic use:
35     - Infrastructure to determine quickly basic block for insn
36	 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37     - Edge redirection with updating and optimizing of insn chain
38	 block_label, tidy_fallthru_edge, force_nonfallthru  */
39
40#include "config.h"
41#include "system.h"
42#include "coretypes.h"
43#include "tm.h"
44#include "tree.h"
45#include "rtl.h"
46#include "hard-reg-set.h"
47#include "basic-block.h"
48#include "regs.h"
49#include "flags.h"
50#include "output.h"
51#include "function.h"
52#include "except.h"
53#include "toplev.h"
54#include "tm_p.h"
55#include "obstack.h"
56#include "insn-config.h"
57#include "cfglayout.h"
58#include "expr.h"
59#include "target.h"
60#include "cfgloop.h"
61#include "ggc.h"
62#include "tree-pass.h"
63
64static int can_delete_note_p (rtx);
65static int can_delete_label_p (rtx);
66static void commit_one_edge_insertion (edge, int);
67static rtx last_loop_beg_note (rtx);
68static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
69static basic_block rtl_split_edge (edge);
70static bool rtl_move_block_after (basic_block, basic_block);
71static int rtl_verify_flow_info (void);
72static basic_block cfg_layout_split_block (basic_block, void *);
73static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
74static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
75static void cfg_layout_delete_block (basic_block);
76static void rtl_delete_block (basic_block);
77static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
78static edge rtl_redirect_edge_and_branch (edge, basic_block);
79static basic_block rtl_split_block (basic_block, void *);
80static void rtl_dump_bb (basic_block, FILE *, int);
81static int rtl_verify_flow_info_1 (void);
82static void mark_killed_regs (rtx, rtx, void *);
83static void rtl_make_forwarder_block (edge);
84
85/* Return true if NOTE is not one of the ones that must be kept paired,
86   so that we may simply delete it.  */
87
88static int
89can_delete_note_p (rtx note)
90{
91  return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
92	  || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
93}
94
95/* True if a given label can be deleted.  */
96
97static int
98can_delete_label_p (rtx label)
99{
100  return (!LABEL_PRESERVE_P (label)
101	  /* User declared labels must be preserved.  */
102	  && LABEL_NAME (label) == 0
103	  && !in_expr_list_p (forced_labels, label));
104}
105
106/* Delete INSN by patching it out.  Return the next insn.  */
107
108rtx
109delete_insn (rtx insn)
110{
111  rtx next = NEXT_INSN (insn);
112  rtx note;
113  bool really_delete = true;
114
115  if (LABEL_P (insn))
116    {
117      /* Some labels can't be directly removed from the INSN chain, as they
118         might be references via variables, constant pool etc.
119         Convert them to the special NOTE_INSN_DELETED_LABEL note.  */
120      if (! can_delete_label_p (insn))
121	{
122	  const char *name = LABEL_NAME (insn);
123
124	  really_delete = false;
125	  PUT_CODE (insn, NOTE);
126	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
127	  NOTE_DELETED_LABEL_NAME (insn) = name;
128	}
129
130      remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
131    }
132
133  if (really_delete)
134    {
135      /* If this insn has already been deleted, something is very wrong.  */
136      gcc_assert (!INSN_DELETED_P (insn));
137      remove_insn (insn);
138      INSN_DELETED_P (insn) = 1;
139    }
140
141  /* If deleting a jump, decrement the use count of the label.  Deleting
142     the label itself should happen in the normal course of block merging.  */
143  if (JUMP_P (insn)
144      && JUMP_LABEL (insn)
145      && LABEL_P (JUMP_LABEL (insn)))
146    LABEL_NUSES (JUMP_LABEL (insn))--;
147
148  /* Also if deleting an insn that references a label.  */
149  else
150    {
151      while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
152	     && LABEL_P (XEXP (note, 0)))
153	{
154	  LABEL_NUSES (XEXP (note, 0))--;
155	  remove_note (insn, note);
156	}
157    }
158
159  if (JUMP_P (insn)
160      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
161	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
162    {
163      rtx pat = PATTERN (insn);
164      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
165      int len = XVECLEN (pat, diff_vec_p);
166      int i;
167
168      for (i = 0; i < len; i++)
169	{
170	  rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
171
172	  /* When deleting code in bulk (e.g. removing many unreachable
173	     blocks) we can delete a label that's a target of the vector
174	     before deleting the vector itself.  */
175	  if (!NOTE_P (label))
176	    LABEL_NUSES (label)--;
177	}
178    }
179
180  return next;
181}
182
183/* Like delete_insn but also purge dead edges from BB.  */
184rtx
185delete_insn_and_edges (rtx insn)
186{
187  rtx x;
188  bool purge = false;
189
190  if (INSN_P (insn)
191      && BLOCK_FOR_INSN (insn)
192      && BB_END (BLOCK_FOR_INSN (insn)) == insn)
193    purge = true;
194  x = delete_insn (insn);
195  if (purge)
196    purge_dead_edges (BLOCK_FOR_INSN (insn));
197  return x;
198}
199
200/* Unlink a chain of insns between START and FINISH, leaving notes
201   that must be paired.  */
202
203void
204delete_insn_chain (rtx start, rtx finish)
205{
206  rtx next;
207
208  /* Unchain the insns one by one.  It would be quicker to delete all of these
209     with a single unchaining, rather than one at a time, but we need to keep
210     the NOTE's.  */
211  while (1)
212    {
213      next = NEXT_INSN (start);
214      if (NOTE_P (start) && !can_delete_note_p (start))
215	;
216      else
217	next = delete_insn (start);
218
219      if (start == finish)
220	break;
221      start = next;
222    }
223}
224
225/* Like delete_insn but also purge dead edges from BB.  */
226void
227delete_insn_chain_and_edges (rtx first, rtx last)
228{
229  bool purge = false;
230
231  if (INSN_P (last)
232      && BLOCK_FOR_INSN (last)
233      && BB_END (BLOCK_FOR_INSN (last)) == last)
234    purge = true;
235  delete_insn_chain (first, last);
236  if (purge)
237    purge_dead_edges (BLOCK_FOR_INSN (last));
238}
239
240/* Create a new basic block consisting of the instructions between HEAD and END
241   inclusive.  This function is designed to allow fast BB construction - reuses
242   the note and basic block struct in BB_NOTE, if any and do not grow
243   BASIC_BLOCK chain and should be used directly only by CFG construction code.
244   END can be NULL in to create new empty basic block before HEAD.  Both END
245   and HEAD can be NULL to create basic block at the end of INSN chain.
246   AFTER is the basic block we should be put after.  */
247
248basic_block
249create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
250{
251  basic_block bb;
252
253  if (bb_note
254      && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
255      && bb->aux == NULL)
256    {
257      /* If we found an existing note, thread it back onto the chain.  */
258
259      rtx after;
260
261      if (LABEL_P (head))
262	after = head;
263      else
264	{
265	  after = PREV_INSN (head);
266	  head = bb_note;
267	}
268
269      if (after != bb_note && NEXT_INSN (after) != bb_note)
270	reorder_insns_nobb (bb_note, bb_note, after);
271    }
272  else
273    {
274      /* Otherwise we must create a note and a basic block structure.  */
275
276      bb = alloc_block ();
277
278      init_rtl_bb_info (bb);
279      if (!head && !end)
280	head = end = bb_note
281	  = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
282      else if (LABEL_P (head) && end)
283	{
284	  bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
285	  if (head == end)
286	    end = bb_note;
287	}
288      else
289	{
290	  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
291	  head = bb_note;
292	  if (!end)
293	    end = head;
294	}
295
296      NOTE_BASIC_BLOCK (bb_note) = bb;
297    }
298
299  /* Always include the bb note in the block.  */
300  if (NEXT_INSN (end) == bb_note)
301    end = bb_note;
302
303  BB_HEAD (bb) = head;
304  BB_END (bb) = end;
305  bb->index = last_basic_block++;
306  bb->flags = BB_NEW | BB_RTL;
307  link_block (bb, after);
308  BASIC_BLOCK (bb->index) = bb;
309  update_bb_for_insn (bb);
310  BB_SET_PARTITION (bb, BB_UNPARTITIONED);
311
312  /* Tag the block so that we know it has been used when considering
313     other basic block notes.  */
314  bb->aux = bb;
315
316  return bb;
317}
318
319/* Create new basic block consisting of instructions in between HEAD and END
320   and place it to the BB chain after block AFTER.  END can be NULL in to
321   create new empty basic block before HEAD.  Both END and HEAD can be NULL to
322   create basic block at the end of INSN chain.  */
323
324static basic_block
325rtl_create_basic_block (void *headp, void *endp, basic_block after)
326{
327  rtx head = headp, end = endp;
328  basic_block bb;
329
330  /* Grow the basic block array if needed.  */
331  if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
332    {
333      size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
334      VARRAY_GROW (basic_block_info, new_size);
335    }
336
337  n_basic_blocks++;
338
339  bb = create_basic_block_structure (head, end, NULL, after);
340  bb->aux = NULL;
341  return bb;
342}
343
344static basic_block
345cfg_layout_create_basic_block (void *head, void *end, basic_block after)
346{
347  basic_block newbb = rtl_create_basic_block (head, end, after);
348
349  return newbb;
350}
351
352/* Delete the insns in a (non-live) block.  We physically delete every
353   non-deleted-note insn, and update the flow graph appropriately.
