1/* mpfr_digamma -- digamma function of a floating-point number
2
3Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4Contributed by the Arenaire and Cacao projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#include "mpfr-impl.h"
24
25/* Put in s an approximation of digamma(x).
26   Assumes x >= 2.
27   Assumes s does not overlap with x.
28   Returns an integer e such that the error is bounded by 2^e ulps
29   of the result s.
30*/
31static mpfr_exp_t
32mpfr_digamma_approx (mpfr_ptr s, mpfr_srcptr x)
33{
34  mpfr_prec_t p = MPFR_PREC (s);
35  mpfr_t t, u, invxx;
36  mpfr_exp_t e, exps, f, expu;
37  mpz_t *INITIALIZED(B);  /* variable B declared as initialized */
38  unsigned long n0, n; /* number of allocated B[] */
39
40  MPFR_ASSERTN(MPFR_IS_POS(x) && (MPFR_EXP(x) >= 2));
41
42  mpfr_init2 (t, p);
43  mpfr_init2 (u, p);
44  mpfr_init2 (invxx, p);
45
46  mpfr_log (s, x, MPFR_RNDN);         /* error <= 1/2 ulp */
47  mpfr_ui_div (t, 1, x, MPFR_RNDN);   /* error <= 1/2 ulp */
48  mpfr_div_2exp (t, t, 1, MPFR_RNDN); /* exact */
49  mpfr_sub (s, s, t, MPFR_RNDN);
50  /* error <= 1/2 + 1/2*2^(EXP(olds)-EXP(s)) + 1/2*2^(EXP(t)-EXP(s)).
51     For x >= 2, log(x) >= 2*(1/(2x)), thus olds >= 2t, and olds - t >= olds/2,
52     thus 0 <= EXP(olds)-EXP(s) <= 1, and EXP(t)-EXP(s) <= 0, thus
53     error <= 1/2 + 1/2*2 + 1/2 <= 2 ulps. */
54  e = 2; /* initial error */
55  mpfr_mul (invxx, x, x, MPFR_RNDZ);     /* invxx = x^2 * (1 + theta)
56                                            for |theta| <= 2^(-p) */
57  mpfr_ui_div (invxx, 1, invxx, MPFR_RNDU); /* invxx = 1/x^2 * (1 + theta)^2 */
58
59  /* in the following we note err=xxx when the ratio between the approximation
60     and the exact result can be written (1 + theta)^xxx for |theta| <= 2^(-p),
61     following Higham's method */
62  B = mpfr_bernoulli_internal ((mpz_t *) 0, 0);
63  mpfr_set_ui (t, 1, MPFR_RNDN); /* err = 0 */
64  for (n = 1;; n++)
65    {
66      /* compute next Bernoulli number */
67      B = mpfr_bernoulli_internal (B, n);
68      /* The main term is Bernoulli[2n]/(2n)/x^(2n) = B[n]/(2n+1)!(2n)/x^(2n)
69         = B[n]*t[n]/(2n) where t[n]/t[n-1] = 1/(2n)/(2n+1)/x^2. */
70      mpfr_mul (t, t, invxx, MPFR_RNDU);        /* err = err + 3 */
71      mpfr_div_ui (t, t, 2 * n, MPFR_RNDU);     /* err = err + 1 */
72      mpfr_div_ui (t, t, 2 * n + 1, MPFR_RNDU); /* err = err + 1 */
73      /* we thus have err = 5n here */
74      mpfr_div_ui (u, t, 2 * n, MPFR_RNDU);     /* err = 5n+1 */
75      mpfr_mul_z (u, u, B[n], MPFR_RNDU);       /* err = 5n+2, and the
76                                                   absolute error is bounded
77                                                   by 10n+4 ulp(u) [Rule 11] */
78      /* if the terms 'u' are decreasing by a factor two at least,
79         then the error coming from those is bounded by
80         sum((10n+4)/2^n, n=1..infinity) = 24 */
81      exps = mpfr_get_exp (s);
82      expu = mpfr_get_exp (u);
83      if (expu < exps - (mpfr_exp_t) p)
84        break;
85      mpfr_sub (s, s, u, MPFR_RNDN); /* error <= 24 + n/2 */
