1/* Ada language support routines for GDB, the GNU debugger.  Copyright (C)
2
3   1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4   2009 Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21
22#include "defs.h"
23#include <stdio.h>
24#include "gdb_string.h"
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
28#include "gdb_regex.h"
29#include "frame.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
42#include "hashtab.h"
43#include "gdb_obstack.h"
44#include "ada-lang.h"
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
48#include "ui-out.h"
49#endif
50#include "block.h"
51#include "infcall.h"
52#include "dictionary.h"
53#include "exceptions.h"
54#include "annotate.h"
55#include "valprint.h"
56#include "source.h"
57#include "observer.h"
58#include "vec.h"
59#include "stack.h"
60
61#include "psymtab.h"
62#include "value.h"
63#include "mi/mi-common.h"
64
65/* Define whether or not the C operator '/' truncates towards zero for
66   differently signed operands (truncation direction is undefined in C).
67   Copied from valarith.c.  */
68
69#ifndef TRUNCATION_TOWARDS_ZERO
70#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71#endif
72
73static struct type *desc_base_type (struct type *);
74
75static struct type *desc_bounds_type (struct type *);
76
77static struct value *desc_bounds (struct value *);
78
79static int fat_pntr_bounds_bitpos (struct type *);
80
81static int fat_pntr_bounds_bitsize (struct type *);
82
83static struct type *desc_data_target_type (struct type *);
84
85static struct value *desc_data (struct value *);
86
87static int fat_pntr_data_bitpos (struct type *);
88
89static int fat_pntr_data_bitsize (struct type *);
90
91static struct value *desc_one_bound (struct value *, int, int);
92
93static int desc_bound_bitpos (struct type *, int, int);
94
95static int desc_bound_bitsize (struct type *, int, int);
96
97static struct type *desc_index_type (struct type *, int);
98
99static int desc_arity (struct type *);
100
101static int ada_type_match (struct type *, struct type *, int);
102
103static int ada_args_match (struct symbol *, struct value **, int);
104
105static int full_match (const char *, const char *);
106
107static struct value *make_array_descriptor (struct type *, struct value *);
108
109static void ada_add_block_symbols (struct obstack *,
110                                   struct block *, const char *,
111                                   domain_enum, struct objfile *, int);
112
113static int is_nonfunction (struct ada_symbol_info *, int);
114
115static void add_defn_to_vec (struct obstack *, struct symbol *,
116                             struct block *);
117
118static int num_defns_collected (struct obstack *);
119
120static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122static struct value *resolve_subexp (struct expression **, int *, int,
123                                     struct type *);
124
125static void replace_operator_with_call (struct expression **, int, int, int,
126                                        struct symbol *, struct block *);
127
128static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130static char *ada_op_name (enum exp_opcode);
131
132static const char *ada_decoded_op_name (enum exp_opcode);
133
134static int numeric_type_p (struct type *);
135
136static int integer_type_p (struct type *);
137
138static int scalar_type_p (struct type *);
139
140static int discrete_type_p (struct type *);
141
142static enum ada_renaming_category parse_old_style_renaming (struct type *,
143							    const char **,
144							    int *,
145							    const char **);
146
147static struct symbol *find_old_style_renaming_symbol (const char *,
148						      struct block *);
149
150static struct type *ada_lookup_struct_elt_type (struct type *, char *,
151                                                int, int, int *);
152
153static struct value *evaluate_subexp_type (struct expression *, int *);
154
155static struct type *ada_find_parallel_type_with_name (struct type *,
156                                                      const char *);
157
158static int is_dynamic_field (struct type *, int);
159
160static struct type *to_fixed_variant_branch_type (struct type *,
161						  const gdb_byte *,
162                                                  CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166static struct type *to_fixed_range_type (struct type *, struct value *);
167
168static struct type *to_static_fixed_type (struct type *);
169static struct type *static_unwrap_type (struct type *type);
170
171static struct value *unwrap_value (struct value *);
172
173static struct type *constrained_packed_array_type (struct type *, long *);
174
175static struct type *decode_constrained_packed_array_type (struct type *);
176
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type  (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
184
185static struct value *value_subscript_packed (struct value *, int,
186                                             struct value **);
187
188static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189
190static struct value *coerce_unspec_val_to_type (struct value *,
191                                                struct type *);
192
193static struct value *get_var_value (char *, char *);
194
195static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197static int equiv_types (struct type *, struct type *);
198
199static int is_name_suffix (const char *);
200
201static int advance_wild_match (const char **, const char *, int);
202
203static int wild_match (const char *, const char *);
204
205static struct value *ada_coerce_ref (struct value *);
206
207static LONGEST pos_atr (struct value *);
208
209static struct value *value_pos_atr (struct type *, struct value *);
210
211static struct value *value_val_atr (struct type *, struct value *);
212
213static struct symbol *standard_lookup (const char *, const struct block *,
214                                       domain_enum);
215
216static struct value *ada_search_struct_field (char *, struct value *, int,
217                                              struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220                                                struct type *);
221
222static int find_struct_field (char *, struct type *, int,
223                              struct type **, int *, int *, int *, int *);
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226                                                struct value *);
227
228static int ada_resolve_function (struct ada_symbol_info *, int,
229                                 struct value **, int, const char *,
230                                 struct type *);
231
232static int ada_is_direct_array_type (struct type *);
233
234static void ada_language_arch_info (struct gdbarch *,
235				    struct language_arch_info *);
236
237static void check_size (const struct type *);
238
239static struct value *ada_index_struct_field (int, struct value *, int,
240					     struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
243				       struct expression *,
244				       int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247					   struct expression *,
248					   int *, LONGEST *, int *,
249					   int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252					 struct expression *,
253					 int *, LONGEST *, int *, int,
254					 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258				     struct expression *,
259				     int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266					  int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269					 int *);
270
271
272
273/* Maximum-sized dynamic type.  */
274static unsigned int varsize_limit;
275
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277   returned by a function that does not return a const char *.  */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
282  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283#endif
284
285/* The name of the symbol to use to get the name of the main subprogram.  */
286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287  = "__gnat_ada_main_program_name";
288
289/* Limit on the number of warnings to raise per expression evaluation.  */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293   expression evaluation.  */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list.  */
305static struct obstack symbol_list_obstack;
306
307			/* Inferior-specific data.  */
308
309/* Per-inferior data for this module.  */
310
311struct ada_inferior_data
312{
313  /* The ada__tags__type_specific_data type, which is used when decoding
314     tagged types.  With older versions of GNAT, this type was directly
315     accessible through a component ("tsd") in the object tag.  But this
316     is no longer the case, so we cache it for each inferior.  */
317  struct type *tsd_type;
318};
319
320/* Our key to this module's inferior data.  */
321static const struct inferior_data *ada_inferior_data;
322
323/* A cleanup routine for our inferior data.  */
324static void
325ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326{
327  struct ada_inferior_data *data;
328
329  data = inferior_data (inf, ada_inferior_data);
330  if (data != NULL)
331    xfree (data);
332}
333
334/* Return our inferior data for the given inferior (INF).
335
336   This function always returns a valid pointer to an allocated
337   ada_inferior_data structure.  If INF's inferior data has not
338   been previously set, this functions creates a new one with all
339   fields set to zero, sets INF's inferior to it, and then returns
340   a pointer to that newly allocated ada_inferior_data.  */
341
342static struct ada_inferior_data *
343get_ada_inferior_data (struct inferior *inf)
344{
345  struct ada_inferior_data *data;
346
347  data = inferior_data (inf, ada_inferior_data);
348  if (data == NULL)
349    {
350      data = XZALLOC (struct ada_inferior_data);
351      set_inferior_data (inf, ada_inferior_data, data);
352    }
353
354  return data;
355}
356
357/* Perform all necessary cleanups regarding our module's inferior data
358   that is required after the inferior INF just exited.  */
359
360static void
361ada_inferior_exit (struct inferior *inf)
362{
363  ada_inferior_data_cleanup (inf, NULL);
364  set_inferior_data (inf, ada_inferior_data, NULL);
365}
366
367                        /* Utilities */
368
369/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
370   all typedef layers have been peeled.  Otherwise, return TYPE.
371
372   Normally, we really expect a typedef type to only have 1 typedef layer.
373   In other words, we really expect the target type of a typedef type to be
374   a non-typedef type.  This is particularly true for Ada units, because
375   the language does not have a typedef vs not-typedef distinction.
376   In that respect, the Ada compiler has been trying to eliminate as many
377   typedef definitions in the debugging information, since they generally
378   do not bring any extra information (we still use typedef under certain
379   circumstances related mostly to the GNAT encoding).
380
381   Unfortunately, we have seen situations where the debugging information
382   generated by the compiler leads to such multiple typedef layers.  For
383   instance, consider the following example with stabs:
384
385     .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386     .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388   This is an error in the debugging information which causes type
389   pck__float_array___XUP to be defined twice, and the second time,
390   it is defined as a typedef of a typedef.
391
392   This is on the fringe of legality as far as debugging information is
393   concerned, and certainly unexpected.  But it is easy to handle these
394   situations correctly, so we can afford to be lenient in this case.  */
395
396static struct type *
397ada_typedef_target_type (struct type *type)
398{
399  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400    type = TYPE_TARGET_TYPE (type);
401  return type;
402}
403
404/* Given DECODED_NAME a string holding a symbol name in its
405   decoded form (ie using the Ada dotted notation), returns
406   its unqualified name.  */
407
408static const char *
409ada_unqualified_name (const char *decoded_name)
410{
411  const char *result = strrchr (decoded_name, '.');
412
413  if (result != NULL)
414    result++;                   /* Skip the dot...  */
415  else
416    result = decoded_name;
417
418  return result;
419}
420
421/* Return a string starting with '<', followed by STR, and '>'.
422   The result is good until the next call.  */
423
424static char *
425add_angle_brackets (const char *str)
426{
427  static char *result = NULL;
428
429  xfree (result);
430  result = xstrprintf ("<%s>", str);
431  return result;
432}
433
434static char *
435ada_get_gdb_completer_word_break_characters (void)
436{
437  return ada_completer_word_break_characters;
438}
439
440/* Print an array element index using the Ada syntax.  */
441
442static void
443ada_print_array_index (struct value *index_value, struct ui_file *stream,
444                       const struct value_print_options *options)
445{
446  LA_VALUE_PRINT (index_value, stream, options);
447  fprintf_filtered (stream, " => ");
448}
449
450/* Assuming VECT points to an array of *SIZE objects of size
451   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
452   updating *SIZE as necessary and returning the (new) array.  */
453
454void *
455grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
456{
457  if (*size < min_size)
458    {
459      *size *= 2;
460      if (*size < min_size)
461        *size = min_size;
462      vect = xrealloc (vect, *size * element_size);
463    }
464  return vect;
465}
466
467/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
468   suffix of FIELD_NAME beginning "___".  */
469
470static int
471field_name_match (const char *field_name, const char *target)
472{
473  int len = strlen (target);
474
475  return
476    (strncmp (field_name, target, len) == 0
477     && (field_name[len] == '\0'
478         || (strncmp (field_name + len, "___", 3) == 0
479             && strcmp (field_name + strlen (field_name) - 6,
480                        "___XVN") != 0)));
481}
482
483
484/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485   a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486   and return its index.  This function also handles fields whose name
487   have ___ suffixes because the compiler sometimes alters their name
488   by adding such a suffix to represent fields with certain constraints.
489   If the field could not be found, return a negative number if
490   MAYBE_MISSING is set.  Otherwise raise an error.  */
491
492int
493ada_get_field_index (const struct type *type, const char *field_name,
494                     int maybe_missing)
495{
496  int fieldno;
497  struct type *struct_type = check_typedef ((struct type *) type);
498
499  for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500    if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
501      return fieldno;
502
503  if (!maybe_missing)
504    error (_("Unable to find field %s in struct %s.  Aborting"),
505           field_name, TYPE_NAME (struct_type));
506
507  return -1;
508}
509
510/* The length of the prefix of NAME prior to any "___" suffix.  */
511
512int
513ada_name_prefix_len (const char *name)
514{
515  if (name == NULL)
516    return 0;
517  else
518    {
519      const char *p = strstr (name, "___");
520
521      if (p == NULL)
522        return strlen (name);
523      else
524        return p - name;
525    }
526}
527
528/* Return non-zero if SUFFIX is a suffix of STR.
529   Return zero if STR is null.  */
530
531static int
532is_suffix (const char *str, const char *suffix)
533{
534  int len1, len2;
535
536  if (str == NULL)
537    return 0;
538  len1 = strlen (str);
539  len2 = strlen (suffix);
540  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
541}
542
543/* The contents of value VAL, treated as a value of type TYPE.  The
544   result is an lval in memory if VAL is.  */
545
546static struct value *
547coerce_unspec_val_to_type (struct value *val, struct type *type)
548{
549  type = ada_check_typedef (type);
550  if (value_type (val) == type)
551    return val;
552  else
553    {
554      struct value *result;
555
556      /* Make sure that the object size is not unreasonable before
557         trying to allocate some memory for it.  */
558      check_size (type);
559
560      if (value_lazy (val)
561          || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562	result = allocate_value_lazy (type);
563      else
564	{
565	  result = allocate_value (type);
566	  memcpy (value_contents_raw (result), value_contents (val),
567		  TYPE_LENGTH (type));
568	}
569      set_value_component_location (result, val);
570      set_value_bitsize (result, value_bitsize (val));
571      set_value_bitpos (result, value_bitpos (val));
572      set_value_address (result, value_address (val));
573      return result;
574    }
575}
576
577static const gdb_byte *
578cond_offset_host (const gdb_byte *valaddr, long offset)
579{
580  if (valaddr == NULL)
581    return NULL;
582  else
583    return valaddr + offset;
584}
585
586static CORE_ADDR
587cond_offset_target (CORE_ADDR address, long offset)
588{
589  if (address == 0)
590    return 0;
591  else
592    return address + offset;
593}
594
595/* Issue a warning (as for the definition of warning in utils.c, but
596   with exactly one argument rather than ...), unless the limit on the
597   number of warnings has passed during the evaluation of the current
598   expression.  */
599
600/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601   provided by "complaint".  */
602static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
603
604static void
605lim_warning (const char *format, ...)
606{
607  va_list args;
608
609  va_start (args, format);
610  warnings_issued += 1;
611  if (warnings_issued <= warning_limit)
612    vwarning (format, args);
613
614  va_end (args);
615}
616
617/* Issue an error if the size of an object of type T is unreasonable,
618   i.e. if it would be a bad idea to allocate a value of this type in
619   GDB.  */
620
621static void
622check_size (const struct type *type)
623{
624  if (TYPE_LENGTH (type) > varsize_limit)
625    error (_("object size is larger than varsize-limit"));
626}
627
628/* Maximum value of a SIZE-byte signed integer type.  */
629static LONGEST
630max_of_size (int size)
631{
632  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
633
634  return top_bit | (top_bit - 1);
635}
636
637/* Minimum value of a SIZE-byte signed integer type.  */
638static LONGEST
639min_of_size (int size)
640{
641  return -max_of_size (size) - 1;
642}
643
644/* Maximum value of a SIZE-byte unsigned integer type.  */
645static ULONGEST
646umax_of_size (int size)
647{
648  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
649
650  return top_bit | (top_bit - 1);
651}
652
653/* Maximum value of integral type T, as a signed quantity.  */
654static LONGEST
655max_of_type (struct type *t)
656{
657  if (TYPE_UNSIGNED (t))
658    return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659  else
660    return max_of_size (TYPE_LENGTH (t));
661}
662
663/* Minimum value of integral type T, as a signed quantity.  */
664static LONGEST
665min_of_type (struct type *t)
666{
667  if (TYPE_UNSIGNED (t))
668    return 0;
669  else
670    return min_of_size (TYPE_LENGTH (t));
671}
672
673/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
674LONGEST
675ada_discrete_type_high_bound (struct type *type)
676{
677  switch (TYPE_CODE (type))
678    {
679    case TYPE_CODE_RANGE:
680      return TYPE_HIGH_BOUND (type);
681    case TYPE_CODE_ENUM:
682      return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683    case TYPE_CODE_BOOL:
684      return 1;
685    case TYPE_CODE_CHAR:
686    case TYPE_CODE_INT:
687      return max_of_type (type);
688    default:
689      error (_("Unexpected type in ada_discrete_type_high_bound."));
690    }
691}
692
693/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
694LONGEST
695ada_discrete_type_low_bound (struct type *type)
696{
697  switch (TYPE_CODE (type))
698    {
699    case TYPE_CODE_RANGE:
700      return TYPE_LOW_BOUND (type);
701    case TYPE_CODE_ENUM:
702      return TYPE_FIELD_BITPOS (type, 0);
703    case TYPE_CODE_BOOL:
704      return 0;
705    case TYPE_CODE_CHAR:
706    case TYPE_CODE_INT:
707      return min_of_type (type);
708    default:
709      error (_("Unexpected type in ada_discrete_type_low_bound."));
710    }
711}
712
713/* The identity on non-range types.  For range types, the underlying
714   non-range scalar type.  */
715
716static struct type *
717base_type (struct type *type)
718{
719  while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720    {
721      if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722        return type;
723      type = TYPE_TARGET_TYPE (type);
724    }
725  return type;
726}
727
728
729                                /* Language Selection */
730
731/* If the main program is in Ada, return language_ada, otherwise return LANG
732   (the main program is in Ada iif the adainit symbol is found).  */
733
734enum language
735ada_update_initial_language (enum language lang)
736{
737  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
738                             (struct objfile *) NULL) != NULL)
739    return language_ada;
740
741  return lang;
742}
743
744/* If the main procedure is written in Ada, then return its name.
745   The result is good until the next call.  Return NULL if the main
746   procedure doesn't appear to be in Ada.  */
747
748char *
749ada_main_name (void)
750{
751  struct minimal_symbol *msym;
752  static char *main_program_name = NULL;
753
754  /* For Ada, the name of the main procedure is stored in a specific
755     string constant, generated by the binder.  Look for that symbol,
756     extract its address, and then read that string.  If we didn't find
757     that string, then most probably the main procedure is not written
758     in Ada.  */
759  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760
761  if (msym != NULL)
762    {
763      CORE_ADDR main_program_name_addr;
764      int err_code;
765
766      main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767      if (main_program_name_addr == 0)
768        error (_("Invalid address for Ada main program name."));
769
770      xfree (main_program_name);
771      target_read_string (main_program_name_addr, &main_program_name,
772                          1024, &err_code);
773
774      if (err_code != 0)
775        return NULL;
776      return main_program_name;
777    }
778
779  /* The main procedure doesn't seem to be in Ada.  */
780  return NULL;
781}
782
783                                /* Symbols */
784
785/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
786   of NULLs.  */
787
788const struct ada_opname_map ada_opname_table[] = {
789  {"Oadd", "\"+\"", BINOP_ADD},
790  {"Osubtract", "\"-\"", BINOP_SUB},
791  {"Omultiply", "\"*\"", BINOP_MUL},
792  {"Odivide", "\"/\"", BINOP_DIV},
793  {"Omod", "\"mod\"", BINOP_MOD},
794  {"Orem", "\"rem\"", BINOP_REM},
795  {"Oexpon", "\"**\"", BINOP_EXP},
796  {"Olt", "\"<\"", BINOP_LESS},
797  {"Ole", "\"<=\"", BINOP_LEQ},
798  {"Ogt", "\">\"", BINOP_GTR},
799  {"Oge", "\">=\"", BINOP_GEQ},
800  {"Oeq", "\"=\"", BINOP_EQUAL},
801  {"One", "\"/=\"", BINOP_NOTEQUAL},
802  {"Oand", "\"and\"", BINOP_BITWISE_AND},
803  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805  {"Oconcat", "\"&\"", BINOP_CONCAT},
806  {"Oabs", "\"abs\"", UNOP_ABS},
807  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808  {"Oadd", "\"+\"", UNOP_PLUS},
809  {"Osubtract", "\"-\"", UNOP_NEG},
810  {NULL, NULL}
811};
812
813/* The "encoded" form of DECODED, according to GNAT conventions.
814   The result is valid until the next call to ada_encode.  */
815
816char *
817ada_encode (const char *decoded)
818{
819  static char *encoding_buffer = NULL;
820  static size_t encoding_buffer_size = 0;
821  const char *p;
822  int k;
823
824  if (decoded == NULL)
825    return NULL;
826
827  GROW_VECT (encoding_buffer, encoding_buffer_size,
828             2 * strlen (decoded) + 10);
829
830  k = 0;
831  for (p = decoded; *p != '\0'; p += 1)
832    {
833      if (*p == '.')
834        {
835          encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836          k += 2;
837        }
838      else if (*p == '"')
839        {
840          const struct ada_opname_map *mapping;
841
842          for (mapping = ada_opname_table;
843               mapping->encoded != NULL
844               && strncmp (mapping->decoded, p,
845                           strlen (mapping->decoded)) != 0; mapping += 1)
846            ;
847          if (mapping->encoded == NULL)
848            error (_("invalid Ada operator name: %s"), p);
849          strcpy (encoding_buffer + k, mapping->encoded);
850          k += strlen (mapping->encoded);
851          break;
852        }
853      else
854        {
855          encoding_buffer[k] = *p;
856          k += 1;
857        }
858    }
859
860  encoding_buffer[k] = '\0';
861  return encoding_buffer;
862}
863
864/* Return NAME folded to lower case, or, if surrounded by single
865   quotes, unfolded, but with the quotes stripped away.  Result good
866   to next call.  */
867
868char *
869ada_fold_name (const char *name)
870{
871  static char *fold_buffer = NULL;
872  static size_t fold_buffer_size = 0;
873
874  int len = strlen (name);
875  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
876
877  if (name[0] == '\'')
878    {
879      strncpy (fold_buffer, name + 1, len - 2);
880      fold_buffer[len - 2] = '\000';
881    }
882  else
883    {
884      int i;
885
886      for (i = 0; i <= len; i += 1)
887        fold_buffer[i] = tolower (name[i]);
888    }
889
890  return fold_buffer;
891}
892
893/* Return nonzero if C is either a digit or a lowercase alphabet character.  */
894
895static int
896is_lower_alphanum (const char c)
897{
898  return (isdigit (c) || (isalpha (c) && islower (c)));
899}
900
901/* Remove either of these suffixes:
902     . .{DIGIT}+
903     . ${DIGIT}+
904     . ___{DIGIT}+
905     . __{DIGIT}+.
906   These are suffixes introduced by the compiler for entities such as
907   nested subprogram for instance, in order to avoid name clashes.
908   They do not serve any purpose for the debugger.  */
909
910static void
911ada_remove_trailing_digits (const char *encoded, int *len)
912{
913  if (*len > 1 && isdigit (encoded[*len - 1]))
914    {
915      int i = *len - 2;
916
917      while (i > 0 && isdigit (encoded[i]))
918        i--;
919      if (i >= 0 && encoded[i] == '.')
920        *len = i;
921      else if (i >= 0 && encoded[i] == '$')
922        *len = i;
923      else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924        *len = i - 2;
925      else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926        *len = i - 1;
927    }
928}
929
930/* Remove the suffix introduced by the compiler for protected object
931   subprograms.  */
932
933static void
934ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935{
936  /* Remove trailing N.  */
937
938  /* Protected entry subprograms are broken into two
939     separate subprograms: The first one is unprotected, and has
940     a 'N' suffix; the second is the protected version, and has
941     the 'P' suffix.  The second calls the first one after handling
942     the protection.  Since the P subprograms are internally generated,
943     we leave these names undecoded, giving the user a clue that this
944     entity is internal.  */
945
946  if (*len > 1
947      && encoded[*len - 1] == 'N'
948      && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949    *len = *len - 1;
950}
951
952/* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
953
954static void
955ada_remove_Xbn_suffix (const char *encoded, int *len)
956{
957  int i = *len - 1;
958
959  while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960    i--;
961
962  if (encoded[i] != 'X')
963    return;
964
965  if (i == 0)
966    return;
967
968  if (isalnum (encoded[i-1]))
969    *len = i;
970}
971
972/* If ENCODED follows the GNAT entity encoding conventions, then return
973   the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
974   replaced by ENCODED.
975
976   The resulting string is valid until the next call of ada_decode.
977   If the string is unchanged by decoding, the original string pointer
978   is returned.  */
979
980const char *
981ada_decode (const char *encoded)
982{
983  int i, j;
984  int len0;
985  const char *p;
986  char *decoded;
987  int at_start_name;
988  static char *decoding_buffer = NULL;
989  static size_t decoding_buffer_size = 0;
990
991  /* The name of the Ada main procedure starts with "_ada_".
992     This prefix is not part of the decoded name, so skip this part
993     if we see this prefix.  */
994  if (strncmp (encoded, "_ada_", 5) == 0)
995    encoded += 5;
996
997  /* If the name starts with '_', then it is not a properly encoded
998     name, so do not attempt to decode it.  Similarly, if the name
999     starts with '<', the name should not be decoded.  */
1000  if (encoded[0] == '_' || encoded[0] == '<')
1001    goto Suppress;
1002
1003  len0 = strlen (encoded);
1004
1005  ada_remove_trailing_digits (encoded, &len0);
1006  ada_remove_po_subprogram_suffix (encoded, &len0);
1007
1008  /* Remove the ___X.* suffix if present.  Do not forget to verify that
1009     the suffix is located before the current "end" of ENCODED.  We want
1010     to avoid re-matching parts of ENCODED that have previously been
1011     marked as discarded (by decrementing LEN0).  */
1012  p = strstr (encoded, "___");
1013  if (p != NULL && p - encoded < len0 - 3)
1014    {
1015      if (p[3] == 'X')
1016        len0 = p - encoded;
1017      else
1018        goto Suppress;
1019    }
1020
1021  /* Remove any trailing TKB suffix.  It tells us that this symbol
1022     is for the body of a task, but that information does not actually
1023     appear in the decoded name.  */
1024
1025  if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1026    len0 -= 3;
1027
1028  /* Remove any trailing TB suffix.  The TB suffix is slightly different
1029     from the TKB suffix because it is used for non-anonymous task
1030     bodies.  */
1031
1032  if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033    len0 -= 2;
1034
1035  /* Remove trailing "B" suffixes.  */
1036  /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1037
1038  if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1039    len0 -= 1;
1040
1041  /* Make decoded big enough for possible expansion by operator name.  */
1042
1043  GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044  decoded = decoding_buffer;
1045
1046  /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1047
1048  if (len0 > 1 && isdigit (encoded[len0 - 1]))
1049    {
1050      i = len0 - 2;
1051      while ((i >= 0 && isdigit (encoded[i]))
1052             || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053        i -= 1;
1054      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055        len0 = i - 1;
1056      else if (encoded[i] == '$')
1057        len0 = i;
1058    }
1059
1060  /* The first few characters that are not alphabetic are not part
1061     of any encoding we use, so we can copy them over verbatim.  */
1062
1063  for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064    decoded[j] = encoded[i];
1065
1066  at_start_name = 1;
1067  while (i < len0)
1068    {
1069      /* Is this a symbol function?  */
1070      if (at_start_name && encoded[i] == 'O')
1071        {
1072          int k;
1073
1074          for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075            {
1076              int op_len = strlen (ada_opname_table[k].encoded);
1077              if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078                            op_len - 1) == 0)
1079                  && !isalnum (encoded[i + op_len]))
1080                {
1081                  strcpy (decoded + j, ada_opname_table[k].decoded);
1082                  at_start_name = 0;
1083                  i += op_len;
1084                  j += strlen (ada_opname_table[k].decoded);
1085                  break;
1086                }
1087            }
1088          if (ada_opname_table[k].encoded != NULL)
1089            continue;
1090        }
1091      at_start_name = 0;
1092
1093      /* Replace "TK__" with "__", which will eventually be translated
1094         into "." (just below).  */
1095
1096      if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097        i += 2;
1098
1099      /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100         be translated into "." (just below).  These are internal names
1101         generated for anonymous blocks inside which our symbol is nested.  */
1102
1103      if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104          && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105          && isdigit (encoded [i+4]))
1106        {
1107          int k = i + 5;
1108
1109          while (k < len0 && isdigit (encoded[k]))
1110            k++;  /* Skip any extra digit.  */
1111
1112          /* Double-check that the "__B_{DIGITS}+" sequence we found
1113             is indeed followed by "__".  */
1114          if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115            i = k;
1116        }
1117
1118      /* Remove _E{DIGITS}+[sb] */
1119
1120      /* Just as for protected object subprograms, there are 2 categories
1121         of subprograms created by the compiler for each entry.  The first
1122         one implements the actual entry code, and has a suffix following
1123         the convention above; the second one implements the barrier and
1124         uses the same convention as above, except that the 'E' is replaced
1125         by a 'B'.
1126
1127         Just as above, we do not decode the name of barrier functions
1128         to give the user a clue that the code he is debugging has been
1129         internally generated.  */
1130
1131      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132          && isdigit (encoded[i+2]))
1133        {
1134          int k = i + 3;
1135
1136          while (k < len0 && isdigit (encoded[k]))
1137            k++;
1138
1139          if (k < len0
1140              && (encoded[k] == 'b' || encoded[k] == 's'))
1141            {
1142              k++;
1143              /* Just as an extra precaution, make sure that if this
1144                 suffix is followed by anything else, it is a '_'.
1145                 Otherwise, we matched this sequence by accident.  */
1146              if (k == len0
1147                  || (k < len0 && encoded[k] == '_'))
1148                i = k;
1149            }
1150        }
1151
1152      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1153         the GNAT front-end in protected object subprograms.  */
1154
1155      if (i < len0 + 3
1156          && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157        {
1158          /* Backtrack a bit up until we reach either the begining of
1159             the encoded name, or "__".  Make sure that we only find
1160             digits or lowercase characters.  */
1161          const char *ptr = encoded + i - 1;
1162
1163          while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164            ptr--;
1165          if (ptr < encoded
1166              || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167            i++;
1168        }
1169
1170      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171        {
1172          /* This is a X[bn]* sequence not separated from the previous
1173             part of the name with a non-alpha-numeric character (in other
1174             words, immediately following an alpha-numeric character), then
1175             verify that it is placed at the end of the encoded name.  If
1176             not, then the encoding is not valid and we should abort the
1177             decoding.  Otherwise, just skip it, it is used in body-nested
1178             package names.  */
1179          do
1180            i += 1;
1181          while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182          if (i < len0)
1183            goto Suppress;
1184        }
1185      else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1186        {
1187         /* Replace '__' by '.'.  */
1188          decoded[j] = '.';
1189          at_start_name = 1;
1190          i += 2;
1191          j += 1;
1192        }
1193      else
1194        {
1195          /* It's a character part of the decoded name, so just copy it
1196             over.  */
1197          decoded[j] = encoded[i];
1198          i += 1;
1199          j += 1;
1200        }
1201    }
1202  decoded[j] = '\000';
1203
1204  /* Decoded names should never contain any uppercase character.
1205     Double-check this, and abort the decoding if we find one.  */
1206
1207  for (i = 0; decoded[i] != '\0'; i += 1)
1208    if (isupper (decoded[i]) || decoded[i] == ' ')
1209      goto Suppress;
1210
1211  if (strcmp (decoded, encoded) == 0)
1212    return encoded;
1213  else
1214    return decoded;
1215
1216Suppress:
1217  GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218  decoded = decoding_buffer;
1219  if (encoded[0] == '<')
1220    strcpy (decoded, encoded);
1221  else
1222    xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1223  return decoded;
1224
1225}
1226
1227/* Table for keeping permanent unique copies of decoded names.  Once
1228   allocated, names in this table are never released.  While this is a
1229   storage leak, it should not be significant unless there are massive
1230   changes in the set of decoded names in successive versions of a
1231   symbol table loaded during a single session.  */
1232static struct htab *decoded_names_store;
1233
1234/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235   in the language-specific part of GSYMBOL, if it has not been
1236   previously computed.  Tries to save the decoded name in the same
1237   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238   in any case, the decoded symbol has a lifetime at least that of
1239   GSYMBOL).
1240   The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241   const, but nevertheless modified to a semantically equivalent form
1242   when a decoded name is cached in it.  */
1243
1244char *
1245ada_decode_symbol (const struct general_symbol_info *gsymbol)
1246{
1247  char **resultp =
1248    (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1249
1250  if (*resultp == NULL)
1251    {
1252      const char *decoded = ada_decode (gsymbol->name);
1253
1254      if (gsymbol->obj_section != NULL)
1255        {
1256	  struct objfile *objf = gsymbol->obj_section->objfile;
1257
1258	  *resultp = obsavestring (decoded, strlen (decoded),
1259				   &objf->objfile_obstack);
1260        }
1261      /* Sometimes, we can't find a corresponding objfile, in which
1262         case, we put the result on the heap.  Since we only decode
1263         when needed, we hope this usually does not cause a
1264         significant memory leak (FIXME).  */
1265      if (*resultp == NULL)
1266        {
1267          char **slot = (char **) htab_find_slot (decoded_names_store,
1268                                                  decoded, INSERT);
1269
1270          if (*slot == NULL)
1271            *slot = xstrdup (decoded);
1272          *resultp = *slot;
1273        }
1274    }
1275
1276  return *resultp;
1277}
1278
1279static char *
1280ada_la_decode (const char *encoded, int options)
1281{
1282  return xstrdup (ada_decode (encoded));
1283}
1284
1285/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1286   suffixes that encode debugging information or leading _ada_ on
1287   SYM_NAME (see is_name_suffix commentary for the debugging
1288   information that is ignored).  If WILD, then NAME need only match a
1289   suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1290   either argument is NULL.  */
1291
1292static int
1293match_name (const char *sym_name, const char *name, int wild)
1294{
1295  if (sym_name == NULL || name == NULL)
1296    return 0;
1297  else if (wild)
1298    return wild_match (sym_name, name) == 0;
1299  else
1300    {
1301      int len_name = strlen (name);
1302
1303      return (strncmp (sym_name, name, len_name) == 0
1304              && is_name_suffix (sym_name + len_name))
1305        || (strncmp (sym_name, "_ada_", 5) == 0
1306            && strncmp (sym_name + 5, name, len_name) == 0
1307            && is_name_suffix (sym_name + len_name + 5));
1308    }
1309}
1310
1311
1312                                /* Arrays */
1313
1314/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315   generated by the GNAT compiler to describe the index type used
1316   for each dimension of an array, check whether it follows the latest
1317   known encoding.  If not, fix it up to conform to the latest encoding.
1318   Otherwise, do nothing.  This function also does nothing if
1319   INDEX_DESC_TYPE is NULL.
1320
1321   The GNAT encoding used to describle the array index type evolved a bit.
1322   Initially, the information would be provided through the name of each
1323   field of the structure type only, while the type of these fields was
1324   described as unspecified and irrelevant.  The debugger was then expected
1325   to perform a global type lookup using the name of that field in order
1326   to get access to the full index type description.  Because these global
1327   lookups can be very expensive, the encoding was later enhanced to make
1328   the global lookup unnecessary by defining the field type as being
1329   the full index type description.
1330
1331   The purpose of this routine is to allow us to support older versions
1332   of the compiler by detecting the use of the older encoding, and by
1333   fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334   we essentially replace each field's meaningless type by the associated
1335   index subtype).  */
1336
1337void
1338ada_fixup_array_indexes_type (struct type *index_desc_type)
1339{
1340  int i;
1341
1342  if (index_desc_type == NULL)
1343    return;
1344  gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345
1346  /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347     to check one field only, no need to check them all).  If not, return
1348     now.
