1/* mpn_toom44_mul -- Multiply {ap,an} and {bp,bn} where an and bn are close in
2   size.  Or more accurately, bn <= an < (4/3)bn.
3
4   Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
5
6   THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
7   SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8   GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
11
12This file is part of the GNU MP Library.
13
14The GNU MP Library is free software; you can redistribute it and/or modify
15it under the terms of the GNU Lesser General Public License as published by
16the Free Software Foundation; either version 3 of the License, or (at your
17option) any later version.
18
19The GNU MP Library is distributed in the hope that it will be useful, but
20WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
21or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
22License for more details.
23
24You should have received a copy of the GNU Lesser General Public License
25along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */
26
27
28#include "gmp.h"
29#include "gmp-impl.h"
30
31/* Evaluate in: 0, +1, -1, +2, -2, 1/2, +inf
32
33  <-s--><--n--><--n--><--n-->
34   ____ ______ ______ ______
35  |_a3_|___a2_|___a1_|___a0_|
36   |b3_|___b2_|___b1_|___b0_|
37   <-t-><--n--><--n--><--n-->
38
39  v0  =   a0             *  b0              #    A(0)*B(0)
40  v1  = ( a0+ a1+ a2+ a3)*( b0+ b1+ b2+ b3) #    A(1)*B(1)      ah  <= 3   bh  <= 3
41  vm1 = ( a0- a1+ a2- a3)*( b0- b1+ b2- b3) #   A(-1)*B(-1)    |ah| <= 1  |bh| <= 1
42  v2  = ( a0+2a1+4a2+8a3)*( b0+2b1+4b2+8b3) #    A(2)*B(2)      ah  <= 14  bh  <= 14
43  vm2 = ( a0-2a1+4a2-8a3)*( b0-2b1+4b2-8b3) #    A(2)*B(2)      ah  <= 9  |bh| <= 9
44  vh  = (8a0+4a1+2a2+ a3)*(8b0+4b1+2b2+ b3) #  A(1/2)*B(1/2)    ah  <= 14  bh  <= 14
45  vinf=               a3 *          b2      #  A(inf)*B(inf)
46*/
47
48#if TUNE_PROGRAM_BUILD
49#define MAYBE_mul_basecase 1
50#define MAYBE_mul_toom22   1
51#define MAYBE_mul_toom44   1
52#else
53#define MAYBE_mul_basecase						\
54  (MUL_TOOM44_THRESHOLD < 4 * MUL_TOOM22_THRESHOLD)
55#define MAYBE_mul_toom22						\
56  (MUL_TOOM44_THRESHOLD < 4 * MUL_TOOM33_THRESHOLD)
57#define MAYBE_mul_toom44						\
58  (MUL_FFT_THRESHOLD >= 4 * MUL_TOOM44_THRESHOLD)
59#endif
60
61#define TOOM44_MUL_N_REC(p, a, b, n, ws)				\
62  do {									\
63    if (MAYBE_mul_basecase						\
64	&& BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))			\
65      mpn_mul_basecase (p, a, n, b, n);					\
66    else if (MAYBE_mul_toom22						\
67	     && BELOW_THRESHOLD (n, MUL_TOOM33_THRESHOLD))		\
68      mpn_toom22_mul (p, a, n, b, n, ws);				\
69    else if (! MAYBE_mul_toom44						\
70	     || BELOW_THRESHOLD (n, MUL_TOOM44_THRESHOLD))		\
71      mpn_toom33_mul (p, a, n, b, n, ws);				\
72    else								\
73      mpn_toom44_mul (p, a, n, b, n, ws);				\
74  } while (0)
75
76/* Use of scratch space. In the product area, we store
77
78      ___________________
79     |vinf|____|_v1_|_v0_|
80      s+t  2n-1 2n+1  2n
81
82   The other recursive products, vm1, v2, vm2, vh are stored in the
83   scratch area. When computing them, we use the product area for
84   intermediate values.
85
86   Next, we compute v1. We can store the intermediate factors at v0
87   and at vh + 2n + 2.
88
89   Finally, for v0 and vinf, factors are parts of the input operands,
90   and we need scratch space only for the recursive multiplication.
91
92   In all, if S(an) is the scratch need, the needed space is bounded by
93
94     S(an) <= 4 (2*ceil(an/4) + 1) + 1 + S(ceil(an/4) + 1)
95
96   which should give S(n) = 8 n/3 + c log(n) for some constant c.