86      if (mpfr_get_exp (s) < exps)
87        e <<= exps - mpfr_get_exp (s);
88      e ++; /* error in mpfr_sub */
89      f = 10 * n + 4;
90      while (expu < exps)
91        {
92          f = (1 + f) / 2;
93          expu ++;
94        }
95      e += f; /* total rouding error coming from 'u' term */
96    }
97
98  n0 = ++n;
99  while (n--)
100    mpz_clear (B[n]);
101  (*__gmp_free_func) (B, n0 * sizeof (mpz_t));
102
103  mpfr_clear (t);
104  mpfr_clear (u);
105  mpfr_clear (invxx);
106
107  f = 0;
108  while (e > 1)
109    {
110      f++;
111      e = (e + 1) / 2;
112      /* Invariant: 2^f * e does not decrease */
113    }
114  return f;
115}
116
117/* Use the reflection formula Digamma(1-x) = Digamma(x) + Pi * cot(Pi*x),
118   i.e., Digamma(x) = Digamma(1-x) - Pi * cot(Pi*x).
119   Assume x < 1/2. */
120static int
121mpfr_digamma_reflection (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
122{
123  mpfr_prec_t p = MPFR_PREC(y) + 10, q;
124  mpfr_t t, u, v;
125  mpfr_exp_t e1, expv;
126  int inex;
127  MPFR_ZIV_DECL (loop);
128
129  /* we want that 1-x is exact with precision q: if 0 < x < 1/2, then
130     q = PREC(x)-EXP(x) is ok, otherwise if -1 <= x < 0, q = PREC(x)-EXP(x)
131     is ok, otherwise for x < -1, PREC(x) is ok if EXP(x) <= PREC(x),
132     otherwise we need EXP(x) */
133  if (MPFR_EXP(x) < 0)
134    q = MPFR_PREC(x) + 1 - MPFR_EXP(x);
135  else if (MPFR_EXP(x) <= MPFR_PREC(x))
136    q = MPFR_PREC(x) + 1;
137  else
138    q = MPFR_EXP(x);
139  mpfr_init2 (u, q);
140  MPFR_ASSERTN(mpfr_ui_sub (u, 1, x, MPFR_RNDN) == 0);
141
142  /* if x is half an integer, cot(Pi*x) = 0, thus Digamma(x) = Digamma(1-x) */
143  mpfr_mul_2exp (u, u, 1, MPFR_RNDN);
144  inex = mpfr_integer_p (u);
145  mpfr_div_2exp (u, u, 1, MPFR_RNDN);
146  if (inex)
147    {
148      inex = mpfr_digamma (y, u, rnd_mode);
149      goto end;
150    }
151
152  mpfr_init2 (t, p);
153  mpfr_init2 (v, p);
154
155  MPFR_ZIV_INIT (loop, p);
156  for (;;)
157    {
158      mpfr_const_pi (v, MPFR_RNDN);  /* v = Pi*(1+theta) for |theta|<=2^(-p) */
159      mpfr_mul (t, v, x, MPFR_RNDN); /* (1+theta)^2 */
160      e1 = MPFR_EXP(t) - (mpfr_exp_t) p + 1; /* bound for t: err(t) <= 2^e1 */
161      mpfr_cot (t, t, MPFR_RNDN);
162      /* cot(t * (1+h)) = cot(t) - theta * (1 + cot(t)^2) with |theta|<=t*h */
163      if (MPFR_EXP(t) > 0)
164        e1 = e1 + 2 * MPFR_EXP(t) + 1;
165      else
166        e1 = e1 + 1;
167      /* now theta * (1 + cot(t)^2) <= 2^e1 */
168      e1 += (mpfr_exp_t) p - MPFR_EXP(t); /* error is now 2^e1 ulps */
169      mpfr_mul (t, t, v, MPFR_RNDN);
170      e1 ++;
171      mpfr_digamma (v, u, MPFR_RNDN);   /* error <= 1/2 ulp */
172      expv = MPFR_EXP(v);
173      mpfr_sub (v, v, t, MPFR_RNDN);
174      if (MPFR_EXP(v) < MPFR_EXP(t))
175        e1 += MPFR_EXP(t) - MPFR_EXP(v); /* scale error for t wrt new v */
176      /* now take into account the 1/2 ulp error for v */
177      if (expv - MPFR_EXP(v) - 1 > e1)
178        e1 = expv - MPFR_EXP(v) - 1;
179      else
180        e1 ++;
181      e1 ++; /* rounding error for mpfr_sub */