1349
1350     If our INDEX_DESC_TYPE was generated using the older encoding,
1351     the field type should be a meaningless integer type whose name
1352     is not equal to the field name.  */
1353  if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354      && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355                 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356    return;
1357
1358  /* Fixup each field of INDEX_DESC_TYPE.  */
1359  for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360   {
1361     char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362     struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363
1364     if (raw_type)
1365       TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366   }
1367}
1368
1369/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1370
1371static char *bound_name[] = {
1372  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1373  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374};
1375
1376/* Maximum number of array dimensions we are prepared to handle.  */
1377
1378#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1379
1380
1381/* The desc_* routines return primitive portions of array descriptors
1382   (fat pointers).  */
1383
1384/* The descriptor or array type, if any, indicated by TYPE; removes
1385   level of indirection, if needed.  */
1386
1387static struct type *
1388desc_base_type (struct type *type)
1389{
1390  if (type == NULL)
1391    return NULL;
1392  type = ada_check_typedef (type);
1393  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394    type = ada_typedef_target_type (type);
1395
1396  if (type != NULL
1397      && (TYPE_CODE (type) == TYPE_CODE_PTR
1398          || TYPE_CODE (type) == TYPE_CODE_REF))
1399    return ada_check_typedef (TYPE_TARGET_TYPE (type));
1400  else
1401    return type;
1402}
1403
1404/* True iff TYPE indicates a "thin" array pointer type.  */
1405
1406static int
1407is_thin_pntr (struct type *type)
1408{
1409  return
1410    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412}
1413
1414/* The descriptor type for thin pointer type TYPE.  */
1415
1416static struct type *
1417thin_descriptor_type (struct type *type)
1418{
1419  struct type *base_type = desc_base_type (type);
1420
1421  if (base_type == NULL)
1422    return NULL;
1423  if (is_suffix (ada_type_name (base_type), "___XVE"))
1424    return base_type;
1425  else
1426    {
1427      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1428
1429      if (alt_type == NULL)
1430        return base_type;
1431      else
1432        return alt_type;
1433    }
1434}
1435
1436/* A pointer to the array data for thin-pointer value VAL.  */
1437
1438static struct value *
1439thin_data_pntr (struct value *val)
1440{
1441  struct type *type = value_type (val);
1442  struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1443
1444  data_type = lookup_pointer_type (data_type);
1445
1446  if (TYPE_CODE (type) == TYPE_CODE_PTR)
1447    return value_cast (data_type, value_copy (val));
1448  else
1449    return value_from_longest (data_type, value_address (val));
1450}
1451
1452/* True iff TYPE indicates a "thick" array pointer type.  */
1453
1454static int
1455is_thick_pntr (struct type *type)
1456{
1457  type = desc_base_type (type);
1458  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1459          && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1460}
1461
1462/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463   pointer to one, the type of its bounds data; otherwise, NULL.  */
1464
1465static struct type *
1466desc_bounds_type (struct type *type)
1467{
1468  struct type *r;
1469
1470  type = desc_base_type (type);
1471
1472  if (type == NULL)
1473    return NULL;
1474  else if (is_thin_pntr (type))
1475    {
1476      type = thin_descriptor_type (type);
1477      if (type == NULL)
1478        return NULL;
1479      r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480      if (r != NULL)
1481        return ada_check_typedef (r);
1482    }
1483  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484    {
1485      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486      if (r != NULL)
1487        return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1488    }
1489  return NULL;
1490}
1491
1492/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1493   one, a pointer to its bounds data.   Otherwise NULL.  */
1494
1495static struct value *
1496desc_bounds (struct value *arr)
1497{
1498  struct type *type = ada_check_typedef (value_type (arr));
1499
1500  if (is_thin_pntr (type))
1501    {
1502      struct type *bounds_type =
1503        desc_bounds_type (thin_descriptor_type (type));
1504      LONGEST addr;
1505
1506      if (bounds_type == NULL)
1507        error (_("Bad GNAT array descriptor"));
1508
1509      /* NOTE: The following calculation is not really kosher, but
1510         since desc_type is an XVE-encoded type (and shouldn't be),
1511         the correct calculation is a real pain.  FIXME (and fix GCC).  */
1512      if (TYPE_CODE (type) == TYPE_CODE_PTR)
1513        addr = value_as_long (arr);
1514      else
1515        addr = value_address (arr);
1516
1517      return
1518        value_from_longest (lookup_pointer_type (bounds_type),
1519                            addr - TYPE_LENGTH (bounds_type));
1520    }
1521
1522  else if (is_thick_pntr (type))
1523    {
1524      struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525					       _("Bad GNAT array descriptor"));
1526      struct type *p_bounds_type = value_type (p_bounds);
1527
1528      if (p_bounds_type
1529	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530	{
1531	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532
1533	  if (TYPE_STUB (target_type))
1534	    p_bounds = value_cast (lookup_pointer_type
1535				   (ada_check_typedef (target_type)),
1536				   p_bounds);
1537	}
1538      else
1539	error (_("Bad GNAT array descriptor"));
1540
1541      return p_bounds;
1542    }
1543  else
1544    return NULL;
1545}
1546
1547/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1548   position of the field containing the address of the bounds data.  */
1549
1550static int
1551fat_pntr_bounds_bitpos (struct type *type)
1552{
1553  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554}
1555
1556/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1557   size of the field containing the address of the bounds data.  */
1558
1559static int
1560fat_pntr_bounds_bitsize (struct type *type)
1561{
1562  type = desc_base_type (type);
1563
1564  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1565    return TYPE_FIELD_BITSIZE (type, 1);
1566  else
1567    return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1568}
1569
1570/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1571   pointer to one, the type of its array data (a array-with-no-bounds type);
1572   otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1573   data.  */
1574
1575static struct type *
1576desc_data_target_type (struct type *type)
1577{
1578  type = desc_base_type (type);
1579
1580  /* NOTE: The following is bogus; see comment in desc_bounds.  */
1581  if (is_thin_pntr (type))
1582    return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1583  else if (is_thick_pntr (type))
1584    {
1585      struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586
1587      if (data_type
1588	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1589	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1590    }
1591
1592  return NULL;
1593}
1594
1595/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596   its array data.  */
1597
1598static struct value *
1599desc_data (struct value *arr)
1600{
1601  struct type *type = value_type (arr);
1602
1603  if (is_thin_pntr (type))
1604    return thin_data_pntr (arr);
1605  else if (is_thick_pntr (type))
1606    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1607                             _("Bad GNAT array descriptor"));
1608  else
1609    return NULL;
1610}
1611
1612
1613/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1614   position of the field containing the address of the data.  */
1615
1616static int
1617fat_pntr_data_bitpos (struct type *type)
1618{
1619  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620}
1621
1622/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1623   size of the field containing the address of the data.  */
1624
1625static int
1626fat_pntr_data_bitsize (struct type *type)
1627{
1628  type = desc_base_type (type);
1629
1630  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631    return TYPE_FIELD_BITSIZE (type, 0);
1632  else
1633    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634}
1635
1636/* If BOUNDS is an array-bounds structure (or pointer to one), return
1637   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1638   bound, if WHICH is 1.  The first bound is I=1.  */
1639
1640static struct value *
1641desc_one_bound (struct value *bounds, int i, int which)
1642{
1643  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1644                           _("Bad GNAT array descriptor bounds"));
1645}
1646
1647/* If BOUNDS is an array-bounds structure type, return the bit position
1648   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649   bound, if WHICH is 1.  The first bound is I=1.  */
1650
1651static int
1652desc_bound_bitpos (struct type *type, int i, int which)
1653{
1654  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1655}
1656
1657/* If BOUNDS is an array-bounds structure type, return the bit field size
1658   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1659   bound, if WHICH is 1.  The first bound is I=1.  */
1660
1661static int
1662desc_bound_bitsize (struct type *type, int i, int which)
1663{
1664  type = desc_base_type (type);
1665
1666  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668  else
1669    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1670}
1671
1672/* If TYPE is the type of an array-bounds structure, the type of its
1673   Ith bound (numbering from 1).  Otherwise, NULL.  */
1674
1675static struct type *
1676desc_index_type (struct type *type, int i)
1677{
1678  type = desc_base_type (type);
1679
1680  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682  else
1683    return NULL;
1684}
1685
1686/* The number of index positions in the array-bounds type TYPE.
1687   Return 0 if TYPE is NULL.  */
1688
1689static int
1690desc_arity (struct type *type)
1691{
1692  type = desc_base_type (type);
1693
1694  if (type != NULL)
1695    return TYPE_NFIELDS (type) / 2;
1696  return 0;
1697}
1698
1699/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700   an array descriptor type (representing an unconstrained array
1701   type).  */
1702
1703static int
1704ada_is_direct_array_type (struct type *type)
1705{
1706  if (type == NULL)
1707    return 0;
1708  type = ada_check_typedef (type);
1709  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1710          || ada_is_array_descriptor_type (type));
1711}
1712
1713/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1714 * to one.  */
1715
1716static int
1717ada_is_array_type (struct type *type)
1718{
1719  while (type != NULL
1720	 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721	     || TYPE_CODE (type) == TYPE_CODE_REF))
1722    type = TYPE_TARGET_TYPE (type);
1723  return ada_is_direct_array_type (type);
1724}
1725
1726/* Non-zero iff TYPE is a simple array type or pointer to one.  */
1727
1728int
1729ada_is_simple_array_type (struct type *type)
1730{
1731  if (type == NULL)
1732    return 0;
1733  type = ada_check_typedef (type);
1734  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1735          || (TYPE_CODE (type) == TYPE_CODE_PTR
1736              && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737                 == TYPE_CODE_ARRAY));
1738}
1739
1740/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1741
1742int
1743ada_is_array_descriptor_type (struct type *type)
1744{
1745  struct type *data_type = desc_data_target_type (type);
1746
1747  if (type == NULL)
1748    return 0;
1749  type = ada_check_typedef (type);
1750  return (data_type != NULL
1751	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752	  && desc_arity (desc_bounds_type (type)) > 0);
1753}
1754
1755/* Non-zero iff type is a partially mal-formed GNAT array
1756   descriptor.  FIXME: This is to compensate for some problems with
1757   debugging output from GNAT.  Re-examine periodically to see if it
1758   is still needed.  */
1759
1760int
1761ada_is_bogus_array_descriptor (struct type *type)
1762{
1763  return
1764    type != NULL
1765    && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1767        || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768    && !ada_is_array_descriptor_type (type);
1769}
1770
1771
1772/* If ARR has a record type in the form of a standard GNAT array descriptor,
1773   (fat pointer) returns the type of the array data described---specifically,
1774   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1775   in from the descriptor; otherwise, they are left unspecified.  If
1776   the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777   returns NULL.  The result is simply the type of ARR if ARR is not
1778   a descriptor.  */
1779struct type *
1780ada_type_of_array (struct value *arr, int bounds)
1781{
1782  if (ada_is_constrained_packed_array_type (value_type (arr)))
1783    return decode_constrained_packed_array_type (value_type (arr));
1784
1785  if (!ada_is_array_descriptor_type (value_type (arr)))
1786    return value_type (arr);
1787
1788  if (!bounds)
1789    {
1790      struct type *array_type =
1791	ada_check_typedef (desc_data_target_type (value_type (arr)));
1792
1793      if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794	TYPE_FIELD_BITSIZE (array_type, 0) =
1795	  decode_packed_array_bitsize (value_type (arr));
1796
1797      return array_type;
1798    }
1799  else
1800    {
1801      struct type *elt_type;
1802      int arity;
1803      struct value *descriptor;
1804
1805      elt_type = ada_array_element_type (value_type (arr), -1);
1806      arity = ada_array_arity (value_type (arr));
1807
1808      if (elt_type == NULL || arity == 0)
1809        return ada_check_typedef (value_type (arr));
1810
1811      descriptor = desc_bounds (arr);
1812      if (value_as_long (descriptor) == 0)
1813        return NULL;
1814      while (arity > 0)
1815        {
1816          struct type *range_type = alloc_type_copy (value_type (arr));
1817          struct type *array_type = alloc_type_copy (value_type (arr));
1818          struct value *low = desc_one_bound (descriptor, arity, 0);
1819          struct value *high = desc_one_bound (descriptor, arity, 1);
1820
1821          arity -= 1;
1822          create_range_type (range_type, value_type (low),
1823                             longest_to_int (value_as_long (low)),
1824                             longest_to_int (value_as_long (high)));
1825          elt_type = create_array_type (array_type, elt_type, range_type);
1826
1827	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1828	    {
1829	      /* We need to store the element packed bitsize, as well as
1830	         recompute the array size, because it was previously
1831		 computed based on the unpacked element size.  */
1832	      LONGEST lo = value_as_long (low);
1833	      LONGEST hi = value_as_long (high);
1834
1835	      TYPE_FIELD_BITSIZE (elt_type, 0) =
1836		decode_packed_array_bitsize (value_type (arr));
1837	      /* If the array has no element, then the size is already
1838	         zero, and does not need to be recomputed.  */
1839	      if (lo < hi)
1840		{
1841		  int array_bitsize =
1842		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843
1844		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845		}
1846	    }
1847        }
1848
1849      return lookup_pointer_type (elt_type);
1850    }
1851}
1852
1853/* If ARR does not represent an array, returns ARR unchanged.
1854   Otherwise, returns either a standard GDB array with bounds set
1855   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856   GDB array.  Returns NULL if ARR is a null fat pointer.  */
1857
1858struct value *
1859ada_coerce_to_simple_array_ptr (struct value *arr)
1860{
1861  if (ada_is_array_descriptor_type (value_type (arr)))
1862    {
1863      struct type *arrType = ada_type_of_array (arr, 1);
1864
1865      if (arrType == NULL)
1866        return NULL;
1867      return value_cast (arrType, value_copy (desc_data (arr)));
1868    }
1869  else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870    return decode_constrained_packed_array (arr);
1871  else
1872    return arr;
1873}
1874
1875/* If ARR does not represent an array, returns ARR unchanged.
1876   Otherwise, returns a standard GDB array describing ARR (which may
1877   be ARR itself if it already is in the proper form).  */
1878
1879struct value *
1880ada_coerce_to_simple_array (struct value *arr)
1881{
1882  if (ada_is_array_descriptor_type (value_type (arr)))
1883    {
1884      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1885
1886      if (arrVal == NULL)
1887        error (_("Bounds unavailable for null array pointer."));
1888      check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1889      return value_ind (arrVal);
1890    }
1891  else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892    return decode_constrained_packed_array (arr);
1893  else
1894    return arr;
1895}
1896
1897/* If TYPE represents a GNAT array type, return it translated to an
1898   ordinary GDB array type (possibly with BITSIZE fields indicating
1899   packing).  For other types, is the identity.  */
1900
1901struct type *
1902ada_coerce_to_simple_array_type (struct type *type)
1903{
1904  if (ada_is_constrained_packed_array_type (type))
1905    return decode_constrained_packed_array_type (type);
1906
1907  if (ada_is_array_descriptor_type (type))
1908    return ada_check_typedef (desc_data_target_type (type));
1909
1910  return type;
1911}
1912
1913/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
1914
1915static int
1916ada_is_packed_array_type  (struct type *type)
1917{
1918  if (type == NULL)
1919    return 0;
1920  type = desc_base_type (type);
1921  type = ada_check_typedef (type);
1922  return
1923    ada_type_name (type) != NULL
1924    && strstr (ada_type_name (type), "___XP") != NULL;
1925}
1926
1927/* Non-zero iff TYPE represents a standard GNAT constrained
1928   packed-array type.  */
1929
1930int
1931ada_is_constrained_packed_array_type (struct type *type)
1932{
1933  return ada_is_packed_array_type (type)
1934    && !ada_is_array_descriptor_type (type);
1935}
1936
1937/* Non-zero iff TYPE represents an array descriptor for a
1938   unconstrained packed-array type.  */
1939
1940static int
1941ada_is_unconstrained_packed_array_type (struct type *type)
1942{
1943  return ada_is_packed_array_type (type)
1944    && ada_is_array_descriptor_type (type);
1945}
1946
1947/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948   return the size of its elements in bits.  */
1949
1950static long
1951decode_packed_array_bitsize (struct type *type)
1952{
1953  char *raw_name;
1954  char *tail;
1955  long bits;
1956
1957  /* Access to arrays implemented as fat pointers are encoded as a typedef
1958     of the fat pointer type.  We need the name of the fat pointer type
1959     to do the decoding, so strip the typedef layer.  */
1960  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961    type = ada_typedef_target_type (type);
1962
1963  raw_name = ada_type_name (ada_check_typedef (type));
1964  if (!raw_name)
1965    raw_name = ada_type_name (desc_base_type (type));
1966
1967  if (!raw_name)
1968    return 0;
1969
1970  tail = strstr (raw_name, "___XP");
1971  gdb_assert (tail != NULL);
1972
1973  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974    {
1975      lim_warning
1976	(_("could not understand bit size information on packed array"));
1977      return 0;
1978    }
1979
1980  return bits;
1981}
1982
1983/* Given that TYPE is a standard GDB array type with all bounds filled
1984   in, and that the element size of its ultimate scalar constituents
1985   (that is, either its elements, or, if it is an array of arrays, its
1986   elements' elements, etc.) is *ELT_BITS, return an identical type,
1987   but with the bit sizes of its elements (and those of any
1988   constituent arrays) recorded in the BITSIZE components of its
1989   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990   in bits.  */
1991
1992static struct type *
1993constrained_packed_array_type (struct type *type, long *elt_bits)
1994{
1995  struct type *new_elt_type;
1996  struct type *new_type;
1997  LONGEST low_bound, high_bound;
1998
1999  type = ada_check_typedef (type);
2000  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001    return type;
2002
2003  new_type = alloc_type_copy (type);
2004  new_elt_type =
2005    constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006				   elt_bits);
2007  create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2008  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009  TYPE_NAME (new_type) = ada_type_name (type);
2010
2011  if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2012                           &low_bound, &high_bound) < 0)
2013    low_bound = high_bound = 0;
2014  if (high_bound < low_bound)
2015    *elt_bits = TYPE_LENGTH (new_type) = 0;
2016  else
2017    {
2018      *elt_bits *= (high_bound - low_bound + 1);
2019      TYPE_LENGTH (new_type) =
2020        (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2021    }
2022
2023  TYPE_FIXED_INSTANCE (new_type) = 1;
2024  return new_type;
2025}
2026
2027/* The array type encoded by TYPE, where
2028   ada_is_constrained_packed_array_type (TYPE).  */
2029
2030static struct type *
2031decode_constrained_packed_array_type (struct type *type)
2032{
2033  char *raw_name = ada_type_name (ada_check_typedef (type));
2034  char *name;
2035  char *tail;
2036  struct type *shadow_type;
2037  long bits;
2038
2039  if (!raw_name)
2040    raw_name = ada_type_name (desc_base_type (type));
2041
2042  if (!raw_name)
2043    return NULL;
2044
2045  name = (char *) alloca (strlen (raw_name) + 1);
2046  tail = strstr (raw_name, "___XP");
2047  type = desc_base_type (type);
2048
2049  memcpy (name, raw_name, tail - raw_name);
2050  name[tail - raw_name] = '\000';
2051
2052  shadow_type = ada_find_parallel_type_with_name (type, name);
2053
2054  if (shadow_type == NULL)
2055    {
2056      lim_warning (_("could not find bounds information on packed array"));
2057      return NULL;
2058    }
2059  CHECK_TYPEDEF (shadow_type);
2060
2061  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062    {
2063      lim_warning (_("could not understand bounds "
2064		     "information on packed array"));
2065      return NULL;
2066    }
2067
2068  bits = decode_packed_array_bitsize (type);
2069  return constrained_packed_array_type (shadow_type, &bits);
2070}
2071
2072/* Given that ARR is a struct value *indicating a GNAT constrained packed
2073   array, returns a simple array that denotes that array.  Its type is a
2074   standard GDB array type except that the BITSIZEs of the array
2075   target types are set to the number of bits in each element, and the
2076   type length is set appropriately.  */
2077
2078static struct value *
2079decode_constrained_packed_array (struct value *arr)
2080{
2081  struct type *type;
2082
2083  arr = ada_coerce_ref (arr);
2084
2085  /* If our value is a pointer, then dererence it.  Make sure that
2086     this operation does not cause the target type to be fixed, as
2087     this would indirectly cause this array to be decoded.  The rest
2088     of the routine assumes that the array hasn't been decoded yet,
2089     so we use the basic "value_ind" routine to perform the dereferencing,
2090     as opposed to using "ada_value_ind".  */
2091  if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2092    arr = value_ind (arr);
2093
2094  type = decode_constrained_packed_array_type (value_type (arr));
2095  if (type == NULL)
2096    {
2097      error (_("can't unpack array"));
2098      return NULL;
2099    }
2100
2101  if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2102      && ada_is_modular_type (value_type (arr)))
2103    {
2104       /* This is a (right-justified) modular type representing a packed
2105 	 array with no wrapper.  In order to interpret the value through
2106 	 the (left-justified) packed array type we just built, we must
2107 	 first left-justify it.  */
2108      int bit_size, bit_pos;
2109      ULONGEST mod;
2110
2111      mod = ada_modulus (value_type (arr)) - 1;
2112      bit_size = 0;
2113      while (mod > 0)
2114	{
2115	  bit_size += 1;
2116	  mod >>= 1;
2117	}
2118      bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2119      arr = ada_value_primitive_packed_val (arr, NULL,
2120					    bit_pos / HOST_CHAR_BIT,
2121					    bit_pos % HOST_CHAR_BIT,
2122					    bit_size,
2123					    type);
2124    }
2125
2126  return coerce_unspec_val_to_type (arr, type);
2127}
2128
2129
2130/* The value of the element of packed array ARR at the ARITY indices
2131   given in IND.   ARR must be a simple array.  */
2132
2133static struct value *
2134value_subscript_packed (struct value *arr, int arity, struct value **ind)
2135{
2136  int i;
2137  int bits, elt_off, bit_off;
2138  long elt_total_bit_offset;
2139  struct type *elt_type;
2140  struct value *v;
2141
2142  bits = 0;
2143  elt_total_bit_offset = 0;
2144  elt_type = ada_check_typedef (value_type (arr));
2145  for (i = 0; i < arity; i += 1)
2146    {
2147      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2148          || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149        error
2150          (_("attempt to do packed indexing of "
2151	     "something other than a packed array"));
2152      else
2153        {
2154          struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155          LONGEST lowerbound, upperbound;
2156          LONGEST idx;
2157
2158          if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159            {
2160              lim_warning (_("don't know bounds of array"));
2161              lowerbound = upperbound = 0;
2162            }
2163
2164          idx = pos_atr (ind[i]);
2165          if (idx < lowerbound || idx > upperbound)
2166            lim_warning (_("packed array index %ld out of bounds"),
2167			 (long) idx);
2168          bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169          elt_total_bit_offset += (idx - lowerbound) * bits;
2170          elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2171        }
2172    }
2173  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2175
2176  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2177                                      bits, elt_type);
2178  return v;
2179}
2180
2181/* Non-zero iff TYPE includes negative integer values.  */
2182
2183static int
2184has_negatives (struct type *type)
2185{
2186  switch (TYPE_CODE (type))
2187    {
2188    default:
2189      return 0;
2190    case TYPE_CODE_INT:
2191      return !TYPE_UNSIGNED (type);
2192    case TYPE_CODE_RANGE:
2193      return TYPE_LOW_BOUND (type) < 0;
2194    }
2195}
2196
2197
2198/* Create a new value of type TYPE from the contents of OBJ starting
2199   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2201   assigning through the result will set the field fetched from.
2202   VALADDR is ignored unless OBJ is NULL, in which case,
2203   VALADDR+OFFSET must address the start of storage containing the
2204   packed value.  The value returned  in this case is never an lval.
2205   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2206
2207struct value *
2208ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2209				long offset, int bit_offset, int bit_size,
2210                                struct type *type)
2211{
2212  struct value *v;
2213  int src,                      /* Index into the source area */
2214    targ,                       /* Index into the target area */
2215    srcBitsLeft,                /* Number of source bits left to move */
2216    nsrc, ntarg,                /* Number of source and target bytes */
2217    unusedLS,                   /* Number of bits in next significant
2218                                   byte of source that are unused */
2219    accumSize;                  /* Number of meaningful bits in accum */
2220  unsigned char *bytes;         /* First byte containing data to unpack */
2221  unsigned char *unpacked;
2222  unsigned long accum;          /* Staging area for bits being transferred */
2223  unsigned char sign;
2224  int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2225  /* Transmit bytes from least to most significant; delta is the direction
2226     the indices move.  */
2227  int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2228
2229  type = ada_check_typedef (type);
2230
2231  if (obj == NULL)
2232    {
2233      v = allocate_value (type);
2234      bytes = (unsigned char *) (valaddr + offset);
2235    }
2236  else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2237    {
2238      v = value_at (type,
2239                    value_address (obj) + offset);
2240      bytes = (unsigned char *) alloca (len);
2241      read_memory (value_address (v), bytes, len);
2242    }
2243  else
2244    {
2245      v = allocate_value (type);
2246      bytes = (unsigned char *) value_contents (obj) + offset;
2247    }
2248
2249  if (obj != NULL)
2250    {
2251      CORE_ADDR new_addr;
2252
2253      set_value_component_location (v, obj);
2254      new_addr = value_address (obj) + offset;
2255      set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256      set_value_bitsize (v, bit_size);
2257      if (value_bitpos (v) >= HOST_CHAR_BIT)
2258        {
2259	  ++new_addr;
2260          set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2261        }
2262      set_value_address (v, new_addr);
2263    }
2264  else
2265    set_value_bitsize (v, bit_size);
2266  unpacked = (unsigned char *) value_contents (v);
2267
2268  srcBitsLeft = bit_size;
2269  nsrc = len;
2270  ntarg = TYPE_LENGTH (type);
2271  sign = 0;
2272  if (bit_size == 0)
2273    {
2274      memset (unpacked, 0, TYPE_LENGTH (type));
2275      return v;
2276    }
2277  else if (gdbarch_bits_big_endian (get_type_arch (type)))
2278    {
2279      src = len - 1;
2280      if (has_negatives (type)
2281          && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2282        sign = ~0;
2283
2284      unusedLS =
2285        (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286        % HOST_CHAR_BIT;
2287
2288      switch (TYPE_CODE (type))
2289        {
2290        case TYPE_CODE_ARRAY:
2291        case TYPE_CODE_UNION:
2292        case TYPE_CODE_STRUCT:
2293          /* Non-scalar values must be aligned at a byte boundary...  */
2294          accumSize =
2295            (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296          /* ... And are placed at the beginning (most-significant) bytes
2297             of the target.  */
2298          targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2299          ntarg = targ + 1;
2300          break;
2301        default:
2302          accumSize = 0;
2303          targ = TYPE_LENGTH (type) - 1;
2304          break;
2305        }
2306    }
2307  else
2308    {
2309      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310
2311      src = targ = 0;
2312      unusedLS = bit_offset;
2313      accumSize = 0;
2314
2315      if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2316        sign = ~0;
2317    }
2318
2319  accum = 0;
2320  while (nsrc > 0)
2321    {
2322      /* Mask for removing bits of the next source byte that are not
2323         part of the value.  */
2324      unsigned int unusedMSMask =
2325        (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326        1;
2327      /* Sign-extend bits for this byte.  */
2328      unsigned int signMask = sign & ~unusedMSMask;
2329
2330      accum |=
2331        (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2332      accumSize += HOST_CHAR_BIT - unusedLS;
2333      if (accumSize >= HOST_CHAR_BIT)
2334        {
2335          unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336          accumSize -= HOST_CHAR_BIT;
2337          accum >>= HOST_CHAR_BIT;
2338          ntarg -= 1;
2339          targ += delta;
2340        }
2341      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342      unusedLS = 0;
2343      nsrc -= 1;
2344      src += delta;
2345    }
2346  while (ntarg > 0)
2347    {
2348      accum |= sign << accumSize;
2349      unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350      accumSize -= HOST_CHAR_BIT;
2351      accum >>= HOST_CHAR_BIT;
2352      ntarg -= 1;
2353      targ += delta;
2354    }
2355
2356  return v;
2357}
2358
2359/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360   TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2361   not overlap.  */
2362static void
2363move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2364	   int src_offset, int n, int bits_big_endian_p)
2365{
2366  unsigned int accum, mask;
2367  int accum_bits, chunk_size;
2368
2369  target += targ_offset / HOST_CHAR_BIT;
2370  targ_offset %= HOST_CHAR_BIT;
2371  source += src_offset / HOST_CHAR_BIT;
2372  src_offset %= HOST_CHAR_BIT;
2373  if (bits_big_endian_p)
2374    {
2375      accum = (unsigned char) *source;
2376      source += 1;
2377      accum_bits = HOST_CHAR_BIT - src_offset;
2378
2379      while (n > 0)
2380        {
2381          int unused_right;
2382
2383          accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384          accum_bits += HOST_CHAR_BIT;
2385          source += 1;
2386          chunk_size = HOST_CHAR_BIT - targ_offset;
2387          if (chunk_size > n)
2388            chunk_size = n;
2389          unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390          mask = ((1 << chunk_size) - 1) << unused_right;
2391          *target =
2392            (*target & ~mask)
2393            | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394          n -= chunk_size;
2395          accum_bits -= chunk_size;
2396          target += 1;
2397          targ_offset = 0;
2398        }
2399    }
2400  else
2401    {
2402      accum = (unsigned char) *source >> src_offset;
2403      source += 1;
2404      accum_bits = HOST_CHAR_BIT - src_offset;
2405
2406      while (n > 0)
2407        {
2408          accum = accum + ((unsigned char) *source << accum_bits);
2409          accum_bits += HOST_CHAR_BIT;
2410          source += 1;
2411          chunk_size = HOST_CHAR_BIT - targ_offset;
2412          if (chunk_size > n)
2413            chunk_size = n;
2414          mask = ((1 << chunk_size) - 1) << targ_offset;
2415          *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416          n -= chunk_size;
2417          accum_bits -= chunk_size;
2418          accum >>= chunk_size;
2419          target += 1;
2420          targ_offset = 0;
2421        }
2422    }
2423}
2424
2425/* Store the contents of FROMVAL into the location of TOVAL.
2426   Return a new value with the location of TOVAL and contents of
2427   FROMVAL.   Handles assignment into packed fields that have
2428   floating-point or non-scalar types.  */
2429
2430static struct value *
2431ada_value_assign (struct value *toval, struct value *fromval)
2432{
2433  struct type *type = value_type (toval);
2434  int bits = value_bitsize (toval);
2435
2436  toval = ada_coerce_ref (toval);
2437  fromval = ada_coerce_ref (fromval);
2438
2439  if (ada_is_direct_array_type (value_type (toval)))
2440    toval = ada_coerce_to_simple_array (toval);
2441  if (ada_is_direct_array_type (value_type (fromval)))
2442    fromval = ada_coerce_to_simple_array (fromval);
2443
2444  if (!deprecated_value_modifiable (toval))
2445    error (_("Left operand of assignment is not a modifiable lvalue."));
2446
2447  if (VALUE_LVAL (toval) == lval_memory
2448      && bits > 0
2449      && (TYPE_CODE (type) == TYPE_CODE_FLT
2450          || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2451    {
2452      int len = (value_bitpos (toval)
2453		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2454      int from_size;
2455      char *buffer = (char *) alloca (len);
2456      struct value *val;
2457      CORE_ADDR to_addr = value_address (toval);
2458
2459      if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460        fromval = value_cast (type, fromval);
2461
2462      read_memory (to_addr, buffer, len);
2463      from_size = value_bitsize (fromval);
2464      if (from_size == 0)
2465	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2466      if (gdbarch_bits_big_endian (get_type_arch (type)))
2467        move_bits (buffer, value_bitpos (toval),
2468		   value_contents (fromval), from_size - bits, bits, 1);
2469      else
2470        move_bits (buffer, value_bitpos (toval),
2471		   value_contents (fromval), 0, bits, 0);
2472      write_memory (to_addr, buffer, len);
2473      observer_notify_memory_changed (to_addr, len, buffer);
2474
2475      val = value_copy (toval);
2476      memcpy (value_contents_raw (val), value_contents (fromval),
2477              TYPE_LENGTH (type));
2478      deprecated_set_value_type (val, type);
2479
2480      return val;
2481    }
2482
2483  return value_assign (toval, fromval);
2484}
2485
2486
2487/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489 * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2490 * COMPONENT, and not the inferior's memory.  The current contents
2491 * of COMPONENT are ignored.  */
2492static void
2493value_assign_to_component (struct value *container, struct value *component,
2494			   struct value *val)
2495{
2496  LONGEST offset_in_container =
2497    (LONGEST)  (value_address (component) - value_address (container));
2498  int bit_offset_in_container =
2499    value_bitpos (component) - value_bitpos (container);
2500  int bits;
2501
2502  val = value_cast (value_type (component), val);
2503
2504  if (value_bitsize (component) == 0)
2505    bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506  else
2507    bits = value_bitsize (component);
2508
2509  if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2510    move_bits (value_contents_writeable (container) + offset_in_container,
2511	       value_bitpos (container) + bit_offset_in_container,
2512	       value_contents (val),
2513	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2514	       bits, 1);
2515  else
2516    move_bits (value_contents_writeable (container) + offset_in_container,
2517	       value_bitpos (container) + bit_offset_in_container,
2518	       value_contents (val), 0, bits, 0);
2519}
2520
2521/* The value of the element of array ARR at the ARITY indices given in IND.
2522   ARR may be either a simple array, GNAT array descriptor, or pointer
2523   thereto.  */
2524
2525struct value *
2526ada_value_subscript (struct value *arr, int arity, struct value **ind)
2527{
2528  int k;
2529  struct value *elt;
2530  struct type *elt_type;
2531
2532  elt = ada_coerce_to_simple_array (arr);
2533
2534  elt_type = ada_check_typedef (value_type (elt));
2535  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2536      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537    return value_subscript_packed (elt, arity, ind);
2538
2539  for (k = 0; k < arity; k += 1)
2540    {
2541      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2542        error (_("too many subscripts (%d expected)"), k);
2543      elt = value_subscript (elt, pos_atr (ind[k]));
2544    }
2545  return elt;
2546}
2547
2548/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549   value of the element of *ARR at the ARITY indices given in
2550   IND.  Does not read the entire array into memory.  */
2551
2552static struct value *
2553ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2554                         struct value **ind)
2555{
2556  int k;
2557
2558  for (k = 0; k < arity; k += 1)
2559    {
2560      LONGEST lwb, upb;
2561
2562      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2563        error (_("too many subscripts (%d expected)"), k);
2564      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2565                        value_copy (arr));
2566      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2567      arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2568      type = TYPE_TARGET_TYPE (type);
2569    }
2570
2571  return value_ind (arr);
2572}
2573
2574/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2575   actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576   elements starting at index LOW.  The lower bound of this array is LOW, as
2577   per Ada rules.  */
2578static struct value *
2579ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580                          int low, int high)
2581{
2582  struct type *type0 = ada_check_typedef (type);
2583  CORE_ADDR base = value_as_address (array_ptr)
2584    + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585       * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2586  struct type *index_type =
2587    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2588                       low, high);
2589  struct type *slice_type =
2590    create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2591
2592  return value_at_lazy (slice_type, base);
2593}
2594
2595
2596static struct value *
2597ada_value_slice (struct value *array, int low, int high)
2598{
2599  struct type *type = ada_check_typedef (value_type (array));
2600  struct type *index_type =
2601    create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2602  struct type *slice_type =
2603    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2604
2605  return value_cast (slice_type, value_slice (array, low, high - low + 1));
2606}
2607
2608/* If type is a record type in the form of a standard GNAT array
2609   descriptor, returns the number of dimensions for type.  If arr is a
2610   simple array, returns the number of "array of"s that prefix its
2611   type designation.  Otherwise, returns 0.  */
2612
2613int
2614ada_array_arity (struct type *type)
2615{
2616  int arity;
2617
2618  if (type == NULL)
2619    return 0;
2620
2621  type = desc_base_type (type);
2622
2623  arity = 0;
2624  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2625    return desc_arity (desc_bounds_type (type));
2626  else
2627    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2628      {
2629        arity += 1;
2630        type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2631      }
2632
2633  return arity;
2634}
2635
2636/* If TYPE is a record type in the form of a standard GNAT array
2637   descriptor or a simple array type, returns the element type for
2638   TYPE after indexing by NINDICES indices, or by all indices if
2639   NINDICES is -1.  Otherwise, returns NULL.  */
2640
2641struct type *
2642ada_array_element_type (struct type *type, int nindices)
2643{
2644  type = desc_base_type (type);
2645
2646  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2647    {
2648      int k;
2649      struct type *p_array_type;
2650
2651      p_array_type = desc_data_target_type (type);
2652
2653      k = ada_array_arity (type);
2654      if (k == 0)
2655        return NULL;
2656
2657      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2658      if (nindices >= 0 && k > nindices)
2659        k = nindices;
2660      while (k > 0 && p_array_type != NULL)
2661        {
2662          p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2663          k -= 1;
2664        }
2665      return p_array_type;
2666    }
2667  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668    {
2669      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2670        {
2671          type = TYPE_TARGET_TYPE (type);
2672          nindices -= 1;
2673        }
2674      return type;
2675    }
2676
2677  return NULL;
2678}
2679
2680/* The type of nth index in arrays of given type (n numbering from 1).