97*/
98
99void
100mpn_toom44_mul (mp_ptr pp,
101		mp_srcptr ap, mp_size_t an,
102		mp_srcptr bp, mp_size_t bn,
103		mp_ptr scratch)
104{
105  mp_size_t n, s, t;
106  mp_limb_t cy;
107  enum toom7_flags flags;
108
109#define a0  ap
110#define a1  (ap + n)
111#define a2  (ap + 2*n)
112#define a3  (ap + 3*n)
113#define b0  bp
114#define b1  (bp + n)
115#define b2  (bp + 2*n)
116#define b3  (bp + 3*n)
117
118  ASSERT (an >= bn);
119
120  n = (an + 3) >> 2;
121
122  s = an - 3 * n;
123  t = bn - 3 * n;
124
125  ASSERT (0 < s && s <= n);
126  ASSERT (0 < t && t <= n);
127  ASSERT (s >= t);
128
129  /* NOTE: The multiplications to v2, vm2, vh and vm1 overwrites the
130   * following limb, so these must be computed in order, and we need a
131   * one limb gap to tp. */
132#define v0    pp				/* 2n */
133#define v1    (pp + 2 * n)			/* 2n+1 */
134#define vinf  (pp + 6 * n)			/* s+t */
135#define v2    scratch				/* 2n+1 */
136#define vm2   (scratch + 2 * n + 1)		/* 2n+1 */
137#define vh    (scratch + 4 * n + 2)		/* 2n+1 */
138#define vm1   (scratch + 6 * n + 3)		/* 2n+1 */
139#define tp (scratch + 8*n + 5)
140
141  /* apx and bpx must not overlap with v1 */
142#define apx   pp				/* n+1 */
143#define amx   (pp + n + 1)			/* n+1 */
144#define bmx   (pp + 2*n + 2)			/* n+1 */
145#define bpx   (pp + 4*n + 2)			/* n+1 */
146
147  /* Total scratch need: 8*n + 5 + scratch for recursive calls. This
148     gives roughly 32 n/3 + log term. */
149
150  /* Compute apx = a0 + 2 a1 + 4 a2 + 8 a3 and amx = a0 - 2 a1 + 4 a2 - 8 a3.  */
151  flags = toom7_w1_neg & mpn_toom_eval_dgr3_pm2 (apx, amx, ap, n, s, tp);
152
153  /* Compute bpx = b0 + 2 b1 + 4 b2 + 8 b3 and bmx = b0 - 2 b1 + 4 b2 - 8 b3.  */
154  flags ^= toom7_w1_neg & mpn_toom_eval_dgr3_pm2 (bpx, bmx, bp, n, t, tp);
155
156  TOOM44_MUL_N_REC (v2, apx, bpx, n + 1, tp);	/* v2,  2n+1 limbs */
157  TOOM44_MUL_N_REC (vm2, amx, bmx, n + 1, tp);	/* vm2,  2n+1 limbs */
158
159  /* Compute apx = 8 a0 + 4 a1 + 2 a2 + a3 = (((2*a0 + a1) * 2 + a2) * 2 + a3 */
160#if HAVE_NATIVE_mpn_addlsh1_n
161  cy = mpn_addlsh1_n (apx, a1, a0, n);
162  cy = 2*cy + mpn_addlsh1_n (apx, a2, apx, n);
163  if (s < n)
164    {
165      mp_limb_t cy2;
166      cy2 = mpn_addlsh1_n (apx, a3, apx, s);
167      apx[n] = 2*cy + mpn_lshift (apx + s, apx + s, n - s, 1);
168      MPN_INCR_U (apx + s, n+1-s, cy2);
169    }
170  else
171    apx[n] = 2*cy + mpn_addlsh1_n (apx, a3, apx, n);
172#else
173  cy = mpn_lshift (apx, a0, n, 1);
174  cy += mpn_add_n (apx, apx, a1, n);
175  cy = 2*cy + mpn_lshift (apx, apx, n, 1);
176  cy += mpn_add_n (apx, apx, a2, n);
177  cy = 2*cy + mpn_lshift (apx, apx, n, 1);
178  apx[n] = cy + mpn_add (apx, apx, n, a3, s);
179#endif
180
181  /* Compute bpx = 8 b0 + 4 b1 + 2 b2 + b3 = (((2*b0 + b1) * 2 + b2) * 2 + b3 */
182#if HAVE_NATIVE_mpn_addlsh1_n
183  cy = mpn_addlsh1_n (bpx, b1, b0, n);
184  cy = 2*cy + mpn_addlsh1_n (bpx, b2, bpx, n);
185  if (t < n)
186    {
187      mp_limb_t cy2;
188      cy2 = mpn_addlsh1_n (bpx, b3, bpx, t);
189      bpx[n] = 2*cy + mpn_lshift (bpx + t, bpx + t, n - t, 1);
190      MPN_INCR_U (bpx + t, n+1-t, cy2);
191    }
192  else
193    bpx[n] = 2*cy + mpn_addlsh1_n (bpx, b3, bpx, n);
194#else
195  cy = mpn_lshift (bpx, b0, n, 1);
196  cy += mpn_add_n (bpx, bpx, b1, n);
197  cy = 2*cy + mpn_lshift (bpx, bpx, n, 1);
198  cy += mpn_add_n (bpx, bpx, b2, n);
199  cy = 2*cy + mpn_lshift (bpx, bpx, n, 1);
200  bpx[n] = cy + mpn_add (bpx, bpx, n, b3, t);
201#endif
202
203  ASSERT (apx[n] < 15);
204  ASSERT (bpx[n] < 15);
205
206  TOOM44_MUL_N_REC (vh, apx, bpx, n + 1, tp);	/* vh,  2n+1 limbs */
207
208  /* Compute apx = a0 + a1 + a2 + a3 and amx = a0 - a1 + a2 - a3.  */
209  flags |= toom7_w3_neg & mpn_toom_eval_dgr3_pm1 (apx, amx, ap, n, s, tp);
210
211  /* Compute bpx = b0 + b1 + b2 + b3 bnd bmx = b0 - b1 + b2 - b3.  */
212  flags ^= toom7_w3_neg & mpn_toom_eval_dgr3_pm1 (bpx, bmx, bp, n, t, tp);
213
214  TOOM44_MUL_N_REC (vm1, amx, bmx, n + 1, tp);	/* vm1,  2n+1 limbs */
215  /* Clobbers amx, bmx. */
216  TOOM44_MUL_N_REC (v1, apx, bpx, n + 1, tp);	/* v1,  2n+1 limbs */
217
218  TOOM44_MUL_N_REC (v0, a0, b0, n, tp);
219  if (s > t)
220    mpn_mul (vinf, a3, s, b3, t);
221  else
222    TOOM44_MUL_N_REC (vinf, a3, b3, s, tp);	/* vinf, s+t limbs */
223
224  mpn_toom_interpolate_7pts (pp, n, flags, vm2, vm1, v2, vh, s + t, tp);
225}
226