182      if (MPFR_CAN_ROUND (v, p - e1, MPFR_PREC(y), rnd_mode))
183        break;
184      MPFR_ZIV_NEXT (loop, p);
185      mpfr_set_prec (t, p);
186      mpfr_set_prec (v, p);
187    }
188  MPFR_ZIV_FREE (loop);
189
190  inex = mpfr_set (y, v, rnd_mode);
191
192  mpfr_clear (t);
193  mpfr_clear (v);
194 end:
195  mpfr_clear (u);
196
197  return inex;
198}
199
200/* we have x >= 1/2 here */
201static int
202mpfr_digamma_positive (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
203{
204  mpfr_prec_t p = MPFR_PREC(y) + 10, q;
205  mpfr_t t, u, x_plus_j;
206  int inex;
207  mpfr_exp_t errt, erru, expt;
208  unsigned long j = 0, min;
209  MPFR_ZIV_DECL (loop);
210
211  /* compute a precision q such that x+1 is exact */
212  if (MPFR_PREC(x) < MPFR_EXP(x))
213    q = MPFR_EXP(x);
214  else
215    q = MPFR_PREC(x) + 1;
216  mpfr_init2 (x_plus_j, q);
217
218  mpfr_init2 (t, p);
219  mpfr_init2 (u, p);
220  MPFR_ZIV_INIT (loop, p);
221  for(;;)
222    {
223      /* Lower bound for x+j in mpfr_digamma_approx call: since the smallest
224         term of the divergent series for Digamma(x) is about exp(-2*Pi*x), and
225         we want it to be less than 2^(-p), this gives x > p*log(2)/(2*Pi)
226         i.e., x >= 0.1103 p.
227         To be safe, we ensure x >= 0.25 * p.
228      */
229      min = (p + 3) / 4;
230      if (min < 2)
231        min = 2;
232
233      mpfr_set (x_plus_j, x, MPFR_RNDN);
234      mpfr_set_ui (u, 0, MPFR_RNDN);
235      j = 0;
236      while (mpfr_cmp_ui (x_plus_j, min) < 0)
237        {
238          j ++;
239          mpfr_ui_div (t, 1, x_plus_j, MPFR_RNDN); /* err <= 1/2 ulp */
240          mpfr_add (u, u, t, MPFR_RNDN);
241          inex = mpfr_add_ui (x_plus_j, x_plus_j, 1, MPFR_RNDZ);
242          if (inex != 0) /* we lost one bit */
243            {
244              q ++;
245              mpfr_prec_round (x_plus_j, q, MPFR_RNDZ);
246              mpfr_nextabove (x_plus_j);
247            }
248          /* since all terms are positive, the error is bounded by j ulps */
249        }
250      for (erru = 0; j > 1; erru++, j = (j + 1) / 2);
251      errt = mpfr_digamma_approx (t, x_plus_j);
252      expt = MPFR_EXP(t);
253      mpfr_sub (t, t, u, MPFR_RNDN);
254      if (MPFR_EXP(t) < expt)
255        errt += expt - MPFR_EXP(t);
256      if (MPFR_EXP(t) < MPFR_EXP(u))
257        erru += MPFR_EXP(u) - MPFR_EXP(t);
258      if (errt > erru)
259        errt = errt + 1;
260      else if (errt == erru)
261        errt = errt + 2;
262      else
263        errt = erru + 1;
264      if (MPFR_CAN_ROUND (t, p - errt, MPFR_PREC(y), rnd_mode))
265        break;
266      MPFR_ZIV_NEXT (loop, p);
267      mpfr_set_prec (t, p);
268      mpfr_set_prec (u, p);
269    }
270  MPFR_ZIV_FREE (loop);
271  inex = mpfr_set (y, t, rnd_mode);
272  mpfr_clear (t);
273  mpfr_clear (u);
274  mpfr_clear (x_plus_j);
275  return inex;
276}
277
278int
279mpfr_digamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
280{
281  int inex;
282  MPFR_SAVE_EXPO_DECL (expo);
283
284  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