354
355   Return nonzero if we deleted an exception handler.  */
356
357/* ??? Preserving all such notes strikes me as wrong.  It would be nice
358   to post-process the stream to remove empty blocks, loops, ranges, etc.  */
359
360static void
361rtl_delete_block (basic_block b)
362{
363  rtx insn, end, tmp;
364
365  /* If the head of this block is a CODE_LABEL, then it might be the
366     label for an exception handler which can't be reached.  We need
367     to remove the label from the exception_handler_label list.  */
368  insn = BB_HEAD (b);
369  if (LABEL_P (insn))
370    maybe_remove_eh_handler (insn);
371
372  /* Include any jump table following the basic block.  */
373  end = BB_END (b);
374  if (tablejump_p (end, NULL, &tmp))
375    end = tmp;
376
377  /* Include any barriers that may follow the basic block.  */
378  tmp = next_nonnote_insn (end);
379  while (tmp && BARRIER_P (tmp))
380    {
381      end = tmp;
382      tmp = next_nonnote_insn (end);
383    }
384
385  /* Selectively delete the entire chain.  */
386  BB_HEAD (b) = NULL;
387  delete_insn_chain (insn, end);
388}
389
390/* Records the basic block struct in BLOCK_FOR_INSN for every insn.  */
391
392void
393compute_bb_for_insn (void)
394{
395  basic_block bb;
396
397  FOR_EACH_BB (bb)
398    {
399      rtx end = BB_END (bb);
400      rtx insn;
401
402      for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
403	{
404	  BLOCK_FOR_INSN (insn) = bb;
405	  if (insn == end)
406	    break;
407	}
408    }
409}
410
411/* Release the basic_block_for_insn array.  */
412
413void
414free_bb_for_insn (void)
415{
416  rtx insn;
417  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
418    if (!BARRIER_P (insn))
419      BLOCK_FOR_INSN (insn) = NULL;
420}
421
422struct tree_opt_pass pass_free_cfg =
423{
424  NULL,                                 /* name */
425  NULL,                                 /* gate */
426  free_bb_for_insn,                     /* execute */
427  NULL,                                 /* sub */
428  NULL,                                 /* next */
429  0,                                    /* static_pass_number */
430  0,                                    /* tv_id */
431  0,                                    /* properties_required */
432  0,                                    /* properties_provided */
433  PROP_cfg,                             /* properties_destroyed */
434  0,                                    /* todo_flags_start */
435  0,                                    /* todo_flags_finish */
436  0                                     /* letter */
437};
438
439/* Return RTX to emit after when we want to emit code on the entry of function.  */
440rtx
441entry_of_function (void)
442{
443  return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
444}
445
446/* Update insns block within BB.  */
447
448void
449update_bb_for_insn (basic_block bb)
450{
451  rtx insn;
452
453  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
454    {
455      if (!BARRIER_P (insn))
456	set_block_for_insn (insn, bb);
457      if (insn == BB_END (bb))
458	break;
459    }
460}
461
462/* Creates a new basic block just after basic block B by splitting
463   everything after specified instruction I.  */
464
465static basic_block
466rtl_split_block (basic_block bb, void *insnp)
467{
468  basic_block new_bb;
469  rtx insn = insnp;
470  edge e;
471  edge_iterator ei;
472
473  if (!insn)
474    {
475      insn = first_insn_after_basic_block_note (bb);
476
477      if (insn)
478	insn = PREV_INSN (insn);
479      else
480	insn = get_last_insn ();
481    }
482
483  /* We probably should check type of the insn so that we do not create
484     inconsistent cfg.  It is checked in verify_flow_info anyway, so do not
485     bother.  */
486  if (insn == BB_END (bb))
487    emit_note_after (NOTE_INSN_DELETED, insn);
488
489  /* Create the new basic block.  */
490  new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
491  BB_COPY_PARTITION (new_bb, bb);
492  BB_END (bb) = insn;
493
494  /* Redirect the outgoing edges.  */
495  new_bb->succs = bb->succs;
496  bb->succs = NULL;
497  FOR_EACH_EDGE (e, ei, new_bb->succs)
498    e->src = new_bb;
499
500  if (bb->il.rtl->global_live_at_start)
501    {
502      new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
503      new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
504      COPY_REG_SET (new_bb->il.rtl->global_live_at_end, bb->il.rtl->global_live_at_end);
505
506      /* We now have to calculate which registers are live at the end
507	 of the split basic block and at the start of the new basic
508	 block.  Start with those registers that are known to be live
509	 at the end of the original basic block and get
510	 propagate_block to determine which registers are live.  */
511      COPY_REG_SET (new_bb->il.rtl->global_live_at_start, bb->il.rtl->global_live_at_end);
512      propagate_block (new_bb, new_bb->il.rtl->global_live_at_start, NULL, NULL, 0);
513      COPY_REG_SET (bb->il.rtl->global_live_at_end,
514		    new_bb->il.rtl->global_live_at_start);
515#ifdef HAVE_conditional_execution
516      /* In the presence of conditional execution we are not able to update
517	 liveness precisely.  */
518      if (reload_completed)
519	{
520	  bb->flags |= BB_DIRTY;
521	  new_bb->flags |= BB_DIRTY;
522	}
523#endif
524    }
525
526  return new_bb;
527}
528
529/* Blocks A and B are to be merged into a single block A.  The insns
530   are already contiguous.  */
531
532static void
533rtl_merge_blocks (basic_block a, basic_block b)
534{
535  rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
536  rtx del_first = NULL_RTX, del_last = NULL_RTX;
537  int b_empty = 0;
538
539  /* If there was a CODE_LABEL beginning B, delete it.  */
540  if (LABEL_P (b_head))
541    {
542      /* This might have been an EH label that no longer has incoming
543	 EH edges.  Update data structures to match.  */
544      maybe_remove_eh_handler (b_head);
545
546      /* Detect basic blocks with nothing but a label.  This can happen
547	 in particular at the end of a function.  */
548      if (b_head == b_end)
549	b_empty = 1;
550
551      del_first = del_last = b_head;
552      b_head = NEXT_INSN (b_head);
553    }
554
555  /* Delete the basic block note and handle blocks containing just that
556     note.  */
557  if (NOTE_INSN_BASIC_BLOCK_P (b_head))
558    {
559      if (b_head == b_end)
560	b_empty = 1;
561      if (! del_last)
562	del_first = b_head;
563
564      del_last = b_head;
565      b_head = NEXT_INSN (b_head);
566    }
567
568  /* If there was a jump out of A, delete it.  */
569  if (JUMP_P (a_end))
570    {
571      rtx prev;
572
573      for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
574	if (!NOTE_P (prev)
575	    || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
576	    || prev == BB_HEAD (a))
577	  break;
578
579      del_first = a_end;
580
581#ifdef HAVE_cc0
582      /* If this was a conditional jump, we need to also delete
583	 the insn that set cc0.  */
584      if (only_sets_cc0_p (prev))
585	{
586	  rtx tmp = prev;
587
588	  prev = prev_nonnote_insn (prev);
589	  if (!prev)
590	    prev = BB_HEAD (a);
591	  del_first = tmp;
592	}
593#endif
594
595      a_end = PREV_INSN (del_first);
596    }
597  else if (BARRIER_P (NEXT_INSN (a_end)))
598    del_first = NEXT_INSN (a_end);
599
600  /* Delete everything marked above as well as crap that might be
601     hanging out between the two blocks.  */
602  BB_HEAD (b) = NULL;
603  delete_insn_chain (del_first, del_last);
604
605  /* Reassociate the insns of B with A.  */
606  if (!b_empty)
607    {
608      rtx x;
609
610      for (x = a_end; x != b_end; x = NEXT_INSN (x))
611	set_block_for_insn (x, a);
612
613      set_block_for_insn (b_end, a);
614
615      a_end = b_end;
616    }
617
618  BB_END (a) = a_end;
619  a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
620}
621
622/* Return true when block A and B can be merged.  */
623static bool
624rtl_can_merge_blocks (basic_block a,basic_block b)
625{
626  /* If we are partitioning hot/cold basic blocks, we don't want to
627     mess up unconditional or indirect jumps that cross between hot
628     and cold sections.
629
630     Basic block partitioning may result in some jumps that appear to
631     be optimizable (or blocks that appear to be mergeable), but which really
632     must be left untouched (they are required to make it safely across
633     partition boundaries).  See  the comments at the top of
634     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
635
636  if (BB_PARTITION (a) != BB_PARTITION (b))
637    return false;
638
639  /* There must be exactly one edge in between the blocks.  */
640  return (single_succ_p (a)
641	  && single_succ (a) == b
642	  && single_pred_p (b)
643	  && a != b
644	  /* Must be simple edge.  */
645	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
646	  && a->next_bb == b
647	  && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
648	  /* If the jump insn has side effects,
649	     we can't kill the edge.  */
650	  && (!JUMP_P (BB_END (a))
651	      || (reload_completed
652		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
653}
654
655/* Return the label in the head of basic block BLOCK.  Create one if it doesn't
656   exist.  */
657
658rtx
659block_label (basic_block block)
660{
661  if (block == EXIT_BLOCK_PTR)
662    return NULL_RTX;
663
664  if (!LABEL_P (BB_HEAD (block)))
665    {
666      BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
667    }
668
669  return BB_HEAD (block);
670}
671
672/* Attempt to perform edge redirection by replacing possibly complex jump
673   instruction by unconditional jump or removing jump completely.  This can
674   apply only if all edges now point to the same block.  The parameters and
675   return values are equivalent to redirect_edge_and_branch.  */
676
677edge
678try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
679{
680  basic_block src = e->src;
681  rtx insn = BB_END (src), kill_from;
682  rtx set;
683  int fallthru = 0;
684
685  /* If we are partitioning hot/cold basic blocks, we don't want to
686     mess up unconditional or indirect jumps that cross between hot
687     and cold sections.
688
689     Basic block partitioning may result in some jumps that appear to
690     be optimizable (or blocks that appear to be mergeable), but which really
691     must be left untouched (they are required to make it safely across
692     partition boundaries).  See  the comments at the top of
693     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
694
695  if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
696      || BB_PARTITION (src) != BB_PARTITION (target))
697    return NULL;
698
699  /* We can replace or remove a complex jump only when we have exactly
700     two edges.  Also, if we have exactly one outgoing edge, we can
701     redirect that.  */
702  if (EDGE_COUNT (src->succs) >= 3
703      /* Verify that all targets will be TARGET.  Specifically, the
704	 edge that is not E must also go to TARGET.  */
705      || (EDGE_COUNT (src->succs) == 2
706	  && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
707    return NULL;
708
709  if (!onlyjump_p (insn))
710    return NULL;
711  if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
712    return NULL;
713
714  /* Avoid removing branch with side effects.  */
715  set = single_set (insn);
716  if (!set || side_effects_p (set))
717    return NULL;
718
719  /* In case we zap a conditional jump, we'll need to kill
720     the cc0 setter too.  */
721  kill_from = insn;
722#ifdef HAVE_cc0
723  if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
724    kill_from = PREV_INSN (insn);
725#endif
726
727  /* See if we can create the fallthru edge.  */
728  if (in_cfglayout || can_fallthru (src, target))
729    {
730      if (dump_file)
731	fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
732      fallthru = 1;
733
734      /* Selectively unlink whole insn chain.  */
735      if (in_cfglayout)
736	{
737	  rtx insn = src->il.rtl->footer;
738
739          delete_insn_chain (kill_from, BB_END (src));
740
741	  /* Remove barriers but keep jumptables.  */
742	  while (insn)
743	    {
744	      if (BARRIER_P (insn))
745		{
746		  if (PREV_INSN (insn))
747		    NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
748		  else
749		    src->il.rtl->footer = NEXT_INSN (insn);
750		  if (NEXT_INSN (insn))
751		    PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
752		}
753	      if (LABEL_P (insn))
754		break;
755	      insn = NEXT_INSN (insn);
756	    }
757	}
758      else
759        delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
760    }
761
762  /* If this already is simplejump, redirect it.  */
763  else if (simplejump_p (insn))
764    {
765      if (e->dest == target)
766	return NULL;
767      if (dump_file)
768	fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
769		 INSN_UID (insn), e->dest->index, target->index);
770      if (!redirect_jump (insn, block_label (target), 0))
771	{
772	  gcc_assert (target == EXIT_BLOCK_PTR);
773	  return NULL;
774	}
775    }
776
777  /* Cannot do anything for target exit block.  */
778  else if (target == EXIT_BLOCK_PTR)
779    return NULL;
780
781  /* Or replace possibly complicated jump insn by simple jump insn.  */
782  else
783    {
784      rtx target_label = block_label (target);
785      rtx barrier, label, table;
786
787      emit_jump_insn_after_noloc (gen_jump (target_label), insn);
788      JUMP_LABEL (BB_END (src)) = target_label;
789      LABEL_NUSES (target_label)++;
790      if (dump_file)
791	fprintf (dump_file, "Replacing insn %i by jump %i\n",
792		 INSN_UID (insn), INSN_UID (BB_END (src)));
793
794
795      delete_insn_chain (kill_from, insn);
796
797      /* Recognize a tablejump that we are converting to a
798	 simple jump and remove its associated CODE_LABEL
799	 and ADDR_VEC or ADDR_DIFF_VEC.  */
800      if (tablejump_p (insn, &label, &table))
801	delete_insn_chain (label, table);
802
803      barrier = next_nonnote_insn (BB_END (src));
804      if (!barrier || !BARRIER_P (barrier))
805	emit_barrier_after (BB_END (src));
806      else
807	{
808	  if (barrier != NEXT_INSN (BB_END (src)))
809	    {
810	      /* Move the jump before barrier so that the notes
811		 which originally were or were created before jump table are
812		 inside the basic block.  */
813	      rtx new_insn = BB_END (src);
814	      rtx tmp;
815
816	      for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
817		   tmp = NEXT_INSN (tmp))
818		set_block_for_insn (tmp, src);
819
820	      NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
821	      PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
822
823	      NEXT_INSN (new_insn) = barrier;
824	      NEXT_INSN (PREV_INSN (barrier)) = new_insn;
825
826	      PREV_INSN (new_insn) = PREV_INSN (barrier);
827	      PREV_INSN (barrier) = new_insn;
828	    }
829	}
830    }
831
832  /* Keep only one edge out and set proper flags.  */
833  if (!single_succ_p (src))
834    remove_edge (e);
835  gcc_assert (single_succ_p (src));
836
837  e = single_succ_edge (src);
838  if (fallthru)
839    e->flags = EDGE_FALLTHRU;
840  else
841    e->flags = 0;
842
843  e->probability = REG_BR_PROB_BASE;
844  e->count = src->count;
845
846  /* We don't want a block to end on a line-number note since that has
847     the potential of changing the code between -g and not -g.  */
848  while (NOTE_P (BB_END (e->src))
849	 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
850    delete_insn (BB_END (e->src));
851
852  if (e->dest != target)
853    redirect_edge_succ (e, target);
854
855  return e;
856}
857
858/* Return last loop_beg note appearing after INSN, before start of next
859   basic block.  Return INSN if there are no such notes.