2681   Does not examine memory.  Throws an error if N is invalid or TYPE
2682   is not an array type.  NAME is the name of the Ada attribute being
2683   evaluated ('range, 'first, 'last, or 'length); it is used in building
2684   the error message.  */
2685
2686static struct type *
2687ada_index_type (struct type *type, int n, const char *name)
2688{
2689  struct type *result_type;
2690
2691  type = desc_base_type (type);
2692
2693  if (n < 0 || n > ada_array_arity (type))
2694    error (_("invalid dimension number to '%s"), name);
2695
2696  if (ada_is_simple_array_type (type))
2697    {
2698      int i;
2699
2700      for (i = 1; i < n; i += 1)
2701        type = TYPE_TARGET_TYPE (type);
2702      result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2703      /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704         has a target type of TYPE_CODE_UNDEF.  We compensate here, but
2705         perhaps stabsread.c would make more sense.  */
2706      if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707        result_type = NULL;
2708    }
2709  else
2710    {
2711      result_type = desc_index_type (desc_bounds_type (type), n);
2712      if (result_type == NULL)
2713	error (_("attempt to take bound of something that is not an array"));
2714    }
2715
2716  return result_type;
2717}
2718
2719/* Given that arr is an array type, returns the lower bound of the
2720   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2721   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
2722   array-descriptor type.  It works for other arrays with bounds supplied
2723   by run-time quantities other than discriminants.  */
2724
2725static LONGEST
2726ada_array_bound_from_type (struct type * arr_type, int n, int which)
2727{
2728  struct type *type, *elt_type, *index_type_desc, *index_type;
2729  int i;
2730
2731  gdb_assert (which == 0 || which == 1);
2732
2733  if (ada_is_constrained_packed_array_type (arr_type))
2734    arr_type = decode_constrained_packed_array_type (arr_type);
2735
2736  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2737    return (LONGEST) - which;
2738
2739  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740    type = TYPE_TARGET_TYPE (arr_type);
2741  else
2742    type = arr_type;
2743
2744  elt_type = type;
2745  for (i = n; i > 1; i--)
2746    elt_type = TYPE_TARGET_TYPE (type);
2747
2748  index_type_desc = ada_find_parallel_type (type, "___XA");
2749  ada_fixup_array_indexes_type (index_type_desc);
2750  if (index_type_desc != NULL)
2751    index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752				      NULL);
2753  else
2754    index_type = TYPE_INDEX_TYPE (elt_type);
2755
2756  return
2757    (LONGEST) (which == 0
2758               ? ada_discrete_type_low_bound (index_type)
2759               : ada_discrete_type_high_bound (index_type));
2760}
2761
2762/* Given that arr is an array value, returns the lower bound of the
2763   nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764   WHICH is 1.  This routine will also work for arrays with bounds
2765   supplied by run-time quantities other than discriminants.  */
2766
2767static LONGEST
2768ada_array_bound (struct value *arr, int n, int which)
2769{
2770  struct type *arr_type = value_type (arr);
2771
2772  if (ada_is_constrained_packed_array_type (arr_type))
2773    return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2774  else if (ada_is_simple_array_type (arr_type))
2775    return ada_array_bound_from_type (arr_type, n, which);
2776  else
2777    return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2778}
2779
2780/* Given that arr is an array value, returns the length of the
2781   nth index.  This routine will also work for arrays with bounds
2782   supplied by run-time quantities other than discriminants.
2783   Does not work for arrays indexed by enumeration types with representation
2784   clauses at the moment.  */
2785
2786static LONGEST
2787ada_array_length (struct value *arr, int n)
2788{
2789  struct type *arr_type = ada_check_typedef (value_type (arr));
2790
2791  if (ada_is_constrained_packed_array_type (arr_type))
2792    return ada_array_length (decode_constrained_packed_array (arr), n);
2793
2794  if (ada_is_simple_array_type (arr_type))
2795    return (ada_array_bound_from_type (arr_type, n, 1)
2796	    - ada_array_bound_from_type (arr_type, n, 0) + 1);
2797  else
2798    return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799	    - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2800}
2801
2802/* An empty array whose type is that of ARR_TYPE (an array type),
2803   with bounds LOW to LOW-1.  */
2804
2805static struct value *
2806empty_array (struct type *arr_type, int low)
2807{
2808  struct type *arr_type0 = ada_check_typedef (arr_type);
2809  struct type *index_type =
2810    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2811                       low, low - 1);
2812  struct type *elt_type = ada_array_element_type (arr_type0, 1);
2813
2814  return allocate_value (create_array_type (NULL, elt_type, index_type));
2815}
2816
2817
2818                                /* Name resolution */
2819
2820/* The "decoded" name for the user-definable Ada operator corresponding
2821   to OP.  */
2822
2823static const char *
2824ada_decoded_op_name (enum exp_opcode op)
2825{
2826  int i;
2827
2828  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2829    {
2830      if (ada_opname_table[i].op == op)
2831        return ada_opname_table[i].decoded;
2832    }
2833  error (_("Could not find operator name for opcode"));
2834}
2835
2836
2837/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838   references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839   undefined namespace) and converts operators that are
2840   user-defined into appropriate function calls.  If CONTEXT_TYPE is
2841   non-null, it provides a preferred result type [at the moment, only
2842   type void has any effect---causing procedures to be preferred over
2843   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
2844   return type is preferred.  May change (expand) *EXP.  */
2845
2846static void
2847resolve (struct expression **expp, int void_context_p)
2848{
2849  struct type *context_type = NULL;
2850  int pc = 0;
2851
2852  if (void_context_p)
2853    context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854
2855  resolve_subexp (expp, &pc, 1, context_type);
2856}
2857
2858/* Resolve the operator of the subexpression beginning at
2859   position *POS of *EXPP.  "Resolving" consists of replacing
2860   the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861   with their resolutions, replacing built-in operators with
2862   function calls to user-defined operators, where appropriate, and,
2863   when DEPROCEDURE_P is non-zero, converting function-valued variables
2864   into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
2865   are as in ada_resolve, above.  */
2866
2867static struct value *
2868resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2869                struct type *context_type)
2870{
2871  int pc = *pos;
2872  int i;
2873  struct expression *exp;       /* Convenience: == *expp.  */
2874  enum exp_opcode op = (*expp)->elts[pc].opcode;
2875  struct value **argvec;        /* Vector of operand types (alloca'ed).  */
2876  int nargs;                    /* Number of operands.  */
2877  int oplen;
2878
2879  argvec = NULL;
2880  nargs = 0;
2881  exp = *expp;
2882
2883  /* Pass one: resolve operands, saving their types and updating *pos,
2884     if needed.  */
2885  switch (op)
2886    {
2887    case OP_FUNCALL:
2888      if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2889          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890        *pos += 7;
2891      else
2892        {
2893          *pos += 3;
2894          resolve_subexp (expp, pos, 0, NULL);
2895        }
2896      nargs = longest_to_int (exp->elts[pc + 1].longconst);
2897      break;
2898
2899    case UNOP_ADDR:
2900      *pos += 1;
2901      resolve_subexp (expp, pos, 0, NULL);
2902      break;
2903
2904    case UNOP_QUAL:
2905      *pos += 3;
2906      resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2907      break;
2908
2909    case OP_ATR_MODULUS:
2910    case OP_ATR_SIZE:
2911    case OP_ATR_TAG:
2912    case OP_ATR_FIRST:
2913    case OP_ATR_LAST:
2914    case OP_ATR_LENGTH:
2915    case OP_ATR_POS:
2916    case OP_ATR_VAL:
2917    case OP_ATR_MIN:
2918    case OP_ATR_MAX:
2919    case TERNOP_IN_RANGE:
2920    case BINOP_IN_BOUNDS:
2921    case UNOP_IN_RANGE:
2922    case OP_AGGREGATE:
2923    case OP_OTHERS:
2924    case OP_CHOICES:
2925    case OP_POSITIONAL:
2926    case OP_DISCRETE_RANGE:
2927    case OP_NAME:
2928      ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929      *pos += oplen;
2930      break;
2931
2932    case BINOP_ASSIGN:
2933      {
2934        struct value *arg1;
2935
2936        *pos += 1;
2937        arg1 = resolve_subexp (expp, pos, 0, NULL);
2938        if (arg1 == NULL)
2939          resolve_subexp (expp, pos, 1, NULL);
2940        else
2941          resolve_subexp (expp, pos, 1, value_type (arg1));
2942        break;
2943      }
2944
2945    case UNOP_CAST:
2946      *pos += 3;
2947      nargs = 1;
2948      break;
2949
2950    case BINOP_ADD:
2951    case BINOP_SUB:
2952    case BINOP_MUL:
2953    case BINOP_DIV:
2954    case BINOP_REM:
2955    case BINOP_MOD:
2956    case BINOP_EXP:
2957    case BINOP_CONCAT:
2958    case BINOP_LOGICAL_AND:
2959    case BINOP_LOGICAL_OR:
2960    case BINOP_BITWISE_AND:
2961    case BINOP_BITWISE_IOR:
2962    case BINOP_BITWISE_XOR:
2963
2964    case BINOP_EQUAL:
2965    case BINOP_NOTEQUAL:
2966    case BINOP_LESS:
2967    case BINOP_GTR:
2968    case BINOP_LEQ:
2969    case BINOP_GEQ:
2970
2971    case BINOP_REPEAT:
2972    case BINOP_SUBSCRIPT:
2973    case BINOP_COMMA:
2974      *pos += 1;
2975      nargs = 2;
2976      break;
2977
2978    case UNOP_NEG:
2979    case UNOP_PLUS:
2980    case UNOP_LOGICAL_NOT:
2981    case UNOP_ABS:
2982    case UNOP_IND:
2983      *pos += 1;
2984      nargs = 1;
2985      break;
2986
2987    case OP_LONG:
2988    case OP_DOUBLE:
2989    case OP_VAR_VALUE:
2990      *pos += 4;
2991      break;
2992
2993    case OP_TYPE:
2994    case OP_BOOL:
2995    case OP_LAST:
2996    case OP_INTERNALVAR:
2997      *pos += 3;
2998      break;
2999
3000    case UNOP_MEMVAL:
3001      *pos += 3;
3002      nargs = 1;
3003      break;
3004
3005    case OP_REGISTER:
3006      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007      break;
3008
3009    case STRUCTOP_STRUCT:
3010      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011      nargs = 1;
3012      break;
3013
3014    case TERNOP_SLICE:
3015      *pos += 1;
3016      nargs = 3;
3017      break;
3018
3019    case OP_STRING:
3020      break;
3021
3022    default:
3023      error (_("Unexpected operator during name resolution"));
3024    }
3025
3026  argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3027  for (i = 0; i < nargs; i += 1)
3028    argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029  argvec[i] = NULL;
3030  exp = *expp;
3031
3032  /* Pass two: perform any resolution on principal operator.  */
3033  switch (op)
3034    {
3035    default:
3036      break;
3037
3038    case OP_VAR_VALUE:
3039      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3040        {
3041          struct ada_symbol_info *candidates;
3042          int n_candidates;
3043
3044          n_candidates =
3045            ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046                                    (exp->elts[pc + 2].symbol),
3047                                    exp->elts[pc + 1].block, VAR_DOMAIN,
3048                                    &candidates);
3049
3050          if (n_candidates > 1)
3051            {
3052              /* Types tend to get re-introduced locally, so if there
3053                 are any local symbols that are not types, first filter
3054                 out all types.  */
3055              int j;
3056              for (j = 0; j < n_candidates; j += 1)
3057                switch (SYMBOL_CLASS (candidates[j].sym))
3058                  {
3059                  case LOC_REGISTER:
3060                  case LOC_ARG:
3061                  case LOC_REF_ARG:
3062                  case LOC_REGPARM_ADDR:
3063                  case LOC_LOCAL:
3064                  case LOC_COMPUTED:
3065                    goto FoundNonType;
3066                  default:
3067                    break;
3068                  }
3069            FoundNonType:
3070              if (j < n_candidates)
3071                {
3072                  j = 0;
3073                  while (j < n_candidates)
3074                    {
3075                      if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076                        {
3077                          candidates[j] = candidates[n_candidates - 1];
3078                          n_candidates -= 1;
3079                        }
3080                      else
3081                        j += 1;
3082                    }
3083                }
3084            }
3085
3086          if (n_candidates == 0)
3087            error (_("No definition found for %s"),
3088                   SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089          else if (n_candidates == 1)
3090            i = 0;
3091          else if (deprocedure_p
3092                   && !is_nonfunction (candidates, n_candidates))
3093            {
3094              i = ada_resolve_function
3095                (candidates, n_candidates, NULL, 0,
3096                 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097                 context_type);
3098              if (i < 0)
3099                error (_("Could not find a match for %s"),
3100                       SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101            }
3102          else
3103            {
3104              printf_filtered (_("Multiple matches for %s\n"),
3105                               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106              user_select_syms (candidates, n_candidates, 1);
3107              i = 0;
3108            }
3109
3110          exp->elts[pc + 1].block = candidates[i].block;
3111          exp->elts[pc + 2].symbol = candidates[i].sym;
3112          if (innermost_block == NULL
3113              || contained_in (candidates[i].block, innermost_block))
3114            innermost_block = candidates[i].block;
3115        }
3116
3117      if (deprocedure_p
3118          && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119              == TYPE_CODE_FUNC))
3120        {
3121          replace_operator_with_call (expp, pc, 0, 0,
3122                                      exp->elts[pc + 2].symbol,
3123                                      exp->elts[pc + 1].block);
3124          exp = *expp;
3125        }
3126      break;
3127
3128    case OP_FUNCALL:
3129      {
3130        if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3131            && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3132          {
3133            struct ada_symbol_info *candidates;
3134            int n_candidates;
3135
3136            n_candidates =
3137              ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138                                      (exp->elts[pc + 5].symbol),
3139                                      exp->elts[pc + 4].block, VAR_DOMAIN,
3140                                      &candidates);
3141            if (n_candidates == 1)
3142              i = 0;
3143            else
3144              {
3145                i = ada_resolve_function
3146                  (candidates, n_candidates,
3147                   argvec, nargs,
3148                   SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149                   context_type);
3150                if (i < 0)
3151                  error (_("Could not find a match for %s"),
3152                         SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153              }
3154
3155            exp->elts[pc + 4].block = candidates[i].block;
3156            exp->elts[pc + 5].symbol = candidates[i].sym;
3157            if (innermost_block == NULL
3158                || contained_in (candidates[i].block, innermost_block))
3159              innermost_block = candidates[i].block;
3160          }
3161      }
3162      break;
3163    case BINOP_ADD:
3164    case BINOP_SUB:
3165    case BINOP_MUL:
3166    case BINOP_DIV:
3167    case BINOP_REM:
3168    case BINOP_MOD:
3169    case BINOP_CONCAT:
3170    case BINOP_BITWISE_AND:
3171    case BINOP_BITWISE_IOR:
3172    case BINOP_BITWISE_XOR:
3173    case BINOP_EQUAL:
3174    case BINOP_NOTEQUAL:
3175    case BINOP_LESS:
3176    case BINOP_GTR:
3177    case BINOP_LEQ:
3178    case BINOP_GEQ:
3179    case BINOP_EXP:
3180    case UNOP_NEG:
3181    case UNOP_PLUS:
3182    case UNOP_LOGICAL_NOT:
3183    case UNOP_ABS:
3184      if (possible_user_operator_p (op, argvec))
3185        {
3186          struct ada_symbol_info *candidates;
3187          int n_candidates;
3188
3189          n_candidates =
3190            ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191                                    (struct block *) NULL, VAR_DOMAIN,
3192                                    &candidates);
3193          i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3194                                    ada_decoded_op_name (op), NULL);
3195          if (i < 0)
3196            break;
3197
3198          replace_operator_with_call (expp, pc, nargs, 1,
3199                                      candidates[i].sym, candidates[i].block);
3200          exp = *expp;
3201        }
3202      break;
3203
3204    case OP_TYPE:
3205    case OP_REGISTER:
3206      return NULL;
3207    }
3208
3209  *pos = pc;
3210  return evaluate_subexp_type (exp, pos);
3211}
3212
3213/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3214   MAY_DEREF is non-zero, the formal may be a pointer and the actual
3215   a non-pointer.  */
3216/* The term "match" here is rather loose.  The match is heuristic and
3217   liberal.  */
3218
3219static int
3220ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3221{
3222  ftype = ada_check_typedef (ftype);
3223  atype = ada_check_typedef (atype);
3224
3225  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226    ftype = TYPE_TARGET_TYPE (ftype);
3227  if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228    atype = TYPE_TARGET_TYPE (atype);
3229
3230  switch (TYPE_CODE (ftype))
3231    {
3232    default:
3233      return TYPE_CODE (ftype) == TYPE_CODE (atype);
3234    case TYPE_CODE_PTR:
3235      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3236        return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237                               TYPE_TARGET_TYPE (atype), 0);
3238      else
3239        return (may_deref
3240                && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3241    case TYPE_CODE_INT:
3242    case TYPE_CODE_ENUM:
3243    case TYPE_CODE_RANGE:
3244      switch (TYPE_CODE (atype))
3245        {
3246        case TYPE_CODE_INT:
3247        case TYPE_CODE_ENUM:
3248        case TYPE_CODE_RANGE:
3249          return 1;
3250        default:
3251          return 0;
3252        }
3253
3254    case TYPE_CODE_ARRAY:
3255      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3256              || ada_is_array_descriptor_type (atype));
3257
3258    case TYPE_CODE_STRUCT:
3259      if (ada_is_array_descriptor_type (ftype))
3260        return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261                || ada_is_array_descriptor_type (atype));
3262      else
3263        return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264                && !ada_is_array_descriptor_type (atype));
3265
3266    case TYPE_CODE_UNION:
3267    case TYPE_CODE_FLT:
3268      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269    }
3270}
3271
3272/* Return non-zero if the formals of FUNC "sufficiently match" the
3273   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3274   may also be an enumeral, in which case it is treated as a 0-
3275   argument function.  */
3276
3277static int
3278ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3279{
3280  int i;
3281  struct type *func_type = SYMBOL_TYPE (func);
3282
3283  if (SYMBOL_CLASS (func) == LOC_CONST
3284      && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3285    return (n_actuals == 0);
3286  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287    return 0;
3288
3289  if (TYPE_NFIELDS (func_type) != n_actuals)
3290    return 0;
3291
3292  for (i = 0; i < n_actuals; i += 1)
3293    {
3294      if (actuals[i] == NULL)
3295        return 0;
3296      else
3297        {
3298          struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299								   i));
3300          struct type *atype = ada_check_typedef (value_type (actuals[i]));
3301
3302          if (!ada_type_match (ftype, atype, 1))
3303            return 0;
3304        }
3305    }
3306  return 1;
3307}
3308
3309/* False iff function type FUNC_TYPE definitely does not produce a value
3310   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3311   FUNC_TYPE is not a valid function type with a non-null return type
3312   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3313
3314static int
3315return_match (struct type *func_type, struct type *context_type)
3316{
3317  struct type *return_type;
3318
3319  if (func_type == NULL)
3320    return 1;
3321
3322  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323    return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324  else
3325    return_type = base_type (func_type);
3326  if (return_type == NULL)
3327    return 1;
3328
3329  context_type = base_type (context_type);
3330
3331  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332    return context_type == NULL || return_type == context_type;
3333  else if (context_type == NULL)
3334    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335  else
3336    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337}
3338
3339
3340/* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3341   function (if any) that matches the types of the NARGS arguments in
3342   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3343   that returns that type, then eliminate matches that don't.  If
3344   CONTEXT_TYPE is void and there is at least one match that does not
3345   return void, eliminate all matches that do.
3346
3347   Asks the user if there is more than one match remaining.  Returns -1
3348   if there is no such symbol or none is selected.  NAME is used
3349   solely for messages.  May re-arrange and modify SYMS in
3350   the process; the index returned is for the modified vector.  */
3351
3352static int
3353ada_resolve_function (struct ada_symbol_info syms[],
3354                      int nsyms, struct value **args, int nargs,
3355                      const char *name, struct type *context_type)
3356{
3357  int fallback;
3358  int k;
3359  int m;                        /* Number of hits */
3360
3361  m = 0;
3362  /* In the first pass of the loop, we only accept functions matching
3363     context_type.  If none are found, we add a second pass of the loop
3364     where every function is accepted.  */
3365  for (fallback = 0; m == 0 && fallback < 2; fallback++)
3366    {
3367      for (k = 0; k < nsyms; k += 1)
3368        {
3369          struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3370
3371          if (ada_args_match (syms[k].sym, args, nargs)
3372              && (fallback || return_match (type, context_type)))
3373            {
3374              syms[m] = syms[k];
3375              m += 1;
3376            }
3377        }
3378    }
3379
3380  if (m == 0)
3381    return -1;
3382  else if (m > 1)
3383    {
3384      printf_filtered (_("Multiple matches for %s\n"), name);
3385      user_select_syms (syms, m, 1);
3386      return 0;
3387    }
3388  return 0;
3389}
3390
3391/* Returns true (non-zero) iff decoded name N0 should appear before N1
3392   in a listing of choices during disambiguation (see sort_choices, below).
3393   The idea is that overloadings of a subprogram name from the
3394   same package should sort in their source order.  We settle for ordering
3395   such symbols by their trailing number (__N  or $N).  */
3396
3397static int
3398encoded_ordered_before (char *N0, char *N1)
3399{
3400  if (N1 == NULL)
3401    return 0;
3402  else if (N0 == NULL)
3403    return 1;
3404  else
3405    {
3406      int k0, k1;
3407
3408      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3409        ;
3410      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3411        ;
3412      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3413          && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414        {
3415          int n0, n1;
3416
3417          n0 = k0;
3418          while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419            n0 -= 1;
3420          n1 = k1;
3421          while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422            n1 -= 1;
3423          if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424            return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425        }
3426      return (strcmp (N0, N1) < 0);
3427    }
3428}
3429
3430/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431   encoded names.  */
3432
3433static void
3434sort_choices (struct ada_symbol_info syms[], int nsyms)
3435{
3436  int i;
3437
3438  for (i = 1; i < nsyms; i += 1)
3439    {
3440      struct ada_symbol_info sym = syms[i];
3441      int j;
3442
3443      for (j = i - 1; j >= 0; j -= 1)
3444        {
3445          if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446                                      SYMBOL_LINKAGE_NAME (sym.sym)))
3447            break;
3448          syms[j + 1] = syms[j];
3449        }
3450      syms[j + 1] = sym;
3451    }
3452}
3453
3454/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455   by asking the user (if necessary), returning the number selected,
3456   and setting the first elements of SYMS items.  Error if no symbols
3457   selected.  */
3458
3459/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3460   to be re-integrated one of these days.  */
3461
3462int
3463user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3464{
3465  int i;
3466  int *chosen = (int *) alloca (sizeof (int) * nsyms);
3467  int n_chosen;
3468  int first_choice = (max_results == 1) ? 1 : 2;
3469  const char *select_mode = multiple_symbols_select_mode ();
3470
3471  if (max_results < 1)
3472    error (_("Request to select 0 symbols!"));
3473  if (nsyms <= 1)
3474    return nsyms;
3475
3476  if (select_mode == multiple_symbols_cancel)
3477    error (_("\
3478canceled because the command is ambiguous\n\
3479See set/show multiple-symbol."));
3480
3481  /* If select_mode is "all", then return all possible symbols.
3482     Only do that if more than one symbol can be selected, of course.
3483     Otherwise, display the menu as usual.  */
3484  if (select_mode == multiple_symbols_all && max_results > 1)
3485    return nsyms;
3486
3487  printf_unfiltered (_("[0] cancel\n"));
3488  if (max_results > 1)
3489    printf_unfiltered (_("[1] all\n"));
3490
3491  sort_choices (syms, nsyms);
3492
3493  for (i = 0; i < nsyms; i += 1)
3494    {
3495      if (syms[i].sym == NULL)
3496        continue;
3497
3498      if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499        {
3500          struct symtab_and_line sal =
3501            find_function_start_sal (syms[i].sym, 1);
3502
3503	  if (sal.symtab == NULL)
3504	    printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505			       i + first_choice,
3506			       SYMBOL_PRINT_NAME (syms[i].sym),
3507			       sal.line);
3508	  else
3509	    printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510			       SYMBOL_PRINT_NAME (syms[i].sym),
3511			       sal.symtab->filename, sal.line);
3512          continue;
3513        }
3514      else
3515        {
3516          int is_enumeral =
3517            (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518             && SYMBOL_TYPE (syms[i].sym) != NULL
3519             && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3520          struct symtab *symtab = syms[i].sym->symtab;
3521
3522          if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3523            printf_unfiltered (_("[%d] %s at %s:%d\n"),
3524                               i + first_choice,
3525                               SYMBOL_PRINT_NAME (syms[i].sym),
3526                               symtab->filename, SYMBOL_LINE (syms[i].sym));
3527          else if (is_enumeral
3528                   && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3529            {
3530              printf_unfiltered (("[%d] "), i + first_choice);
3531              ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532                              gdb_stdout, -1, 0);
3533              printf_unfiltered (_("'(%s) (enumeral)\n"),
3534                                 SYMBOL_PRINT_NAME (syms[i].sym));
3535            }
3536          else if (symtab != NULL)
3537            printf_unfiltered (is_enumeral
3538                               ? _("[%d] %s in %s (enumeral)\n")
3539                               : _("[%d] %s at %s:?\n"),
3540                               i + first_choice,
3541                               SYMBOL_PRINT_NAME (syms[i].sym),
3542                               symtab->filename);
3543          else
3544            printf_unfiltered (is_enumeral
3545                               ? _("[%d] %s (enumeral)\n")
3546                               : _("[%d] %s at ?\n"),
3547                               i + first_choice,
3548                               SYMBOL_PRINT_NAME (syms[i].sym));
3549        }
3550    }
3551
3552  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3553                             "overload-choice");
3554
3555  for (i = 0; i < n_chosen; i += 1)
3556    syms[i] = syms[chosen[i]];
3557
3558  return n_chosen;
3559}
3560
3561/* Read and validate a set of numeric choices from the user in the
3562   range 0 .. N_CHOICES-1.  Place the results in increasing
3563   order in CHOICES[0 .. N-1], and return N.
3564
3565   The user types choices as a sequence of numbers on one line
3566   separated by blanks, encoding them as follows:
3567
3568     + A choice of 0 means to cancel the selection, throwing an error.
3569     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570     + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571
3572   The user is not allowed to choose more than MAX_RESULTS values.
3573
3574   ANNOTATION_SUFFIX, if present, is used to annotate the input
3575   prompts (for use with the -f switch).  */
3576
3577int
3578get_selections (int *choices, int n_choices, int max_results,
3579                int is_all_choice, char *annotation_suffix)
3580{
3581  char *args;
3582  char *prompt;
3583  int n_chosen;
3584  int first_choice = is_all_choice ? 2 : 1;
3585
3586  prompt = getenv ("PS2");
3587  if (prompt == NULL)
3588    prompt = "> ";
3589
3590  args = command_line_input (prompt, 0, annotation_suffix);
3591
3592  if (args == NULL)
3593    error_no_arg (_("one or more choice numbers"));
3594
3595  n_chosen = 0;
3596
3597  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598     order, as given in args.  Choices are validated.  */
3599  while (1)
3600    {
3601      char *args2;
3602      int choice, j;
3603
3604      while (isspace (*args))
3605        args += 1;
3606      if (*args == '\0' && n_chosen == 0)
3607        error_no_arg (_("one or more choice numbers"));
3608      else if (*args == '\0')
3609        break;
3610
3611      choice = strtol (args, &args2, 10);
3612      if (args == args2 || choice < 0
3613          || choice > n_choices + first_choice - 1)
3614        error (_("Argument must be choice number"));
3615      args = args2;
3616
3617      if (choice == 0)
3618        error (_("cancelled"));
3619
3620      if (choice < first_choice)
3621        {
3622          n_chosen = n_choices;
3623          for (j = 0; j < n_choices; j += 1)
3624            choices[j] = j;
3625          break;
3626        }
3627      choice -= first_choice;
3628
3629      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3630        {
3631        }
3632
3633      if (j < 0 || choice != choices[j])
3634        {
3635          int k;
3636
3637          for (k = n_chosen - 1; k > j; k -= 1)
3638            choices[k + 1] = choices[k];
3639          choices[j + 1] = choice;
3640          n_chosen += 1;
3641        }
3642    }
3643
3644  if (n_chosen > max_results)
3645    error (_("Select no more than %d of the above"), max_results);
3646
3647  return n_chosen;
3648}
3649
3650/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651   on the function identified by SYM and BLOCK, and taking NARGS
3652   arguments.  Update *EXPP as needed to hold more space.  */
3653
3654static void
3655replace_operator_with_call (struct expression **expp, int pc, int nargs,
3656                            int oplen, struct symbol *sym,
3657                            struct block *block)
3658{
3659  /* A new expression, with 6 more elements (3 for funcall, 4 for function
3660     symbol, -oplen for operator being replaced).  */
3661  struct expression *newexp = (struct expression *)
3662    xzalloc (sizeof (struct expression)
3663             + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3664  struct expression *exp = *expp;
3665
3666  newexp->nelts = exp->nelts + 7 - oplen;
3667  newexp->language_defn = exp->language_defn;
3668  newexp->gdbarch = exp->gdbarch;
3669  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3670  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3671          EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3672
3673  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674  newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675
3676  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677  newexp->elts[pc + 4].block = block;
3678  newexp->elts[pc + 5].symbol = sym;
3679
3680  *expp = newexp;
3681  xfree (exp);
3682}
3683
3684/* Type-class predicates */
3685
3686/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687   or FLOAT).  */
3688
3689static int
3690numeric_type_p (struct type *type)
3691{
3692  if (type == NULL)
3693    return 0;
3694  else
3695    {
3696      switch (TYPE_CODE (type))
3697        {
3698        case TYPE_CODE_INT:
3699        case TYPE_CODE_FLT:
3700          return 1;
3701        case TYPE_CODE_RANGE:
3702          return (type == TYPE_TARGET_TYPE (type)
3703                  || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704        default:
3705          return 0;
3706        }
3707    }
3708}
3709
3710/* True iff TYPE is integral (an INT or RANGE of INTs).  */
3711
3712static int
3713integer_type_p (struct type *type)
3714{
3715  if (type == NULL)
3716    return 0;
3717  else
3718    {
3719      switch (TYPE_CODE (type))
3720        {
3721        case TYPE_CODE_INT:
3722          return 1;
3723        case TYPE_CODE_RANGE:
3724          return (type == TYPE_TARGET_TYPE (type)
3725                  || integer_type_p (TYPE_TARGET_TYPE (type)));
3726        default:
3727          return 0;
3728        }
3729    }
3730}
3731
3732/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
3733
3734static int
3735scalar_type_p (struct type *type)
3736{
3737  if (type == NULL)
3738    return 0;
3739  else
3740    {
3741      switch (TYPE_CODE (type))
3742        {
3743        case TYPE_CODE_INT:
3744        case TYPE_CODE_RANGE:
3745        case TYPE_CODE_ENUM:
3746        case TYPE_CODE_FLT:
3747          return 1;
3748        default:
3749          return 0;
3750        }
3751    }
3752}
3753
3754/* True iff TYPE is discrete (INT, RANGE, ENUM).  */
3755
3756static int
3757discrete_type_p (struct type *type)
3758{
3759  if (type == NULL)
3760    return 0;
3761  else
3762    {
3763      switch (TYPE_CODE (type))
3764        {
3765        case TYPE_CODE_INT:
3766        case TYPE_CODE_RANGE:
3767        case TYPE_CODE_ENUM:
3768        case TYPE_CODE_BOOL:
3769          return 1;
3770        default:
3771          return 0;
3772        }
3773    }
3774}
3775
3776/* Returns non-zero if OP with operands in the vector ARGS could be
3777   a user-defined function.  Errs on the side of pre-defined operators
3778   (i.e., result 0).  */
3779
3780static int
3781possible_user_operator_p (enum exp_opcode op, struct value *args[])
3782{
3783  struct type *type0 =
3784    (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3785  struct type *type1 =
3786    (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3787
3788  if (type0 == NULL)
3789    return 0;
3790
3791  switch (op)
3792    {
3793    default:
3794      return 0;
3795
3796    case BINOP_ADD:
3797    case BINOP_SUB:
3798    case BINOP_MUL:
3799    case BINOP_DIV:
3800      return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3801
3802    case BINOP_REM:
3803    case BINOP_MOD:
3804    case BINOP_BITWISE_AND:
3805    case BINOP_BITWISE_IOR:
3806    case BINOP_BITWISE_XOR:
3807      return (!(integer_type_p (type0) && integer_type_p (type1)));
3808
3809    case BINOP_EQUAL:
3810    case BINOP_NOTEQUAL:
3811    case BINOP_LESS:
3812    case BINOP_GTR:
3813    case BINOP_LEQ:
3814    case BINOP_GEQ:
3815      return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3816
3817    case BINOP_CONCAT:
3818      return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3819
3820    case BINOP_EXP:
3821      return (!(numeric_type_p (type0) && integer_type_p (type1)));
3822
3823    case UNOP_NEG:
3824    case UNOP_PLUS:
3825    case UNOP_LOGICAL_NOT:
3826    case UNOP_ABS:
3827      return (!numeric_type_p (type0));
3828
3829    }
3830}
3831
3832                                /* Renaming */
3833
3834/* NOTES:
3835
3836   1. In the following, we assume that a renaming type's name may
3837      have an ___XD suffix.  It would be nice if this went away at some
3838      point.
3839   2. We handle both the (old) purely type-based representation of
3840      renamings and the (new) variable-based encoding.  At some point,
3841      it is devoutly to be hoped that the former goes away
3842      (FIXME: hilfinger-2007-07-09).
3843   3. Subprogram renamings are not implemented, although the XRS
3844      suffix is recognized (FIXME: hilfinger-2007-07-09).  */
3845
3846/* If SYM encodes a renaming,
3847
3848       <renaming> renames <renamed entity>,
3849
3850   sets *LEN to the length of the renamed entity's name,
3851   *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852   the string describing the subcomponent selected from the renamed
3853   entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3854   (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855   are undefined).  Otherwise, returns a value indicating the category
3856   of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857   (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858   subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
3859   strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860   deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861   may be NULL, in which case they are not assigned.