285    {
286      if (MPFR_IS_NAN(x))
287        {
288          MPFR_SET_NAN(y);
289          MPFR_RET_NAN;
290        }
291      else if (MPFR_IS_INF(x))
292        {
293          if (MPFR_IS_POS(x)) /* Digamma(+Inf) = +Inf */
294            {
295              MPFR_SET_SAME_SIGN(y, x);
296              MPFR_SET_INF(y);
297              MPFR_RET(0);
298            }
299          else                /* Digamma(-Inf) = NaN */
300            {
301              MPFR_SET_NAN(y);
302              MPFR_RET_NAN;
303            }
304        }
305      else /* Zero case */
306        {
307          /* the following works also in case of overlap */
308          MPFR_SET_INF(y);
309          MPFR_SET_OPPOSITE_SIGN(y, x);
310          MPFR_RET(0);
311        }
312    }
313
314  /* Digamma is undefined for negative integers */
315  if (MPFR_IS_NEG(x) && mpfr_integer_p (x))
316    {
317      MPFR_SET_NAN(y);
318      MPFR_RET_NAN;
319    }
320
321  /* now x is a normal number */
322
323  MPFR_SAVE_EXPO_MARK (expo);
324  /* for x very small, we have Digamma(x) = -1/x - gamma + O(x), more precisely
325     -1 < Digamma(x) + 1/x < 0 for -0.2 < x < 0.2, thus:
326     (i) either x is a power of two, then 1/x is exactly representable, and
327         as long as 1/2*ulp(1/x) > 1, we can conclude;
328     (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
329   |y + 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
330   Since |Digamma(x) + 1/x| <= 1, if 2^(-2n) ufp(y) >= 2, then
331   |y - Digamma(x)| >= 2^(-2n-1)ufp(y), and rounding -1/x gives the correct result.
332   If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
333   A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
334  if (MPFR_EXP(x) < -2)
335    {
336      if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y)))
337        {
338          int signx = MPFR_SIGN(x);
339          inex = mpfr_si_div (y, -1, x, rnd_mode);
340          if (inex == 0) /* x is a power of two */
341            { /* result always -1/x, except when rounding down */
342              if (rnd_mode == MPFR_RNDA)
343                rnd_mode = (signx > 0) ? MPFR_RNDD : MPFR_RNDU;
344              if (rnd_mode == MPFR_RNDZ)
345                rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;
346              if (rnd_mode == MPFR_RNDU)
347                inex = 1;
348              else if (rnd_mode == MPFR_RNDD)
349                {
350                  mpfr_nextbelow (y);
351                  inex = -1;
352                }
353              else /* nearest */
354                inex = 1;
355            }
356          MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
357          goto end;
358        }
359    }
360
361  if (MPFR_IS_NEG(x))
362    inex = mpfr_digamma_reflection (y, x, rnd_mode);
363  /* if x < 1/2 we use the reflection formula */
364  else if (MPFR_EXP(x) < 0)
365    inex = mpfr_digamma_reflection (y, x, rnd_mode);
366  else
367    inex = mpfr_digamma_positive (y, x, rnd_mode);
368
369 end:
370  MPFR_SAVE_EXPO_FREE (expo);
371  return mpfr_check_range (y, inex, rnd_mode);
372}
373