860
861   When emitting jump to redirect a fallthru edge, it should always appear
862   after the LOOP_BEG notes, as loop optimizer expect loop to either start by
863   fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
864   test.  */
865
866static rtx
867last_loop_beg_note (rtx insn)
868{
869  rtx last = insn;
870
871  for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
872       && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
873       insn = NEXT_INSN (insn))
874    if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
875      last = insn;
876
877  return last;
878}
879
880/* Redirect edge representing branch of (un)conditional jump or tablejump,
881   NULL on failure  */
882static edge
883redirect_branch_edge (edge e, basic_block target)
884{
885  rtx tmp;
886  rtx old_label = BB_HEAD (e->dest);
887  basic_block src = e->src;
888  rtx insn = BB_END (src);
889
890  /* We can only redirect non-fallthru edges of jump insn.  */
891  if (e->flags & EDGE_FALLTHRU)
892    return NULL;
893  else if (!JUMP_P (insn))
894    return NULL;
895
896  /* Recognize a tablejump and adjust all matching cases.  */
897  if (tablejump_p (insn, NULL, &tmp))
898    {
899      rtvec vec;
900      int j;
901      rtx new_label = block_label (target);
902
903      if (target == EXIT_BLOCK_PTR)
904	return NULL;
905      if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
906	vec = XVEC (PATTERN (tmp), 0);
907      else
908	vec = XVEC (PATTERN (tmp), 1);
909
910      for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
911	if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
912	  {
913	    RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
914	    --LABEL_NUSES (old_label);
915	    ++LABEL_NUSES (new_label);
916	  }
917
918      /* Handle casesi dispatch insns.  */
919      if ((tmp = single_set (insn)) != NULL
920	  && SET_DEST (tmp) == pc_rtx
921	  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
922	  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
923	  && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
924	{
925	  XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
926						       new_label);
927	  --LABEL_NUSES (old_label);
928	  ++LABEL_NUSES (new_label);
929	}
930    }
931  else
932    {
933      /* ?? We may play the games with moving the named labels from
934	 one basic block to the other in case only one computed_jump is
935	 available.  */
936      if (computed_jump_p (insn)
937	  /* A return instruction can't be redirected.  */
938	  || returnjump_p (insn))
939	return NULL;
940
941      /* If the insn doesn't go where we think, we're confused.  */
942      gcc_assert (JUMP_LABEL (insn) == old_label);
943
944      /* If the substitution doesn't succeed, die.  This can happen
945	 if the back end emitted unrecognizable instructions or if
946	 target is exit block on some arches.  */
947      if (!redirect_jump (insn, block_label (target), 0))
948	{
949	  gcc_assert (target == EXIT_BLOCK_PTR);
950	  return NULL;
951	}
952    }
953
954  if (dump_file)
955    fprintf (dump_file, "Edge %i->%i redirected to %i\n",
956	     e->src->index, e->dest->index, target->index);
957
958  if (e->dest != target)
959    e = redirect_edge_succ_nodup (e, target);
960  return e;
961}
962
963/* Attempt to change code to redirect edge E to TARGET.  Don't do that on
964   expense of adding new instructions or reordering basic blocks.
965
966   Function can be also called with edge destination equivalent to the TARGET.
967   Then it should try the simplifications and do nothing if none is possible.
968
969   Return edge representing the branch if transformation succeeded.  Return NULL
970   on failure.
971   We still return NULL in case E already destinated TARGET and we didn't
972   managed to simplify instruction stream.  */
973
974static edge
975rtl_redirect_edge_and_branch (edge e, basic_block target)
976{
977  edge ret;
978  basic_block src = e->src;
979
980  if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
981    return NULL;
982
983  if (e->dest == target)
984    return e;
985
986  if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
987    {
988      src->flags |= BB_DIRTY;
989      return ret;
990    }
991
992  ret = redirect_branch_edge (e, target);
993  if (!ret)
994    return NULL;
995
996  src->flags |= BB_DIRTY;
997  return ret;
998}
999
1000/* Like force_nonfallthru below, but additionally performs redirection
1001   Used by redirect_edge_and_branch_force.  */
1002
1003static basic_block
1004force_nonfallthru_and_redirect (edge e, basic_block target)
1005{
1006  basic_block jump_block, new_bb = NULL, src = e->src;
1007  rtx note;
1008  edge new_edge;
1009  int abnormal_edge_flags = 0;
1010
1011  /* In the case the last instruction is conditional jump to the next
1012     instruction, first redirect the jump itself and then continue
1013     by creating a basic block afterwards to redirect fallthru edge.  */
1014  if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1015      && any_condjump_p (BB_END (e->src))
1016      /* When called from cfglayout, fallthru edges do not
1017         necessarily go to the next block.  */
1018      && e->src->next_bb == e->dest
1019      && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1020    {
1021      rtx note;
1022      edge b = unchecked_make_edge (e->src, target, 0);
1023      bool redirected;
1024
1025      redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1026      gcc_assert (redirected);
1027
1028      note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1029      if (note)
1030	{
1031	  int prob = INTVAL (XEXP (note, 0));
1032
1033	  b->probability = prob;
1034	  b->count = e->count * prob / REG_BR_PROB_BASE;
1035	  e->probability -= e->probability;
1036	  e->count -= b->count;
1037	  if (e->probability < 0)
1038	    e->probability = 0;
1039	  if (e->count < 0)
1040	    e->count = 0;
1041	}
1042    }
1043
1044  if (e->flags & EDGE_ABNORMAL)
1045    {
1046      /* Irritating special case - fallthru edge to the same block as abnormal
1047	 edge.
1048	 We can't redirect abnormal edge, but we still can split the fallthru
1049	 one and create separate abnormal edge to original destination.
1050	 This allows bb-reorder to make such edge non-fallthru.  */
1051      gcc_assert (e->dest == target);
1052      abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1053      e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1054    }
1055  else
1056    {
1057      gcc_assert (e->flags & EDGE_FALLTHRU);
1058      if (e->src == ENTRY_BLOCK_PTR)
1059	{
1060	  /* We can't redirect the entry block.  Create an empty block
1061	     at the start of the function which we use to add the new
1062	     jump.  */
1063	  edge tmp;
1064	  edge_iterator ei;
1065	  bool found = false;
1066
1067	  basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1068
1069	  /* Change the existing edge's source to be the new block, and add
1070	     a new edge from the entry block to the new block.  */
1071	  e->src = bb;
1072	  for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1073	    {
1074	      if (tmp == e)
1075		{
1076		  VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1077		  found = true;
1078		  break;
1079		}
1080	      else
1081		ei_next (&ei);
1082	    }
1083
1084	  gcc_assert (found);
1085
1086	  VEC_safe_push (edge, gc, bb->succs, e);
1087	  make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1088	}
1089    }
1090
1091  if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1092    {
1093      /* Create the new structures.  */
1094
1095      /* If the old block ended with a tablejump, skip its table
1096	 by searching forward from there.  Otherwise start searching
1097	 forward from the last instruction of the old block.  */
1098      if (!tablejump_p (BB_END (e->src), NULL, &note))
1099	note = BB_END (e->src);
1100
1101      /* Position the new block correctly relative to loop notes.  */
1102      note = last_loop_beg_note (note);
1103      note = NEXT_INSN (note);
1104
1105      jump_block = create_basic_block (note, NULL, e->src);
1106      jump_block->count = e->count;
1107      jump_block->frequency = EDGE_FREQUENCY (e);
1108      jump_block->loop_depth = target->loop_depth;
1109
1110      if (target->il.rtl->global_live_at_start)
1111	{
1112	  jump_block->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1113	  jump_block->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1114	  COPY_REG_SET (jump_block->il.rtl->global_live_at_start,
1115			target->il.rtl->global_live_at_start);
1116	  COPY_REG_SET (jump_block->il.rtl->global_live_at_end,
1117			target->il.rtl->global_live_at_start);
1118	}
1119
1120      /* Make sure new block ends up in correct hot/cold section.  */
1121
1122      BB_COPY_PARTITION (jump_block, e->src);
1123      if (flag_reorder_blocks_and_partition
1124	  && targetm.have_named_sections
1125	  && JUMP_P (BB_END (jump_block))
1126	  && !any_condjump_p (BB_END (jump_block))
1127	  && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1128	REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1129							     NULL_RTX,
1130							     REG_NOTES
1131							     (BB_END
1132                                                              (jump_block)));
1133
1134      /* Wire edge in.  */
1135      new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1136      new_edge->probability = e->probability;
1137      new_edge->count = e->count;
1138
1139      /* Redirect old edge.  */
1140      redirect_edge_pred (e, jump_block);
1141      e->probability = REG_BR_PROB_BASE;
1142
1143      new_bb = jump_block;
1144    }
1145  else
1146    jump_block = e->src;
1147
1148  e->flags &= ~EDGE_FALLTHRU;
1149  if (target == EXIT_BLOCK_PTR)
1150    {
1151#ifdef HAVE_return
1152	emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1153#else
1154	gcc_unreachable ();
1155#endif
1156    }
1157  else
1158    {
1159      rtx label = block_label (target);
1160      emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1161      JUMP_LABEL (BB_END (jump_block)) = label;
1162      LABEL_NUSES (label)++;
1163    }
1164
1165  emit_barrier_after (BB_END (jump_block));
1166  redirect_edge_succ_nodup (e, target);
1167
1168  if (abnormal_edge_flags)
1169    make_edge (src, target, abnormal_edge_flags);
1170
1171  return new_bb;
1172}
1173
1174/* Edge E is assumed to be fallthru edge.  Emit needed jump instruction
1175   (and possibly create new basic block) to make edge non-fallthru.
1176   Return newly created BB or NULL if none.  */
1177
1178basic_block
1179force_nonfallthru (edge e)
1180{
1181  return force_nonfallthru_and_redirect (e, e->dest);
1182}
1183
1184/* Redirect edge even at the expense of creating new jump insn or
1185   basic block.  Return new basic block if created, NULL otherwise.
1186   Conversion must be possible.  */
1187
1188static basic_block
1189rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1190{
1191  if (redirect_edge_and_branch (e, target)
1192      || e->dest == target)
1193    return NULL;
1194
1195  /* In case the edge redirection failed, try to force it to be non-fallthru
1196     and redirect newly created simplejump.  */
1197  return force_nonfallthru_and_redirect (e, target);
1198}
1199
1200/* The given edge should potentially be a fallthru edge.  If that is in
1201   fact true, delete the jump and barriers that are in the way.  */
1202
1203static void
1204rtl_tidy_fallthru_edge (edge e)
1205{
1206  rtx q;
1207  basic_block b = e->src, c = b->next_bb;
1208
1209  /* ??? In a late-running flow pass, other folks may have deleted basic
1210     blocks by nopping out blocks, leaving multiple BARRIERs between here
1211     and the target label. They ought to be chastised and fixed.
1212
1213     We can also wind up with a sequence of undeletable labels between
1214     one block and the next.
1215
1216     So search through a sequence of barriers, labels, and notes for
1217     the head of block C and assert that we really do fall through.  */
1218
1219  for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1220    if (INSN_P (q))
1221      return;
1222
1223  /* Remove what will soon cease being the jump insn from the source block.