3862
3863   [Currently, however, GCC does not generate subprogram renamings.]  */
3864
3865enum ada_renaming_category
3866ada_parse_renaming (struct symbol *sym,
3867		    const char **renamed_entity, int *len,
3868		    const char **renaming_expr)
3869{
3870  enum ada_renaming_category kind;
3871  const char *info;
3872  const char *suffix;
3873
3874  if (sym == NULL)
3875    return ADA_NOT_RENAMING;
3876  switch (SYMBOL_CLASS (sym))
3877    {
3878    default:
3879      return ADA_NOT_RENAMING;
3880    case LOC_TYPEDEF:
3881      return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882				       renamed_entity, len, renaming_expr);
3883    case LOC_LOCAL:
3884    case LOC_STATIC:
3885    case LOC_COMPUTED:
3886    case LOC_OPTIMIZED_OUT:
3887      info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888      if (info == NULL)
3889	return ADA_NOT_RENAMING;
3890      switch (info[5])
3891	{
3892	case '_':
3893	  kind = ADA_OBJECT_RENAMING;
3894	  info += 6;
3895	  break;
3896	case 'E':
3897	  kind = ADA_EXCEPTION_RENAMING;
3898	  info += 7;
3899	  break;
3900	case 'P':
3901	  kind = ADA_PACKAGE_RENAMING;
3902	  info += 7;
3903	  break;
3904	case 'S':
3905	  kind = ADA_SUBPROGRAM_RENAMING;
3906	  info += 7;
3907	  break;
3908	default:
3909	  return ADA_NOT_RENAMING;
3910	}
3911    }
3912
3913  if (renamed_entity != NULL)
3914    *renamed_entity = info;
3915  suffix = strstr (info, "___XE");
3916  if (suffix == NULL || suffix == info)
3917    return ADA_NOT_RENAMING;
3918  if (len != NULL)
3919    *len = strlen (info) - strlen (suffix);
3920  suffix += 5;
3921  if (renaming_expr != NULL)
3922    *renaming_expr = suffix;
3923  return kind;
3924}
3925
3926/* Assuming TYPE encodes a renaming according to the old encoding in
3927   exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928   *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
3929   ADA_NOT_RENAMING otherwise.  */
3930static enum ada_renaming_category
3931parse_old_style_renaming (struct type *type,
3932			  const char **renamed_entity, int *len,
3933			  const char **renaming_expr)
3934{
3935  enum ada_renaming_category kind;
3936  const char *name;
3937  const char *info;
3938  const char *suffix;
3939
3940  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941      || TYPE_NFIELDS (type) != 1)
3942    return ADA_NOT_RENAMING;
3943
3944  name = type_name_no_tag (type);
3945  if (name == NULL)
3946    return ADA_NOT_RENAMING;
3947
3948  name = strstr (name, "___XR");
3949  if (name == NULL)
3950    return ADA_NOT_RENAMING;
3951  switch (name[5])
3952    {
3953    case '\0':
3954    case '_':
3955      kind = ADA_OBJECT_RENAMING;
3956      break;
3957    case 'E':
3958      kind = ADA_EXCEPTION_RENAMING;
3959      break;
3960    case 'P':
3961      kind = ADA_PACKAGE_RENAMING;
3962      break;
3963    case 'S':
3964      kind = ADA_SUBPROGRAM_RENAMING;
3965      break;
3966    default:
3967      return ADA_NOT_RENAMING;
3968    }
3969
3970  info = TYPE_FIELD_NAME (type, 0);
3971  if (info == NULL)
3972    return ADA_NOT_RENAMING;
3973  if (renamed_entity != NULL)
3974    *renamed_entity = info;
3975  suffix = strstr (info, "___XE");
3976  if (renaming_expr != NULL)
3977    *renaming_expr = suffix + 5;
3978  if (suffix == NULL || suffix == info)
3979    return ADA_NOT_RENAMING;
3980  if (len != NULL)
3981    *len = suffix - info;
3982  return kind;
3983}
3984
3985
3986
3987                                /* Evaluation: Function Calls */
3988
3989/* Return an lvalue containing the value VAL.  This is the identity on
3990   lvalues, and otherwise has the side-effect of allocating memory
3991   in the inferior where a copy of the value contents is copied.  */
3992
3993static struct value *
3994ensure_lval (struct value *val)
3995{
3996  if (VALUE_LVAL (val) == not_lval
3997      || VALUE_LVAL (val) == lval_internalvar)
3998    {
3999      int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4000      const CORE_ADDR addr =
4001        value_as_long (value_allocate_space_in_inferior (len));
4002
4003      set_value_address (val, addr);
4004      VALUE_LVAL (val) = lval_memory;
4005      write_memory (addr, value_contents (val), len);
4006    }
4007
4008  return val;
4009}
4010
4011/* Return the value ACTUAL, converted to be an appropriate value for a
4012   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4013   allocating any necessary descriptors (fat pointers), or copies of
4014   values not residing in memory, updating it as needed.  */
4015
4016struct value *
4017ada_convert_actual (struct value *actual, struct type *formal_type0)
4018{
4019  struct type *actual_type = ada_check_typedef (value_type (actual));
4020  struct type *formal_type = ada_check_typedef (formal_type0);
4021  struct type *formal_target =
4022    TYPE_CODE (formal_type) == TYPE_CODE_PTR
4023    ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4024  struct type *actual_target =
4025    TYPE_CODE (actual_type) == TYPE_CODE_PTR
4026    ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4027
4028  if (ada_is_array_descriptor_type (formal_target)
4029      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4030    return make_array_descriptor (formal_type, actual);
4031  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4033    {
4034      struct value *result;
4035
4036      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4037          && ada_is_array_descriptor_type (actual_target))
4038	result = desc_data (actual);
4039      else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4040        {
4041          if (VALUE_LVAL (actual) != lval_memory)
4042            {
4043              struct value *val;
4044
4045              actual_type = ada_check_typedef (value_type (actual));
4046              val = allocate_value (actual_type);
4047              memcpy ((char *) value_contents_raw (val),
4048                      (char *) value_contents (actual),
4049                      TYPE_LENGTH (actual_type));
4050              actual = ensure_lval (val);
4051            }
4052          result = value_addr (actual);
4053        }
4054      else
4055	return actual;
4056      return value_cast_pointers (formal_type, result);
4057    }
4058  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059    return ada_value_ind (actual);
4060
4061  return actual;
4062}
4063
4064/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065   type TYPE.  This is usually an inefficient no-op except on some targets
4066   (such as AVR) where the representation of a pointer and an address
4067   differs.  */
4068
4069static CORE_ADDR
4070value_pointer (struct value *value, struct type *type)
4071{
4072  struct gdbarch *gdbarch = get_type_arch (type);
4073  unsigned len = TYPE_LENGTH (type);
4074  gdb_byte *buf = alloca (len);
4075  CORE_ADDR addr;
4076
4077  addr = value_address (value);
4078  gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079  addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080  return addr;
4081}
4082
4083
4084/* Push a descriptor of type TYPE for array value ARR on the stack at
4085   *SP, updating *SP to reflect the new descriptor.  Return either
4086   an lvalue representing the new descriptor, or (if TYPE is a pointer-
4087   to-descriptor type rather than a descriptor type), a struct value *
4088   representing a pointer to this descriptor.  */
4089
4090static struct value *
4091make_array_descriptor (struct type *type, struct value *arr)
4092{
4093  struct type *bounds_type = desc_bounds_type (type);
4094  struct type *desc_type = desc_base_type (type);
4095  struct value *descriptor = allocate_value (desc_type);
4096  struct value *bounds = allocate_value (bounds_type);
4097  int i;
4098
4099  for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100       i > 0; i -= 1)
4101    {
4102      modify_field (value_type (bounds), value_contents_writeable (bounds),
4103		    ada_array_bound (arr, i, 0),
4104		    desc_bound_bitpos (bounds_type, i, 0),
4105		    desc_bound_bitsize (bounds_type, i, 0));
4106      modify_field (value_type (bounds), value_contents_writeable (bounds),
4107		    ada_array_bound (arr, i, 1),
4108		    desc_bound_bitpos (bounds_type, i, 1),
4109		    desc_bound_bitsize (bounds_type, i, 1));
4110    }
4111
4112  bounds = ensure_lval (bounds);
4113
4114  modify_field (value_type (descriptor),
4115		value_contents_writeable (descriptor),
4116		value_pointer (ensure_lval (arr),
4117			       TYPE_FIELD_TYPE (desc_type, 0)),
4118		fat_pntr_data_bitpos (desc_type),
4119		fat_pntr_data_bitsize (desc_type));
4120
4121  modify_field (value_type (descriptor),
4122		value_contents_writeable (descriptor),
4123		value_pointer (bounds,
4124			       TYPE_FIELD_TYPE (desc_type, 1)),
4125		fat_pntr_bounds_bitpos (desc_type),
4126		fat_pntr_bounds_bitsize (desc_type));
4127
4128  descriptor = ensure_lval (descriptor);
4129
4130  if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131    return value_addr (descriptor);
4132  else
4133    return descriptor;
4134}
4135
4136/* Dummy definitions for an experimental caching module that is not
4137 * used in the public sources.  */
4138
4139static int
4140lookup_cached_symbol (const char *name, domain_enum namespace,
4141                      struct symbol **sym, struct block **block)
4142{
4143  return 0;
4144}
4145
4146static void
4147cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4148              struct block *block)
4149{
4150}
4151
4152                                /* Symbol Lookup */
4153
4154/* Return the result of a standard (literal, C-like) lookup of NAME in
4155   given DOMAIN, visible from lexical block BLOCK.  */
4156
4157static struct symbol *
4158standard_lookup (const char *name, const struct block *block,
4159                 domain_enum domain)
4160{
4161  struct symbol *sym;
4162
4163  if (lookup_cached_symbol (name, domain, &sym, NULL))
4164    return sym;
4165  sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166  cache_symbol (name, domain, sym, block_found);
4167  return sym;
4168}
4169
4170
4171/* Non-zero iff there is at least one non-function/non-enumeral symbol
4172   in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4173   since they contend in overloading in the same way.  */
4174static int
4175is_nonfunction (struct ada_symbol_info syms[], int n)
4176{
4177  int i;
4178
4179  for (i = 0; i < n; i += 1)
4180    if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181        && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182            || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4183      return 1;
4184
4185  return 0;
4186}
4187
4188/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4189   struct types.  Otherwise, they may not.  */
4190
4191static int
4192equiv_types (struct type *type0, struct type *type1)
4193{
4194  if (type0 == type1)
4195    return 1;
4196  if (type0 == NULL || type1 == NULL
4197      || TYPE_CODE (type0) != TYPE_CODE (type1))
4198    return 0;
4199  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4200       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4202      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4203    return 1;
4204
4205  return 0;
4206}
4207
4208/* True iff SYM0 represents the same entity as SYM1, or one that is
4209   no more defined than that of SYM1.  */
4210
4211static int
4212lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4213{
4214  if (sym0 == sym1)
4215    return 1;
4216  if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4217      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218    return 0;
4219
4220  switch (SYMBOL_CLASS (sym0))
4221    {
4222    case LOC_UNDEF:
4223      return 1;
4224    case LOC_TYPEDEF:
4225      {
4226        struct type *type0 = SYMBOL_TYPE (sym0);
4227        struct type *type1 = SYMBOL_TYPE (sym1);
4228        char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229        char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230        int len0 = strlen (name0);
4231
4232        return
4233          TYPE_CODE (type0) == TYPE_CODE (type1)
4234          && (equiv_types (type0, type1)
4235              || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236                  && strncmp (name1 + len0, "___XV", 5) == 0));
4237      }
4238    case LOC_CONST:
4239      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4240        && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4241    default:
4242      return 0;
4243    }
4244}
4245
4246/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247   records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4248
4249static void
4250add_defn_to_vec (struct obstack *obstackp,
4251                 struct symbol *sym,
4252                 struct block *block)
4253{
4254  int i;
4255  struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4256
4257  /* Do not try to complete stub types, as the debugger is probably
4258     already scanning all symbols matching a certain name at the
4259     time when this function is called.  Trying to replace the stub
4260     type by its associated full type will cause us to restart a scan
4261     which may lead to an infinite recursion.  Instead, the client
4262     collecting the matching symbols will end up collecting several
4263     matches, with at least one of them complete.  It can then filter
4264     out the stub ones if needed.  */
4265
4266  for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267    {
4268      if (lesseq_defined_than (sym, prevDefns[i].sym))
4269        return;
4270      else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271        {
4272          prevDefns[i].sym = sym;
4273          prevDefns[i].block = block;
4274          return;
4275        }
4276    }
4277
4278  {
4279    struct ada_symbol_info info;
4280
4281    info.sym = sym;
4282    info.block = block;
4283    obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284  }
4285}
4286
4287/* Number of ada_symbol_info structures currently collected in
4288   current vector in *OBSTACKP.  */
4289
4290static int
4291num_defns_collected (struct obstack *obstackp)
4292{
4293  return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294}
4295
4296/* Vector of ada_symbol_info structures currently collected in current
4297   vector in *OBSTACKP.  If FINISH, close off the vector and return
4298   its final address.  */
4299
4300static struct ada_symbol_info *
4301defns_collected (struct obstack *obstackp, int finish)
4302{
4303  if (finish)
4304    return obstack_finish (obstackp);
4305  else
4306    return (struct ada_symbol_info *) obstack_base (obstackp);
4307}
4308
4309/* Return a minimal symbol matching NAME according to Ada decoding
4310   rules.  Returns NULL if there is no such minimal symbol.  Names
4311   prefixed with "standard__" are handled specially: "standard__" is
4312   first stripped off, and only static and global symbols are searched.  */
4313
4314struct minimal_symbol *
4315ada_lookup_simple_minsym (const char *name)
4316{
4317  struct objfile *objfile;
4318  struct minimal_symbol *msymbol;
4319  int wild_match;
4320
4321  if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4322    {
4323      name += sizeof ("standard__") - 1;
4324      wild_match = 0;
4325    }
4326  else
4327    wild_match = (strstr (name, "__") == NULL);
4328
4329  ALL_MSYMBOLS (objfile, msymbol)
4330  {
4331    if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4332        && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333      return msymbol;
4334  }
4335
4336  return NULL;
4337}
4338
4339/* For all subprograms that statically enclose the subprogram of the
4340   selected frame, add symbols matching identifier NAME in DOMAIN
4341   and their blocks to the list of data in OBSTACKP, as for
4342   ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
4343   wildcard prefix.  */
4344
4345static void
4346add_symbols_from_enclosing_procs (struct obstack *obstackp,
4347                                  const char *name, domain_enum namespace,
4348                                  int wild_match)
4349{
4350}
4351
4352/* True if TYPE is definitely an artificial type supplied to a symbol
4353   for which no debugging information was given in the symbol file.  */
4354
4355static int
4356is_nondebugging_type (struct type *type)
4357{
4358  char *name = ada_type_name (type);
4359
4360  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361}
4362
4363/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364   duplicate other symbols in the list (The only case I know of where
4365   this happens is when object files containing stabs-in-ecoff are
4366   linked with files containing ordinary ecoff debugging symbols (or no
4367   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
4368   Returns the number of items in the modified list.  */
4369
4370static int
4371remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372{
4373  int i, j;
4374
4375  i = 0;
4376  while (i < nsyms)
4377    {
4378      int remove = 0;
4379
4380      /* If two symbols have the same name and one of them is a stub type,
4381         the get rid of the stub.  */
4382
4383      if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384          && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385        {
4386          for (j = 0; j < nsyms; j++)
4387            {
4388              if (j != i
4389                  && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393                remove = 1;
4394            }
4395        }
4396
4397      /* Two symbols with the same name, same class and same address
4398         should be identical.  */
4399
4400      else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4401          && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402          && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403        {
4404          for (j = 0; j < nsyms; j += 1)
4405            {
4406              if (i != j
4407                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4409                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4410                  && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411                  && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412                  == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4413                remove = 1;
4414            }
4415        }
4416
4417      if (remove)
4418        {
4419          for (j = i + 1; j < nsyms; j += 1)
4420            syms[j - 1] = syms[j];
4421          nsyms -= 1;
4422        }
4423
4424      i += 1;
4425    }
4426  return nsyms;
4427}
4428
4429/* Given a type that corresponds to a renaming entity, use the type name
4430   to extract the scope (package name or function name, fully qualified,
4431   and following the GNAT encoding convention) where this renaming has been
4432   defined.  The string returned needs to be deallocated after use.  */
4433
4434static char *
4435xget_renaming_scope (struct type *renaming_type)
4436{
4437  /* The renaming types adhere to the following convention:
4438     <scope>__<rename>___<XR extension>.
4439     So, to extract the scope, we search for the "___XR" extension,
4440     and then backtrack until we find the first "__".  */
4441
4442  const char *name = type_name_no_tag (renaming_type);
4443  char *suffix = strstr (name, "___XR");
4444  char *last;
4445  int scope_len;
4446  char *scope;
4447
4448  /* Now, backtrack a bit until we find the first "__".  Start looking
4449     at suffix - 3, as the <rename> part is at least one character long.  */
4450
4451  for (last = suffix - 3; last > name; last--)
4452    if (last[0] == '_' && last[1] == '_')
4453      break;
4454
4455  /* Make a copy of scope and return it.  */
4456
4457  scope_len = last - name;
4458  scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4459
4460  strncpy (scope, name, scope_len);
4461  scope[scope_len] = '\0';
4462
4463  return scope;
4464}
4465
4466/* Return nonzero if NAME corresponds to a package name.  */
4467
4468static int
4469is_package_name (const char *name)
4470{
4471  /* Here, We take advantage of the fact that no symbols are generated
4472     for packages, while symbols are generated for each function.
4473     So the condition for NAME represent a package becomes equivalent
4474     to NAME not existing in our list of symbols.  There is only one
4475     small complication with library-level functions (see below).  */
4476
4477  char *fun_name;
4478
4479  /* If it is a function that has not been defined at library level,
4480     then we should be able to look it up in the symbols.  */
4481  if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482    return 0;
4483
4484  /* Library-level function names start with "_ada_".  See if function
4485     "_ada_" followed by NAME can be found.  */
4486
4487  /* Do a quick check that NAME does not contain "__", since library-level
4488     functions names cannot contain "__" in them.  */
4489  if (strstr (name, "__") != NULL)
4490    return 0;
4491
4492  fun_name = xstrprintf ("_ada_%s", name);
4493
4494  return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495}
4496
4497/* Return nonzero if SYM corresponds to a renaming entity that is
4498   not visible from FUNCTION_NAME.  */
4499
4500static int
4501old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4502{
4503  char *scope;
4504
4505  if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506    return 0;
4507
4508  scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4509
4510  make_cleanup (xfree, scope);
4511
4512  /* If the rename has been defined in a package, then it is visible.  */
4513  if (is_package_name (scope))
4514    return 0;
4515
4516  /* Check that the rename is in the current function scope by checking
4517     that its name starts with SCOPE.  */
4518
4519  /* If the function name starts with "_ada_", it means that it is
4520     a library-level function.  Strip this prefix before doing the
4521     comparison, as the encoding for the renaming does not contain
4522     this prefix.  */
4523  if (strncmp (function_name, "_ada_", 5) == 0)
4524    function_name += 5;
4525
4526  return (strncmp (function_name, scope, strlen (scope)) != 0);
4527}
4528
4529/* Remove entries from SYMS that corresponds to a renaming entity that
4530   is not visible from the function associated with CURRENT_BLOCK or
4531   that is superfluous due to the presence of more specific renaming
4532   information.  Places surviving symbols in the initial entries of
4533   SYMS and returns the number of surviving symbols.
4534
4535   Rationale:
4536   First, in cases where an object renaming is implemented as a
4537   reference variable, GNAT may produce both the actual reference
4538   variable and the renaming encoding.  In this case, we discard the
4539   latter.
4540
4541   Second, GNAT emits a type following a specified encoding for each renaming
4542   entity.  Unfortunately, STABS currently does not support the definition
4543   of types that are local to a given lexical block, so all renamings types
4544   are emitted at library level.  As a consequence, if an application
4545   contains two renaming entities using the same name, and a user tries to
4546   print the value of one of these entities, the result of the ada symbol
4547   lookup will also contain the wrong renaming type.
4548
4549   This function partially covers for this limitation by attempting to
4550   remove from the SYMS list renaming symbols that should be visible
4551   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
4552   method with the current information available.  The implementation
4553   below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554
4555      - When the user tries to print a rename in a function while there
4556        is another rename entity defined in a package:  Normally, the
4557        rename in the function has precedence over the rename in the
4558        package, so the latter should be removed from the list.  This is
4559        currently not the case.
4560
4561      - This function will incorrectly remove valid renames if
4562        the CURRENT_BLOCK corresponds to a function which symbol name
4563        has been changed by an "Export" pragma.  As a consequence,
4564        the user will be unable to print such rename entities.  */
4565
4566static int
4567remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568			     int nsyms, const struct block *current_block)
4569{
4570  struct symbol *current_function;
4571  char *current_function_name;
4572  int i;
4573  int is_new_style_renaming;
4574
4575  /* If there is both a renaming foo___XR... encoded as a variable and
4576     a simple variable foo in the same block, discard the latter.
4577     First, zero out such symbols, then compress.  */
4578  is_new_style_renaming = 0;
4579  for (i = 0; i < nsyms; i += 1)
4580    {
4581      struct symbol *sym = syms[i].sym;
4582      struct block *block = syms[i].block;
4583      const char *name;
4584      const char *suffix;
4585
4586      if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587	continue;
4588      name = SYMBOL_LINKAGE_NAME (sym);
4589      suffix = strstr (name, "___XR");
4590
4591      if (suffix != NULL)
4592	{
4593	  int name_len = suffix - name;
4594	  int j;
4595
4596	  is_new_style_renaming = 1;
4597	  for (j = 0; j < nsyms; j += 1)
4598	    if (i != j && syms[j].sym != NULL
4599		&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600			    name_len) == 0
4601		&& block == syms[j].block)
4602	      syms[j].sym = NULL;
4603	}
4604    }
4605  if (is_new_style_renaming)
4606    {
4607      int j, k;
4608
4609      for (j = k = 0; j < nsyms; j += 1)
4610	if (syms[j].sym != NULL)
4611	    {
4612	      syms[k] = syms[j];
4613	      k += 1;
4614	    }
4615      return k;
4616    }
4617
4618  /* Extract the function name associated to CURRENT_BLOCK.
4619     Abort if unable to do so.  */
4620
4621  if (current_block == NULL)
4622    return nsyms;
4623
4624  current_function = block_linkage_function (current_block);
4625  if (current_function == NULL)
4626    return nsyms;
4627
4628  current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629  if (current_function_name == NULL)
4630    return nsyms;
4631
4632  /* Check each of the symbols, and remove it from the list if it is
4633     a type corresponding to a renaming that is out of the scope of
4634     the current block.  */
4635
4636  i = 0;
4637  while (i < nsyms)
4638    {
4639      if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640          == ADA_OBJECT_RENAMING
4641          && old_renaming_is_invisible (syms[i].sym, current_function_name))
4642        {
4643          int j;
4644
4645          for (j = i + 1; j < nsyms; j += 1)
4646            syms[j - 1] = syms[j];
4647          nsyms -= 1;
4648        }
4649      else
4650        i += 1;
4651    }
4652
4653  return nsyms;
4654}
4655
4656/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657   whose name and domain match NAME and DOMAIN respectively.
4658   If no match was found, then extend the search to "enclosing"
4659   routines (in other words, if we're inside a nested function,
4660   search the symbols defined inside the enclosing functions).
4661
4662   Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
4663
4664static void
4665ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666                       struct block *block, domain_enum domain,
4667                       int wild_match)
4668{
4669  int block_depth = 0;
4670
4671  while (block != NULL)
4672    {
4673      block_depth += 1;
4674      ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675
4676      /* If we found a non-function match, assume that's the one.  */
4677      if (is_nonfunction (defns_collected (obstackp, 0),
4678                          num_defns_collected (obstackp)))
4679        return;
4680
4681      block = BLOCK_SUPERBLOCK (block);
4682    }
4683
4684  /* If no luck so far, try to find NAME as a local symbol in some lexically
4685     enclosing subprogram.  */
4686  if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687    add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688}
4689
4690/* An object of this type is used as the user_data argument when
4691   calling the map_matching_symbols method.  */
4692
4693struct match_data
4694{
4695  struct objfile *objfile;
4696  struct obstack *obstackp;
4697  struct symbol *arg_sym;
4698  int found_sym;
4699};
4700
4701/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702   to a list of symbols.  DATA0 is a pointer to a struct match_data *
4703   containing the obstack that collects the symbol list, the file that SYM
4704   must come from, a flag indicating whether a non-argument symbol has
4705   been found in the current block, and the last argument symbol
4706   passed in SYM within the current block (if any).  When SYM is null,
4707   marking the end of a block, the argument symbol is added if no
4708   other has been found.  */
4709
4710static int
4711aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4712{
4713  struct match_data *data = (struct match_data *) data0;
4714
4715  if (sym == NULL)
4716    {
4717      if (!data->found_sym && data->arg_sym != NULL)
4718	add_defn_to_vec (data->obstackp,
4719			 fixup_symbol_section (data->arg_sym, data->objfile),
4720			 block);
4721      data->found_sym = 0;
4722      data->arg_sym = NULL;
4723    }
4724  else
4725    {
4726      if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727	return 0;
4728      else if (SYMBOL_IS_ARGUMENT (sym))
4729	data->arg_sym = sym;
4730      else
4731	{
4732	  data->found_sym = 1;
4733	  add_defn_to_vec (data->obstackp,
4734			   fixup_symbol_section (sym, data->objfile),
4735			   block);
4736	}
4737    }
4738  return 0;
4739}
4740
4741/* Compare STRING1 to STRING2, with results as for strcmp.
4742   Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743   implies compare_names (STRING1, STRING2) (they may differ as to
4744   what symbols compare equal).  */
4745
4746static int
4747compare_names (const char *string1, const char *string2)
4748{
4749  while (*string1 != '\0' && *string2 != '\0')
4750    {
4751      if (isspace (*string1) || isspace (*string2))
4752	return strcmp_iw_ordered (string1, string2);
4753      if (*string1 != *string2)
4754	break;
4755      string1 += 1;
4756      string2 += 1;
4757    }
4758  switch (*string1)
4759    {
4760    case '(':
4761      return strcmp_iw_ordered (string1, string2);
4762    case '_':
4763      if (*string2 == '\0')
4764	{
4765	  if (is_name_suffix (string1))
4766	    return 0;
4767	  else
4768	    return -1;
4769	}
4770      /* FALLTHROUGH */
4771    default:
4772      if (*string2 == '(')
4773	return strcmp_iw_ordered (string1, string2);
4774      else
4775	return *string1 - *string2;
4776    }
4777}
4778
4779/* Add to OBSTACKP all non-local symbols whose name and domain match
4780   NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
4781   symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
4782
4783static void
4784add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785		      domain_enum domain, int global,
4786		      int is_wild_match)
4787{
4788  struct objfile *objfile;
4789  struct match_data data;
4790
4791  data.obstackp = obstackp;
4792  data.arg_sym = NULL;
4793
4794  ALL_OBJFILES (objfile)
4795    {
4796      data.objfile = objfile;
4797
4798      if (is_wild_match)
4799	objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800					       aux_add_nonlocal_symbols, &data,
4801					       wild_match, NULL);
4802      else
4803	objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804					       aux_add_nonlocal_symbols, &data,
4805					       full_match, compare_names);
4806    }
4807
4808  if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809    {
4810      ALL_OBJFILES (objfile)
4811        {
4812	  char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813	  strcpy (name1, "_ada_");
4814	  strcpy (name1 + sizeof ("_ada_") - 1, name);
4815	  data.objfile = objfile;
4816	  objfile->sf->qf->map_matching_symbols (name1, domain,
4817						 objfile, global,
4818						 aux_add_nonlocal_symbols,
4819						 &data,
4820						 full_match, compare_names);
4821	}
4822    }
4823}
4824
4825/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826   scope and in global scopes, returning the number of matches.  Sets
4827   *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4828   indicating the symbols found and the blocks and symbol tables (if
4829   any) in which they were found.  This vector are transient---good only to
4830   the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral
4831   symbol match within the nest of blocks whose innermost member is BLOCK0,
4832   is the one match returned (no other matches in that or
4833     enclosing blocks is returned).  If there are any matches in or
4834   surrounding BLOCK0, then these alone are returned.  Otherwise, the
4835   search extends to global and file-scope (static) symbol tables.
4836   Names prefixed with "standard__" are handled specially: "standard__"
4837   is first stripped off, and only static and global symbols are searched.  */
4838
4839int
4840ada_lookup_symbol_list (const char *name0, const struct block *block0,
4841                        domain_enum namespace,
4842                        struct ada_symbol_info **results)
4843{
4844  struct symbol *sym;
4845  struct block *block;
4846  const char *name;
4847  int wild_match;
4848  int cacheIfUnique;
4849  int ndefns;
4850
4851  obstack_free (&symbol_list_obstack, NULL);
4852  obstack_init (&symbol_list_obstack);
4853
4854  cacheIfUnique = 0;
4855
4856  /* Search specified block and its superiors.  */
4857
4858  wild_match = (strstr (name0, "__") == NULL);
4859  name = name0;
4860  block = (struct block *) block0;      /* FIXME: No cast ought to be
4861                                           needed, but adding const will
4862                                           have a cascade effect.  */
4863
4864  /* Special case: If the user specifies a symbol name inside package
4865     Standard, do a non-wild matching of the symbol name without
4866     the "standard__" prefix.  This was primarily introduced in order
4867     to allow the user to specifically access the standard exceptions
4868     using, for instance, Standard.Constraint_Error when Constraint_Error
4869     is ambiguous (due to the user defining its own Constraint_Error
4870     entity inside its program).  */
4871  if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872    {
4873      wild_match = 0;
4874      block = NULL;
4875      name = name0 + sizeof ("standard__") - 1;
4876    }
4877
4878  /* Check the non-global symbols.  If we have ANY match, then we're done.  */
4879
4880  ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881                         wild_match);
4882  if (num_defns_collected (&symbol_list_obstack) > 0)
4883    goto done;
4884
4885  /* No non-global symbols found.  Check our cache to see if we have
4886     already performed this search before.  If we have, then return
4887     the same result.  */
4888
4889  cacheIfUnique = 1;
4890  if (lookup_cached_symbol (name0, namespace, &sym, &block))
4891    {
4892      if (sym != NULL)
4893        add_defn_to_vec (&symbol_list_obstack, sym, block);
4894      goto done;
4895    }
4896
4897  /* Search symbols from all global blocks.  */
4898
4899  add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900			wild_match);
4901
4902  /* Now add symbols from all per-file blocks if we've gotten no hits
4903     (not strictly correct, but perhaps better than an error).  */
4904
4905  if (num_defns_collected (&symbol_list_obstack) == 0)
4906    add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907			  wild_match);
4908
4909done:
4910  ndefns = num_defns_collected (&symbol_list_obstack);
4911  *results = defns_collected (&symbol_list_obstack, 1);
4912
4913  ndefns = remove_extra_symbols (*results, ndefns);
4914
4915  if (ndefns == 0)
4916    cache_symbol (name0, namespace, NULL, NULL);
4917
4918  if (ndefns == 1 && cacheIfUnique)
4919    cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4920
4921  ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4922
4923  return ndefns;
4924}
4925
4926struct symbol *
4927ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4928			   domain_enum namespace, struct block **block_found)
4929{
4930  struct ada_symbol_info *candidates;
4931  int n_candidates;
4932
4933  n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4934
4935  if (n_candidates == 0)
4936    return NULL;
4937
4938  if (block_found != NULL)
4939    *block_found = candidates[0].block;
4940
4941  return fixup_symbol_section (candidates[0].sym, NULL);
4942}
4943
4944/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945   scope and in global scopes, or NULL if none.  NAME is folded and
4946   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
4947   choosing the first symbol if there are multiple choices.
4948   *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949   table in which the symbol was found (in both cases, these
4950   assignments occur only if the pointers are non-null).  */
4951struct symbol *
4952ada_lookup_symbol (const char *name, const struct block *block0,
4953                   domain_enum namespace, int *is_a_field_of_this)
4954{
4955  if (is_a_field_of_this != NULL)
4956    *is_a_field_of_this = 0;
4957
4958  return
4959    ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4960			       block0, namespace, NULL);
4961}
4962
4963static struct symbol *
4964ada_lookup_symbol_nonlocal (const char *name,
4965                            const struct block *block,
4966                            const domain_enum domain)
4967{
4968  return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4969}
4970
4971
4972/* True iff STR is a possible encoded suffix of a normal Ada name
4973   that is to be ignored for matching purposes.  Suffixes of parallel
4974   names (e.g., XVE) are not included here.  Currently, the possible suffixes
4975   are given by any of the regular expressions:
4976
4977   [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
4978   ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
4979   _E[0-9]+[bs]$    [protected object entry suffixes]
4980   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4981
4982   Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983   match is performed.  This sequence is used to differentiate homonyms,
4984   is an optional part of a valid name suffix.  */
4985
4986static int
4987is_name_suffix (const char *str)
4988{
4989  int k;
4990  const char *matching;
4991  const int len = strlen (str);
4992
4993  /* Skip optional leading __[0-9]+.  */
4994
4995  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996    {
4997      str += 3;
4998      while (isdigit (str[0]))
4999        str += 1;
5000    }
5001
5002  /* [.$][0-9]+ */
5003
5004  if (str[0] == '.' || str[0] == '$')
5005    {
5006      matching = str + 1;
5007      while (isdigit (matching[0]))
5008        matching += 1;
5009      if (matching[0] == '\0')
5010        return 1;
5011    }
5012
5013  /* ___[0-9]+ */
5014
5015  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016    {
5017      matching = str + 3;
5018      while (isdigit (matching[0]))
5019        matching += 1;
5020      if (matching[0] == '\0')
5021        return 1;
5022    }
5023
5024#if 0
5025  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5026     with a N at the end.  Unfortunately, the compiler uses the same
5027     convention for other internal types it creates.  So treating
5028     all entity names that end with an "N" as a name suffix causes
5029     some regressions.  For instance, consider the case of an enumerated
5030     type.  To support the 'Image attribute, it creates an array whose
5031     name ends with N.
5032     Having a single character like this as a suffix carrying some
5033     information is a bit risky.  Perhaps we should change the encoding
5034     to be something like "_N" instead.  In the meantime, do not do
5035     the following check.  */
5036  /* Protected Object Subprograms */
5037  if (len == 1 && str [0] == 'N')
5038    return 1;
5039#endif
5040
5041  /* _E[0-9]+[bs]$ */
5042  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043    {
5044      matching = str + 3;
5045      while (isdigit (matching[0]))
5046        matching += 1;
5047      if ((matching[0] == 'b' || matching[0] == 's')
5048          && matching [1] == '\0')
5049        return 1;
5050    }
5051
5052  /* ??? We should not modify STR directly, as we are doing below.  This
5053     is fine in this case, but may become problematic later if we find
5054     that this alternative did not work, and want to try matching
5055     another one from the begining of STR.  Since we modified it, we
5056     won't be able to find the begining of the string anymore!  */
5057  if (str[0] == 'X')
5058    {
5059      str += 1;
5060      while (str[0] != '_' && str[0] != '\0')
5061        {
5062          if (str[0] != 'n' && str[0] != 'b')
5063            return 0;
5064          str += 1;
5065        }
5066    }
5067
5068  if (str[0] == '\000')
5069    return 1;
5070
5071  if (str[0] == '_')
5072    {
5073      if (str[1] != '_' || str[2] == '\000')
5074        return 0;
5075      if (str[2] == '_')
5076        {
5077          if (strcmp (str + 3, "JM") == 0)
5078            return 1;
5079          /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080             the LJM suffix in favor of the JM one.  But we will
5081             still accept LJM as a valid suffix for a reasonable
5082             amount of time, just to allow ourselves to debug programs
5083             compiled using an older version of GNAT.  */
5084          if (strcmp (str + 3, "LJM") == 0)
5085            return 1;
5086          if (str[3] != 'X')
5087            return 0;
5088          if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089              || str[4] == 'U' || str[4] == 'P')
5090            return 1;
5091          if (str[4] == 'R' && str[5] != 'T')
5092            return 1;
5093          return 0;
5094        }
5095      if (!isdigit (str[2]))
5096        return 0;
5097      for (k = 3; str[k] != '\0'; k += 1)
5098        if (!isdigit (str[k]) && str[k] != '_')
5099          return 0;
5100      return 1;
5101    }
5102  if (str[0] == '$' && isdigit (str[1]))
5103    {
5104      for (k = 2; str[k] != '\0'; k += 1)
5105        if (!isdigit (str[k]) && str[k] != '_')
5106          return 0;
5107      return 1;
5108    }
5109  return 0;
5110}
5111
5112/* Return non-zero if the string starting at NAME and ending before
5113   NAME_END contains no capital letters.  */
5114
5115static int
5116is_valid_name_for_wild_match (const char *name0)
5117{
5118  const char *decoded_name = ada_decode (name0);
5119  int i;
5120
5121  /* If the decoded name starts with an angle bracket, it means that
5122     NAME0 does not follow the GNAT encoding format.  It should then
5123     not be allowed as a possible wild match.  */
5124  if (decoded_name[0] == '<')
5125    return 0;
5126
5127  for (i=0; decoded_name[i] != '\0'; i++)
5128    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129      return 0;
5130
5131  return 1;
5132}
5133
5134/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135   that could start a simple name.  Assumes that *NAMEP points into
5136   the string beginning at NAME0.  */
5137
5138static int
5139advance_wild_match (const char **namep, const char *name0, int target0)
5140{
5141  const char *name = *namep;
5142
5143  while (1)
5144    {
5145      int t0, t1;
5146
5147      t0 = *name;
5148      if (t0 == '_')
5149	{
5150	  t1 = name[1];
5151	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152	    {
5153	      name += 1;
5154	      if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155		break;
5156	      else
5157		name += 1;
5158	    }
5159	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160				 || name[2] == target0))
5161	    {
5162	      name += 2;
5163	      break;
5164	    }
5165	  else
5166	    return 0;
5167	}
5168      else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169	name += 1;
5170      else
5171	return 0;
5172    }
5173
5174  *namep = name;
5175  return 1;
5176}
5177
5178/* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
5179   informational suffixes of NAME (i.e., for which is_name_suffix is
5180   true).  Assumes that PATN is a lower-cased Ada simple name.  */
5181
5182static int
5183wild_match (const char *name, const char *patn)
5184{
5185  const char *p, *n;
5186  const char *name0 = name;
5187
5188  while (1)
5189    {
5190      const char *match = name;
5191
5192      if (*name == *patn)
5193	{
5194	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195	    if (*p != *name)
5196	      break;
5197	  if (*p == '\0' && is_name_suffix (name))
5198	    return match != name0 && !is_valid_name_for_wild_match (name0);
5199
5200	  if (name[-1] == '_')
5201	    name -= 1;
5202	}
5203      if (!advance_wild_match (&name, name0, *patn))
5204	return 1;
5205    }
5206}
5207
5208/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209   informational suffix.  */
5210
5211static int
5212full_match (const char *sym_name, const char *search_name)
5213{
5214  return !match_name (sym_name, search_name, 0);
5215}
5216
5217
5218/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219   vector *defn_symbols, updating the list of symbols in OBSTACKP
5220   (if necessary).  If WILD, treat as NAME with a wildcard prefix.