1224     If block B consisted only of this single jump, turn it into a deleted
1225     note.  */
1226  q = BB_END (b);
1227  if (JUMP_P (q)
1228      && onlyjump_p (q)
1229      && (any_uncondjump_p (q)
1230	  || single_succ_p (b)))
1231    {
1232#ifdef HAVE_cc0
1233      /* If this was a conditional jump, we need to also delete
1234	 the insn that set cc0.  */
1235      if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1236	q = PREV_INSN (q);
1237#endif
1238
1239      q = PREV_INSN (q);
1240
1241      /* We don't want a block to end on a line-number note since that has
1242	 the potential of changing the code between -g and not -g.  */
1243      while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1244	q = PREV_INSN (q);
1245    }
1246
1247  /* Selectively unlink the sequence.  */
1248  if (q != PREV_INSN (BB_HEAD (c)))
1249    delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1250
1251  e->flags |= EDGE_FALLTHRU;
1252}
1253
1254/* Helper function for split_edge.  Return true in case edge BB2 to BB1
1255   is back edge of syntactic loop.  */
1256
1257static bool
1258back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1259{
1260  rtx insn;
1261  int count = 0;
1262  basic_block bb;
1263
1264  if (bb1 == bb2)
1265    return true;
1266
1267  /* ??? Could we guarantee that bb indices are monotone, so that we could
1268     just compare them?  */
1269  for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1270    continue;
1271
1272  if (!bb)
1273    return false;
1274
1275  for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1276       insn = NEXT_INSN (insn))
1277    if (NOTE_P (insn))
1278      {
1279	if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1280	  count++;
1281	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1282	  count--;
1283      }
1284
1285  return count >= 0;
1286}
1287
1288/* Should move basic block BB after basic block AFTER.  NIY.  */
1289
1290static bool
1291rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1292		      basic_block after ATTRIBUTE_UNUSED)
1293{
1294  return false;
1295}
1296
1297/* Split a (typically critical) edge.  Return the new block.
1298   The edge must not be abnormal.
1299
1300   ??? The code generally expects to be called on critical edges.
1301   The case of a block ending in an unconditional jump to a
1302   block with multiple predecessors is not handled optimally.  */
1303
1304static basic_block
1305rtl_split_edge (edge edge_in)
1306{
1307  basic_block bb;
1308  rtx before;
1309
1310  /* Abnormal edges cannot be split.  */
1311  gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1312
1313  /* We are going to place the new block in front of edge destination.
1314     Avoid existence of fallthru predecessors.  */
1315  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1316    {
1317      edge e;
1318      edge_iterator ei;
1319
1320      FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1321	if (e->flags & EDGE_FALLTHRU)
1322	  break;
1323
1324      if (e)
1325	force_nonfallthru (e);
1326    }
1327
1328  /* Create the basic block note.
1329
1330     Where we place the note can have a noticeable impact on the generated
1331     code.  Consider this cfg:
1332
1333		        E
1334			|
1335			0
1336		       / \
1337		   +->1-->2--->E
1338                   |  |
1339		   +--+
1340
1341      If we need to insert an insn on the edge from block 0 to block 1,
1342      we want to ensure the instructions we insert are outside of any
1343      loop notes that physically sit between block 0 and block 1.  Otherwise
1344      we confuse the loop optimizer into thinking the loop is a phony.  */
1345
1346  if (edge_in->dest != EXIT_BLOCK_PTR
1347      && PREV_INSN (BB_HEAD (edge_in->dest))
1348      && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1349      && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1350	  == NOTE_INSN_LOOP_BEG)
1351      && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1352    before = PREV_INSN (BB_HEAD (edge_in->dest));
1353  else if (edge_in->dest != EXIT_BLOCK_PTR)
1354    before = BB_HEAD (edge_in->dest);
1355  else
1356    before = NULL_RTX;
1357
1358  /* If this is a fall through edge to the exit block, the blocks might be
1359     not adjacent, and the right place is the after the source.  */
1360  if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1361    {
1362      before = NEXT_INSN (BB_END (edge_in->src));
1363      if (before
1364	  && NOTE_P (before)
1365	  && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1366	before = NEXT_INSN (before);
1367      bb = create_basic_block (before, NULL, edge_in->src);
1368      BB_COPY_PARTITION (bb, edge_in->src);
1369    }
1370  else
1371    {
1372      bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1373      /* ??? Why not edge_in->dest->prev_bb here?  */
1374      BB_COPY_PARTITION (bb, edge_in->dest);
1375    }
1376
1377  /* ??? This info is likely going to be out of date very soon.  */
1378  if (edge_in->dest->il.rtl->global_live_at_start)
1379    {
1380      bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1381      bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1382      COPY_REG_SET (bb->il.rtl->global_live_at_start,
1383		    edge_in->dest->il.rtl->global_live_at_start);
1384      COPY_REG_SET (bb->il.rtl->global_live_at_end,
1385		    edge_in->dest->il.rtl->global_live_at_start);
1386    }
1387
1388  make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1389
1390  /* For non-fallthru edges, we must adjust the predecessor's
1391     jump instruction to target our new block.  */
1392  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1393    {
1394      edge redirected = redirect_edge_and_branch (edge_in, bb);
1395      gcc_assert (redirected);
1396    }
1397  else
1398    redirect_edge_succ (edge_in, bb);
1399
1400  return bb;
1401}
1402
1403/* Queue instructions for insertion on an edge between two basic blocks.
1404   The new instructions and basic blocks (if any) will not appear in the
1405   CFG until commit_edge_insertions is called.  */
1406
1407void
1408insert_insn_on_edge (rtx pattern, edge e)
1409{
1410  /* We cannot insert instructions on an abnormal critical edge.
1411     It will be easier to find the culprit if we die now.  */
1412  gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1413
1414  if (e->insns.r == NULL_RTX)
1415    start_sequence ();
1416  else
1417    push_to_sequence (e->insns.r);
1418
1419  emit_insn (pattern);
1420
1421  e->insns.r = get_insns ();
1422  end_sequence ();
1423}
1424
1425/* Called from safe_insert_insn_on_edge through note_stores, marks live
1426   registers that are killed by the store.  */
1427static void
1428mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1429{
1430  regset killed = data;
1431  int regno, i;
1432
1433  if (GET_CODE (reg) == SUBREG)
1434    reg = SUBREG_REG (reg);
1435  if (!REG_P (reg))
1436    return;
1437  regno = REGNO (reg);
1438  if (regno >= FIRST_PSEUDO_REGISTER)
1439    SET_REGNO_REG_SET (killed, regno);
1440  else
1441    {
1442      for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1443	SET_REGNO_REG_SET (killed, regno + i);
1444    }
1445}
1446
1447/* Similar to insert_insn_on_edge, tries to put INSN to edge E.  Additionally
1448   it checks whether this will not clobber the registers that are live on the
1449   edge (i.e. it requires liveness information to be up-to-date) and if there
1450   are some, then it tries to save and restore them.  Returns true if
1451   successful.  */
1452bool
1453safe_insert_insn_on_edge (rtx insn, edge e)
1454{
1455  rtx x;
1456  regset killed;
1457  rtx save_regs = NULL_RTX;
1458  unsigned regno;
1459  enum machine_mode mode;
1460  reg_set_iterator rsi;
1461
1462  killed = ALLOC_REG_SET (&reg_obstack);
1463
1464  for (x = insn; x; x = NEXT_INSN (x))
1465    if (INSN_P (x))
1466      note_stores (PATTERN (x), mark_killed_regs, killed);
1467
1468  /* Mark all hard registers as killed.  Register allocator/reload cannot
1469     cope with the situation when life range of hard register spans operation
1470     for that the appropriate register is needed, i.e. it would be unsafe to
1471     extend the life ranges of hard registers.  */
1472  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1473    if (!fixed_regs[regno]
1474	&& !REGNO_PTR_FRAME_P (regno))
1475      SET_REGNO_REG_SET (killed, regno);
1476
1477  bitmap_and_into (killed, e->dest->il.rtl->global_live_at_start);
1478
1479  EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1480    {
1481      mode = regno < FIRST_PSEUDO_REGISTER
1482	      ? reg_raw_mode[regno]
1483	      : GET_MODE (regno_reg_rtx[regno]);
1484      if (mode == VOIDmode)
1485	return false;
1486
1487      /* Avoid copying in CCmode if we can't.  */
1488      if (!can_copy_p (mode))
1489	return false;
1490
1491      save_regs = alloc_EXPR_LIST (0,
1492				   alloc_EXPR_LIST (0,
1493						    gen_reg_rtx (mode),
1494						    gen_raw_REG (mode, regno)),
1495				   save_regs);
1496    }
1497
1498  if (save_regs)
1499    {
1500      rtx from, to;
1501
1502      start_sequence ();
1503      for (x = save_regs; x; x = XEXP (x, 1))
1504	{
1505	  from = XEXP (XEXP (x, 0), 1);
1506	  to = XEXP (XEXP (x, 0), 0);
1507	  emit_move_insn (to, from);
1508	}
1509      emit_insn (insn);
1510      for (x = save_regs; x; x = XEXP (x, 1))
1511	{
1512	  from = XEXP (XEXP (x, 0), 0);
1513	  to = XEXP (XEXP (x, 0), 1);
1514	  emit_move_insn (to, from);
1515	}
1516      insn = get_insns ();
1517      end_sequence ();
1518      free_EXPR_LIST_list (&save_regs);
1519    }
1520  insert_insn_on_edge (insn, e);
1521
1522  FREE_REG_SET (killed);
1523
1524  return true;
1525}
1526
1527/* Update the CFG for the instructions queued on edge E.  */
1528
1529static void
1530commit_one_edge_insertion (edge e, int watch_calls)
1531{
1532  rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1533  basic_block bb = NULL;
1534
1535  /* Pull the insns off the edge now since the edge might go away.  */
1536  insns = e->insns.r;
1537  e->insns.r = NULL_RTX;
1538
1539  /* Special case -- avoid inserting code between call and storing
1540     its return value.  */
1541  if (watch_calls && (e->flags & EDGE_FALLTHRU)
1542      && single_pred_p (e->dest)
1543      && e->src != ENTRY_BLOCK_PTR
1544      && CALL_P (BB_END (e->src)))
1545    {
1546      rtx next = next_nonnote_insn (BB_END (e->src));
1547
1548      after = BB_HEAD (e->dest);
1549      /* The first insn after the call may be a stack pop, skip it.  */
1550      while (next
1551	     && keep_with_call_p (next))
1552	{
1553	  after = next;
1554	  next = next_nonnote_insn (next);
1555	}
1556      bb = e->dest;
1557    }
1558  if (!before && !after)
1559    {
1560      /* Figure out where to put these things.  If the destination has
1561         one predecessor, insert there.  Except for the exit block.  */
1562      if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1563	{
1564	  bb = e->dest;
1565
1566	  /* Get the location correct wrt a code label, and "nice" wrt
1567	     a basic block note, and before everything else.  */
1568	  tmp = BB_HEAD (bb);
1569	  if (LABEL_P (tmp))
1570	    tmp = NEXT_INSN (tmp);
1571	  if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1572	    tmp = NEXT_INSN (tmp);
1573	  if (tmp == BB_HEAD (bb))
1574	    before = tmp;
1575	  else if (tmp)
1576	    after = PREV_INSN (tmp);
1577	  else
1578	    after = get_last_insn ();
1579	}
1580
1581      /* If the source has one successor and the edge is not abnormal,
1582         insert there.  Except for the entry block.  */
1583      else if ((e->flags & EDGE_ABNORMAL) == 0
1584	       && single_succ_p (e->src)
1585	       && e->src != ENTRY_BLOCK_PTR)
1586	{
1587	  bb = e->src;
1588
1589	  /* It is possible to have a non-simple jump here.  Consider a target
1590	     where some forms of unconditional jumps clobber a register.  This
1591	     happens on the fr30 for example.
1592
1593	     We know this block has a single successor, so we can just emit
1594	     the queued insns before the jump.  */
1595	  if (JUMP_P (BB_END (bb)))
1596	    for (before = BB_END (bb);
1597		 NOTE_P (PREV_INSN (before))
1598		 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1599		 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1600	      ;
1601	  else
1602	    {
1603	      /* We'd better be fallthru, or we've lost track of
1604		 what's what.  */
1605	      gcc_assert (e->flags & EDGE_FALLTHRU);
1606
1607	      after = BB_END (bb);
1608	    }
1609	}
1610      /* Otherwise we must split the edge.  */
1611      else
1612	{
1613	  bb = split_edge (e);
1614	  after = BB_END (bb);
1615
1616	  if (flag_reorder_blocks_and_partition
1617	      && targetm.have_named_sections
1618	      && e->src != ENTRY_BLOCK_PTR
1619	      && BB_PARTITION (e->src) == BB_COLD_PARTITION
1620	      && !(e->flags & EDGE_CROSSING))
1621	    {
1622	      rtx bb_note, cur_insn;
1623
1624	      bb_note = NULL_RTX;
1625	      for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1626		   cur_insn = NEXT_INSN (cur_insn))
1627		if (NOTE_P (cur_insn)
1628		    && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1629		  {
1630		    bb_note = cur_insn;
1631		    break;
1632		  }
1633
1634	      if (JUMP_P (BB_END (bb))
1635		  && !any_condjump_p (BB_END (bb))
1636  		  && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1637		REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1638		  (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1639	    }
1640	}
1641    }
1642
1643  /* Now that we've found the spot, do the insertion.  */
1644
1645  if (before)
1646    {
1647      emit_insn_before_noloc (insns, before);
1648      last = prev_nonnote_insn (before);
1649    }
1650  else
1651    last = emit_insn_after_noloc (insns, after);
1652
1653  if (returnjump_p (last))
1654    {
1655      /* ??? Remove all outgoing edges from BB and add one for EXIT.
1656         This is not currently a problem because this only happens
1657         for the (single) epilogue, which already has a fallthru edge
1658         to EXIT.  */
1659
1660      e = single_succ_edge (bb);
1661      gcc_assert (e->dest == EXIT_BLOCK_PTR
1662		  && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1663
1664      e->flags &= ~EDGE_FALLTHRU;
1665      emit_barrier_after (last);
1666
1667      if (before)
1668	delete_insn (before);
1669    }
1670  else
1671    gcc_assert (!JUMP_P (last));
1672
1673  /* Mark the basic block for find_many_sub_basic_blocks.  */
1674  bb->aux = &bb->aux;
1675}
1676
1677/* Update the CFG for all queued instructions.  */
1678
1679void
1680commit_edge_insertions (void)
1681{
1682  basic_block bb;
1683  sbitmap blocks;
1684  bool changed = false;
1685
1686#ifdef ENABLE_CHECKING
1687  verify_flow_info ();
1688#endif
1689
1690  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1691    {
1692      edge e;
1693      edge_iterator ei;
1694
1695      FOR_EACH_EDGE (e, ei, bb->succs)
1696	if (e->insns.r)
1697	  {
1698	    changed = true;
1699	    commit_one_edge_insertion (e, false);
1700	  }
1701    }
1702
1703  if (!changed)
1704    return;
1705
1706  blocks = sbitmap_alloc (last_basic_block);
1707  sbitmap_zero (blocks);
1708  FOR_EACH_BB (bb)
1709    if (bb->aux)
1710      {
1711        SET_BIT (blocks, bb->index);
1712	/* Check for forgotten bb->aux values before commit_edge_insertions
1713	   call.  */
1714	gcc_assert (bb->aux == &bb->aux);
1715	bb->aux = NULL;
1716      }
1717  find_many_sub_basic_blocks (blocks);
1718  sbitmap_free (blocks);
1719}
1720
1721/* Update the CFG for all queued instructions, taking special care of inserting
1722   code on edges between call and storing its return value.  */
1723
1724void
1725commit_edge_insertions_watch_calls (void)
1726{
1727  basic_block bb;
1728  sbitmap blocks;
1729  bool changed = false;
1730
1731#ifdef ENABLE_CHECKING
1732  verify_flow_info ();
1733#endif
1734
1735  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1736    {
1737      edge e;
1738      edge_iterator ei;
1739
1740      FOR_EACH_EDGE (e, ei, bb->succs)
1741	if (e->insns.r)
1742	  {
1743	    changed = true;
1744	    commit_one_edge_insertion (e, true);
1745	  }
1746    }
1747
1748  if (!changed)
1749    return;
1750
1751  blocks = sbitmap_alloc (last_basic_block);
1752  sbitmap_zero (blocks);
1753  FOR_EACH_BB (bb)
1754    if (bb->aux)
1755      {
1756        SET_BIT (blocks, bb->index);
1757	/* Check for forgotten bb->aux values before commit_edge_insertions
1758	   call.  */
1759	gcc_assert (bb->aux == &bb->aux);
1760	bb->aux = NULL;
1761      }
1762  find_many_sub_basic_blocks (blocks);
1763  sbitmap_free (blocks);
1764}
1765
1766/* Print out RTL-specific basic block information (live information
1767   at start and end).  */
1768
1769static void
1770rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1771{
1772  rtx insn;
1773  rtx last;
1774  char *s_indent;
1775
1776  s_indent = alloca ((size_t) indent + 1);
1777  memset (s_indent, ' ', (size_t) indent);
1778  s_indent[indent] = '\0';
1779
1780  fprintf (outf, ";;%s Registers live at start: ", s_indent);
1781  dump_regset (bb->il.rtl->global_live_at_start, outf);
1782  putc ('\n', outf);
1783
1784  for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1785       insn = NEXT_INSN (insn))
1786    print_rtl_single (outf, insn);
1787
1788  fprintf (outf, ";;%s Registers live at end: ", s_indent);
1789  dump_regset (bb->il.rtl->global_live_at_end, outf);
1790  putc ('\n', outf);
1791}
1792
1793/* Like print_rtl, but also print out live information for the start of each
1794   basic block.  */
1795
1796void
1797print_rtl_with_bb (FILE *outf, rtx rtx_first)
1798{
1799  rtx tmp_rtx;
1800
1801  if (rtx_first == 0)
1802    fprintf (outf, "(nil)\n");
1803  else
1804    {
1805      enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1806      int max_uid = get_max_uid ();
1807      basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1808      basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1809      enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1810
1811      basic_block bb;
1812
1813      FOR_EACH_BB_REVERSE (bb)
1814	{
1815	  rtx x;
1816
1817	  start[INSN_UID (BB_HEAD (bb))] = bb;
1818	  end[INSN_UID (BB_END (bb))] = bb;
1819	  for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1820	    {
1821	      enum bb_state state = IN_MULTIPLE_BB;
1822
1823	      if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1824		state = IN_ONE_BB;
1825	      in_bb_p[INSN_UID (x)] = state;
1826
1827	      if (x == BB_END (bb))
1828		break;
1829	    }
1830	}
1831
1832      for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1833	{
1834	  int did_output;
1835
1836	  if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1837	    {
1838	      fprintf (outf, ";; Start of basic block %d, registers live:",
1839		       bb->index);
1840	      dump_regset (bb->il.rtl->global_live_at_start, outf);
1841	      putc ('\n', outf);
1842	    }
1843
1844	  if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1845	      && !NOTE_P (tmp_rtx)
1846	      && !BARRIER_P (tmp_rtx))
1847	    fprintf (outf, ";; Insn is not within a basic block\n");
1848	  else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1849	    fprintf (outf, ";; Insn is in multiple basic blocks\n");
1850
1851	  did_output = print_rtl_single (outf, tmp_rtx);
1852
1853	  if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1854	    {
1855	      fprintf (outf, ";; End of basic block %d, registers live:\n",
1856		       bb->index);
1857	      dump_regset (bb->il.rtl->global_live_at_end, outf);
1858	      putc ('\n', outf);
1859	    }
1860
1861	  if (did_output)
1862	    putc ('\n', outf);
1863	}
1864
1865      free (start);
1866      free (end);
1867      free (in_bb_p);
1868    }
1869
1870  if (current_function_epilogue_delay_list != 0)
1871    {
1872      fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1873      for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1874	   tmp_rtx = XEXP (tmp_rtx, 1))
1875	print_rtl_single (outf, XEXP (tmp_rtx, 0));
1876    }
1877}
1878
1879void
1880update_br_prob_note (basic_block bb)
1881{
1882  rtx note;
1883  if (!JUMP_P (BB_END (bb)))
1884    return;
1885  note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1886  if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1887    return;
1888  XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1889}
1890
1891/* Verify the CFG and RTL consistency common for both underlying RTL and
1892   cfglayout RTL.
1893
1894   Currently it does following checks:
1895
1896   - test head/end pointers
1897   - overlapping of basic blocks
1898   - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1899   - tails of basic blocks (ensure that boundary is necessary)
1900   - scans body of the basic block for JUMP_INSN, CODE_LABEL
1901     and NOTE_INSN_BASIC_BLOCK
1902   - verify that no fall_thru edge crosses hot/cold partition boundaries
1903
1904   In future it can be extended check a lot of other stuff as well
1905   (reachability of basic blocks, life information, etc. etc.).  */
1906
1907static int
1908rtl_verify_flow_info_1 (void)
1909{
1910  const int max_uid = get_max_uid ();
1911  rtx last_head = get_last_insn ();
1912  basic_block *bb_info;
1913  rtx x;
1914  int err = 0;
1915  basic_block bb;
1916
1917  bb_info = xcalloc (max_uid, sizeof (basic_block));
1918
1919  FOR_EACH_BB_REVERSE (bb)
1920    {
1921      rtx head = BB_HEAD (bb);
1922      rtx end = BB_END (bb);
1923
1924      /* Verify the end of the basic block is in the INSN chain.  */
1925      for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1926	if (x == end)
1927	  break;
1928
1929      if (!(bb->flags & BB_RTL))
1930	{
1931	  error ("BB_RTL flag not set for block %d", bb->index);
1932	  err = 1;
1933	}
1934
1935      if (!x)
1936	{
1937	  error ("end insn %d for block %d not found in the insn stream",
1938		 INSN_UID (end), bb->index);
1939	  err = 1;
1940	}
1941
1942      /* Work backwards from the end to the head of the basic block
1943	 to verify the head is in the RTL chain.  */
1944      for (; x != NULL_RTX; x = PREV_INSN (x))
1945	{
1946	  /* While walking over the insn chain, verify insns appear
1947	     in only one basic block and initialize the BB_INFO array
1948	     used by other passes.  */
1949	  if (bb_info[INSN_UID (x)] != NULL)
1950	    {
1951	      error ("insn %d is in multiple basic blocks (%d and %d)",
1952		     INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1953	      err = 1;
1954	    }
1955
1956	  bb_info[INSN_UID (x)] = bb;
1957
1958	  if (x == head)
1959	    break;
1960	}
1961      if (!x)
1962	{
1963	  error ("head insn %d for block %d not found in the insn stream",
1964		 INSN_UID (head), bb->index);
1965	  err = 1;
1966	}
1967
1968      last_head = x;
1969    }
1970
1971  /* Now check the basic blocks (boundaries etc.) */
1972  FOR_EACH_BB_REVERSE (bb)
1973    {
1974      int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1975      edge e, fallthru = NULL;
1976      rtx note;
1977      edge_iterator ei;
1978
1979      if (JUMP_P (BB_END (bb))
1980	  && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1981	  && EDGE_COUNT (bb->succs) >= 2
1982	  && any_condjump_p (BB_END (bb)))
1983	{
1984	  if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1985	      && profile_status != PROFILE_ABSENT)
1986	    {
1987	      error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1988		     INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1989	      err = 1;
1990	    }
1991	}
1992      FOR_EACH_EDGE (e, ei, bb->succs)
1993	{
1994	  if (e->flags & EDGE_FALLTHRU)
1995	    {
1996	      n_fallthru++, fallthru = e;
1997	      if ((e->flags & EDGE_CROSSING)
1998		  || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1999		      && e->src != ENTRY_BLOCK_PTR
2000		      && e->dest != EXIT_BLOCK_PTR))
2001	    {
2002		  error ("fallthru edge crosses section boundary (bb %i)",
2003			 e->src->index);
2004		  err = 1;
2005		}
2006	    }
2007
2008	  if ((e->flags & ~(EDGE_DFS_BACK
2009			    | EDGE_CAN_FALLTHRU
2010			    | EDGE_IRREDUCIBLE_LOOP
2011			    | EDGE_LOOP_EXIT
2012			    | EDGE_CROSSING)) == 0)
2013	    n_branch++;
2014
2015	  if (e->flags & EDGE_ABNORMAL_CALL)
2016	    n_call++;
2017
2018	  if (e->flags & EDGE_EH)
2019	    n_eh++;
2020	  else if (e->flags & EDGE_ABNORMAL)
2021	    n_abnormal++;
2022	}
2023
2024      if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2025	  && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2026	{
2027	  error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
2028	  err = 1;
2029	}
2030      if (n_branch
2031	  && (!JUMP_P (BB_END (bb))
2032	      || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2033				   || any_condjump_p (BB_END (bb))))))
2034	{
2035	  error ("too many outgoing branch edges from bb %i", bb->index);
2036	  err = 1;
2037	}
2038      if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2039	{
2040	  error ("fallthru edge after unconditional jump %i", bb->index);
2041	  err = 1;
2042	}
2043      if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2044	{
2045	  error ("wrong amount of branch edges after unconditional jump %i", bb->index);
2046	  err = 1;
2047	}
2048      if (n_branch != 1 && any_condjump_p (BB_END (bb))
2049	  && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2050	{
2051	  error ("wrong amount of branch edges after conditional jump %i",
2052		 bb->index);
2053	  err = 1;
2054	}
2055      if (n_call && !CALL_P (BB_END (bb)))
2056	{
2057	  error ("call edges for non-call insn in bb %i", bb->index);
2058	  err = 1;
2059	}
2060      if (n_abnormal
2061	  && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2062	  && (!JUMP_P (BB_END (bb))
2063	      || any_condjump_p (BB_END (bb))
2064	      || any_uncondjump_p (BB_END (bb))))
2065	{
2066	  error ("abnormal edges for no purpose in bb %i", bb->index);
2067	  err = 1;
2068	}
2069
2070      for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2071	/* We may have a barrier inside a basic block before dead code
2072	   elimination.  There is no BLOCK_FOR_INSN field in a barrier.  */
2073	if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2074	  {
2075	    debug_rtx (x);
2076	    if (! BLOCK_FOR_INSN (x))
2077	      error
2078		("insn %d inside basic block %d but block_for_insn is NULL",
2079		 INSN_UID (x), bb->index);
2080	    else
2081	      error
2082		("insn %d inside basic block %d but block_for_insn is %i",
2083		 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2084
2085	    err = 1;
2086	  }
2087
2088      /* OK pointers are correct.  Now check the header of basic
2089         block.  It ought to contain optional CODE_LABEL followed
2090	 by NOTE_BASIC_BLOCK.  */
2091      x = BB_HEAD (bb);
2092      if (LABEL_P (x))
2093	{
2094	  if (BB_END (bb) == x)
2095	    {
2096	      error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2097		     bb->index);
2098	      err = 1;
2099	    }
2100
2101	  x = NEXT_INSN (x);
2102	}
2103
2104      if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2105	{
2106	  error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2107		 bb->index);
2108	  err = 1;
2109	}
2110
2111      if (BB_END (bb) == x)
2112	/* Do checks for empty blocks here.  */
2113	;
2114      else
2115	for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2116	  {
2117	    if (NOTE_INSN_BASIC_BLOCK_P (x))
2118	      {
2119		error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2120		       INSN_UID (x), bb->index);
2121		err = 1;
2122	      }
2123
2124	    if (x == BB_END (bb))
2125	      break;
2126
2127	    if (control_flow_insn_p (x))
2128	      {
2129		error ("in basic block %d:", bb->index);
2130		fatal_insn ("flow control insn inside a basic block", x);
2131	      }
2132	  }
2133    }
2134
2135  /* Clean up.  */
2136  free (bb_info);
2137  return err;
2138}
2139
2140/* Verify the CFG and RTL consistency common for both underlying RTL and
2141   cfglayout RTL.