5221   OBJFILE is the section containing BLOCK.
5222   SYMTAB is recorded with each symbol added.  */
5223
5224static void
5225ada_add_block_symbols (struct obstack *obstackp,
5226                       struct block *block, const char *name,
5227                       domain_enum domain, struct objfile *objfile,
5228                       int wild)
5229{
5230  struct dict_iterator iter;
5231  int name_len = strlen (name);
5232  /* A matching argument symbol, if any.  */
5233  struct symbol *arg_sym;
5234  /* Set true when we find a matching non-argument symbol.  */
5235  int found_sym;
5236  struct symbol *sym;
5237
5238  arg_sym = NULL;
5239  found_sym = 0;
5240  if (wild)
5241    {
5242      for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243					wild_match, &iter);
5244	   sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5245      {
5246        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247                                   SYMBOL_DOMAIN (sym), domain)
5248            && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5249          {
5250	    if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251	      continue;
5252	    else if (SYMBOL_IS_ARGUMENT (sym))
5253	      arg_sym = sym;
5254	    else
5255	      {
5256                found_sym = 1;
5257                add_defn_to_vec (obstackp,
5258                                 fixup_symbol_section (sym, objfile),
5259                                 block);
5260              }
5261          }
5262      }
5263    }
5264  else
5265    {
5266     for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5267				       full_match, &iter);
5268	   sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5269      {
5270        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271                                   SYMBOL_DOMAIN (sym), domain))
5272          {
5273	    if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274	      {
5275		if (SYMBOL_IS_ARGUMENT (sym))
5276		  arg_sym = sym;
5277		else
5278		  {
5279		    found_sym = 1;
5280		    add_defn_to_vec (obstackp,
5281				     fixup_symbol_section (sym, objfile),
5282				     block);
5283		  }
5284	      }
5285          }
5286      }
5287    }
5288
5289  if (!found_sym && arg_sym != NULL)
5290    {
5291      add_defn_to_vec (obstackp,
5292                       fixup_symbol_section (arg_sym, objfile),
5293                       block);
5294    }
5295
5296  if (!wild)
5297    {
5298      arg_sym = NULL;
5299      found_sym = 0;
5300
5301      ALL_BLOCK_SYMBOLS (block, iter, sym)
5302      {
5303        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304                                   SYMBOL_DOMAIN (sym), domain))
5305          {
5306            int cmp;
5307
5308            cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309            if (cmp == 0)
5310              {
5311                cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312                if (cmp == 0)
5313                  cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314                                 name_len);
5315              }
5316
5317            if (cmp == 0
5318                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319              {
5320		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321		  {
5322		    if (SYMBOL_IS_ARGUMENT (sym))
5323		      arg_sym = sym;
5324		    else
5325		      {
5326			found_sym = 1;
5327			add_defn_to_vec (obstackp,
5328					 fixup_symbol_section (sym, objfile),
5329					 block);
5330		      }
5331		  }
5332              }
5333          }
5334      }
5335
5336      /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337         They aren't parameters, right?  */
5338      if (!found_sym && arg_sym != NULL)
5339        {
5340          add_defn_to_vec (obstackp,
5341                           fixup_symbol_section (arg_sym, objfile),
5342                           block);
5343        }
5344    }
5345}
5346
5347
5348                                /* Symbol Completion */
5349
5350/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351   name in a form that's appropriate for the completion.  The result
5352   does not need to be deallocated, but is only good until the next call.
5353
5354   TEXT_LEN is equal to the length of TEXT.
5355   Perform a wild match if WILD_MATCH is set.
5356   ENCODED should be set if TEXT represents the start of a symbol name
5357   in its encoded form.  */
5358
5359static const char *
5360symbol_completion_match (const char *sym_name,
5361                         const char *text, int text_len,
5362                         int wild_match, int encoded)
5363{
5364  const int verbatim_match = (text[0] == '<');
5365  int match = 0;
5366
5367  if (verbatim_match)
5368    {
5369      /* Strip the leading angle bracket.  */
5370      text = text + 1;
5371      text_len--;
5372    }
5373
5374  /* First, test against the fully qualified name of the symbol.  */
5375
5376  if (strncmp (sym_name, text, text_len) == 0)
5377    match = 1;
5378
5379  if (match && !encoded)
5380    {
5381      /* One needed check before declaring a positive match is to verify
5382         that iff we are doing a verbatim match, the decoded version
5383         of the symbol name starts with '<'.  Otherwise, this symbol name
5384         is not a suitable completion.  */
5385      const char *sym_name_copy = sym_name;
5386      int has_angle_bracket;
5387
5388      sym_name = ada_decode (sym_name);
5389      has_angle_bracket = (sym_name[0] == '<');
5390      match = (has_angle_bracket == verbatim_match);
5391      sym_name = sym_name_copy;
5392    }
5393
5394  if (match && !verbatim_match)
5395    {
5396      /* When doing non-verbatim match, another check that needs to
5397         be done is to verify that the potentially matching symbol name
5398         does not include capital letters, because the ada-mode would
5399         not be able to understand these symbol names without the
5400         angle bracket notation.  */
5401      const char *tmp;
5402
5403      for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404      if (*tmp != '\0')
5405        match = 0;
5406    }
5407
5408  /* Second: Try wild matching...  */
5409
5410  if (!match && wild_match)
5411    {
5412      /* Since we are doing wild matching, this means that TEXT
5413         may represent an unqualified symbol name.  We therefore must
5414         also compare TEXT against the unqualified name of the symbol.  */
5415      sym_name = ada_unqualified_name (ada_decode (sym_name));
5416
5417      if (strncmp (sym_name, text, text_len) == 0)
5418        match = 1;
5419    }
5420
5421  /* Finally: If we found a mach, prepare the result to return.  */
5422
5423  if (!match)
5424    return NULL;
5425
5426  if (verbatim_match)
5427    sym_name = add_angle_brackets (sym_name);
5428
5429  if (!encoded)
5430    sym_name = ada_decode (sym_name);
5431
5432  return sym_name;
5433}
5434
5435DEF_VEC_P (char_ptr);
5436
5437/* A companion function to ada_make_symbol_completion_list().
5438   Check if SYM_NAME represents a symbol which name would be suitable
5439   to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440   it is appended at the end of the given string vector SV.
5441
5442   ORIG_TEXT is the string original string from the user command
5443   that needs to be completed.  WORD is the entire command on which
5444   completion should be performed.  These two parameters are used to
5445   determine which part of the symbol name should be added to the
5446   completion vector.
5447   if WILD_MATCH is set, then wild matching is performed.
5448   ENCODED should be set if TEXT represents a symbol name in its
5449   encoded formed (in which case the completion should also be
5450   encoded).  */
5451
5452static void
5453symbol_completion_add (VEC(char_ptr) **sv,
5454                       const char *sym_name,
5455                       const char *text, int text_len,
5456                       const char *orig_text, const char *word,
5457                       int wild_match, int encoded)
5458{
5459  const char *match = symbol_completion_match (sym_name, text, text_len,
5460                                               wild_match, encoded);
5461  char *completion;
5462
5463  if (match == NULL)
5464    return;
5465
5466  /* We found a match, so add the appropriate completion to the given
5467     string vector.  */
5468
5469  if (word == orig_text)
5470    {
5471      completion = xmalloc (strlen (match) + 5);
5472      strcpy (completion, match);
5473    }
5474  else if (word > orig_text)
5475    {
5476      /* Return some portion of sym_name.  */
5477      completion = xmalloc (strlen (match) + 5);
5478      strcpy (completion, match + (word - orig_text));
5479    }
5480  else
5481    {
5482      /* Return some of ORIG_TEXT plus sym_name.  */
5483      completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484      strncpy (completion, word, orig_text - word);
5485      completion[orig_text - word] = '\0';
5486      strcat (completion, match);
5487    }
5488
5489  VEC_safe_push (char_ptr, *sv, completion);
5490}
5491
5492/* An object of this type is passed as the user_data argument to the
5493   expand_partial_symbol_names method.  */
5494struct add_partial_datum
5495{
5496  VEC(char_ptr) **completions;
5497  char *text;
5498  int text_len;
5499  char *text0;
5500  char *word;
5501  int wild_match;
5502  int encoded;
5503};
5504
5505/* A callback for expand_partial_symbol_names.  */
5506static int
5507ada_expand_partial_symbol_name (const char *name, void *user_data)
5508{
5509  struct add_partial_datum *data = user_data;
5510
5511  return symbol_completion_match (name, data->text, data->text_len,
5512                                  data->wild_match, data->encoded) != NULL;
5513}
5514
5515/* Return a list of possible symbol names completing TEXT0.  The list
5516   is NULL terminated.  WORD is the entire command on which completion
5517   is made.  */
5518
5519static char **
5520ada_make_symbol_completion_list (char *text0, char *word)
5521{
5522  char *text;
5523  int text_len;
5524  int wild_match;
5525  int encoded;
5526  VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5527  struct symbol *sym;
5528  struct symtab *s;
5529  struct minimal_symbol *msymbol;
5530  struct objfile *objfile;
5531  struct block *b, *surrounding_static_block = 0;
5532  int i;
5533  struct dict_iterator iter;
5534
5535  if (text0[0] == '<')
5536    {
5537      text = xstrdup (text0);
5538      make_cleanup (xfree, text);
5539      text_len = strlen (text);
5540      wild_match = 0;
5541      encoded = 1;
5542    }
5543  else
5544    {
5545      text = xstrdup (ada_encode (text0));
5546      make_cleanup (xfree, text);
5547      text_len = strlen (text);
5548      for (i = 0; i < text_len; i++)
5549        text[i] = tolower (text[i]);
5550
5551      encoded = (strstr (text0, "__") != NULL);
5552      /* If the name contains a ".", then the user is entering a fully
5553         qualified entity name, and the match must not be done in wild
5554         mode.  Similarly, if the user wants to complete what looks like
5555         an encoded name, the match must not be done in wild mode.  */
5556      wild_match = (strchr (text0, '.') == NULL && !encoded);
5557    }
5558
5559  /* First, look at the partial symtab symbols.  */
5560  {
5561    struct add_partial_datum data;
5562
5563    data.completions = &completions;
5564    data.text = text;
5565    data.text_len = text_len;
5566    data.text0 = text0;
5567    data.word = word;
5568    data.wild_match = wild_match;
5569    data.encoded = encoded;
5570    expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5571  }
5572
5573  /* At this point scan through the misc symbol vectors and add each
5574     symbol you find to the list.  Eventually we want to ignore
5575     anything that isn't a text symbol (everything else will be
5576     handled by the psymtab code above).  */
5577
5578  ALL_MSYMBOLS (objfile, msymbol)
5579  {
5580    QUIT;
5581    symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5582                           text, text_len, text0, word, wild_match, encoded);
5583  }
5584
5585  /* Search upwards from currently selected frame (so that we can
5586     complete on local vars.  */
5587
5588  for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5589    {
5590      if (!BLOCK_SUPERBLOCK (b))
5591        surrounding_static_block = b;   /* For elmin of dups */
5592
5593      ALL_BLOCK_SYMBOLS (b, iter, sym)
5594      {
5595        symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5596                               text, text_len, text0, word,
5597                               wild_match, encoded);
5598      }
5599    }
5600
5601  /* Go through the symtabs and check the externs and statics for
5602     symbols which match.  */
5603
5604  ALL_SYMTABS (objfile, s)
5605  {
5606    QUIT;
5607    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5608    ALL_BLOCK_SYMBOLS (b, iter, sym)
5609    {
5610      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5611                             text, text_len, text0, word,
5612                             wild_match, encoded);
5613    }
5614  }
5615
5616  ALL_SYMTABS (objfile, s)
5617  {
5618    QUIT;
5619    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5620    /* Don't do this block twice.  */
5621    if (b == surrounding_static_block)
5622      continue;
5623    ALL_BLOCK_SYMBOLS (b, iter, sym)
5624    {
5625      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5626                             text, text_len, text0, word,
5627                             wild_match, encoded);
5628    }
5629  }
5630
5631  /* Append the closing NULL entry.  */
5632  VEC_safe_push (char_ptr, completions, NULL);
5633
5634  /* Make a copy of the COMPLETIONS VEC before we free it, and then
5635     return the copy.  It's unfortunate that we have to make a copy
5636     of an array that we're about to destroy, but there is nothing much
5637     we can do about it.  Fortunately, it's typically not a very large
5638     array.  */
5639  {
5640    const size_t completions_size =
5641      VEC_length (char_ptr, completions) * sizeof (char *);
5642    char **result = xmalloc (completions_size);
5643
5644    memcpy (result, VEC_address (char_ptr, completions), completions_size);
5645
5646    VEC_free (char_ptr, completions);
5647    return result;
5648  }
5649}
5650
5651                                /* Field Access */
5652
5653/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5654   for tagged types.  */
5655
5656static int
5657ada_is_dispatch_table_ptr_type (struct type *type)
5658{
5659  char *name;
5660
5661  if (TYPE_CODE (type) != TYPE_CODE_PTR)
5662    return 0;
5663
5664  name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5665  if (name == NULL)
5666    return 0;
5667
5668  return (strcmp (name, "ada__tags__dispatch_table") == 0);
5669}
5670
5671/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5672   to be invisible to users.  */
5673
5674int
5675ada_is_ignored_field (struct type *type, int field_num)
5676{
5677  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5678    return 1;
5679
5680  /* Check the name of that field.  */
5681  {
5682    const char *name = TYPE_FIELD_NAME (type, field_num);
5683
5684    /* Anonymous field names should not be printed.
5685       brobecker/2007-02-20: I don't think this can actually happen
5686       but we don't want to print the value of annonymous fields anyway.  */
5687    if (name == NULL)
5688      return 1;
5689
5690    /* A field named "_parent" is internally generated by GNAT for
5691       tagged types, and should not be printed either.  */
5692    if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5693      return 1;
5694  }
5695
5696  /* If this is the dispatch table of a tagged type, then ignore.  */
5697  if (ada_is_tagged_type (type, 1)
5698      && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5699    return 1;
5700
5701  /* Not a special field, so it should not be ignored.  */
5702  return 0;
5703}
5704
5705/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
5706   pointer or reference type whose ultimate target has a tag field.  */
5707
5708int
5709ada_is_tagged_type (struct type *type, int refok)
5710{
5711  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5712}
5713
5714/* True iff TYPE represents the type of X'Tag */
5715
5716int
5717ada_is_tag_type (struct type *type)
5718{
5719  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5720    return 0;
5721  else
5722    {
5723      const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5724
5725      return (name != NULL
5726              && strcmp (name, "ada__tags__dispatch_table") == 0);
5727    }
5728}
5729
5730/* The type of the tag on VAL.  */
5731
5732struct type *
5733ada_tag_type (struct value *val)
5734{
5735  return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5736}
5737
5738/* The value of the tag on VAL.  */
5739
5740struct value *
5741ada_value_tag (struct value *val)
5742{
5743  return ada_value_struct_elt (val, "_tag", 0);
5744}
5745
5746/* The value of the tag on the object of type TYPE whose contents are
5747   saved at VALADDR, if it is non-null, or is at memory address
5748   ADDRESS.  */
5749
5750static struct value *
5751value_tag_from_contents_and_address (struct type *type,
5752				     const gdb_byte *valaddr,
5753                                     CORE_ADDR address)
5754{
5755  int tag_byte_offset;
5756  struct type *tag_type;
5757
5758  if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5759                         NULL, NULL, NULL))
5760    {
5761      const gdb_byte *valaddr1 = ((valaddr == NULL)
5762				  ? NULL
5763				  : valaddr + tag_byte_offset);
5764      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5765
5766      return value_from_contents_and_address (tag_type, valaddr1, address1);
5767    }
5768  return NULL;
5769}
5770
5771static struct type *
5772type_from_tag (struct value *tag)
5773{
5774  const char *type_name = ada_tag_name (tag);
5775
5776  if (type_name != NULL)
5777    return ada_find_any_type (ada_encode (type_name));
5778  return NULL;
5779}
5780
5781struct tag_args
5782{
5783  struct value *tag;
5784  char *name;
5785};
5786
5787
5788static int ada_tag_name_1 (void *);
5789static int ada_tag_name_2 (struct tag_args *);
5790
5791/* Wrapper function used by ada_tag_name.  Given a struct tag_args*
5792   value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5793   The value stored in ARGS->name is valid until the next call to
5794   ada_tag_name_1.  */
5795
5796static int
5797ada_tag_name_1 (void *args0)
5798{
5799  struct tag_args *args = (struct tag_args *) args0;
5800  static char name[1024];
5801  char *p;
5802  struct value *val;
5803
5804  args->name = NULL;
5805  val = ada_value_struct_elt (args->tag, "tsd", 1);
5806  if (val == NULL)
5807    return ada_tag_name_2 (args);
5808  val = ada_value_struct_elt (val, "expanded_name", 1);
5809  if (val == NULL)
5810    return 0;
5811  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5812  for (p = name; *p != '\0'; p += 1)
5813    if (isalpha (*p))
5814      *p = tolower (*p);
5815  args->name = name;
5816  return 0;
5817}
5818
5819/* Return the "ada__tags__type_specific_data" type.  */
5820
5821static struct type *
5822ada_get_tsd_type (struct inferior *inf)
5823{
5824  struct ada_inferior_data *data = get_ada_inferior_data (inf);
5825
5826  if (data->tsd_type == 0)
5827    data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5828  return data->tsd_type;
5829}
5830
5831/* Utility function for ada_tag_name_1 that tries the second
5832   representation for the dispatch table (in which there is no
5833   explicit 'tsd' field in the referent of the tag pointer, and instead
5834   the tsd pointer is stored just before the dispatch table.  */
5835
5836static int
5837ada_tag_name_2 (struct tag_args *args)
5838{
5839  struct type *info_type;
5840  static char name[1024];
5841  char *p;
5842  struct value *val, *valp;
5843
5844  args->name = NULL;
5845  info_type = ada_get_tsd_type (current_inferior());
5846  if (info_type == NULL)
5847    return 0;
5848  info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5849  valp = value_cast (info_type, args->tag);
5850  if (valp == NULL)
5851    return 0;
5852  val = value_ind (value_ptradd (valp, -1));
5853  if (val == NULL)
5854    return 0;
5855  val = ada_value_struct_elt (val, "expanded_name", 1);
5856  if (val == NULL)
5857    return 0;
5858  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5859  for (p = name; *p != '\0'; p += 1)
5860    if (isalpha (*p))
5861      *p = tolower (*p);
5862  args->name = name;
5863  return 0;
5864}
5865
5866/* The type name of the dynamic type denoted by the 'tag value TAG, as
5867   a C string.  */
5868
5869const char *
5870ada_tag_name (struct value *tag)
5871{
5872  struct tag_args args;
5873
5874  if (!ada_is_tag_type (value_type (tag)))
5875    return NULL;
5876  args.tag = tag;
5877  args.name = NULL;
5878  catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5879  return args.name;
5880}
5881
5882/* The parent type of TYPE, or NULL if none.  */
5883
5884struct type *
5885ada_parent_type (struct type *type)
5886{
5887  int i;
5888
5889  type = ada_check_typedef (type);
5890
5891  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5892    return NULL;
5893
5894  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5895    if (ada_is_parent_field (type, i))
5896      {
5897        struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5898
5899        /* If the _parent field is a pointer, then dereference it.  */
5900        if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5901          parent_type = TYPE_TARGET_TYPE (parent_type);
5902        /* If there is a parallel XVS type, get the actual base type.  */
5903        parent_type = ada_get_base_type (parent_type);
5904
5905        return ada_check_typedef (parent_type);
5906      }
5907
5908  return NULL;
5909}
5910
5911/* True iff field number FIELD_NUM of structure type TYPE contains the
5912   parent-type (inherited) fields of a derived type.  Assumes TYPE is
5913   a structure type with at least FIELD_NUM+1 fields.  */
5914
5915int
5916ada_is_parent_field (struct type *type, int field_num)
5917{
5918  const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5919
5920  return (name != NULL
5921          && (strncmp (name, "PARENT", 6) == 0
5922              || strncmp (name, "_parent", 7) == 0));
5923}
5924
5925/* True iff field number FIELD_NUM of structure type TYPE is a
5926   transparent wrapper field (which should be silently traversed when doing
5927   field selection and flattened when printing).  Assumes TYPE is a
5928   structure type with at least FIELD_NUM+1 fields.  Such fields are always
5929   structures.  */
5930
5931int
5932ada_is_wrapper_field (struct type *type, int field_num)
5933{
5934  const char *name = TYPE_FIELD_NAME (type, field_num);
5935
5936  return (name != NULL
5937          && (strncmp (name, "PARENT", 6) == 0
5938              || strcmp (name, "REP") == 0
5939              || strncmp (name, "_parent", 7) == 0
5940              || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5941}
5942
5943/* True iff field number FIELD_NUM of structure or union type TYPE
5944   is a variant wrapper.  Assumes TYPE is a structure type with at least
5945   FIELD_NUM+1 fields.  */
5946
5947int
5948ada_is_variant_part (struct type *type, int field_num)
5949{
5950  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5951
5952  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5953          || (is_dynamic_field (type, field_num)
5954              && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5955		  == TYPE_CODE_UNION)));
5956}
5957
5958/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5959   whose discriminants are contained in the record type OUTER_TYPE,
5960   returns the type of the controlling discriminant for the variant.
5961   May return NULL if the type could not be found.  */
5962
5963struct type *
5964ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5965{
5966  char *name = ada_variant_discrim_name (var_type);
5967
5968  return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5969}
5970
5971/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5972   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5973   represents a 'when others' clause; otherwise 0.  */
5974
5975int
5976ada_is_others_clause (struct type *type, int field_num)
5977{
5978  const char *name = TYPE_FIELD_NAME (type, field_num);
5979
5980  return (name != NULL && name[0] == 'O');
5981}
5982
5983/* Assuming that TYPE0 is the type of the variant part of a record,
5984   returns the name of the discriminant controlling the variant.
5985   The value is valid until the next call to ada_variant_discrim_name.  */
5986
5987char *
5988ada_variant_discrim_name (struct type *type0)
5989{
5990  static char *result = NULL;
5991  static size_t result_len = 0;
5992  struct type *type;
5993  const char *name;
5994  const char *discrim_end;
5995  const char *discrim_start;
5996
5997  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5998    type = TYPE_TARGET_TYPE (type0);
5999  else
6000    type = type0;
6001
6002  name = ada_type_name (type);
6003
6004  if (name == NULL || name[0] == '\000')
6005    return "";
6006
6007  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6008       discrim_end -= 1)
6009    {
6010      if (strncmp (discrim_end, "___XVN", 6) == 0)
6011        break;
6012    }
6013  if (discrim_end == name)
6014    return "";
6015
6016  for (discrim_start = discrim_end; discrim_start != name + 3;
6017       discrim_start -= 1)
6018    {
6019      if (discrim_start == name + 1)
6020        return "";
6021      if ((discrim_start > name + 3
6022           && strncmp (discrim_start - 3, "___", 3) == 0)
6023          || discrim_start[-1] == '.')
6024        break;
6025    }
6026
6027  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6028  strncpy (result, discrim_start, discrim_end - discrim_start);
6029  result[discrim_end - discrim_start] = '\0';
6030  return result;
6031}
6032
6033/* Scan STR for a subtype-encoded number, beginning at position K.
6034   Put the position of the character just past the number scanned in
6035   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
6036   Return 1 if there was a valid number at the given position, and 0
6037   otherwise.  A "subtype-encoded" number consists of the absolute value
6038   in decimal, followed by the letter 'm' to indicate a negative number.
6039   Assumes 0m does not occur.  */
6040
6041int
6042ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6043{
6044  ULONGEST RU;
6045
6046  if (!isdigit (str[k]))
6047    return 0;
6048
6049  /* Do it the hard way so as not to make any assumption about
6050     the relationship of unsigned long (%lu scan format code) and
6051     LONGEST.  */
6052  RU = 0;
6053  while (isdigit (str[k]))
6054    {
6055      RU = RU * 10 + (str[k] - '0');
6056      k += 1;
6057    }
6058
6059  if (str[k] == 'm')
6060    {
6061      if (R != NULL)
6062        *R = (-(LONGEST) (RU - 1)) - 1;
6063      k += 1;
6064    }
6065  else if (R != NULL)
6066    *R = (LONGEST) RU;
6067
6068  /* NOTE on the above: Technically, C does not say what the results of
6069     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6070     number representable as a LONGEST (although either would probably work
6071     in most implementations).  When RU>0, the locution in the then branch
6072     above is always equivalent to the negative of RU.  */
6073
6074  if (new_k != NULL)
6075    *new_k = k;
6076  return 1;
6077}
6078
6079/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6080   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6081   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
6082
6083int
6084ada_in_variant (LONGEST val, struct type *type, int field_num)
6085{
6086  const char *name = TYPE_FIELD_NAME (type, field_num);
6087  int p;
6088
6089  p = 0;
6090  while (1)
6091    {
6092      switch (name[p])
6093        {
6094        case '\0':
6095          return 0;
6096        case 'S':
6097          {
6098            LONGEST W;
6099
6100            if (!ada_scan_number (name, p + 1, &W, &p))
6101              return 0;
6102            if (val == W)
6103              return 1;
6104            break;
6105          }
6106        case 'R':
6107          {
6108            LONGEST L, U;
6109
6110            if (!ada_scan_number (name, p + 1, &L, &p)
6111                || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6112              return 0;
6113            if (val >= L && val <= U)
6114              return 1;
6115            break;
6116          }
6117        case 'O':
6118          return 1;
6119        default:
6120          return 0;
6121        }
6122    }
6123}
6124
6125/* FIXME: Lots of redundancy below.  Try to consolidate.  */
6126
6127/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6128   ARG_TYPE, extract and return the value of one of its (non-static)
6129   fields.  FIELDNO says which field.   Differs from value_primitive_field
6130   only in that it can handle packed values of arbitrary type.  */
6131
6132static struct value *
6133ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6134                           struct type *arg_type)
6135{
6136  struct type *type;
6137
6138  arg_type = ada_check_typedef (arg_type);
6139  type = TYPE_FIELD_TYPE (arg_type, fieldno);
6140
6141  /* Handle packed fields.  */
6142
6143  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6144    {
6145      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6146      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6147
6148      return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6149                                             offset + bit_pos / 8,
6150                                             bit_pos % 8, bit_size, type);
6151    }
6152  else
6153    return value_primitive_field (arg1, offset, fieldno, arg_type);
6154}
6155
6156/* Find field with name NAME in object of type TYPE.  If found,
6157   set the following for each argument that is non-null:
6158    - *FIELD_TYPE_P to the field's type;
6159    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6160      an object of that type;
6161    - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6162    - *BIT_SIZE_P to its size in bits if the field is packed, and
6163      0 otherwise;
6164   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6165   fields up to but not including the desired field, or by the total
6166   number of fields if not found.   A NULL value of NAME never
6167   matches; the function just counts visible fields in this case.
6168
6169   Returns 1 if found, 0 otherwise.  */
6170
6171static int
6172find_struct_field (char *name, struct type *type, int offset,
6173                   struct type **field_type_p,
6174                   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6175		   int *index_p)
6176{
6177  int i;
6178
6179  type = ada_check_typedef (type);
6180
6181  if (field_type_p != NULL)
6182    *field_type_p = NULL;
6183  if (byte_offset_p != NULL)
6184    *byte_offset_p = 0;
6185  if (bit_offset_p != NULL)
6186    *bit_offset_p = 0;
6187  if (bit_size_p != NULL)
6188    *bit_size_p = 0;
6189
6190  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6191    {
6192      int bit_pos = TYPE_FIELD_BITPOS (type, i);
6193      int fld_offset = offset + bit_pos / 8;
6194      char *t_field_name = TYPE_FIELD_NAME (type, i);
6195
6196      if (t_field_name == NULL)
6197        continue;
6198
6199      else if (name != NULL && field_name_match (t_field_name, name))
6200        {
6201          int bit_size = TYPE_FIELD_BITSIZE (type, i);
6202
6203	  if (field_type_p != NULL)
6204	    *field_type_p = TYPE_FIELD_TYPE (type, i);
6205	  if (byte_offset_p != NULL)
6206	    *byte_offset_p = fld_offset;
6207	  if (bit_offset_p != NULL)
6208	    *bit_offset_p = bit_pos % 8;
6209	  if (bit_size_p != NULL)
6210	    *bit_size_p = bit_size;
6211          return 1;
6212        }
6213      else if (ada_is_wrapper_field (type, i))
6214        {
6215	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6216				 field_type_p, byte_offset_p, bit_offset_p,
6217				 bit_size_p, index_p))
6218            return 1;
6219        }
6220      else if (ada_is_variant_part (type, i))
6221        {
6222	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of
6223	     fixed type?? */
6224          int j;
6225          struct type *field_type
6226	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6227
6228          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6229            {
6230              if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6231                                     fld_offset
6232                                     + TYPE_FIELD_BITPOS (field_type, j) / 8,
6233                                     field_type_p, byte_offset_p,
6234                                     bit_offset_p, bit_size_p, index_p))
6235                return 1;
6236            }
6237        }
6238      else if (index_p != NULL)
6239	*index_p += 1;
6240    }
6241  return 0;
6242}
6243
6244/* Number of user-visible fields in record type TYPE.  */
6245
6246static int
6247num_visible_fields (struct type *type)
6248{
6249  int n;
6250
6251  n = 0;
6252  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6253  return n;
6254}
6255
6256/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
6257   and search in it assuming it has (class) type TYPE.
6258   If found, return value, else return NULL.
6259
6260   Searches recursively through wrapper fields (e.g., '_parent').  */
6261
6262static struct value *
6263ada_search_struct_field (char *name, struct value *arg, int offset,
6264                         struct type *type)
6265{
6266  int i;
6267
6268  type = ada_check_typedef (type);
6269  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6270    {
6271      char *t_field_name = TYPE_FIELD_NAME (type, i);
6272
6273      if (t_field_name == NULL)
6274        continue;
6275
6276      else if (field_name_match (t_field_name, name))
6277        return ada_value_primitive_field (arg, offset, i, type);
6278
6279      else if (ada_is_wrapper_field (type, i))
6280        {
6281          struct value *v =     /* Do not let indent join lines here.  */
6282            ada_search_struct_field (name, arg,
6283                                     offset + TYPE_FIELD_BITPOS (type, i) / 8,
6284                                     TYPE_FIELD_TYPE (type, i));
6285
6286          if (v != NULL)
6287            return v;
6288        }
6289
6290      else if (ada_is_variant_part (type, i))
6291        {
6292	  /* PNH: Do we ever get here?  See find_struct_field.  */
6293          int j;
6294          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6295									i));
6296          int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6297
6298          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6299            {
6300              struct value *v = ada_search_struct_field /* Force line
6301							   break.  */
6302                (name, arg,
6303                 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6304                 TYPE_FIELD_TYPE (field_type, j));
6305
6306              if (v != NULL)
6307                return v;
6308            }
6309        }
6310    }
6311  return NULL;
6312}
6313
6314static struct value *ada_index_struct_field_1 (int *, struct value *,
6315					       int, struct type *);
6316
6317
6318/* Return field #INDEX in ARG, where the index is that returned by
6319 * find_struct_field through its INDEX_P argument.  Adjust the address
6320 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6321 * If found, return value, else return NULL.  */
6322
6323static struct value *
6324ada_index_struct_field (int index, struct value *arg, int offset,
6325			struct type *type)
6326{
6327  return ada_index_struct_field_1 (&index, arg, offset, type);
6328}
6329
6330
6331/* Auxiliary function for ada_index_struct_field.  Like
6332 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6333 * *INDEX_P.  */
6334
6335static struct value *
6336ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337			  struct type *type)
6338{
6339  int i;
6340  type = ada_check_typedef (type);
6341
6342  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6343    {
6344      if (TYPE_FIELD_NAME (type, i) == NULL)
6345        continue;
6346      else if (ada_is_wrapper_field (type, i))
6347        {
6348          struct value *v =     /* Do not let indent join lines here.  */
6349            ada_index_struct_field_1 (index_p, arg,
6350				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6351				      TYPE_FIELD_TYPE (type, i));
6352
6353          if (v != NULL)
6354            return v;
6355        }
6356
6357      else if (ada_is_variant_part (type, i))
6358        {
6359	  /* PNH: Do we ever get here?  See ada_search_struct_field,
6360	     find_struct_field.  */
6361	  error (_("Cannot assign this kind of variant record"));
6362        }
6363      else if (*index_p == 0)
6364        return ada_value_primitive_field (arg, offset, i, type);
6365      else
6366	*index_p -= 1;
6367    }
6368  return NULL;
6369}
6370
6371/* Given ARG, a value of type (pointer or reference to a)*
6372   structure/union, extract the component named NAME from the ultimate
6373   target structure/union and return it as a value with its
6374   appropriate type.
6375
6376   The routine searches for NAME among all members of the structure itself
6377   and (recursively) among all members of any wrapper members
6378   (e.g., '_parent').
6379
6380   If NO_ERR, then simply return NULL in case of error, rather than
6381   calling error.  */
6382
6383struct value *
6384ada_value_struct_elt (struct value *arg, char *name, int no_err)
6385{
6386  struct type *t, *t1;
6387  struct value *v;
6388
6389  v = NULL;
6390  t1 = t = ada_check_typedef (value_type (arg));
6391  if (TYPE_CODE (t) == TYPE_CODE_REF)
6392    {
6393      t1 = TYPE_TARGET_TYPE (t);
6394      if (t1 == NULL)
6395	goto BadValue;
6396      t1 = ada_check_typedef (t1);
6397      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6398        {
6399          arg = coerce_ref (arg);
6400          t = t1;
6401        }
6402    }
6403
6404  while (TYPE_CODE (t) == TYPE_CODE_PTR)
6405    {
6406      t1 = TYPE_TARGET_TYPE (t);
6407      if (t1 == NULL)
6408	goto BadValue;
6409      t1 = ada_check_typedef (t1);
6410      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6411        {
6412          arg = value_ind (arg);
6413          t = t1;
6414        }
6415      else
6416        break;
6417    }
6418
6419  if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6420    goto BadValue;
6421
6422  if (t1 == t)
6423    v = ada_search_struct_field (name, arg, 0, t);
6424  else
6425    {
6426      int bit_offset, bit_size, byte_offset;
6427      struct type *field_type;
6428      CORE_ADDR address;
6429
6430      if (TYPE_CODE (t) == TYPE_CODE_PTR)
6431        address = value_as_address (arg);
6432      else
6433        address = unpack_pointer (t, value_contents (arg));
6434
6435      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6436      if (find_struct_field (name, t1, 0,
6437                             &field_type, &byte_offset, &bit_offset,
6438                             &bit_size, NULL))
6439        {
6440          if (bit_size != 0)
6441            {
6442              if (TYPE_CODE (t) == TYPE_CODE_REF)
6443                arg = ada_coerce_ref (arg);
6444              else
6445                arg = ada_value_ind (arg);
6446              v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6447                                                  bit_offset, bit_size,
6448                                                  field_type);
6449            }
6450          else
6451            v = value_at_lazy (field_type, address + byte_offset);
6452        }
6453    }
6454
6455  if (v != NULL || no_err)
6456    return v;
6457  else
6458    error (_("There is no member named %s."), name);
6459
6460 BadValue:
6461  if (no_err)
6462    return NULL;
6463  else
6464    error (_("Attempt to extract a component of "
6465	     "a value that is not a record."));
6466}
6467
6468/* Given a type TYPE, look up the type of the component of type named NAME.
6469   If DISPP is non-null, add its byte displacement from the beginning of a
6470   structure (pointed to by a value) of type TYPE to *DISPP (does not
6471   work for packed fields).
6472
6473   Matches any field whose name has NAME as a prefix, possibly
6474   followed by "___".
6475
6476   TYPE can be either a struct or union.  If REFOK, TYPE may also
6477   be a (pointer or reference)+ to a struct or union, and the
6478   ultimate target type will be searched.