2142
2143   Currently it does following checks:
2144   - all checks of rtl_verify_flow_info_1
2145   - check that all insns are in the basic blocks
2146     (except the switch handling code, barriers and notes)
2147   - check that all returns are followed by barriers
2148   - check that all fallthru edge points to the adjacent blocks.  */
2149static int
2150rtl_verify_flow_info (void)
2151{
2152  basic_block bb;
2153  int err = rtl_verify_flow_info_1 ();
2154  rtx x;
2155  int num_bb_notes;
2156  const rtx rtx_first = get_insns ();
2157  basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2158
2159  FOR_EACH_BB_REVERSE (bb)
2160    {
2161      edge e;
2162      edge_iterator ei;
2163
2164      if (bb->predictions)
2165	{
2166	  error ("bb prediction set for block %i, but it is not used in RTL land", bb->index);
2167	  err = 1;
2168	}
2169
2170      FOR_EACH_EDGE (e, ei, bb->succs)
2171	if (e->flags & EDGE_FALLTHRU)
2172	  break;
2173      if (!e)
2174	{
2175	  rtx insn;
2176
2177	  /* Ensure existence of barrier in BB with no fallthru edges.  */
2178	  for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2179	       insn = NEXT_INSN (insn))
2180	    if (!insn
2181		|| (NOTE_P (insn)
2182		    && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2183		{
2184		  error ("missing barrier after block %i", bb->index);
2185		  err = 1;
2186		  break;
2187		}
2188	}
2189      else if (e->src != ENTRY_BLOCK_PTR
2190	       && e->dest != EXIT_BLOCK_PTR)
2191        {
2192	  rtx insn;
2193
2194	  if (e->src->next_bb != e->dest)
2195	    {
2196	      error
2197		("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2198		 e->src->index, e->dest->index);
2199	      err = 1;
2200	    }
2201	  else
2202	    for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2203		 insn = NEXT_INSN (insn))
2204	      if (BARRIER_P (insn) || INSN_P (insn))
2205		{
2206		  error ("verify_flow_info: Incorrect fallthru %i->%i",
2207			 e->src->index, e->dest->index);
2208		  fatal_insn ("wrong insn in the fallthru edge", insn);
2209		  err = 1;
2210		}
2211        }
2212    }
2213
2214  num_bb_notes = 0;
2215  last_bb_seen = ENTRY_BLOCK_PTR;
2216
2217  for (x = rtx_first; x; x = NEXT_INSN (x))
2218    {
2219      if (NOTE_INSN_BASIC_BLOCK_P (x))
2220	{
2221	  bb = NOTE_BASIC_BLOCK (x);
2222
2223	  num_bb_notes++;
2224	  if (bb != last_bb_seen->next_bb)
2225	    internal_error ("basic blocks not laid down consecutively");
2226
2227	  curr_bb = last_bb_seen = bb;
2228	}
2229
2230      if (!curr_bb)
2231	{
2232	  switch (GET_CODE (x))
2233	    {
2234	    case BARRIER:
2235	    case NOTE:
2236	      break;
2237
2238	    case CODE_LABEL:
2239	      /* An addr_vec is placed outside any basic block.  */
2240	      if (NEXT_INSN (x)
2241		  && JUMP_P (NEXT_INSN (x))
2242		  && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2243		      || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2244		x = NEXT_INSN (x);
2245
2246	      /* But in any case, non-deletable labels can appear anywhere.  */
2247	      break;
2248
2249	    default:
2250	      fatal_insn ("insn outside basic block", x);
2251	    }
2252	}
2253
2254      if (JUMP_P (x)
2255	  && returnjump_p (x) && ! condjump_p (x)
2256	  && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2257	    fatal_insn ("return not followed by barrier", x);
2258      if (curr_bb && x == BB_END (curr_bb))
2259	curr_bb = NULL;
2260    }
2261
2262  if (num_bb_notes != n_basic_blocks)
2263    internal_error
2264      ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2265       num_bb_notes, n_basic_blocks);
2266
2267   return err;
2268}
2269
2270/* Assume that the preceding pass has possibly eliminated jump instructions
2271   or converted the unconditional jumps.  Eliminate the edges from CFG.
2272   Return true if any edges are eliminated.  */
2273
2274bool
2275purge_dead_edges (basic_block bb)
2276{
2277  edge e;
2278  rtx insn = BB_END (bb), note;
2279  bool purged = false;
2280  bool found;
2281  edge_iterator ei;
2282
2283  /* If this instruction cannot trap, remove REG_EH_REGION notes.  */
2284  if (NONJUMP_INSN_P (insn)
2285      && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2286    {
2287      rtx eqnote;
2288
2289      if (! may_trap_p (PATTERN (insn))
2290	  || ((eqnote = find_reg_equal_equiv_note (insn))
2291	      && ! may_trap_p (XEXP (eqnote, 0))))
2292	remove_note (insn, note);
2293    }
2294
2295  /* Cleanup abnormal edges caused by exceptions or non-local gotos.  */
2296  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2297    {
2298      /* There are three types of edges we need to handle correctly here: EH
2299	 edges, abnormal call EH edges, and abnormal call non-EH edges.  The
2300	 latter can appear when nonlocal gotos are used.  */
2301      if (e->flags & EDGE_EH)
2302	{
2303	  if (can_throw_internal (BB_END (bb))
2304	      /* If this is a call edge, verify that this is a call insn.  */
2305	      && (! (e->flags & EDGE_ABNORMAL_CALL)
2306		  || CALL_P (BB_END (bb))))
2307	    {
2308	      ei_next (&ei);
2309	      continue;
2310	    }
2311	}
2312      else if (e->flags & EDGE_ABNORMAL_CALL)
2313	{
2314	  if (CALL_P (BB_END (bb))
2315	      && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2316		  || INTVAL (XEXP (note, 0)) >= 0))
2317	    {
2318	      ei_next (&ei);
2319	      continue;
2320	    }
2321	}
2322      else
2323	{
2324	  ei_next (&ei);
2325	  continue;
2326	}
2327
2328      remove_edge (e);
2329      bb->flags |= BB_DIRTY;
2330      purged = true;
2331    }
2332
2333  if (JUMP_P (insn))
2334    {
2335      rtx note;
2336      edge b,f;
2337      edge_iterator ei;
2338
2339      /* We do care only about conditional jumps and simplejumps.  */
2340      if (!any_condjump_p (insn)
2341	  && !returnjump_p (insn)
2342	  && !simplejump_p (insn))
2343	return purged;
2344
2345      /* Branch probability/prediction notes are defined only for
2346	 condjumps.  We've possibly turned condjump into simplejump.  */
2347      if (simplejump_p (insn))
2348	{
2349	  note = find_reg_note (insn, REG_BR_PROB, NULL);
2350	  if (note)
2351	    remove_note (insn, note);
2352	  while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2353	    remove_note (insn, note);
2354	}
2355
2356      for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2357	{
2358	  /* Avoid abnormal flags to leak from computed jumps turned
2359	     into simplejumps.  */
2360
2361	  e->flags &= ~EDGE_ABNORMAL;
2362
2363	  /* See if this edge is one we should keep.  */
2364	  if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2365	    /* A conditional jump can fall through into the next
2366	       block, so we should keep the edge.  */
2367	    {
2368	      ei_next (&ei);
2369	      continue;
2370	    }
2371	  else if (e->dest != EXIT_BLOCK_PTR
2372		   && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2373	    /* If the destination block is the target of the jump,
2374	       keep the edge.  */
2375	    {
2376	      ei_next (&ei);
2377	      continue;
2378	    }
2379	  else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2380	    /* If the destination block is the exit block, and this
2381	       instruction is a return, then keep the edge.  */
2382	    {
2383	      ei_next (&ei);
2384	      continue;
2385	    }
2386	  else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2387	    /* Keep the edges that correspond to exceptions thrown by
2388	       this instruction and rematerialize the EDGE_ABNORMAL
2389	       flag we just cleared above.  */
2390	    {
2391	      e->flags |= EDGE_ABNORMAL;
2392	      ei_next (&ei);
2393	      continue;
2394	    }
2395
2396	  /* We do not need this edge.  */
2397	  bb->flags |= BB_DIRTY;
2398	  purged = true;
2399	  remove_edge (e);
2400	}
2401
2402      if (EDGE_COUNT (bb->succs) == 0 || !purged)
2403	return purged;
2404
2405      if (dump_file)
2406	fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2407
2408      if (!optimize)
2409	return purged;
2410
2411      /* Redistribute probabilities.  */
2412      if (single_succ_p (bb))
2413	{
2414	  single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2415	  single_succ_edge (bb)->count = bb->count;
2416	}
2417      else
2418	{
2419	  note = find_reg_note (insn, REG_BR_PROB, NULL);
2420	  if (!note)
2421	    return purged;
2422
2423	  b = BRANCH_EDGE (bb);
2424	  f = FALLTHRU_EDGE (bb);
2425	  b->probability = INTVAL (XEXP (note, 0));
2426	  f->probability = REG_BR_PROB_BASE - b->probability;
2427	  b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2428	  f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2429	}
2430
2431      return purged;
2432    }
2433  else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2434    {
2435      /* First, there should not be any EH or ABCALL edges resulting
2436	 from non-local gotos and the like.  If there were, we shouldn't
2437	 have created the sibcall in the first place.  Second, there
2438	 should of course never have been a fallthru edge.  */
2439      gcc_assert (single_succ_p (bb));
2440      gcc_assert (single_succ_edge (bb)->flags
2441		  == (EDGE_SIBCALL | EDGE_ABNORMAL));
2442
2443      return 0;
2444    }
2445
2446  /* If we don't see a jump insn, we don't know exactly why the block would
2447     have been broken at this point.  Look for a simple, non-fallthru edge,
2448     as these are only created by conditional branches.  If we find such an
2449     edge we know that there used to be a jump here and can then safely
2450     remove all non-fallthru edges.  */
2451  found = false;
2452  FOR_EACH_EDGE (e, ei, bb->succs)
2453    if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2454      {
2455	found = true;
2456	break;
2457      }
2458
2459  if (!found)
2460    return purged;
2461
2462  /* Remove all but the fake and fallthru edges.  The fake edge may be
2463     the only successor for this block in the case of noreturn
2464     calls.  */
2465  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2466    {
2467      if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2468	{
2469	  bb->flags |= BB_DIRTY;
2470	  remove_edge (e);
2471	  purged = true;
2472	}
2473      else
2474	ei_next (&ei);
2475    }
2476
2477  gcc_assert (single_succ_p (bb));
2478
2479  single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2480  single_succ_edge (bb)->count = bb->count;
2481
2482  if (dump_file)
2483    fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2484	     bb->index);
2485  return purged;
2486}
2487
2488/* Search all basic blocks for potentially dead edges and purge them.  Return
2489   true if some edge has been eliminated.  */
2490
2491bool
2492purge_all_dead_edges (void)
2493{
2494  int purged = false;
2495  basic_block bb;
2496
2497  FOR_EACH_BB (bb)
2498    {
2499      bool purged_here = purge_dead_edges (bb);
2500
2501      purged |= purged_here;
2502    }
2503
2504  return purged;
2505}
2506
2507/* Same as split_block but update cfg_layout structures.  */
2508
2509static basic_block
2510cfg_layout_split_block (basic_block bb, void *insnp)
2511{
2512  rtx insn = insnp;
2513  basic_block new_bb = rtl_split_block (bb, insn);
2514
2515  new_bb->il.rtl->footer = bb->il.rtl->footer;
2516  bb->il.rtl->footer = NULL;
2517
2518  return new_bb;
2519}
2520
2521
2522/* Redirect Edge to DEST.  */
2523static edge
2524cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2525{
2526  basic_block src = e->src;
2527  edge ret;
2528
2529  if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2530    return NULL;
2531
2532  if (e->dest == dest)
2533    return e;
2534
2535  if (e->src != ENTRY_BLOCK_PTR
2536      && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2537    {
2538      src->flags |= BB_DIRTY;
2539      return ret;
2540    }
2541
2542  if (e->src == ENTRY_BLOCK_PTR
2543      && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2544    {
2545      if (dump_file)
2546	fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2547		 e->src->index, dest->index);
2548
2549      e->src->flags |= BB_DIRTY;
2550      redirect_edge_succ (e, dest);
2551      return e;
2552    }
2553
2554  /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2555     in the case the basic block appears to be in sequence.  Avoid this
2556     transformation.  */
2557
2558  if (e->flags & EDGE_FALLTHRU)
2559    {
2560      /* Redirect any branch edges unified with the fallthru one.  */
2561      if (JUMP_P (BB_END (src))
2562	  && label_is_jump_target_p (BB_HEAD (e->dest),
2563				     BB_END (src)))
2564	{
2565	  edge redirected;
2566
2567	  if (dump_file)
2568	    fprintf (dump_file, "Fallthru edge unified with branch "
2569		     "%i->%i redirected to %i\n",
2570		     e->src->index, e->dest->index, dest->index);
2571	  e->flags &= ~EDGE_FALLTHRU;
2572	  redirected = redirect_branch_edge (e, dest);
2573	  gcc_assert (redirected);
2574	  e->flags |= EDGE_FALLTHRU;
2575          e->src->flags |= BB_DIRTY;
2576	  return e;
2577	}
2578      /* In case we are redirecting fallthru edge to the branch edge
2579         of conditional jump, remove it.  */
2580      if (EDGE_COUNT (src->succs) == 2)
2581	{
2582	  /* Find the edge that is different from E.  */
2583	  edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2584
2585	  if (s->dest == dest
2586	      && any_condjump_p (BB_END (src))
2587	      && onlyjump_p (BB_END (src)))
2588	    delete_insn (BB_END (src));
2589	}
2590      ret = redirect_edge_succ_nodup (e, dest);
2591      if (dump_file)
2592	fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2593		 e->src->index, e->dest->index, dest->index);
2594    }
2595  else
2596    ret = redirect_branch_edge (e, dest);
2597
2598  /* We don't want simplejumps in the insn stream during cfglayout.  */
2599  gcc_assert (!simplejump_p (BB_END (src)));
2600
2601  src->flags |= BB_DIRTY;
2602  return ret;
2603}
2604
2605/* Simple wrapper as we always can redirect fallthru edges.  */
2606static basic_block
2607cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2608{
2609  edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2610
2611  gcc_assert (redirected);
2612  return NULL;
2613}
2614
2615/* Same as delete_basic_block but update cfg_layout structures.  */
2616
2617static void
2618cfg_layout_delete_block (basic_block bb)
2619{
2620  rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2621
2622  if (bb->il.rtl->header)
2623    {
2624      next = BB_HEAD (bb);
2625      if (prev)
2626	NEXT_INSN (prev) = bb->il.rtl->header;
2627      else
2628	set_first_insn (bb->il.rtl->header);
2629      PREV_INSN (bb->il.rtl->header) = prev;
2630      insn = bb->il.rtl->header;
2631      while (NEXT_INSN (insn))
2632	insn = NEXT_INSN (insn);
2633      NEXT_INSN (insn) = next;
2634      PREV_INSN (next) = insn;
2635    }
2636  next = NEXT_INSN (BB_END (bb));
2637  if (bb->il.rtl->footer)
2638    {
2639      insn = bb->il.rtl->footer;
2640      while (insn)
2641	{
2642	  if (BARRIER_P (insn))
2643	    {
2644	      if (PREV_INSN (insn))
2645		NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2646	      else
2647		bb->il.rtl->footer = NEXT_INSN (insn);
2648	      if (NEXT_INSN (insn))
2649		PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2650	    }
2651	  if (LABEL_P (insn))
2652	    break;
2653	  insn = NEXT_INSN (insn);
2654	}
2655      if (bb->il.rtl->footer)
2656	{
2657	  insn = BB_END (bb);
2658	  NEXT_INSN (insn) = bb->il.rtl->footer;
2659	  PREV_INSN (bb->il.rtl->footer) = insn;
2660	  while (NEXT_INSN (insn))
2661	    insn = NEXT_INSN (insn);
2662	  NEXT_INSN (insn) = next;
2663	  if (next)
2664	    PREV_INSN (next) = insn;
2665	  else
2666	    set_last_insn (insn);
2667	}
2668    }
2669  if (bb->next_bb != EXIT_BLOCK_PTR)
2670    to = &bb->next_bb->il.rtl->header;
2671  else
2672    to = &cfg_layout_function_footer;
2673
2674  rtl_delete_block (bb);
2675
2676  if (prev)
2677    prev = NEXT_INSN (prev);
2678  else
2679    prev = get_insns ();
2680  if (next)
2681    next = PREV_INSN (next);
2682  else
2683    next = get_last_insn ();
2684
2685  if (next && NEXT_INSN (next) != prev)
2686    {
2687      remaints = unlink_insn_chain (prev, next);
2688      insn = remaints;
2689      while (NEXT_INSN (insn))
2690	insn = NEXT_INSN (insn);
2691      NEXT_INSN (insn) = *to;
2692      if (*to)
2693	PREV_INSN (*to) = insn;
2694      *to = remaints;
2695    }
2696}
2697
2698/* Return true when blocks A and B can be safely merged.  */
2699static bool
2700cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2701{
2702  /* If we are partitioning hot/cold basic blocks, we don't want to
2703     mess up unconditional or indirect jumps that cross between hot
2704     and cold sections.
2705
2706     Basic block partitioning may result in some jumps that appear to
2707     be optimizable (or blocks that appear to be mergeable), but which really
2708     must be left untouched (they are required to make it safely across
2709     partition boundaries).  See  the comments at the top of
2710     bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
2711
2712  if (BB_PARTITION (a) != BB_PARTITION (b))
2713    return false;
2714
2715  /* There must be exactly one edge in between the blocks.  */
2716  return (single_succ_p (a)
2717	  && single_succ (a) == b
2718	  && single_pred_p (b) == 1
2719	  && a != b
2720	  /* Must be simple edge.  */
2721	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2722	  && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2723	  /* If the jump insn has side effects,
2724	     we can't kill the edge.  */
2725	  && (!JUMP_P (BB_END (a))
2726	      || (reload_completed
2727		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2728}
2729
2730/* Merge block A and B.  The blocks must be mergeable.  */
2731
2732static void
2733cfg_layout_merge_blocks (basic_block a, basic_block b)
2734{
2735#ifdef ENABLE_CHECKING
2736  gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2737#endif
2738
2739  /* If there was a CODE_LABEL beginning B, delete it.  */
2740  if (LABEL_P (BB_HEAD (b)))
2741    {
2742      /* This might have been an EH label that no longer has incoming
2743	 EH edges.  Update data structures to match.  */
2744      maybe_remove_eh_handler (BB_HEAD (b));
2745
2746      delete_insn (BB_HEAD (b));
2747    }
2748
2749  /* We should have fallthru edge in a, or we can do dummy redirection to get
2750     it cleaned up.  */
2751  if (JUMP_P (BB_END (a)))
2752    try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2753  gcc_assert (!JUMP_P (BB_END (a)));
2754
2755  /* Possible line number notes should appear in between.  */
2756  if (b->il.rtl->header)
2757    {
2758      rtx first = BB_END (a), last;
2759
2760      last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a));
2761      delete_insn_chain (NEXT_INSN (first), last);
2762      b->il.rtl->header = NULL;
2763    }
2764
2765  /* In the case basic blocks are not adjacent, move them around.  */
2766  if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2767    {
2768      rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2769
2770      emit_insn_after_noloc (first, BB_END (a));
2771      /* Skip possible DELETED_LABEL insn.  */
2772      if (!NOTE_INSN_BASIC_BLOCK_P (first))
2773	first = NEXT_INSN (first);
2774      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2775      BB_HEAD (b) = NULL;
2776      delete_insn (first);
2777    }
2778  /* Otherwise just re-associate the instructions.  */
2779  else
2780    {
2781      rtx insn;
2782
2783      for (insn = BB_HEAD (b);
2784	   insn != NEXT_INSN (BB_END (b));
2785	   insn = NEXT_INSN (insn))
2786	set_block_for_insn (insn, a);
2787      insn = BB_HEAD (b);
2788      /* Skip possible DELETED_LABEL insn.  */
2789      if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2790	insn = NEXT_INSN (insn);
2791      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2792      BB_HEAD (b) = NULL;
2793      BB_END (a) = BB_END (b);
2794      delete_insn (insn);
2795    }
2796
2797  /* Possible tablejumps and barriers should appear after the block.  */
2798  if (b->il.rtl->footer)
2799    {
2800      if (!a->il.rtl->footer)
2801	a->il.rtl->footer = b->il.rtl->footer;
2802      else
2803	{
2804	  rtx last = a->il.rtl->footer;
2805
2806	  while (NEXT_INSN (last))
2807	    last = NEXT_INSN (last);
2808	  NEXT_INSN (last) = b->il.rtl->footer;
2809	  PREV_INSN (b->il.rtl->footer) = last;
2810	}
2811      b->il.rtl->footer = NULL;
2812    }
2813  a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
2814
2815  if (dump_file)
2816    fprintf (dump_file, "Merged blocks %d and %d.\n",
2817	     a->index, b->index);
2818}
2819
2820/* Split edge E.  */
2821
2822static basic_block
2823cfg_layout_split_edge (edge e)
2824{
2825  basic_block new_bb =
2826    create_basic_block (e->src != ENTRY_BLOCK_PTR
2827			? NEXT_INSN (BB_END (e->src)) : get_insns (),
2828			NULL_RTX, e->src);
2829
2830  /* ??? This info is likely going to be out of date very soon, but we must
2831     create it to avoid getting an ICE later.  */
2832  if (e->dest->il.rtl->global_live_at_start)
2833    {
2834      new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2835      new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2836      COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
2837		    e->dest->il.rtl->global_live_at_start);
2838      COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
2839		    e->dest->il.rtl->global_live_at_start);
2840    }
2841
2842  make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2843  redirect_edge_and_branch_force (e, new_bb);
2844
2845  return new_bb;
2846}
2847
2848/* Do postprocessing after making a forwarder block joined by edge FALLTHRU.  */
2849
2850static void
2851rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2852{
2853}
2854
2855/* Return 1 if BB ends with a call, possibly followed by some
2856   instructions that must stay with the call, 0 otherwise.  */
2857
2858static bool
2859rtl_block_ends_with_call_p (basic_block bb)
2860{
2861  rtx insn = BB_END (bb);
2862
2863  while (!CALL_P (insn)
2864	 && insn != BB_HEAD (bb)
2865	 && keep_with_call_p (insn))
2866    insn = PREV_INSN (insn);
2867  return (CALL_P (insn));
2868}
2869
2870/* Return 1 if BB ends with a conditional branch, 0 otherwise.  */
2871
2872static bool
2873rtl_block_ends_with_condjump_p (basic_block bb)
2874{
2875  return any_condjump_p (BB_END (bb));
2876}
2877
2878/* Return true if we need to add fake edge to exit.