6479
6480   Looks recursively into variant clauses and parent types.
6481
6482   If NOERR is nonzero, return NULL if NAME is not suitably defined or
6483   TYPE is not a type of the right kind.  */
6484
6485static struct type *
6486ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6487                            int noerr, int *dispp)
6488{
6489  int i;
6490
6491  if (name == NULL)
6492    goto BadName;
6493
6494  if (refok && type != NULL)
6495    while (1)
6496      {
6497        type = ada_check_typedef (type);
6498        if (TYPE_CODE (type) != TYPE_CODE_PTR
6499            && TYPE_CODE (type) != TYPE_CODE_REF)
6500          break;
6501        type = TYPE_TARGET_TYPE (type);
6502      }
6503
6504  if (type == NULL
6505      || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6506          && TYPE_CODE (type) != TYPE_CODE_UNION))
6507    {
6508      if (noerr)
6509        return NULL;
6510      else
6511        {
6512          target_terminal_ours ();
6513          gdb_flush (gdb_stdout);
6514	  if (type == NULL)
6515	    error (_("Type (null) is not a structure or union type"));
6516	  else
6517	    {
6518	      /* XXX: type_sprint */
6519	      fprintf_unfiltered (gdb_stderr, _("Type "));
6520	      type_print (type, "", gdb_stderr, -1);
6521	      error (_(" is not a structure or union type"));
6522	    }
6523        }
6524    }
6525
6526  type = to_static_fixed_type (type);
6527
6528  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6529    {
6530      char *t_field_name = TYPE_FIELD_NAME (type, i);
6531      struct type *t;
6532      int disp;
6533
6534      if (t_field_name == NULL)
6535        continue;
6536
6537      else if (field_name_match (t_field_name, name))
6538        {
6539          if (dispp != NULL)
6540            *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6541          return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6542        }
6543
6544      else if (ada_is_wrapper_field (type, i))
6545        {
6546          disp = 0;
6547          t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6548                                          0, 1, &disp);
6549          if (t != NULL)
6550            {
6551              if (dispp != NULL)
6552                *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6553              return t;
6554            }
6555        }
6556
6557      else if (ada_is_variant_part (type, i))
6558        {
6559          int j;
6560          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6561									i));
6562
6563          for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6564            {
6565	      /* FIXME pnh 2008/01/26: We check for a field that is
6566	         NOT wrapped in a struct, since the compiler sometimes
6567		 generates these for unchecked variant types.  Revisit
6568	         if the compiler changes this practice.  */
6569	      char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6570              disp = 0;
6571	      if (v_field_name != NULL
6572		  && field_name_match (v_field_name, name))
6573		t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6574	      else
6575		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6576								 j),
6577						name, 0, 1, &disp);
6578
6579              if (t != NULL)
6580                {
6581                  if (dispp != NULL)
6582                    *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6583                  return t;
6584                }
6585            }
6586        }
6587
6588    }
6589
6590BadName:
6591  if (!noerr)
6592    {
6593      target_terminal_ours ();
6594      gdb_flush (gdb_stdout);
6595      if (name == NULL)
6596        {
6597	  /* XXX: type_sprint */
6598	  fprintf_unfiltered (gdb_stderr, _("Type "));
6599	  type_print (type, "", gdb_stderr, -1);
6600	  error (_(" has no component named <null>"));
6601	}
6602      else
6603	{
6604	  /* XXX: type_sprint */
6605	  fprintf_unfiltered (gdb_stderr, _("Type "));
6606	  type_print (type, "", gdb_stderr, -1);
6607	  error (_(" has no component named %s"), name);
6608	}
6609    }
6610
6611  return NULL;
6612}
6613
6614/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6615   within a value of type OUTER_TYPE, return true iff VAR_TYPE
6616   represents an unchecked union (that is, the variant part of a
6617   record that is named in an Unchecked_Union pragma).  */
6618
6619static int
6620is_unchecked_variant (struct type *var_type, struct type *outer_type)
6621{
6622  char *discrim_name = ada_variant_discrim_name (var_type);
6623
6624  return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6625	  == NULL);
6626}
6627
6628
6629/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6630   within a value of type OUTER_TYPE that is stored in GDB at
6631   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6632   numbering from 0) is applicable.  Returns -1 if none are.  */
6633
6634int
6635ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6636                           const gdb_byte *outer_valaddr)
6637{
6638  int others_clause;
6639  int i;
6640  char *discrim_name = ada_variant_discrim_name (var_type);
6641  struct value *outer;
6642  struct value *discrim;
6643  LONGEST discrim_val;
6644
6645  outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6646  discrim = ada_value_struct_elt (outer, discrim_name, 1);
6647  if (discrim == NULL)
6648    return -1;
6649  discrim_val = value_as_long (discrim);
6650
6651  others_clause = -1;
6652  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6653    {
6654      if (ada_is_others_clause (var_type, i))
6655        others_clause = i;
6656      else if (ada_in_variant (discrim_val, var_type, i))
6657        return i;
6658    }
6659
6660  return others_clause;
6661}
6662
6663
6664
6665                                /* Dynamic-Sized Records */
6666
6667/* Strategy: The type ostensibly attached to a value with dynamic size
6668   (i.e., a size that is not statically recorded in the debugging
6669   data) does not accurately reflect the size or layout of the value.
6670   Our strategy is to convert these values to values with accurate,
6671   conventional types that are constructed on the fly.  */
6672
6673/* There is a subtle and tricky problem here.  In general, we cannot
6674   determine the size of dynamic records without its data.  However,
6675   the 'struct value' data structure, which GDB uses to represent
6676   quantities in the inferior process (the target), requires the size
6677   of the type at the time of its allocation in order to reserve space
6678   for GDB's internal copy of the data.  That's why the
6679   'to_fixed_xxx_type' routines take (target) addresses as parameters,
6680   rather than struct value*s.
6681
6682   However, GDB's internal history variables ($1, $2, etc.) are
6683   struct value*s containing internal copies of the data that are not, in
6684   general, the same as the data at their corresponding addresses in
6685   the target.  Fortunately, the types we give to these values are all
6686   conventional, fixed-size types (as per the strategy described
6687   above), so that we don't usually have to perform the
6688   'to_fixed_xxx_type' conversions to look at their values.
6689   Unfortunately, there is one exception: if one of the internal
6690   history variables is an array whose elements are unconstrained
6691   records, then we will need to create distinct fixed types for each
6692   element selected.  */
6693
6694/* The upshot of all of this is that many routines take a (type, host
6695   address, target address) triple as arguments to represent a value.
6696   The host address, if non-null, is supposed to contain an internal
6697   copy of the relevant data; otherwise, the program is to consult the
6698   target at the target address.  */
6699
6700/* Assuming that VAL0 represents a pointer value, the result of
6701   dereferencing it.  Differs from value_ind in its treatment of
6702   dynamic-sized types.  */
6703
6704struct value *
6705ada_value_ind (struct value *val0)
6706{
6707  struct value *val = unwrap_value (value_ind (val0));
6708
6709  return ada_to_fixed_value (val);
6710}
6711
6712/* The value resulting from dereferencing any "reference to"
6713   qualifiers on VAL0.  */
6714
6715static struct value *
6716ada_coerce_ref (struct value *val0)
6717{
6718  if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6719    {
6720      struct value *val = val0;
6721
6722      val = coerce_ref (val);
6723      val = unwrap_value (val);
6724      return ada_to_fixed_value (val);
6725    }
6726  else
6727    return val0;
6728}
6729
6730/* Return OFF rounded upward if necessary to a multiple of
6731   ALIGNMENT (a power of 2).  */
6732
6733static unsigned int
6734align_value (unsigned int off, unsigned int alignment)
6735{
6736  return (off + alignment - 1) & ~(alignment - 1);
6737}
6738
6739/* Return the bit alignment required for field #F of template type TYPE.  */
6740
6741static unsigned int
6742field_alignment (struct type *type, int f)
6743{
6744  const char *name = TYPE_FIELD_NAME (type, f);
6745  int len;
6746  int align_offset;
6747
6748  /* The field name should never be null, unless the debugging information
6749     is somehow malformed.  In this case, we assume the field does not
6750     require any alignment.  */
6751  if (name == NULL)
6752    return 1;
6753
6754  len = strlen (name);
6755
6756  if (!isdigit (name[len - 1]))
6757    return 1;
6758
6759  if (isdigit (name[len - 2]))
6760    align_offset = len - 2;
6761  else
6762    align_offset = len - 1;
6763
6764  if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6765    return TARGET_CHAR_BIT;
6766
6767  return atoi (name + align_offset) * TARGET_CHAR_BIT;
6768}
6769
6770/* Find a symbol named NAME.  Ignores ambiguity.  */
6771
6772struct symbol *
6773ada_find_any_symbol (const char *name)
6774{
6775  struct symbol *sym;
6776
6777  sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6778  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6779    return sym;
6780
6781  sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6782  return sym;
6783}
6784
6785/* Find a type named NAME.  Ignores ambiguity.  This routine will look
6786   solely for types defined by debug info, it will not search the GDB
6787   primitive types.  */
6788
6789struct type *
6790ada_find_any_type (const char *name)
6791{
6792  struct symbol *sym = ada_find_any_symbol (name);
6793
6794  if (sym != NULL)
6795    return SYMBOL_TYPE (sym);
6796
6797  return NULL;
6798}
6799
6800/* Given NAME and an associated BLOCK, search all symbols for
6801   NAME suffixed with  "___XR", which is the ``renaming'' symbol
6802   associated to NAME.  Return this symbol if found, return
6803   NULL otherwise.  */
6804
6805struct symbol *
6806ada_find_renaming_symbol (const char *name, struct block *block)
6807{
6808  struct symbol *sym;
6809
6810  sym = find_old_style_renaming_symbol (name, block);
6811
6812  if (sym != NULL)
6813    return sym;
6814
6815  /* Not right yet.  FIXME pnh 7/20/2007.  */
6816  sym = ada_find_any_symbol (name);
6817  if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6818    return sym;
6819  else
6820    return NULL;
6821}
6822
6823static struct symbol *
6824find_old_style_renaming_symbol (const char *name, struct block *block)
6825{
6826  const struct symbol *function_sym = block_linkage_function (block);
6827  char *rename;
6828
6829  if (function_sym != NULL)
6830    {
6831      /* If the symbol is defined inside a function, NAME is not fully
6832         qualified.  This means we need to prepend the function name
6833         as well as adding the ``___XR'' suffix to build the name of
6834         the associated renaming symbol.  */
6835      char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6836      /* Function names sometimes contain suffixes used
6837         for instance to qualify nested subprograms.  When building
6838         the XR type name, we need to make sure that this suffix is
6839         not included.  So do not include any suffix in the function
6840         name length below.  */
6841      int function_name_len = ada_name_prefix_len (function_name);
6842      const int rename_len = function_name_len + 2      /*  "__" */
6843        + strlen (name) + 6 /* "___XR\0" */ ;
6844
6845      /* Strip the suffix if necessary.  */
6846      ada_remove_trailing_digits (function_name, &function_name_len);
6847      ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6848      ada_remove_Xbn_suffix (function_name, &function_name_len);
6849
6850      /* Library-level functions are a special case, as GNAT adds
6851         a ``_ada_'' prefix to the function name to avoid namespace
6852         pollution.  However, the renaming symbols themselves do not
6853         have this prefix, so we need to skip this prefix if present.  */
6854      if (function_name_len > 5 /* "_ada_" */
6855          && strstr (function_name, "_ada_") == function_name)
6856        {
6857	  function_name += 5;
6858	  function_name_len -= 5;
6859        }
6860
6861      rename = (char *) alloca (rename_len * sizeof (char));
6862      strncpy (rename, function_name, function_name_len);
6863      xsnprintf (rename + function_name_len, rename_len - function_name_len,
6864		 "__%s___XR", name);
6865    }
6866  else
6867    {
6868      const int rename_len = strlen (name) + 6;
6869
6870      rename = (char *) alloca (rename_len * sizeof (char));
6871      xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6872    }
6873
6874  return ada_find_any_symbol (rename);
6875}
6876
6877/* Because of GNAT encoding conventions, several GDB symbols may match a
6878   given type name.  If the type denoted by TYPE0 is to be preferred to
6879   that of TYPE1 for purposes of type printing, return non-zero;
6880   otherwise return 0.  */
6881
6882int
6883ada_prefer_type (struct type *type0, struct type *type1)
6884{
6885  if (type1 == NULL)
6886    return 1;
6887  else if (type0 == NULL)
6888    return 0;
6889  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6890    return 1;
6891  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6892    return 0;
6893  else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6894    return 1;
6895  else if (ada_is_constrained_packed_array_type (type0))
6896    return 1;
6897  else if (ada_is_array_descriptor_type (type0)
6898           && !ada_is_array_descriptor_type (type1))
6899    return 1;
6900  else
6901    {
6902      const char *type0_name = type_name_no_tag (type0);
6903      const char *type1_name = type_name_no_tag (type1);
6904
6905      if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6906	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6907	return 1;
6908    }
6909  return 0;
6910}
6911
6912/* The name of TYPE, which is either its TYPE_NAME, or, if that is
6913   null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
6914
6915char *
6916ada_type_name (struct type *type)
6917{
6918  if (type == NULL)
6919    return NULL;
6920  else if (TYPE_NAME (type) != NULL)
6921    return TYPE_NAME (type);
6922  else
6923    return TYPE_TAG_NAME (type);
6924}
6925
6926/* Search the list of "descriptive" types associated to TYPE for a type
6927   whose name is NAME.  */
6928
6929static struct type *
6930find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6931{
6932  struct type *result;
6933
6934  /* If there no descriptive-type info, then there is no parallel type
6935     to be found.  */
6936  if (!HAVE_GNAT_AUX_INFO (type))
6937    return NULL;
6938
6939  result = TYPE_DESCRIPTIVE_TYPE (type);
6940  while (result != NULL)
6941    {
6942      char *result_name = ada_type_name (result);
6943
6944      if (result_name == NULL)
6945        {
6946          warning (_("unexpected null name on descriptive type"));
6947          return NULL;
6948        }
6949
6950      /* If the names match, stop.  */
6951      if (strcmp (result_name, name) == 0)
6952	break;
6953
6954      /* Otherwise, look at the next item on the list, if any.  */
6955      if (HAVE_GNAT_AUX_INFO (result))
6956	result = TYPE_DESCRIPTIVE_TYPE (result);
6957      else
6958	result = NULL;
6959    }
6960
6961  /* If we didn't find a match, see whether this is a packed array.  With
6962     older compilers, the descriptive type information is either absent or
6963     irrelevant when it comes to packed arrays so the above lookup fails.
6964     Fall back to using a parallel lookup by name in this case.  */
6965  if (result == NULL && ada_is_constrained_packed_array_type (type))
6966    return ada_find_any_type (name);
6967
6968  return result;
6969}
6970
6971/* Find a parallel type to TYPE with the specified NAME, using the
6972   descriptive type taken from the debugging information, if available,
6973   and otherwise using the (slower) name-based method.  */
6974
6975static struct type *
6976ada_find_parallel_type_with_name (struct type *type, const char *name)
6977{
6978  struct type *result = NULL;
6979
6980  if (HAVE_GNAT_AUX_INFO (type))
6981    result = find_parallel_type_by_descriptive_type (type, name);
6982  else
6983    result = ada_find_any_type (name);
6984
6985  return result;
6986}
6987
6988/* Same as above, but specify the name of the parallel type by appending
6989   SUFFIX to the name of TYPE.  */
6990
6991struct type *
6992ada_find_parallel_type (struct type *type, const char *suffix)
6993{
6994  char *name, *typename = ada_type_name (type);
6995  int len;
6996
6997  if (typename == NULL)
6998    return NULL;
6999
7000  len = strlen (typename);
7001
7002  name = (char *) alloca (len + strlen (suffix) + 1);
7003
7004  strcpy (name, typename);
7005  strcpy (name + len, suffix);
7006
7007  return ada_find_parallel_type_with_name (type, name);
7008}
7009
7010/* If TYPE is a variable-size record type, return the corresponding template
7011   type describing its fields.  Otherwise, return NULL.  */
7012
7013static struct type *
7014dynamic_template_type (struct type *type)
7015{
7016  type = ada_check_typedef (type);
7017
7018  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7019      || ada_type_name (type) == NULL)
7020    return NULL;
7021  else
7022    {
7023      int len = strlen (ada_type_name (type));
7024
7025      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7026        return type;
7027      else
7028        return ada_find_parallel_type (type, "___XVE");
7029    }
7030}
7031
7032/* Assuming that TEMPL_TYPE is a union or struct type, returns
7033   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
7034
7035static int
7036is_dynamic_field (struct type *templ_type, int field_num)
7037{
7038  const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7039
7040  return name != NULL
7041    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7042    && strstr (name, "___XVL") != NULL;
7043}
7044
7045/* The index of the variant field of TYPE, or -1 if TYPE does not
7046   represent a variant record type.  */
7047
7048static int
7049variant_field_index (struct type *type)
7050{
7051  int f;
7052
7053  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7054    return -1;
7055
7056  for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7057    {
7058      if (ada_is_variant_part (type, f))
7059        return f;
7060    }
7061  return -1;
7062}
7063
7064/* A record type with no fields.  */
7065
7066static struct type *
7067empty_record (struct type *template)
7068{
7069  struct type *type = alloc_type_copy (template);
7070
7071  TYPE_CODE (type) = TYPE_CODE_STRUCT;
7072  TYPE_NFIELDS (type) = 0;
7073  TYPE_FIELDS (type) = NULL;
7074  INIT_CPLUS_SPECIFIC (type);
7075  TYPE_NAME (type) = "<empty>";
7076  TYPE_TAG_NAME (type) = NULL;
7077  TYPE_LENGTH (type) = 0;
7078  return type;
7079}
7080
7081/* An ordinary record type (with fixed-length fields) that describes
7082   the value of type TYPE at VALADDR or ADDRESS (see comments at
7083   the beginning of this section) VAL according to GNAT conventions.
7084   DVAL0 should describe the (portion of a) record that contains any
7085   necessary discriminants.  It should be NULL if value_type (VAL) is
7086   an outer-level type (i.e., as opposed to a branch of a variant.)  A
7087   variant field (unless unchecked) is replaced by a particular branch
7088   of the variant.
7089
7090   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7091   length are not statically known are discarded.  As a consequence,
7092   VALADDR, ADDRESS and DVAL0 are ignored.
7093
7094   NOTE: Limitations: For now, we assume that dynamic fields and
7095   variants occupy whole numbers of bytes.  However, they need not be
7096   byte-aligned.  */
7097
7098struct type *
7099ada_template_to_fixed_record_type_1 (struct type *type,
7100				     const gdb_byte *valaddr,
7101                                     CORE_ADDR address, struct value *dval0,
7102                                     int keep_dynamic_fields)
7103{
7104  struct value *mark = value_mark ();
7105  struct value *dval;
7106  struct type *rtype;
7107  int nfields, bit_len;
7108  int variant_field;
7109  long off;
7110  int fld_bit_len;
7111  int f;
7112
7113  /* Compute the number of fields in this record type that are going
7114     to be processed: unless keep_dynamic_fields, this includes only
7115     fields whose position and length are static will be processed.  */
7116  if (keep_dynamic_fields)
7117    nfields = TYPE_NFIELDS (type);
7118  else
7119    {
7120      nfields = 0;
7121      while (nfields < TYPE_NFIELDS (type)
7122             && !ada_is_variant_part (type, nfields)
7123             && !is_dynamic_field (type, nfields))
7124        nfields++;
7125    }
7126
7127  rtype = alloc_type_copy (type);
7128  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7129  INIT_CPLUS_SPECIFIC (rtype);
7130  TYPE_NFIELDS (rtype) = nfields;
7131  TYPE_FIELDS (rtype) = (struct field *)
7132    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7133  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7134  TYPE_NAME (rtype) = ada_type_name (type);
7135  TYPE_TAG_NAME (rtype) = NULL;
7136  TYPE_FIXED_INSTANCE (rtype) = 1;
7137
7138  off = 0;
7139  bit_len = 0;
7140  variant_field = -1;
7141
7142  for (f = 0; f < nfields; f += 1)
7143    {
7144      off = align_value (off, field_alignment (type, f))
7145	+ TYPE_FIELD_BITPOS (type, f);
7146      TYPE_FIELD_BITPOS (rtype, f) = off;
7147      TYPE_FIELD_BITSIZE (rtype, f) = 0;
7148
7149      if (ada_is_variant_part (type, f))
7150        {
7151          variant_field = f;
7152          fld_bit_len = 0;
7153        }
7154      else if (is_dynamic_field (type, f))
7155        {
7156	  const gdb_byte *field_valaddr = valaddr;
7157	  CORE_ADDR field_address = address;
7158	  struct type *field_type =
7159	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7160
7161          if (dval0 == NULL)
7162	    {
7163	      /* rtype's length is computed based on the run-time
7164		 value of discriminants.  If the discriminants are not
7165		 initialized, the type size may be completely bogus and
7166		 GDB may fail to allocate a value for it.  So check the
7167		 size first before creating the value.  */
7168	      check_size (rtype);
7169	      dval = value_from_contents_and_address (rtype, valaddr, address);
7170	    }
7171          else
7172            dval = dval0;
7173
7174	  /* If the type referenced by this field is an aligner type, we need
7175	     to unwrap that aligner type, because its size might not be set.
7176	     Keeping the aligner type would cause us to compute the wrong
7177	     size for this field, impacting the offset of the all the fields
7178	     that follow this one.  */
7179	  if (ada_is_aligner_type (field_type))
7180	    {
7181	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7182
7183	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
7184	      field_address = cond_offset_target (field_address, field_offset);
7185	      field_type = ada_aligned_type (field_type);
7186	    }
7187
7188	  field_valaddr = cond_offset_host (field_valaddr,
7189					    off / TARGET_CHAR_BIT);
7190	  field_address = cond_offset_target (field_address,
7191					      off / TARGET_CHAR_BIT);
7192
7193	  /* Get the fixed type of the field.  Note that, in this case,
7194	     we do not want to get the real type out of the tag: if
7195	     the current field is the parent part of a tagged record,
7196	     we will get the tag of the object.  Clearly wrong: the real
7197	     type of the parent is not the real type of the child.  We
7198	     would end up in an infinite loop.	*/
7199	  field_type = ada_get_base_type (field_type);
7200	  field_type = ada_to_fixed_type (field_type, field_valaddr,
7201					  field_address, dval, 0);
7202	  /* If the field size is already larger than the maximum
7203	     object size, then the record itself will necessarily
7204	     be larger than the maximum object size.  We need to make
7205	     this check now, because the size might be so ridiculously
7206	     large (due to an uninitialized variable in the inferior)
7207	     that it would cause an overflow when adding it to the
7208	     record size.  */
7209	  check_size (field_type);
7210
7211	  TYPE_FIELD_TYPE (rtype, f) = field_type;
7212          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7213	  /* The multiplication can potentially overflow.  But because
7214	     the field length has been size-checked just above, and
7215	     assuming that the maximum size is a reasonable value,
7216	     an overflow should not happen in practice.  So rather than
7217	     adding overflow recovery code to this already complex code,
7218	     we just assume that it's not going to happen.  */
7219          fld_bit_len =
7220            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7221        }
7222      else
7223        {
7224          struct type *field_type = TYPE_FIELD_TYPE (type, f);
7225
7226	  /* If our field is a typedef type (most likely a typedef of
7227	     a fat pointer, encoding an array access), then we need to
7228	     look at its target type to determine its characteristics.
7229	     In particular, we would miscompute the field size if we took
7230	     the size of the typedef (zero), instead of the size of
7231	     the target type.  */
7232	  if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7233	    field_type = ada_typedef_target_type (field_type);
7234
7235          TYPE_FIELD_TYPE (rtype, f) = field_type;
7236          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7237          if (TYPE_FIELD_BITSIZE (type, f) > 0)
7238            fld_bit_len =
7239              TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7240          else
7241            fld_bit_len =
7242              TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7243        }
7244      if (off + fld_bit_len > bit_len)
7245        bit_len = off + fld_bit_len;
7246      off += fld_bit_len;
7247      TYPE_LENGTH (rtype) =
7248        align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7249    }
7250
7251  /* We handle the variant part, if any, at the end because of certain
7252     odd cases in which it is re-ordered so as NOT to be the last field of
7253     the record.  This can happen in the presence of representation
7254     clauses.  */
7255  if (variant_field >= 0)
7256    {
7257      struct type *branch_type;
7258
7259      off = TYPE_FIELD_BITPOS (rtype, variant_field);
7260
7261      if (dval0 == NULL)
7262        dval = value_from_contents_and_address (rtype, valaddr, address);
7263      else
7264        dval = dval0;
7265
7266      branch_type =
7267        to_fixed_variant_branch_type
7268        (TYPE_FIELD_TYPE (type, variant_field),
7269         cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7270         cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7271      if (branch_type == NULL)
7272        {
7273          for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7274            TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7275          TYPE_NFIELDS (rtype) -= 1;
7276        }
7277      else
7278        {
7279          TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7280          TYPE_FIELD_NAME (rtype, variant_field) = "S";
7281          fld_bit_len =
7282            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7283            TARGET_CHAR_BIT;
7284          if (off + fld_bit_len > bit_len)
7285            bit_len = off + fld_bit_len;
7286          TYPE_LENGTH (rtype) =
7287            align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7288        }
7289    }
7290
7291  /* According to exp_dbug.ads, the size of TYPE for variable-size records
7292     should contain the alignment of that record, which should be a strictly
7293     positive value.  If null or negative, then something is wrong, most
7294     probably in the debug info.  In that case, we don't round up the size
7295     of the resulting type.  If this record is not part of another structure,
7296     the current RTYPE length might be good enough for our purposes.  */
7297  if (TYPE_LENGTH (type) <= 0)
7298    {
7299      if (TYPE_NAME (rtype))
7300	warning (_("Invalid type size for `%s' detected: %d."),
7301		 TYPE_NAME (rtype), TYPE_LENGTH (type));
7302      else
7303	warning (_("Invalid type size for <unnamed> detected: %d."),
7304		 TYPE_LENGTH (type));
7305    }
7306  else
7307    {
7308      TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7309                                         TYPE_LENGTH (type));
7310    }
7311
7312  value_free_to_mark (mark);
7313  if (TYPE_LENGTH (rtype) > varsize_limit)
7314    error (_("record type with dynamic size is larger than varsize-limit"));
7315  return rtype;
7316}
7317
7318/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7319   of 1.  */
7320
7321static struct type *
7322template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7323                               CORE_ADDR address, struct value *dval0)
7324{
7325  return ada_template_to_fixed_record_type_1 (type, valaddr,
7326                                              address, dval0, 1);
7327}
7328
7329/* An ordinary record type in which ___XVL-convention fields and
7330   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7331   static approximations, containing all possible fields.  Uses
7332   no runtime values.  Useless for use in values, but that's OK,
7333   since the results are used only for type determinations.   Works on both
7334   structs and unions.  Representation note: to save space, we memorize
7335   the result of this function in the TYPE_TARGET_TYPE of the
7336   template type.  */
7337
7338static struct type *
7339template_to_static_fixed_type (struct type *type0)
7340{
7341  struct type *type;
7342  int nfields;
7343  int f;
7344
7345  if (TYPE_TARGET_TYPE (type0) != NULL)
7346    return TYPE_TARGET_TYPE (type0);
7347
7348  nfields = TYPE_NFIELDS (type0);
7349  type = type0;
7350
7351  for (f = 0; f < nfields; f += 1)
7352    {
7353      struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7354      struct type *new_type;
7355
7356      if (is_dynamic_field (type0, f))
7357        new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7358      else
7359        new_type = static_unwrap_type (field_type);
7360      if (type == type0 && new_type != field_type)
7361        {
7362          TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7363          TYPE_CODE (type) = TYPE_CODE (type0);
7364          INIT_CPLUS_SPECIFIC (type);
7365          TYPE_NFIELDS (type) = nfields;
7366          TYPE_FIELDS (type) = (struct field *)
7367            TYPE_ALLOC (type, nfields * sizeof (struct field));
7368          memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7369                  sizeof (struct field) * nfields);
7370          TYPE_NAME (type) = ada_type_name (type0);
7371          TYPE_TAG_NAME (type) = NULL;
7372	  TYPE_FIXED_INSTANCE (type) = 1;
7373          TYPE_LENGTH (type) = 0;
7374        }
7375      TYPE_FIELD_TYPE (type, f) = new_type;
7376      TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7377    }
7378  return type;
7379}
7380
7381/* Given an object of type TYPE whose contents are at VALADDR and
7382   whose address in memory is ADDRESS, returns a revision of TYPE,
7383   which should be a non-dynamic-sized record, in which the variant
7384   part, if any, is replaced with the appropriate branch.  Looks
7385   for discriminant values in DVAL0, which can be NULL if the record
7386   contains the necessary discriminant values.  */
7387
7388static struct type *
7389to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7390                                   CORE_ADDR address, struct value *dval0)
7391{
7392  struct value *mark = value_mark ();
7393  struct value *dval;
7394  struct type *rtype;
7395  struct type *branch_type;
7396  int nfields = TYPE_NFIELDS (type);
7397  int variant_field = variant_field_index (type);
7398
7399  if (variant_field == -1)
7400    return type;
7401
7402  if (dval0 == NULL)
7403    dval = value_from_contents_and_address (type, valaddr, address);
7404  else
7405    dval = dval0;
7406
7407  rtype = alloc_type_copy (type);
7408  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7409  INIT_CPLUS_SPECIFIC (rtype);
7410  TYPE_NFIELDS (rtype) = nfields;
7411  TYPE_FIELDS (rtype) =
7412    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7413  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7414          sizeof (struct field) * nfields);
7415  TYPE_NAME (rtype) = ada_type_name (type);
7416  TYPE_TAG_NAME (rtype) = NULL;
7417  TYPE_FIXED_INSTANCE (rtype) = 1;
7418  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7419
7420  branch_type = to_fixed_variant_branch_type
7421    (TYPE_FIELD_TYPE (type, variant_field),
7422     cond_offset_host (valaddr,
7423                       TYPE_FIELD_BITPOS (type, variant_field)
7424                       / TARGET_CHAR_BIT),
7425     cond_offset_target (address,
7426                         TYPE_FIELD_BITPOS (type, variant_field)
7427                         / TARGET_CHAR_BIT), dval);
7428  if (branch_type == NULL)
7429    {
7430      int f;
7431
7432      for (f = variant_field + 1; f < nfields; f += 1)
7433        TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7434      TYPE_NFIELDS (rtype) -= 1;
7435    }
7436  else
7437    {
7438      TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7439      TYPE_FIELD_NAME (rtype, variant_field) = "S";
7440      TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7441      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7442    }
7443  TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7444
7445  value_free_to_mark (mark);
7446  return rtype;
7447}
7448
7449/* An ordinary record type (with fixed-length fields) that describes
7450   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7451   beginning of this section].   Any necessary discriminants' values
7452   should be in DVAL, a record value; it may be NULL if the object
7453   at ADDR itself contains any necessary discriminant values.
7454   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7455   values from the record are needed.  Except in the case that DVAL,
7456   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7457   unchecked) is replaced by a particular branch of the variant.
7458
7459   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7460   is questionable and may be removed.  It can arise during the
7461   processing of an unconstrained-array-of-record type where all the
7462   variant branches have exactly the same size.  This is because in
7463   such cases, the compiler does not bother to use the XVS convention
7464   when encoding the record.  I am currently dubious of this
7465   shortcut and suspect the compiler should be altered.  FIXME.  */
7466
7467static struct type *
7468to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7469                      CORE_ADDR address, struct value *dval)
7470{
7471  struct type *templ_type;
7472
7473  if (TYPE_FIXED_INSTANCE (type0))
7474    return type0;
7475
7476  templ_type = dynamic_template_type (type0);
7477
7478  if (templ_type != NULL)
7479    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7480  else if (variant_field_index (type0) >= 0)
7481    {
7482      if (dval == NULL && valaddr == NULL && address == 0)
7483        return type0;
7484      return to_record_with_fixed_variant_part (type0, valaddr, address,
7485                                                dval);
7486    }
7487  else
7488    {
7489      TYPE_FIXED_INSTANCE (type0) = 1;
7490      return type0;
7491    }
7492
7493}
7494
7495/* An ordinary record type (with fixed-length fields) that describes
7496   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7497   union type.  Any necessary discriminants' values should be in DVAL,
7498   a record value.  That is, this routine selects the appropriate
7499   branch of the union at ADDR according to the discriminant value
7500   indicated in the union's type name.  Returns VAR_TYPE0 itself if
7501   it represents a variant subject to a pragma Unchecked_Union.  */
7502
7503static struct type *
7504to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7505                              CORE_ADDR address, struct value *dval)
7506{
7507  int which;
7508  struct type *templ_type;
7509  struct type *var_type;
7510
7511  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7512    var_type = TYPE_TARGET_TYPE (var_type0);
7513  else
7514    var_type = var_type0;
7515
7516  templ_type = ada_find_parallel_type (var_type, "___XVU");
7517
7518  if (templ_type != NULL)
7519    var_type = templ_type;
7520
7521  if (is_unchecked_variant (var_type, value_type (dval)))
7522      return var_type0;
7523  which =
7524    ada_which_variant_applies (var_type,
7525                               value_type (dval), value_contents (dval));
7526
7527  if (which < 0)
7528    return empty_record (var_type);
7529  else if (is_dynamic_field (var_type, which))
7530    return to_fixed_record_type
7531      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7532       valaddr, address, dval);
7533  else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7534    return
7535      to_fixed_record_type
7536      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7537  else
7538    return TYPE_FIELD_TYPE (var_type, which);
7539}
7540
7541/* Assuming that TYPE0 is an array type describing the type of a value
7542   at ADDR, and that DVAL describes a record containing any
7543   discriminants used in TYPE0, returns a type for the value that
7544   contains no dynamic components (that is, no components whose sizes
7545   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
7546   true, gives an error message if the resulting type's size is over
7547   varsize_limit.  */
7548
7549static struct type *
7550to_fixed_array_type (struct type *type0, struct value *dval,
7551                     int ignore_too_big)
7552{
7553  struct type *index_type_desc;
7554  struct type *result;
7555  int constrained_packed_array_p;
7556
7557  type0 = ada_check_typedef (type0);
7558  if (TYPE_FIXED_INSTANCE (type0))
7559    return type0;
7560
7561  constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7562  if (constrained_packed_array_p)
7563    type0 = decode_constrained_packed_array_type (type0);
7564
7565  index_type_desc = ada_find_parallel_type (type0, "___XA");
7566  ada_fixup_array_indexes_type (index_type_desc);
7567  if (index_type_desc == NULL)
7568    {
7569      struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7570
7571      /* NOTE: elt_type---the fixed version of elt_type0---should never
7572         depend on the contents of the array in properly constructed
7573         debugging data.  */
7574      /* Create a fixed version of the array element type.
7575         We're not providing the address of an element here,
7576         and thus the actual object value cannot be inspected to do
7577         the conversion.  This should not be a problem, since arrays of
7578         unconstrained objects are not allowed.  In particular, all
7579         the elements of an array of a tagged type should all be of
7580         the same type specified in the debugging info.  No need to
7581         consult the object tag.  */
7582      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7583
7584      /* Make sure we always create a new array type when dealing with
7585	 packed array types, since we're going to fix-up the array
7586	 type length and element bitsize a little further down.  */
7587      if (elt_type0 == elt_type && !constrained_packed_array_p)
7588        result = type0;
7589      else
7590        result = create_array_type (alloc_type_copy (type0),
7591                                    elt_type, TYPE_INDEX_TYPE (type0));
7592    }
7593  else
7594    {
7595      int i;
7596      struct type *elt_type0;
7597
7598      elt_type0 = type0;
7599      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7600        elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7601
7602      /* NOTE: result---the fixed version of elt_type0---should never
7603         depend on the contents of the array in properly constructed
7604         debugging data.  */
7605      /* Create a fixed version of the array element type.
7606         We're not providing the address of an element here,
7607         and thus the actual object value cannot be inspected to do
7608         the conversion.  This should not be a problem, since arrays of
7609         unconstrained objects are not allowed.  In particular, all
7610         the elements of an array of a tagged type should all be of
7611         the same type specified in the debugging info.  No need to
7612         consult the object tag.  */
7613      result =
7614        ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7615
7616      elt_type0 = type0;
7617      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7618        {
7619          struct type *range_type =
7620            to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7621
7622          result = create_array_type (alloc_type_copy (elt_type0),
7623                                      result, range_type);
7624	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7625        }
7626      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7627        error (_("array type with dynamic size is larger than varsize-limit"));
7628    }
7629
7630  if (constrained_packed_array_p)
7631    {
7632      /* So far, the resulting type has been created as if the original
7633	 type was a regular (non-packed) array type.  As a result, the
7634	 bitsize of the array elements needs to be set again, and the array
7635	 length needs to be recomputed based on that bitsize.  */
7636      int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7637      int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7638
7639      TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7640      TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7641      if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7642        TYPE_LENGTH (result)++;
7643    }
7644
7645  TYPE_FIXED_INSTANCE (result) = 1;
7646  return result;
7647}
7648
7649
7650/* A standard type (containing no dynamically sized components)
7651   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7652   DVAL describes a record containing any discriminants used in TYPE0,
7653   and may be NULL if there are none, or if the object of type TYPE at
7654   ADDRESS or in VALADDR contains these discriminants.
7655
7656   If CHECK_TAG is not null, in the case of tagged types, this function
7657   attempts to locate the object's tag and use it to compute the actual
7658   type.  However, when ADDRESS is null, we cannot use it to determine the
7659   location of the tag, and therefore compute the tagged type's actual type.
7660   So we return the tagged type without consulting the tag.  */
7661
7662static struct type *
7663ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7664                   CORE_ADDR address, struct value *dval, int check_tag)
7665{
7666  type = ada_check_typedef (type);
7667  switch (TYPE_CODE (type))
7668    {
7669    default:
7670      return type;
7671    case TYPE_CODE_STRUCT:
7672      {
7673        struct type *static_type = to_static_fixed_type (type);
7674        struct type *fixed_record_type =
7675          to_fixed_record_type (type, valaddr, address, NULL);
7676
7677        /* If STATIC_TYPE is a tagged type and we know the object's address,
7678           then we can determine its tag, and compute the object's actual
7679           type from there.  Note that we have to use the fixed record
7680           type (the parent part of the record may have dynamic fields
7681           and the way the location of _tag is expressed may depend on
7682           them).  */
7683
7684        if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7685          {
7686            struct type *real_type =
7687              type_from_tag (value_tag_from_contents_and_address
7688                             (fixed_record_type,
7689                              valaddr,
7690                              address));
7691
7692            if (real_type != NULL)
7693              return to_fixed_record_type (real_type, valaddr, address, NULL);
7694          }
7695
7696        /* Check to see if there is a parallel ___XVZ variable.
7697           If there is, then it provides the actual size of our type.  */
7698        else if (ada_type_name (fixed_record_type) != NULL)
7699          {
7700            char *name = ada_type_name (fixed_record_type);
7701            char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7702            int xvz_found = 0;
7703            LONGEST size;
7704
7705            xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7706            size = get_int_var_value (xvz_name, &xvz_found);
7707            if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7708              {
7709                fixed_record_type = copy_type (fixed_record_type);
7710                TYPE_LENGTH (fixed_record_type) = size;
7711
7712                /* The FIXED_RECORD_TYPE may have be a stub.  We have
7713                   observed this when the debugging info is STABS, and
7714                   apparently it is something that is hard to fix.
7715
7716                   In practice, we don't need the actual type definition
7717                   at all, because the presence of the XVZ variable allows us
7718                   to assume that there must be a XVS type as well, which we
7719                   should be able to use later, when we need the actual type
7720                   definition.
7721
7722                   In the meantime, pretend that the "fixed" type we are
7723                   returning is NOT a stub, because this can cause trouble
7724                   when using this type to create new types targeting it.
7725                   Indeed, the associated creation routines often check
7726                   whether the target type is a stub and will try to replace
7727                   it, thus using a type with the wrong size.  This, in turn,
7728                   might cause the new type to have the wrong size too.
7729                   Consider the case of an array, for instance, where the size
7730                   of the array is computed from the number of elements in
7731                   our array multiplied by the size of its element.  */
7732                TYPE_STUB (fixed_record_type) = 0;
7733              }
7734          }
7735        return fixed_record_type;
7736      }
7737    case TYPE_CODE_ARRAY:
7738      return to_fixed_array_type (type, dval, 1);
7739    case TYPE_CODE_UNION:
7740      if (dval == NULL)
7741        return type;
7742      else
7743        return to_fixed_variant_branch_type (type, valaddr, address, dval);
7744    }
7745}
7746
7747/* The same as ada_to_fixed_type_1, except that it preserves the type
7748   if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7749
7750   The typedef layer needs be preserved in order to differentiate between
7751   arrays and array pointers when both types are implemented using the same
7752   fat pointer.  In the array pointer case, the pointer is encoded as
7753   a typedef of the pointer type.  For instance, considering:
7754
7755	  type String_Access is access String;
7756	  S1 : String_Access := null;
7757
7758   To the debugger, S1 is defined as a typedef of type String.  But
7759   to the user, it is a pointer.  So if the user tries to print S1,
7760   we should not dereference the array, but print the array address
7761   instead.
7762
7763   If we didn't preserve the typedef layer, we would lose the fact that
7764   the type is to be presented as a pointer (needs de-reference before
7765   being printed).  And we would also use the source-level type name.  */
7766
7767struct type *
7768ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7769                   CORE_ADDR address, struct value *dval, int check_tag)
7770
7771{
7772  struct type *fixed_type =
7773    ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7774
7775  /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7776      then preserve the typedef layer.
7777
7778      Implementation note: We can only check the main-type portion of
7779      the TYPE and FIXED_TYPE, because eliminating the typedef layer
7780      from TYPE now returns a type that has the same instance flags
7781      as TYPE.  For instance, if TYPE is a "typedef const", and its
7782      target type is a "struct", then the typedef elimination will return
7783      a "const" version of the target type.  See check_typedef for more
7784      details about how the typedef layer elimination is done.
7785
7786      brobecker/2010-11-19: It seems to me that the only case where it is
7787      useful to preserve the typedef layer is when dealing with fat pointers.
7788      Perhaps, we could add a check for that and preserve the typedef layer
7789      only in that situation.  But this seems unecessary so far, probably
7790      because we call check_typedef/ada_check_typedef pretty much everywhere.
7791      */
7792  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7793      && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7794	  == TYPE_MAIN_TYPE (fixed_type)))
7795    return type;
7796
7797  return fixed_type;
7798}
7799
7800/* A standard (static-sized) type corresponding as well as possible to
7801   TYPE0, but based on no runtime data.  */
7802
7803static struct type *
7804to_static_fixed_type (struct type *type0)
7805{
7806  struct type *type;
7807
7808  if (type0 == NULL)
7809    return NULL;
7810
7811  if (TYPE_FIXED_INSTANCE (type0))
7812    return type0;
7813
7814  type0 = ada_check_typedef (type0);
7815
7816  switch (TYPE_CODE (type0))
7817    {
7818    default:
7819      return type0;
7820    case TYPE_CODE_STRUCT:
7821      type = dynamic_template_type (type0);
7822      if (type != NULL)
7823        return template_to_static_fixed_type (type);
7824      else
7825        return template_to_static_fixed_type (type0);
7826    case TYPE_CODE_UNION:
7827      type = ada_find_parallel_type (type0, "___XVU");
7828      if (type != NULL)
7829        return template_to_static_fixed_type (type);
7830      else
7831        return template_to_static_fixed_type (type0);
7832    }
7833}
7834
7835/* A static approximation of TYPE with all type wrappers removed.  */
7836
7837static struct type *
7838static_unwrap_type (struct type *type)
7839{
7840  if (ada_is_aligner_type (type))
7841    {
7842      struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7843      if (ada_type_name (type1) == NULL)
7844        TYPE_NAME (type1) = ada_type_name (type);
7845
7846      return static_unwrap_type (type1);
7847    }
7848  else
7849    {
7850      struct type *raw_real_type = ada_get_base_type (type);
7851
7852      if (raw_real_type == type)
7853        return type;
7854      else
7855        return to_static_fixed_type (raw_real_type);
7856    }
7857}
7858
7859/* In some cases, incomplete and private types require
7860   cross-references that are not resolved as records (for example,
7861      type Foo;
7862      type FooP is access Foo;
7863      V: FooP;
7864      type Foo is array ...;
7865   ).  In these cases, since there is no mechanism for producing
7866   cross-references to such types, we instead substitute for FooP a
7867   stub enumeration type that is nowhere resolved, and whose tag is
7868   the name of the actual type.  Call these types "non-record stubs".  */
7869
7870/* A type equivalent to TYPE that is not a non-record stub, if one
7871   exists, otherwise TYPE.  */
7872
7873struct type *
7874ada_check_typedef (struct type *type)
7875{
7876  if (type == NULL)
7877    return NULL;
7878
7879  /* If our type is a typedef type of a fat pointer, then we're done.
7880     We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7881     what allows us to distinguish between fat pointers that represent
7882     array types, and fat pointers that represent array access types
7883     (in both cases, the compiler implements them as fat pointers).  */
7884  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7885      && is_thick_pntr (ada_typedef_target_type (type)))
7886    return type;
7887
7888  CHECK_TYPEDEF (type);
7889  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7890      || !TYPE_STUB (type)
7891      || TYPE_TAG_NAME (type) == NULL)
7892    return type;
7893  else
7894    {
7895      char *name = TYPE_TAG_NAME (type);
7896      struct type *type1 = ada_find_any_type (name);
7897
7898      if (type1 == NULL)
7899        return type;
7900
7901      /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7902	 stubs pointing to arrays, as we don't create symbols for array
7903	 types, only for the typedef-to-array types).  If that's the case,
7904	 strip the typedef layer.  */
7905      if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7906	type1 = ada_check_typedef (type1);
7907
7908      return type1;
7909    }
7910}
7911
7912/* A value representing the data at VALADDR/ADDRESS as described by
7913   type TYPE0, but with a standard (static-sized) type that correctly
7914   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
7915   type, then return VAL0 [this feature is simply to avoid redundant
7916   creation of struct values].  */
7917
7918static struct value *
7919ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7920                           struct value *val0)
7921{
7922  struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7923
7924  if (type == type0 && val0 != NULL)
7925    return val0;
7926  else
7927    return value_from_contents_and_address (type, 0, address);
7928}
7929
7930/* A value representing VAL, but with a standard (static-sized) type
7931   that correctly describes it.  Does not necessarily create a new
7932   value.  */
7933
7934struct value *
7935ada_to_fixed_value (struct value *val)
7936{
7937  return ada_to_fixed_value_create (value_type (val),
7938                                    value_address (val),
7939                                    val);
7940}
7941
7942
7943/* Attributes */
7944
7945/* Table mapping attribute numbers to names.
7946   NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
7947
7948static const char *attribute_names[] = {
7949  "<?>",
7950
7951  "first",
7952  "last",
7953  "length",
7954  "image",
7955  "max",
7956  "min",
7957  "modulus",
7958  "pos",
7959  "size",
7960  "tag",
7961  "val",
7962  0
7963};
7964
7965const char *
7966ada_attribute_name (enum exp_opcode n)
7967{
7968  if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7969    return attribute_names[n - OP_ATR_FIRST + 1];
7970  else
7971    return attribute_names[0];
7972}
7973
7974/* Evaluate the 'POS attribute applied to ARG.  */
7975
7976static LONGEST
7977pos_atr (struct value *arg)
7978{
7979  struct value *val = coerce_ref (arg);
7980  struct type *type = value_type (val);
7981
7982  if (!discrete_type_p (type))
7983    error (_("'POS only defined on discrete types"));
7984
7985  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7986    {
7987      int i;
7988      LONGEST v = value_as_long (val);
7989
7990      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7991        {
7992          if (v == TYPE_FIELD_BITPOS (type, i))
7993            return i;
7994        }
7995      error (_("enumeration value is invalid: can't find 'POS"));
7996    }
7997  else
7998    return value_as_long (val);
7999}
8000
8001static struct value *
8002value_pos_atr (struct type *type, struct value *arg)
8003{
8004  return value_from_longest (type, pos_atr (arg));
8005}
8006
8007/* Evaluate the TYPE'VAL attribute applied to ARG.  */
8008
8009static struct value *
8010value_val_atr (struct type *type, struct value *arg)
8011{
8012  if (!discrete_type_p (type))
8013    error (_("'VAL only defined on discrete types"));
8014  if (!integer_type_p (value_type (arg)))
8015    error (_("'VAL requires integral argument"));
8016
8017  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8018    {
8019      long pos = value_as_long (arg);
8020
8021      if (pos < 0 || pos >= TYPE_NFIELDS (type))
8022        error (_("argument to 'VAL out of range"));
8023      return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8024    }
8025  else
8026    return value_from_longest (type, value_as_long (arg));
8027}
8028
8029
8030                                /* Evaluation */
8031
8032/* True if TYPE appears to be an Ada character type.
8033   [At the moment, this is true only for Character and Wide_Character;
8034   It is a heuristic test that could stand improvement].  */
8035
8036int
8037ada_is_character_type (struct type *type)
8038{
8039  const char *name;
8040
8041  /* If the type code says it's a character, then assume it really is,
8042     and don't check any further.  */
8043  if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8044    return 1;
8045
8046  /* Otherwise, assume it's a character type iff it is a discrete type
8047     with a known character type name.  */
8048  name = ada_type_name (type);
8049  return (name != NULL
8050          && (TYPE_CODE (type) == TYPE_CODE_INT
8051              || TYPE_CODE (type) == TYPE_CODE_RANGE)
8052          && (strcmp (name, "character") == 0
8053              || strcmp (name, "wide_character") == 0
8054              || strcmp (name, "wide_wide_character") == 0
8055              || strcmp (name, "unsigned char") == 0));
8056}
8057
8058/* True if TYPE appears to be an Ada string type.  */
8059
8060int
8061ada_is_string_type (struct type *type)
8062{
8063  type = ada_check_typedef (type);
8064  if (type != NULL
8065      && TYPE_CODE (type) != TYPE_CODE_PTR
8066      && (ada_is_simple_array_type (type)
8067          || ada_is_array_descriptor_type (type))
8068      && ada_array_arity (type) == 1)
8069    {
8070      struct type *elttype = ada_array_element_type (type, 1);
8071
8072      return ada_is_character_type (elttype);
8073    }
8074  else
8075    return 0;
8076}
8077
8078/* The compiler sometimes provides a parallel XVS type for a given
8079   PAD type.  Normally, it is safe to follow the PAD type directly,
8080   but older versions of the compiler have a bug that causes the offset
8081   of its "F" field to be wrong.  Following that field in that case
8082   would lead to incorrect results, but this can be worked around
8083   by ignoring the PAD type and using the associated XVS type instead.
8084
8085   Set to True if the debugger should trust the contents of PAD types.
8086   Otherwise, ignore the PAD type if there is a parallel XVS type.  */
8087static int trust_pad_over_xvs = 1;
8088
8089/* True if TYPE is a struct type introduced by the compiler to force the
8090   alignment of a value.  Such types have a single field with a
8091   distinctive name.  */
8092
8093int
8094ada_is_aligner_type (struct type *type)
8095{
8096  type = ada_check_typedef (type);
8097
8098  if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8099    return 0;
8100
8101  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8102          && TYPE_NFIELDS (type) == 1
8103          && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8104}
8105
8106/* If there is an ___XVS-convention type parallel to SUBTYPE, return
8107   the parallel type.  */
8108
8109struct type *
8110ada_get_base_type (struct type *raw_type)
8111{
8112  struct type *real_type_namer;
8113  struct type *raw_real_type;
8114
8115  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8116    return raw_type;
8117
8118  if (ada_is_aligner_type (raw_type))
8119    /* The encoding specifies that we should always use the aligner type.
8120       So, even if this aligner type has an associated XVS type, we should
8121       simply ignore it.
8122
8123       According to the compiler gurus, an XVS type parallel to an aligner
8124       type may exist because of a stabs limitation.  In stabs, aligner
8125       types are empty because the field has a variable-sized type, and
8126       thus cannot actually be used as an aligner type.  As a result,
8127       we need the associated parallel XVS type to decode the type.
8128       Since the policy in the compiler is to not change the internal
8129       representation based on the debugging info format, we sometimes
8130       end up having a redundant XVS type parallel to the aligner type.  */
8131    return raw_type;
8132
8133  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8134  if (real_type_namer == NULL
8135      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8136      || TYPE_NFIELDS (real_type_namer) != 1)
8137    return raw_type;
8138
8139  if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8140    {
8141      /* This is an older encoding form where the base type needs to be
8142	 looked up by name.  We prefer the newer enconding because it is
8143	 more efficient.  */
8144      raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8145      if (raw_real_type == NULL)
8146	return raw_type;
8147      else
8148	return raw_real_type;
8149    }
8150
8151  /* The field in our XVS type is a reference to the base type.  */
8152  return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8153}
8154
8155/* The type of value designated by TYPE, with all aligners removed.  */
8156
8157struct type *
8158ada_aligned_type (struct type *type)
8159{
8160  if (ada_is_aligner_type (type))
8161    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8162  else
8163    return ada_get_base_type (type);
8164}
8165
8166
8167/* The address of the aligned value in an object at address VALADDR
8168   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
8169
8170const gdb_byte *
8171ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8172{
8173  if (ada_is_aligner_type (type))
8174    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8175                                   valaddr +
8176                                   TYPE_FIELD_BITPOS (type,
8177                                                      0) / TARGET_CHAR_BIT);
8178  else
8179    return valaddr;
8180}
8181
8182
8183
8184/* The printed representation of an enumeration literal with encoded
8185   name NAME.  The value is good to the next call of ada_enum_name.  */
8186const char *
8187ada_enum_name (const char *name)
8188{
8189  static char *result;
8190  static size_t result_len = 0;
8191  char *tmp;
8192
8193  /* First, unqualify the enumeration name:
8194     1. Search for the last '.' character.  If we find one, then skip
8195     all the preceeding characters, the unqualified name starts
8196     right after that dot.
8197     2. Otherwise, we may be debugging on a target where the compiler
8198     translates dots into "__".  Search forward for double underscores,
8199     but stop searching when we hit an overloading suffix, which is
8200     of the form "__" followed by digits.  */
8201
8202  tmp = strrchr (name, '.');
8203  if (tmp != NULL)
8204    name = tmp + 1;
8205  else
8206    {
8207      while ((tmp = strstr (name, "__")) != NULL)
8208        {
8209          if (isdigit (tmp[2]))
8210            break;
8211          else
8212            name = tmp + 2;
8213        }
8214    }
8215
8216  if (name[0] == 'Q')
8217    {
8218      int v;
8219
8220      if (name[1] == 'U' || name[1] == 'W')
8221        {
8222          if (sscanf (name + 2, "%x", &v) != 1)
8223            return name;
8224        }
8225      else
8226        return name;
8227
8228      GROW_VECT (result, result_len, 16);
8229      if (isascii (v) && isprint (v))
8230        xsnprintf (result, result_len, "'%c'", v);
8231      else if (name[1] == 'U')
8232        xsnprintf (result, result_len, "[\"%02x\"]", v);
8233      else
8234        xsnprintf (result, result_len, "[\"%04x\"]", v);
8235
8236      return result;
8237    }
8238  else
8239    {
8240      tmp = strstr (name, "__");
8241      if (tmp == NULL)
8242	tmp = strstr (name, "$");
8243      if (tmp != NULL)
8244        {
8245          GROW_VECT (result, result_len, tmp - name + 1);
8246          strncpy (result, name, tmp - name);
8247          result[tmp - name] = '\0';
8248          return result;
8249        }
8250
8251      return name;
8252    }
8253}
8254
8255/* Evaluate the subexpression of EXP starting at *POS as for
8256   evaluate_type, updating *POS to point just past the evaluated
8257   expression.  */
8258
8259static struct value *
8260evaluate_subexp_type (struct expression *exp, int *pos)
8261{
8262  return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8263}
8264
8265/* If VAL is wrapped in an aligner or subtype wrapper, return the
8266   value it wraps.  */
8267
8268static struct value *
8269unwrap_value (struct value *val)
8270{
8271  struct type *type = ada_check_typedef (value_type (val));
8272
8273  if (ada_is_aligner_type (type))
8274    {
8275      struct value *v = ada_value_struct_elt (val, "F", 0);
8276      struct type *val_type = ada_check_typedef (value_type (v));
8277
8278      if (ada_type_name (val_type) == NULL)
8279        TYPE_NAME (val_type) = ada_type_name (type);
8280
8281      return unwrap_value (v);
8282    }
8283  else
8284    {
8285      struct type *raw_real_type =
8286        ada_check_typedef (ada_get_base_type (type));
8287
8288      /* If there is no parallel XVS or XVE type, then the value is
8289	 already unwrapped.  Return it without further modification.  */
8290      if ((type == raw_real_type)
8291	  && ada_find_parallel_type (type, "___XVE") == NULL)
8292	return val;
8293
8294      return
8295        coerce_unspec_val_to_type
8296        (val, ada_to_fixed_type (raw_real_type, 0,
8297                                 value_address (val),
8298                                 NULL, 1));
8299    }
8300}
8301
8302static struct value *
8303cast_to_fixed (struct type *type, struct value *arg)
8304{
8305  LONGEST val;
8306
8307  if (type == value_type (arg))
8308    return arg;
8309  else if (ada_is_fixed_point_type (value_type (arg)))
8310    val = ada_float_to_fixed (type,
8311                              ada_fixed_to_float (value_type (arg),
8312                                                  value_as_long (arg)));
8313  else
8314    {
8315      DOUBLEST argd = value_as_double (arg);
8316
8317      val = ada_float_to_fixed (type, argd);
8318    }
8319
8320  return value_from_longest (type, val);
8321}
8322
8323static struct value *
8324cast_from_fixed (struct type *type, struct value *arg)
8325{
8326  DOUBLEST val = ada_fixed_to_float (value_type (arg),
8327                                     value_as_long (arg));
8328
8329  return value_from_double (type, val);
8330}
8331
8332/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8333   return the converted value.  */
8334
8335static struct value *
8336coerce_for_assign (struct type *type, struct value *val)
8337{
8338  struct type *type2 = value_type (val);
8339
8340  if (type == type2)
8341    return val;
8342
8343  type2 = ada_check_typedef (type2);
8344  type = ada_check_typedef (type);
8345
8346  if (TYPE_CODE (type2) == TYPE_CODE_PTR
8347      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8348    {
8349      val = ada_value_ind (val);
8350      type2 = value_type (val);
8351    }
8352
8353  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8354      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8355    {
8356      if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8357          || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8358          != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8359        error (_("Incompatible types in assignment"));
8360      deprecated_set_value_type (val, type);
8361    }
8362  return val;
8363}
8364
8365static struct value *
8366ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8367{
8368  struct value *val;
8369  struct type *type1, *type2;
8370  LONGEST v, v1, v2;
8371
8372  arg1 = coerce_ref (arg1);
8373  arg2 = coerce_ref (arg2);
8374  type1 = base_type (ada_check_typedef (value_type (arg1)));
8375  type2 = base_type (ada_check_typedef (value_type (arg2)));
8376
8377  if (TYPE_CODE (type1) != TYPE_CODE_INT
8378      || TYPE_CODE (type2) != TYPE_CODE_INT)
8379    return value_binop (arg1, arg2, op);
8380
8381  switch (op)
8382    {
8383    case BINOP_MOD:
8384    case BINOP_DIV:
8385    case BINOP_REM:
8386      break;
8387    default:
8388      return value_binop (arg1, arg2, op);
8389    }
8390
8391  v2 = value_as_long (arg2);
8392  if (v2 == 0)
8393    error (_("second operand of %s must not be zero."), op_string (op));
8394
8395  if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8396    return value_binop (arg1, arg2, op);
8397
8398  v1 = value_as_long (arg1);
8399  switch (op)
8400    {
8401    case BINOP_DIV:
8402      v = v1 / v2;
8403      if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8404        v += v > 0 ? -1 : 1;
8405      break;
8406    case BINOP_REM:
8407      v = v1 % v2;
8408      if (v * v1 < 0)
8409        v -= v2;
8410      break;
8411    default:
8412      /* Should not reach this point.  */
8413      v = 0;
8414    }
8415
8416  val = allocate_value (type1);
8417  store_unsigned_integer (value_contents_raw (val),
8418                          TYPE_LENGTH (value_type (val)),
8419			  gdbarch_byte_order (get_type_arch (type1)), v);
8420  return val;
8421}
8422
8423static int
8424ada_value_equal (struct value *arg1, struct value *arg2)
8425{
8426  if (ada_is_direct_array_type (value_type (arg1))
8427      || ada_is_direct_array_type (value_type (arg2)))
8428    {
8429      /* Automatically dereference any array reference before
8430         we attempt to perform the comparison.  */
8431      arg1 = ada_coerce_ref (arg1);
8432      arg2 = ada_coerce_ref (arg2);
8433
8434      arg1 = ada_coerce_to_simple_array (arg1);
8435      arg2 = ada_coerce_to_simple_array (arg2);
8436      if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8437          || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8438        error (_("Attempt to compare array with non-array"));
8439      /* FIXME: The following works only for types whose
8440         representations use all bits (no padding or undefined bits)
8441         and do not have user-defined equality.  */
8442      return
8443        TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8444        && memcmp (value_contents (arg1), value_contents (arg2),
8445                   TYPE_LENGTH (value_type (arg1))) == 0;
8446    }
8447  return value_equal (arg1, arg2);
8448}
8449
8450/* Total number of component associations in the aggregate starting at
8451   index PC in EXP.  Assumes that index PC is the start of an
8452   OP_AGGREGATE.  */
8453
8454static int
8455num_component_specs (struct expression *exp, int pc)
8456{
8457  int n, m, i;
8458
8459  m = exp->elts[pc + 1].longconst;
8460  pc += 3;
8461  n = 0;
8462  for (i = 0; i < m; i += 1)
8463    {
8464      switch (exp->elts[pc].opcode)
8465	{
8466	default:
8467	  n += 1;
8468	  break;
8469	case OP_CHOICES:
8470	  n += exp->elts[pc + 1].longconst;
8471	  break;
8472	}
8473      ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8474    }
8475  return n;
8476}
8477
8478/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8479   component of LHS (a simple array or a record), updating *POS past
8480   the expression, assuming that LHS is contained in CONTAINER.  Does
8481   not modify the inferior's memory, nor does it modify LHS (unless
8482   LHS == CONTAINER).  */
8483
8484static void
8485assign_component (struct value *container, struct value *lhs, LONGEST index,
8486		  struct expression *exp, int *pos)
8487{
8488  struct value *mark = value_mark ();
8489  struct value *elt;
8490
8491  if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8492    {
8493      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8494      struct value *index_val = value_from_longest (index_type, index);
8495
8496      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8497    }
8498  else
8499    {
8500      elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8501      elt = ada_to_fixed_value (unwrap_value (elt));
8502    }
8503
8504  if (exp->elts[*pos].opcode == OP_AGGREGATE)
8505    assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8506  else
8507    value_assign_to_component (container, elt,
8508			       ada_evaluate_subexp (NULL, exp, pos,
8509						    EVAL_NORMAL));
8510
8511  value_free_to_mark (mark);
8512}
8513
8514/* Assuming that LHS represents an lvalue having a record or array
8515   type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8516   of that aggregate's value to LHS, advancing *POS past the
8517   aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
8518   lvalue containing LHS (possibly LHS itself).  Does not modify
8519   the inferior's memory, nor does it modify the contents of
8520   LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
8521
8522static struct value *
8523assign_aggregate (struct value *container,
8524		  struct value *lhs, struct expression *exp,
8525		  int *pos, enum noside noside)
8526{
8527  struct type *lhs_type;
8528  int n = exp->elts[*pos+1].longconst;
8529  LONGEST low_index, high_index;
8530  int num_specs;
8531  LONGEST *indices;
8532  int max_indices, num_indices;
8533  int is_array_aggregate;
8534  int i;
8535
8536  *pos += 3;
8537  if (noside != EVAL_NORMAL)
8538    {
8539      int i;
8540
8541      for (i = 0; i < n; i += 1)
8542	ada_evaluate_subexp (NULL, exp, pos, noside);
8543      return container;
8544    }
8545
8546  container = ada_coerce_ref (container);
8547  if (ada_is_direct_array_type (value_type (container)))
8548    container = ada_coerce_to_simple_array (container);
8549  lhs = ada_coerce_ref (lhs);
8550  if (!deprecated_value_modifiable (lhs))
8551    error (_("Left operand of assignment is not a modifiable lvalue."));
8552
8553  lhs_type = value_type (lhs);
8554  if (ada_is_direct_array_type (lhs_type))
8555    {
8556      lhs = ada_coerce_to_simple_array (lhs);
8557      lhs_type = value_type (lhs);
8558      low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8559      high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8560      is_array_aggregate = 1;
8561    }
8562  else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8563    {
8564      low_index = 0;
8565      high_index = num_visible_fields (lhs_type) - 1;
8566      is_array_aggregate = 0;
8567    }
8568  else
8569    error (_("Left-hand side must be array or record."));
8570
8571  num_specs = num_component_specs (exp, *pos - 3);
8572  max_indices = 4 * num_specs + 4;
8573  indices = alloca (max_indices * sizeof (indices[0]));
8574  indices[0] = indices[1] = low_index - 1;
8575  indices[2] = indices[3] = high_index + 1;
8576  num_indices = 4;
8577
8578  for (i = 0; i < n; i += 1)
8579    {
8580      switch (exp->elts[*pos].opcode)
8581	{
8582	case OP_CHOICES:
8583	  aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8584					 &num_indices, max_indices,
8585					 low_index, high_index);
8586	  break;
8587	case OP_POSITIONAL:
8588	  aggregate_assign_positional (container, lhs, exp, pos, indices,
8589				       &num_indices, max_indices,
8590				       low_index, high_index);
8591	  break;
8592	case OP_OTHERS:
8593	  if (i != n-1)
8594	    error (_("Misplaced 'others' clause"));
8595	  aggregate_assign_others (container, lhs, exp, pos, indices,
8596				   num_indices, low_index, high_index);
8597	  break;
8598	default:
8599	  error (_("Internal error: bad aggregate clause"));
8600	}
8601    }
8602
8603  return container;
8604}
8605
8606/* Assign into the component of LHS indexed by the OP_POSITIONAL
8607   construct at *POS, updating *POS past the construct, given that
8608   the positions are relative to lower bound LOW, where HIGH is the
8609   upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
8610   updating *NUM_INDICES as needed.  CONTAINER is as for
8611   assign_aggregate.  */
8612static void
8613aggregate_assign_positional (struct value *container,
8614			     struct value *lhs, struct expression *exp,
8615			     int *pos, LONGEST *indices, int *num_indices,
8616			     int max_indices, LONGEST low, LONGEST high)
8617{
8618  LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8619
8620  if (ind - 1 == high)
8621    warning (_("Extra components in aggregate ignored."));
8622  if (ind <= high)
8623    {
8624      add_component_interval (ind, ind, indices, num_indices, max_indices);
8625      *pos += 3;
8626      assign_component (container, lhs, ind, exp, pos);
8627    }
8628  else
8629    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8630}
8631
8632/* Assign into the components of LHS indexed by the OP_CHOICES
8633   construct at *POS, updating *POS past the construct, given that
8634   the allowable indices are LOW..HIGH.  Record the indices assigned
8635   to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8636   needed.  CONTAINER is as for assign_aggregate.  */
8637static void
8638aggregate_assign_from_choices (struct value *container,
8639			       struct value *lhs, struct expression *exp,
8640			       int *pos, LONGEST *indices, int *num_indices,
8641			       int max_indices, LONGEST low, LONGEST high)
8642{
8643  int j;
8644  int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8645  int choice_pos, expr_pc;
8646  int is_array = ada_is_direct_array_type (value_type (lhs));
8647
8648  choice_pos = *pos += 3;
8649
8650  for (j = 0; j < n_choices; j += 1)
8651    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8652  expr_pc = *pos;
8653  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8654
8655  for (j = 0; j < n_choices; j += 1)
8656    {
8657      LONGEST lower, upper;
8658      enum exp_opcode op = exp->elts[choice_pos].opcode;
8659
8660      if (op == OP_DISCRETE_RANGE)
8661	{
8662	  choice_pos += 1;
8663	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8664						      EVAL_NORMAL));
8665	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8666						      EVAL_NORMAL));
8667	}
8668      else if (is_array)
8669	{
8670	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8671						      EVAL_NORMAL));
8672	  upper = lower;
8673	}
8674      else
8675	{
8676	  int ind;
8677	  char *name;
8678
8679	  switch (op)
8680	    {
8681	    case OP_NAME:
8682	      name = &exp->elts[choice_pos + 2].string;
8683	      break;
8684	    case OP_VAR_VALUE:
8685	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8686	      break;
8687	    default:
8688	      error (_("Invalid record component association."));
8689	    }
8690	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8691	  ind = 0;
8692	  if (! find_struct_field (name, value_type (lhs), 0,
8693				   NULL, NULL, NULL, NULL, &ind))
8694	    error (_("Unknown component name: %s."), name);
8695	  lower = upper = ind;
8696	}
8697
8698      if (lower <= upper && (lower < low || upper > high))
8699	error (_("Index in component association out of bounds."));
8700
8701      add_component_interval (lower, upper, indices, num_indices,
8702			      max_indices);
8703      while (lower <= upper)
8704	{
8705	  int pos1;
8706
8707	  pos1 = expr_pc;
8708	  assign_component (container, lhs, lower, exp, &pos1);
8709	  lower += 1;
8710	}
8711    }
8712}
8713
8714/* Assign the value of the expression in the OP_OTHERS construct in
8715   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8716   have not been previously assigned.  The index intervals already assigned
8717   are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
8718   OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
8719static void
8720aggregate_assign_others (struct value *container,
8721			 struct value *lhs, struct expression *exp,
8722			 int *pos, LONGEST *indices, int num_indices,
8723			 LONGEST low, LONGEST high)
8724{
8725  int i;
8726  int expr_pc = *pos + 1;
8727
8728  for (i = 0; i < num_indices - 2; i += 2)
8729    {
8730      LONGEST ind;
8731
8732      for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8733	{
8734	  int localpos;
8735
8736	  localpos = expr_pc;
8737	  assign_component (container, lhs, ind, exp, &localpos);
8738	}
8739    }
8740  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8741}
8742
8743/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8744   [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8745   modifying *SIZE as needed.  It is an error if *SIZE exceeds
8746   MAX_SIZE.  The resulting intervals do not overlap.  */
8747static void
8748add_component_interval (LONGEST low, LONGEST high,
8749			LONGEST* indices, int *size, int max_size)
8750{
8751  int i, j;
8752
8753  for (i = 0; i < *size; i += 2) {
8754    if (high >= indices[i] && low <= indices[i + 1])
8755      {
8756	int kh;
8757
8758	for (kh = i + 2; kh < *size; kh += 2)
8759	  if (high < indices[kh])
8760	    break;
8761	if (low < indices[i])
8762	  indices[i] = low;
8763	indices[i + 1] = indices[kh - 1];
8764	if (high > indices[i + 1])
8765	  indices[i + 1] = high;
8766	memcpy (indices + i + 2, indices + kh, *size - kh);
8767	*size -= kh - i - 2;
8768	return;
8769      }
8770    else if (high < indices[i])
8771      break;
8772  }
8773
8774  if (*size == max_size)
8775    error (_("Internal error: miscounted aggregate components."));
8776  *size += 2;
8777  for (j = *size-1; j >= i+2; j -= 1)
8778    indices[j] = indices[j - 2];
8779  indices[i] = low;
8780  indices[i + 1] = high;
8781}
8782
8783/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8784   is different.  */
8785
8786static struct value *
8787ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8788{
8789  if (type == ada_check_typedef (value_type (arg2)))
8790    return arg2;
8791
8792  if (ada_is_fixed_point_type (type))
8793    return (cast_to_fixed (type, arg2));
8794
8795  if (ada_is_fixed_point_type (value_type (arg2)))
8796    return cast_from_fixed (type, arg2);
8797
8798  return value_cast (type, arg2);
8799}
8800
8801/*  Evaluating Ada expressions, and printing their result.
8802    ------------------------------------------------------
8803
8804    1. Introduction:
8805    ----------------
8806
8807    We usually evaluate an Ada expression in order to print its value.
8808    We also evaluate an expression in order to print its type, which
8809    happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8810    but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
8811    EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8812    the evaluation compared to the EVAL_NORMAL, but is otherwise very
8813    similar.
8814
8815    Evaluating expressions is a little more complicated for Ada entities
8816    than it is for entities in languages such as C.  The main reason for
8817    this is that Ada provides types whose definition might be dynamic.
8818    One example of such types is variant records.  Or another example
8819    would be an array whose bounds can only be known at run time.