2879   Helper function for rtl_flow_call_edges_add.  */
2880
2881static bool
2882need_fake_edge_p (rtx insn)
2883{
2884  if (!INSN_P (insn))
2885    return false;
2886
2887  if ((CALL_P (insn)
2888       && !SIBLING_CALL_P (insn)
2889       && !find_reg_note (insn, REG_NORETURN, NULL)
2890       && !CONST_OR_PURE_CALL_P (insn)))
2891    return true;
2892
2893  return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2894	   && MEM_VOLATILE_P (PATTERN (insn)))
2895	  || (GET_CODE (PATTERN (insn)) == PARALLEL
2896	      && asm_noperands (insn) != -1
2897	      && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2898	  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2899}
2900
2901/* Add fake edges to the function exit for any non constant and non noreturn
2902   calls, volatile inline assembly in the bitmap of blocks specified by
2903   BLOCKS or to the whole CFG if BLOCKS is zero.  Return the number of blocks
2904   that were split.
2905
2906   The goal is to expose cases in which entering a basic block does not imply
2907   that all subsequent instructions must be executed.  */
2908
2909static int
2910rtl_flow_call_edges_add (sbitmap blocks)
2911{
2912  int i;
2913  int blocks_split = 0;
2914  int last_bb = last_basic_block;
2915  bool check_last_block = false;
2916
2917  if (n_basic_blocks == 0)
2918    return 0;
2919
2920  if (! blocks)
2921    check_last_block = true;
2922  else
2923    check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2924
2925  /* In the last basic block, before epilogue generation, there will be
2926     a fallthru edge to EXIT.  Special care is required if the last insn
2927     of the last basic block is a call because make_edge folds duplicate
2928     edges, which would result in the fallthru edge also being marked
2929     fake, which would result in the fallthru edge being removed by
2930     remove_fake_edges, which would result in an invalid CFG.
2931
2932     Moreover, we can't elide the outgoing fake edge, since the block
2933     profiler needs to take this into account in order to solve the minimal
2934     spanning tree in the case that the call doesn't return.
2935
2936     Handle this by adding a dummy instruction in a new last basic block.  */
2937  if (check_last_block)
2938    {
2939      basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2940      rtx insn = BB_END (bb);
2941
2942      /* Back up past insns that must be kept in the same block as a call.  */
2943      while (insn != BB_HEAD (bb)
2944	     && keep_with_call_p (insn))
2945	insn = PREV_INSN (insn);
2946
2947      if (need_fake_edge_p (insn))
2948	{
2949	  edge e;
2950
2951	  e = find_edge (bb, EXIT_BLOCK_PTR);
2952	  if (e)
2953	    {
2954	      insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2955	      commit_edge_insertions ();
2956	    }
2957	}
2958    }
2959
2960  /* Now add fake edges to the function exit for any non constant
2961     calls since there is no way that we can determine if they will
2962     return or not...  */
2963
2964  for (i = 0; i < last_bb; i++)
2965    {
2966      basic_block bb = BASIC_BLOCK (i);
2967      rtx insn;
2968      rtx prev_insn;
2969
2970      if (!bb)
2971	continue;
2972
2973      if (blocks && !TEST_BIT (blocks, i))
2974	continue;
2975
2976      for (insn = BB_END (bb); ; insn = prev_insn)
2977	{
2978	  prev_insn = PREV_INSN (insn);
2979	  if (need_fake_edge_p (insn))
2980	    {
2981	      edge e;
2982	      rtx split_at_insn = insn;
2983
2984	      /* Don't split the block between a call and an insn that should
2985	         remain in the same block as the call.  */
2986	      if (CALL_P (insn))
2987		while (split_at_insn != BB_END (bb)
2988		       && keep_with_call_p (NEXT_INSN (split_at_insn)))
2989		  split_at_insn = NEXT_INSN (split_at_insn);
2990
2991	      /* The handling above of the final block before the epilogue
2992	         should be enough to verify that there is no edge to the exit
2993		 block in CFG already.  Calling make_edge in such case would
2994		 cause us to mark that edge as fake and remove it later.  */
2995
2996#ifdef ENABLE_CHECKING
2997	      if (split_at_insn == BB_END (bb))
2998		{
2999		  e = find_edge (bb, EXIT_BLOCK_PTR);
3000		  gcc_assert (e == NULL);
3001		}
3002#endif
3003
3004	      /* Note that the following may create a new basic block
3005		 and renumber the existing basic blocks.  */
3006	      if (split_at_insn != BB_END (bb))
3007		{
3008		  e = split_block (bb, split_at_insn);
3009		  if (e)
3010		    blocks_split++;
3011		}
3012
3013	      make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
3014	    }
3015
3016	  if (insn == BB_HEAD (bb))
3017	    break;
3018	}
3019    }
3020
3021  if (blocks_split)
3022    verify_flow_info ();
3023
3024  return blocks_split;
3025}
3026
3027/* Add COMP_RTX as a condition at end of COND_BB.  FIRST_HEAD is
3028   the conditional branch target, SECOND_HEAD should be the fall-thru
3029   there is no need to handle this here the loop versioning code handles
3030   this.  the reason for SECON_HEAD is that it is needed for condition
3031   in trees, and this should be of the same type since it is a hook.  */
3032static void
3033rtl_lv_add_condition_to_bb (basic_block first_head ,
3034			    basic_block second_head ATTRIBUTE_UNUSED,
3035			    basic_block cond_bb, void *comp_rtx)
3036{
3037  rtx label, seq, jump;
3038  rtx op0 = XEXP ((rtx)comp_rtx, 0);
3039  rtx op1 = XEXP ((rtx)comp_rtx, 1);
3040  enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
3041  enum machine_mode mode;
3042
3043
3044  label = block_label (first_head);
3045  mode = GET_MODE (op0);
3046  if (mode == VOIDmode)
3047    mode = GET_MODE (op1);
3048
3049  start_sequence ();
3050  op0 = force_operand (op0, NULL_RTX);
3051  op1 = force_operand (op1, NULL_RTX);
3052  do_compare_rtx_and_jump (op0, op1, comp, 0,
3053			   mode, NULL_RTX, NULL_RTX, label);
3054  jump = get_last_insn ();
3055  JUMP_LABEL (jump) = label;
3056  LABEL_NUSES (label)++;
3057  seq = get_insns ();
3058  end_sequence ();
3059
3060  /* Add the new cond , in the new head.  */
3061  emit_insn_after(seq, BB_END(cond_bb));
3062}
3063
3064
3065/* Given a block B with unconditional branch at its end, get the
3066   store the return the branch edge and the fall-thru edge in
3067   BRANCH_EDGE and FALLTHRU_EDGE respectively.  */
3068static void
3069rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
3070			   edge *fallthru_edge)
3071{
3072  edge e = EDGE_SUCC (b, 0);
3073
3074  if (e->flags & EDGE_FALLTHRU)
3075    {
3076      *fallthru_edge = e;
3077      *branch_edge = EDGE_SUCC (b, 1);
3078    }
3079  else
3080    {
3081      *branch_edge = e;
3082      *fallthru_edge = EDGE_SUCC (b, 1);
3083    }
3084}
3085
3086void
3087init_rtl_bb_info (basic_block bb)
3088{
3089  gcc_assert (!bb->il.rtl);
3090  bb->il.rtl = ggc_alloc_cleared (sizeof (struct rtl_bb_info));
3091}
3092
3093
3094/* Implementation of CFG manipulation for linearized RTL.  */
3095struct cfg_hooks rtl_cfg_hooks = {
3096  "rtl",
3097  rtl_verify_flow_info,
3098  rtl_dump_bb,
3099  rtl_create_basic_block,
3100  rtl_redirect_edge_and_branch,
3101  rtl_redirect_edge_and_branch_force,
3102  rtl_delete_block,
3103  rtl_split_block,
3104  rtl_move_block_after,
3105  rtl_can_merge_blocks,  /* can_merge_blocks_p */
3106  rtl_merge_blocks,
3107  rtl_predict_edge,
3108  rtl_predicted_by_p,
3109  NULL, /* can_duplicate_block_p */
3110  NULL, /* duplicate_block */
3111  rtl_split_edge,
3112  rtl_make_forwarder_block,
3113  rtl_tidy_fallthru_edge,
3114  rtl_block_ends_with_call_p,
3115  rtl_block_ends_with_condjump_p,
3116  rtl_flow_call_edges_add,
3117  NULL, /* execute_on_growing_pred */
3118  NULL, /* execute_on_shrinking_pred */
3119  NULL, /* duplicate loop for trees */
3120  NULL, /* lv_add_condition_to_bb */
3121  NULL, /* lv_adjust_loop_header_phi*/
3122  NULL, /* extract_cond_bb_edges */
3123  NULL 		/* flush_pending_stmts */
3124};
3125
3126/* Implementation of CFG manipulation for cfg layout RTL, where
3127   basic block connected via fallthru edges does not have to be adjacent.
3128   This representation will hopefully become the default one in future
3129   version of the compiler.  */
3130
3131/* We do not want to declare these functions in a header file, since they
3132   should only be used through the cfghooks interface, and we do not want to
3133   move them here since it would require also moving quite a lot of related
3134   code.  */
3135extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3136extern basic_block cfg_layout_duplicate_bb (basic_block);
3137
3138struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3139  "cfglayout mode",
3140  rtl_verify_flow_info_1,
3141  rtl_dump_bb,
3142  cfg_layout_create_basic_block,
3143  cfg_layout_redirect_edge_and_branch,
3144  cfg_layout_redirect_edge_and_branch_force,
3145  cfg_layout_delete_block,
3146  cfg_layout_split_block,
3147  rtl_move_block_after,
3148  cfg_layout_can_merge_blocks_p,
3149  cfg_layout_merge_blocks,
3150  rtl_predict_edge,
3151  rtl_predicted_by_p,
3152  cfg_layout_can_duplicate_bb_p,
3153  cfg_layout_duplicate_bb,
3154  cfg_layout_split_edge,
3155  rtl_make_forwarder_block,
3156  NULL,
3157  rtl_block_ends_with_call_p,
3158  rtl_block_ends_with_condjump_p,
3159  rtl_flow_call_edges_add,
3160  NULL, /* execute_on_growing_pred */
3161  NULL, /* execute_on_shrinking_pred */
3162  duplicate_loop_to_header_edge, /* duplicate loop for trees */
3163  rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3164  NULL, /* lv_adjust_loop_header_phi*/
3165  rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3166  NULL 		/* flush_pending_stmts */
3167};
3168
3169