8820
8821    The following description is a general guide as to what should be
8822    done (and what should NOT be done) in order to evaluate an expression
8823    involving such types, and when.  This does not cover how the semantic
8824    information is encoded by GNAT as this is covered separatly.  For the
8825    document used as the reference for the GNAT encoding, see exp_dbug.ads
8826    in the GNAT sources.
8827
8828    Ideally, we should embed each part of this description next to its
8829    associated code.  Unfortunately, the amount of code is so vast right
8830    now that it's hard to see whether the code handling a particular
8831    situation might be duplicated or not.  One day, when the code is
8832    cleaned up, this guide might become redundant with the comments
8833    inserted in the code, and we might want to remove it.
8834
8835    2. ``Fixing'' an Entity, the Simple Case:
8836    -----------------------------------------
8837
8838    When evaluating Ada expressions, the tricky issue is that they may
8839    reference entities whose type contents and size are not statically
8840    known.  Consider for instance a variant record:
8841
8842       type Rec (Empty : Boolean := True) is record
8843          case Empty is
8844             when True => null;
8845             when False => Value : Integer;
8846          end case;
8847       end record;
8848       Yes : Rec := (Empty => False, Value => 1);
8849       No  : Rec := (empty => True);
8850
8851    The size and contents of that record depends on the value of the
8852    descriminant (Rec.Empty).  At this point, neither the debugging
8853    information nor the associated type structure in GDB are able to
8854    express such dynamic types.  So what the debugger does is to create
8855    "fixed" versions of the type that applies to the specific object.
8856    We also informally refer to this opperation as "fixing" an object,
8857    which means creating its associated fixed type.
8858
8859    Example: when printing the value of variable "Yes" above, its fixed
8860    type would look like this:
8861
8862       type Rec is record
8863          Empty : Boolean;
8864          Value : Integer;
8865       end record;
8866
8867    On the other hand, if we printed the value of "No", its fixed type
8868    would become:
8869
8870       type Rec is record
8871          Empty : Boolean;
8872       end record;
8873
8874    Things become a little more complicated when trying to fix an entity
8875    with a dynamic type that directly contains another dynamic type,
8876    such as an array of variant records, for instance.  There are
8877    two possible cases: Arrays, and records.
8878
8879    3. ``Fixing'' Arrays:
8880    ---------------------
8881
8882    The type structure in GDB describes an array in terms of its bounds,
8883    and the type of its elements.  By design, all elements in the array
8884    have the same type and we cannot represent an array of variant elements
8885    using the current type structure in GDB.  When fixing an array,
8886    we cannot fix the array element, as we would potentially need one
8887    fixed type per element of the array.  As a result, the best we can do
8888    when fixing an array is to produce an array whose bounds and size
8889    are correct (allowing us to read it from memory), but without having
8890    touched its element type.  Fixing each element will be done later,
8891    when (if) necessary.
8892
8893    Arrays are a little simpler to handle than records, because the same
8894    amount of memory is allocated for each element of the array, even if
8895    the amount of space actually used by each element differs from element
8896    to element.  Consider for instance the following array of type Rec:
8897
8898       type Rec_Array is array (1 .. 2) of Rec;
8899
8900    The actual amount of memory occupied by each element might be different
8901    from element to element, depending on the value of their discriminant.
8902    But the amount of space reserved for each element in the array remains
8903    fixed regardless.  So we simply need to compute that size using
8904    the debugging information available, from which we can then determine
8905    the array size (we multiply the number of elements of the array by
8906    the size of each element).
8907
8908    The simplest case is when we have an array of a constrained element
8909    type. For instance, consider the following type declarations:
8910
8911        type Bounded_String (Max_Size : Integer) is
8912           Length : Integer;
8913           Buffer : String (1 .. Max_Size);
8914        end record;
8915        type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8916
8917    In this case, the compiler describes the array as an array of
8918    variable-size elements (identified by its XVS suffix) for which
8919    the size can be read in the parallel XVZ variable.
8920
8921    In the case of an array of an unconstrained element type, the compiler
8922    wraps the array element inside a private PAD type.  This type should not
8923    be shown to the user, and must be "unwrap"'ed before printing.  Note
8924    that we also use the adjective "aligner" in our code to designate
8925    these wrapper types.
8926
8927    In some cases, the size allocated for each element is statically
8928    known.  In that case, the PAD type already has the correct size,
8929    and the array element should remain unfixed.
8930
8931    But there are cases when this size is not statically known.
8932    For instance, assuming that "Five" is an integer variable:
8933
8934        type Dynamic is array (1 .. Five) of Integer;
8935        type Wrapper (Has_Length : Boolean := False) is record
8936           Data : Dynamic;
8937           case Has_Length is
8938              when True => Length : Integer;
8939              when False => null;
8940           end case;
8941        end record;
8942        type Wrapper_Array is array (1 .. 2) of Wrapper;
8943
8944        Hello : Wrapper_Array := (others => (Has_Length => True,
8945                                             Data => (others => 17),
8946                                             Length => 1));
8947
8948
8949    The debugging info would describe variable Hello as being an
8950    array of a PAD type.  The size of that PAD type is not statically
8951    known, but can be determined using a parallel XVZ variable.
8952    In that case, a copy of the PAD type with the correct size should
8953    be used for the fixed array.
8954
8955    3. ``Fixing'' record type objects:
8956    ----------------------------------
8957
8958    Things are slightly different from arrays in the case of dynamic
8959    record types.  In this case, in order to compute the associated
8960    fixed type, we need to determine the size and offset of each of
8961    its components.  This, in turn, requires us to compute the fixed
8962    type of each of these components.
8963
8964    Consider for instance the example:
8965
8966        type Bounded_String (Max_Size : Natural) is record
8967           Str : String (1 .. Max_Size);
8968           Length : Natural;
8969        end record;
8970        My_String : Bounded_String (Max_Size => 10);
8971
8972    In that case, the position of field "Length" depends on the size
8973    of field Str, which itself depends on the value of the Max_Size
8974    discriminant.  In order to fix the type of variable My_String,
8975    we need to fix the type of field Str.  Therefore, fixing a variant
8976    record requires us to fix each of its components.
8977
8978    However, if a component does not have a dynamic size, the component
8979    should not be fixed.  In particular, fields that use a PAD type
8980    should not fixed.  Here is an example where this might happen
8981    (assuming type Rec above):
8982
8983       type Container (Big : Boolean) is record
8984          First : Rec;
8985          After : Integer;
8986          case Big is
8987             when True => Another : Integer;
8988             when False => null;
8989          end case;
8990       end record;
8991       My_Container : Container := (Big => False,
8992                                    First => (Empty => True),
8993                                    After => 42);
8994
8995    In that example, the compiler creates a PAD type for component First,
8996    whose size is constant, and then positions the component After just
8997    right after it.  The offset of component After is therefore constant
8998    in this case.
8999
9000    The debugger computes the position of each field based on an algorithm
9001    that uses, among other things, the actual position and size of the field
9002    preceding it.  Let's now imagine that the user is trying to print
9003    the value of My_Container.  If the type fixing was recursive, we would
9004    end up computing the offset of field After based on the size of the
9005    fixed version of field First.  And since in our example First has
9006    only one actual field, the size of the fixed type is actually smaller
9007    than the amount of space allocated to that field, and thus we would
9008    compute the wrong offset of field After.
9009
9010    To make things more complicated, we need to watch out for dynamic
9011    components of variant records (identified by the ___XVL suffix in
9012    the component name).  Even if the target type is a PAD type, the size
9013    of that type might not be statically known.  So the PAD type needs
9014    to be unwrapped and the resulting type needs to be fixed.  Otherwise,
9015    we might end up with the wrong size for our component.  This can be
9016    observed with the following type declarations:
9017
9018        type Octal is new Integer range 0 .. 7;
9019        type Octal_Array is array (Positive range <>) of Octal;
9020        pragma Pack (Octal_Array);
9021
9022        type Octal_Buffer (Size : Positive) is record
9023           Buffer : Octal_Array (1 .. Size);
9024           Length : Integer;
9025        end record;
9026
9027    In that case, Buffer is a PAD type whose size is unset and needs
9028    to be computed by fixing the unwrapped type.
9029
9030    4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9031    ----------------------------------------------------------
9032
9033    Lastly, when should the sub-elements of an entity that remained unfixed
9034    thus far, be actually fixed?
9035
9036    The answer is: Only when referencing that element.  For instance
9037    when selecting one component of a record, this specific component
9038    should be fixed at that point in time.  Or when printing the value
9039    of a record, each component should be fixed before its value gets
9040    printed.  Similarly for arrays, the element of the array should be
9041    fixed when printing each element of the array, or when extracting
9042    one element out of that array.  On the other hand, fixing should
9043    not be performed on the elements when taking a slice of an array!
9044
9045    Note that one of the side-effects of miscomputing the offset and
9046    size of each field is that we end up also miscomputing the size
9047    of the containing type.  This can have adverse results when computing
9048    the value of an entity.  GDB fetches the value of an entity based
9049    on the size of its type, and thus a wrong size causes GDB to fetch
9050    the wrong amount of memory.  In the case where the computed size is
9051    too small, GDB fetches too little data to print the value of our
9052    entiry.  Results in this case as unpredicatble, as we usually read
9053    past the buffer containing the data =:-o.  */
9054
9055/* Implement the evaluate_exp routine in the exp_descriptor structure
9056   for the Ada language.  */
9057
9058static struct value *
9059ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9060                     int *pos, enum noside noside)
9061{
9062  enum exp_opcode op;
9063  int tem;
9064  int pc;
9065  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9066  struct type *type;
9067  int nargs, oplen;
9068  struct value **argvec;
9069
9070  pc = *pos;
9071  *pos += 1;
9072  op = exp->elts[pc].opcode;
9073
9074  switch (op)
9075    {
9076    default:
9077      *pos -= 1;
9078      arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9079      arg1 = unwrap_value (arg1);
9080
9081      /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9082         then we need to perform the conversion manually, because
9083         evaluate_subexp_standard doesn't do it.  This conversion is
9084         necessary in Ada because the different kinds of float/fixed
9085         types in Ada have different representations.
9086
9087         Similarly, we need to perform the conversion from OP_LONG
9088         ourselves.  */
9089      if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9090        arg1 = ada_value_cast (expect_type, arg1, noside);
9091
9092      return arg1;
9093
9094    case OP_STRING:
9095      {
9096        struct value *result;
9097
9098        *pos -= 1;
9099        result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9100        /* The result type will have code OP_STRING, bashed there from
9101           OP_ARRAY.  Bash it back.  */
9102        if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9103          TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9104        return result;
9105      }
9106
9107    case UNOP_CAST:
9108      (*pos) += 2;
9109      type = exp->elts[pc + 1].type;
9110      arg1 = evaluate_subexp (type, exp, pos, noside);
9111      if (noside == EVAL_SKIP)
9112        goto nosideret;
9113      arg1 = ada_value_cast (type, arg1, noside);
9114      return arg1;
9115
9116    case UNOP_QUAL:
9117      (*pos) += 2;
9118      type = exp->elts[pc + 1].type;
9119      return ada_evaluate_subexp (type, exp, pos, noside);
9120
9121    case BINOP_ASSIGN:
9122      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9123      if (exp->elts[*pos].opcode == OP_AGGREGATE)
9124	{
9125	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9126	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9127	    return arg1;
9128	  return ada_value_assign (arg1, arg1);
9129	}
9130      /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9131         except if the lhs of our assignment is a convenience variable.
9132         In the case of assigning to a convenience variable, the lhs
9133         should be exactly the result of the evaluation of the rhs.  */
9134      type = value_type (arg1);
9135      if (VALUE_LVAL (arg1) == lval_internalvar)
9136         type = NULL;
9137      arg2 = evaluate_subexp (type, exp, pos, noside);
9138      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9139        return arg1;
9140      if (ada_is_fixed_point_type (value_type (arg1)))
9141        arg2 = cast_to_fixed (value_type (arg1), arg2);
9142      else if (ada_is_fixed_point_type (value_type (arg2)))
9143        error
9144          (_("Fixed-point values must be assigned to fixed-point variables"));
9145      else
9146        arg2 = coerce_for_assign (value_type (arg1), arg2);
9147      return ada_value_assign (arg1, arg2);
9148
9149    case BINOP_ADD:
9150      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9151      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9152      if (noside == EVAL_SKIP)
9153        goto nosideret;
9154      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9155        return (value_from_longest
9156                 (value_type (arg1),
9157                  value_as_long (arg1) + value_as_long (arg2)));
9158      if ((ada_is_fixed_point_type (value_type (arg1))
9159           || ada_is_fixed_point_type (value_type (arg2)))
9160          && value_type (arg1) != value_type (arg2))
9161        error (_("Operands of fixed-point addition must have the same type"));
9162      /* Do the addition, and cast the result to the type of the first
9163         argument.  We cannot cast the result to a reference type, so if
9164         ARG1 is a reference type, find its underlying type.  */
9165      type = value_type (arg1);
9166      while (TYPE_CODE (type) == TYPE_CODE_REF)
9167        type = TYPE_TARGET_TYPE (type);
9168      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9169      return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9170
9171    case BINOP_SUB:
9172      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9173      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9174      if (noside == EVAL_SKIP)
9175        goto nosideret;
9176      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9177        return (value_from_longest
9178                 (value_type (arg1),
9179                  value_as_long (arg1) - value_as_long (arg2)));
9180      if ((ada_is_fixed_point_type (value_type (arg1))
9181           || ada_is_fixed_point_type (value_type (arg2)))
9182          && value_type (arg1) != value_type (arg2))
9183        error (_("Operands of fixed-point subtraction "
9184		 "must have the same type"));
9185      /* Do the substraction, and cast the result to the type of the first
9186         argument.  We cannot cast the result to a reference type, so if
9187         ARG1 is a reference type, find its underlying type.  */
9188      type = value_type (arg1);
9189      while (TYPE_CODE (type) == TYPE_CODE_REF)
9190        type = TYPE_TARGET_TYPE (type);
9191      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9192      return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9193
9194    case BINOP_MUL:
9195    case BINOP_DIV:
9196    case BINOP_REM:
9197    case BINOP_MOD:
9198      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9199      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200      if (noside == EVAL_SKIP)
9201        goto nosideret;
9202      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9203        {
9204          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9205          return value_zero (value_type (arg1), not_lval);
9206        }
9207      else
9208        {
9209          type = builtin_type (exp->gdbarch)->builtin_double;
9210          if (ada_is_fixed_point_type (value_type (arg1)))
9211            arg1 = cast_from_fixed (type, arg1);
9212          if (ada_is_fixed_point_type (value_type (arg2)))
9213            arg2 = cast_from_fixed (type, arg2);
9214          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9215          return ada_value_binop (arg1, arg2, op);
9216        }
9217
9218    case BINOP_EQUAL:
9219    case BINOP_NOTEQUAL:
9220      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9221      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9222      if (noside == EVAL_SKIP)
9223        goto nosideret;
9224      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9225        tem = 0;
9226      else
9227	{
9228	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9229	  tem = ada_value_equal (arg1, arg2);
9230	}
9231      if (op == BINOP_NOTEQUAL)
9232        tem = !tem;
9233      type = language_bool_type (exp->language_defn, exp->gdbarch);
9234      return value_from_longest (type, (LONGEST) tem);
9235
9236    case UNOP_NEG:
9237      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238      if (noside == EVAL_SKIP)
9239        goto nosideret;
9240      else if (ada_is_fixed_point_type (value_type (arg1)))
9241        return value_cast (value_type (arg1), value_neg (arg1));
9242      else
9243	{
9244	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9245	  return value_neg (arg1);
9246	}
9247
9248    case BINOP_LOGICAL_AND:
9249    case BINOP_LOGICAL_OR:
9250    case UNOP_LOGICAL_NOT:
9251      {
9252        struct value *val;
9253
9254        *pos -= 1;
9255        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9256	type = language_bool_type (exp->language_defn, exp->gdbarch);
9257        return value_cast (type, val);
9258      }
9259
9260    case BINOP_BITWISE_AND:
9261    case BINOP_BITWISE_IOR:
9262    case BINOP_BITWISE_XOR:
9263      {
9264        struct value *val;
9265
9266        arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9267        *pos = pc;
9268        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9269
9270        return value_cast (value_type (arg1), val);
9271      }
9272
9273    case OP_VAR_VALUE:
9274      *pos -= 1;
9275
9276      if (noside == EVAL_SKIP)
9277        {
9278          *pos += 4;
9279          goto nosideret;
9280        }
9281      else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9282        /* Only encountered when an unresolved symbol occurs in a
9283           context other than a function call, in which case, it is
9284           invalid.  */
9285        error (_("Unexpected unresolved symbol, %s, during evaluation"),
9286               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9287      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9288        {
9289          type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9290          /* Check to see if this is a tagged type.  We also need to handle
9291             the case where the type is a reference to a tagged type, but
9292             we have to be careful to exclude pointers to tagged types.
9293             The latter should be shown as usual (as a pointer), whereas
9294             a reference should mostly be transparent to the user.  */
9295          if (ada_is_tagged_type (type, 0)
9296              || (TYPE_CODE(type) == TYPE_CODE_REF
9297                  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9298          {
9299            /* Tagged types are a little special in the fact that the real
9300               type is dynamic and can only be determined by inspecting the
9301               object's tag.  This means that we need to get the object's
9302               value first (EVAL_NORMAL) and then extract the actual object
9303               type from its tag.
9304
9305               Note that we cannot skip the final step where we extract
9306               the object type from its tag, because the EVAL_NORMAL phase
9307               results in dynamic components being resolved into fixed ones.
9308               This can cause problems when trying to print the type
9309               description of tagged types whose parent has a dynamic size:
9310               We use the type name of the "_parent" component in order
9311               to print the name of the ancestor type in the type description.
9312               If that component had a dynamic size, the resolution into
9313               a fixed type would result in the loss of that type name,
9314               thus preventing us from printing the name of the ancestor
9315               type in the type description.  */
9316            struct type *actual_type;
9317
9318            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9319            actual_type = type_from_tag (ada_value_tag (arg1));
9320            if (actual_type == NULL)
9321              /* If, for some reason, we were unable to determine
9322                 the actual type from the tag, then use the static
9323                 approximation that we just computed as a fallback.
9324                 This can happen if the debugging information is
9325                 incomplete, for instance.  */
9326              actual_type = type;
9327
9328            return value_zero (actual_type, not_lval);
9329          }
9330
9331          *pos += 4;
9332          return value_zero
9333            (to_static_fixed_type
9334             (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9335             not_lval);
9336        }
9337      else
9338        {
9339          arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9340          arg1 = unwrap_value (arg1);
9341          return ada_to_fixed_value (arg1);
9342        }
9343
9344    case OP_FUNCALL:
9345      (*pos) += 2;
9346
9347      /* Allocate arg vector, including space for the function to be
9348         called in argvec[0] and a terminating NULL.  */
9349      nargs = longest_to_int (exp->elts[pc + 1].longconst);
9350      argvec =
9351        (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9352
9353      if (exp->elts[*pos].opcode == OP_VAR_VALUE
9354          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9355        error (_("Unexpected unresolved symbol, %s, during evaluation"),
9356               SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9357      else
9358        {
9359          for (tem = 0; tem <= nargs; tem += 1)
9360            argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9361          argvec[tem] = 0;
9362
9363          if (noside == EVAL_SKIP)
9364            goto nosideret;
9365        }
9366
9367      if (ada_is_constrained_packed_array_type
9368	  (desc_base_type (value_type (argvec[0]))))
9369        argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9370      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9371               && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9372        /* This is a packed array that has already been fixed, and
9373	   therefore already coerced to a simple array.  Nothing further
9374	   to do.  */
9375        ;
9376      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9377               || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9378                   && VALUE_LVAL (argvec[0]) == lval_memory))
9379        argvec[0] = value_addr (argvec[0]);
9380
9381      type = ada_check_typedef (value_type (argvec[0]));
9382
9383      /* Ada allows us to implicitly dereference arrays when subscripting
9384         them.  So, if this is an typedef (encoding use for array access
9385	 types encoded as fat pointers), strip it now.  */
9386      if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9387	type = ada_typedef_target_type (type);
9388
9389      if (TYPE_CODE (type) == TYPE_CODE_PTR)
9390        {
9391          switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9392            {
9393            case TYPE_CODE_FUNC:
9394              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9395              break;
9396            case TYPE_CODE_ARRAY:
9397              break;
9398            case TYPE_CODE_STRUCT:
9399              if (noside != EVAL_AVOID_SIDE_EFFECTS)
9400                argvec[0] = ada_value_ind (argvec[0]);
9401              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9402              break;
9403            default:
9404              error (_("cannot subscript or call something of type `%s'"),
9405                     ada_type_name (value_type (argvec[0])));
9406              break;
9407            }
9408        }
9409
9410      switch (TYPE_CODE (type))
9411        {
9412        case TYPE_CODE_FUNC:
9413          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9414            return allocate_value (TYPE_TARGET_TYPE (type));
9415          return call_function_by_hand (argvec[0], nargs, argvec + 1);
9416        case TYPE_CODE_STRUCT:
9417          {
9418            int arity;
9419
9420            arity = ada_array_arity (type);
9421            type = ada_array_element_type (type, nargs);
9422            if (type == NULL)
9423              error (_("cannot subscript or call a record"));
9424            if (arity != nargs)
9425              error (_("wrong number of subscripts; expecting %d"), arity);
9426            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9427              return value_zero (ada_aligned_type (type), lval_memory);
9428            return
9429              unwrap_value (ada_value_subscript
9430                            (argvec[0], nargs, argvec + 1));
9431          }
9432        case TYPE_CODE_ARRAY:
9433          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434            {
9435              type = ada_array_element_type (type, nargs);
9436              if (type == NULL)
9437                error (_("element type of array unknown"));
9438              else
9439                return value_zero (ada_aligned_type (type), lval_memory);
9440            }
9441          return
9442            unwrap_value (ada_value_subscript
9443                          (ada_coerce_to_simple_array (argvec[0]),
9444                           nargs, argvec + 1));
9445        case TYPE_CODE_PTR:     /* Pointer to array */
9446          type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9447          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9448            {
9449              type = ada_array_element_type (type, nargs);
9450              if (type == NULL)
9451                error (_("element type of array unknown"));
9452              else
9453                return value_zero (ada_aligned_type (type), lval_memory);
9454            }
9455          return
9456            unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9457                                                   nargs, argvec + 1));
9458
9459        default:
9460          error (_("Attempt to index or call something other than an "
9461		   "array or function"));
9462        }
9463
9464    case TERNOP_SLICE:
9465      {
9466        struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467        struct value *low_bound_val =
9468          evaluate_subexp (NULL_TYPE, exp, pos, noside);
9469        struct value *high_bound_val =
9470          evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471        LONGEST low_bound;
9472        LONGEST high_bound;
9473
9474        low_bound_val = coerce_ref (low_bound_val);
9475        high_bound_val = coerce_ref (high_bound_val);
9476        low_bound = pos_atr (low_bound_val);
9477        high_bound = pos_atr (high_bound_val);
9478
9479        if (noside == EVAL_SKIP)
9480          goto nosideret;
9481
9482        /* If this is a reference to an aligner type, then remove all
9483           the aligners.  */
9484        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9485            && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9486          TYPE_TARGET_TYPE (value_type (array)) =
9487            ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9488
9489        if (ada_is_constrained_packed_array_type (value_type (array)))
9490          error (_("cannot slice a packed array"));
9491
9492        /* If this is a reference to an array or an array lvalue,
9493           convert to a pointer.  */
9494        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9495            || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9496                && VALUE_LVAL (array) == lval_memory))
9497          array = value_addr (array);
9498
9499        if (noside == EVAL_AVOID_SIDE_EFFECTS
9500            && ada_is_array_descriptor_type (ada_check_typedef
9501                                             (value_type (array))))
9502          return empty_array (ada_type_of_array (array, 0), low_bound);
9503
9504        array = ada_coerce_to_simple_array_ptr (array);
9505
9506        /* If we have more than one level of pointer indirection,
9507           dereference the value until we get only one level.  */
9508        while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9509               && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9510                     == TYPE_CODE_PTR))
9511          array = value_ind (array);
9512
9513        /* Make sure we really do have an array type before going further,
9514           to avoid a SEGV when trying to get the index type or the target
9515           type later down the road if the debug info generated by
9516           the compiler is incorrect or incomplete.  */
9517        if (!ada_is_simple_array_type (value_type (array)))
9518          error (_("cannot take slice of non-array"));
9519
9520        if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9521          {
9522            if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9523              return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9524                                  low_bound);
9525            else
9526              {
9527                struct type *arr_type0 =
9528                  to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9529                                       NULL, 1);
9530
9531                return ada_value_slice_from_ptr (array, arr_type0,
9532                                                 longest_to_int (low_bound),
9533                                                 longest_to_int (high_bound));
9534              }
9535          }
9536        else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9537          return array;
9538        else if (high_bound < low_bound)
9539          return empty_array (value_type (array), low_bound);
9540        else
9541          return ada_value_slice (array, longest_to_int (low_bound),
9542				  longest_to_int (high_bound));
9543      }
9544
9545    case UNOP_IN_RANGE:
9546      (*pos) += 2;
9547      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9548      type = check_typedef (exp->elts[pc + 1].type);
9549
9550      if (noside == EVAL_SKIP)
9551        goto nosideret;
9552
9553      switch (TYPE_CODE (type))
9554        {
9555        default:
9556          lim_warning (_("Membership test incompletely implemented; "
9557			 "always returns true"));
9558	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9559	  return value_from_longest (type, (LONGEST) 1);
9560
9561        case TYPE_CODE_RANGE:
9562	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9563	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9564	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9565	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9566	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9567	  return
9568	    value_from_longest (type,
9569                                (value_less (arg1, arg3)
9570                                 || value_equal (arg1, arg3))
9571                                && (value_less (arg2, arg1)
9572                                    || value_equal (arg2, arg1)));
9573        }
9574
9575    case BINOP_IN_BOUNDS:
9576      (*pos) += 2;
9577      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579
9580      if (noside == EVAL_SKIP)
9581        goto nosideret;
9582
9583      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9584	{
9585	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9586	  return value_zero (type, not_lval);
9587	}
9588
9589      tem = longest_to_int (exp->elts[pc + 1].longconst);
9590
9591      type = ada_index_type (value_type (arg2), tem, "range");
9592      if (!type)
9593	type = value_type (arg1);
9594
9595      arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9596      arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9597
9598      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9599      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9600      type = language_bool_type (exp->language_defn, exp->gdbarch);
9601      return
9602        value_from_longest (type,
9603                            (value_less (arg1, arg3)
9604                             || value_equal (arg1, arg3))
9605                            && (value_less (arg2, arg1)
9606                                || value_equal (arg2, arg1)));
9607
9608    case TERNOP_IN_RANGE:
9609      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9610      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611      arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612
9613      if (noside == EVAL_SKIP)
9614        goto nosideret;
9615
9616      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9617      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9618      type = language_bool_type (exp->language_defn, exp->gdbarch);
9619      return
9620        value_from_longest (type,
9621                            (value_less (arg1, arg3)
9622                             || value_equal (arg1, arg3))
9623                            && (value_less (arg2, arg1)
9624                                || value_equal (arg2, arg1)));
9625
9626    case OP_ATR_FIRST:
9627    case OP_ATR_LAST:
9628    case OP_ATR_LENGTH:
9629      {
9630        struct type *type_arg;
9631
9632        if (exp->elts[*pos].opcode == OP_TYPE)
9633          {
9634            evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9635            arg1 = NULL;
9636            type_arg = check_typedef (exp->elts[pc + 2].type);
9637          }
9638        else
9639          {
9640            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9641            type_arg = NULL;
9642          }
9643
9644        if (exp->elts[*pos].opcode != OP_LONG)
9645          error (_("Invalid operand to '%s"), ada_attribute_name (op));
9646        tem = longest_to_int (exp->elts[*pos + 2].longconst);
9647        *pos += 4;
9648
9649        if (noside == EVAL_SKIP)
9650          goto nosideret;
9651
9652        if (type_arg == NULL)
9653          {
9654            arg1 = ada_coerce_ref (arg1);
9655
9656            if (ada_is_constrained_packed_array_type (value_type (arg1)))
9657              arg1 = ada_coerce_to_simple_array (arg1);
9658
9659            type = ada_index_type (value_type (arg1), tem,
9660				   ada_attribute_name (op));
9661            if (type == NULL)
9662	      type = builtin_type (exp->gdbarch)->builtin_int;
9663
9664            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9665              return allocate_value (type);
9666
9667            switch (op)
9668              {
9669              default:          /* Should never happen.  */
9670                error (_("unexpected attribute encountered"));
9671              case OP_ATR_FIRST:
9672                return value_from_longest
9673			(type, ada_array_bound (arg1, tem, 0));
9674              case OP_ATR_LAST:
9675                return value_from_longest
9676			(type, ada_array_bound (arg1, tem, 1));
9677              case OP_ATR_LENGTH:
9678                return value_from_longest
9679			(type, ada_array_length (arg1, tem));
9680              }
9681          }
9682        else if (discrete_type_p (type_arg))
9683          {
9684            struct type *range_type;
9685            char *name = ada_type_name (type_arg);
9686
9687            range_type = NULL;
9688            if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9689              range_type = to_fixed_range_type (type_arg, NULL);
9690            if (range_type == NULL)
9691              range_type = type_arg;
9692            switch (op)
9693              {
9694              default:
9695                error (_("unexpected attribute encountered"));
9696              case OP_ATR_FIRST:
9697		return value_from_longest
9698		  (range_type, ada_discrete_type_low_bound (range_type));
9699              case OP_ATR_LAST:
9700                return value_from_longest
9701		  (range_type, ada_discrete_type_high_bound (range_type));
9702              case OP_ATR_LENGTH:
9703                error (_("the 'length attribute applies only to array types"));
9704              }
9705          }
9706        else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9707          error (_("unimplemented type attribute"));
9708        else
9709          {
9710            LONGEST low, high;
9711
9712            if (ada_is_constrained_packed_array_type (type_arg))
9713              type_arg = decode_constrained_packed_array_type (type_arg);
9714
9715            type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9716            if (type == NULL)
9717	      type = builtin_type (exp->gdbarch)->builtin_int;
9718
9719            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9720              return allocate_value (type);
9721
9722            switch (op)
9723              {
9724              default:
9725                error (_("unexpected attribute encountered"));
9726              case OP_ATR_FIRST:
9727                low = ada_array_bound_from_type (type_arg, tem, 0);
9728                return value_from_longest (type, low);
9729              case OP_ATR_LAST:
9730                high = ada_array_bound_from_type (type_arg, tem, 1);
9731                return value_from_longest (type, high);
9732              case OP_ATR_LENGTH:
9733                low = ada_array_bound_from_type (type_arg, tem, 0);
9734                high = ada_array_bound_from_type (type_arg, tem, 1);
9735                return value_from_longest (type, high - low + 1);
9736              }
9737          }
9738      }
9739
9740    case OP_ATR_TAG:
9741      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742      if (noside == EVAL_SKIP)
9743        goto nosideret;
9744
9745      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9746        return value_zero (ada_tag_type (arg1), not_lval);
9747
9748      return ada_value_tag (arg1);
9749
9750    case OP_ATR_MIN:
9751    case OP_ATR_MAX:
9752      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9753      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9754      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755      if (noside == EVAL_SKIP)
9756        goto nosideret;
9757      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9758        return value_zero (value_type (arg1), not_lval);
9759      else
9760	{
9761	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9762	  return value_binop (arg1, arg2,
9763			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9764	}
9765
9766    case OP_ATR_MODULUS:
9767      {
9768        struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9769
9770        evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9771        if (noside == EVAL_SKIP)
9772          goto nosideret;
9773
9774        if (!ada_is_modular_type (type_arg))
9775          error (_("'modulus must be applied to modular type"));
9776
9777        return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9778                                   ada_modulus (type_arg));
9779      }
9780
9781
9782    case OP_ATR_POS:
9783      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9784      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9785      if (noside == EVAL_SKIP)
9786        goto nosideret;
9787      type = builtin_type (exp->gdbarch)->builtin_int;
9788      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789	return value_zero (type, not_lval);
9790      else
9791	return value_pos_atr (type, arg1);
9792
9793    case OP_ATR_SIZE:
9794      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9795      type = value_type (arg1);
9796
9797      /* If the argument is a reference, then dereference its type, since
9798         the user is really asking for the size of the actual object,
9799         not the size of the pointer.  */
9800      if (TYPE_CODE (type) == TYPE_CODE_REF)
9801        type = TYPE_TARGET_TYPE (type);
9802
9803      if (noside == EVAL_SKIP)
9804        goto nosideret;
9805      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9806        return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9807      else
9808        return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9809                                   TARGET_CHAR_BIT * TYPE_LENGTH (type));
9810
9811    case OP_ATR_VAL:
9812      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9813      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9814      type = exp->elts[pc + 2].type;
9815      if (noside == EVAL_SKIP)
9816        goto nosideret;
9817      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9818        return value_zero (type, not_lval);
9819      else
9820        return value_val_atr (type, arg1);
9821
9822    case BINOP_EXP:
9823      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9824      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825      if (noside == EVAL_SKIP)
9826        goto nosideret;
9827      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9828        return value_zero (value_type (arg1), not_lval);
9829      else
9830	{
9831	  /* For integer exponentiation operations,
9832	     only promote the first argument.  */
9833	  if (is_integral_type (value_type (arg2)))
9834	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9835	  else
9836	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837
9838	  return value_binop (arg1, arg2, op);
9839	}
9840
9841    case UNOP_PLUS:
9842      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9843      if (noside == EVAL_SKIP)
9844        goto nosideret;
9845      else
9846        return arg1;
9847
9848    case UNOP_ABS:
9849      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9850      if (noside == EVAL_SKIP)
9851        goto nosideret;
9852      unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9853      if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9854        return value_neg (arg1);
9855      else
9856        return arg1;
9857
9858    case UNOP_IND:
9859      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9860      if (noside == EVAL_SKIP)
9861        goto nosideret;
9862      type = ada_check_typedef (value_type (arg1));
9863      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9864        {
9865          if (ada_is_array_descriptor_type (type))
9866            /* GDB allows dereferencing GNAT array descriptors.  */
9867            {
9868              struct type *arrType = ada_type_of_array (arg1, 0);
9869
9870              if (arrType == NULL)
9871                error (_("Attempt to dereference null array pointer."));
9872              return value_at_lazy (arrType, 0);
9873            }
9874          else if (TYPE_CODE (type) == TYPE_CODE_PTR
9875                   || TYPE_CODE (type) == TYPE_CODE_REF
9876                   /* In C you can dereference an array to get the 1st elt.  */
9877                   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9878            {
9879              type = to_static_fixed_type
9880                (ada_aligned_type
9881                 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9882              check_size (type);
9883              return value_zero (type, lval_memory);
9884            }
9885          else if (TYPE_CODE (type) == TYPE_CODE_INT)
9886	    {
9887	      /* GDB allows dereferencing an int.  */
9888	      if (expect_type == NULL)
9889		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9890				   lval_memory);
9891	      else
9892		{
9893		  expect_type =
9894		    to_static_fixed_type (ada_aligned_type (expect_type));
9895		  return value_zero (expect_type, lval_memory);
9896		}
9897	    }
9898          else
9899            error (_("Attempt to take contents of a non-pointer value."));
9900        }
9901      arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
9902      type = ada_check_typedef (value_type (arg1));
9903
9904      if (TYPE_CODE (type) == TYPE_CODE_INT)
9905          /* GDB allows dereferencing an int.  If we were given
9906             the expect_type, then use that as the target type.
9907             Otherwise, assume that the target type is an int.  */
9908        {
9909          if (expect_type != NULL)
9910	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9911					      arg1));
9912	  else
9913	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9914				  (CORE_ADDR) value_as_address (arg1));
9915        }
9916
9917      if (ada_is_array_descriptor_type (type))
9918        /* GDB allows dereferencing GNAT array descriptors.  */
9919        return ada_coerce_to_simple_array (arg1);
9920      else
9921        return ada_value_ind (arg1);
9922
9923    case STRUCTOP_STRUCT:
9924      tem = longest_to_int (exp->elts[pc + 1].longconst);
9925      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9926      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9927      if (noside == EVAL_SKIP)
9928        goto nosideret;
9929      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9930        {
9931          struct type *type1 = value_type (arg1);
9932
9933          if (ada_is_tagged_type (type1, 1))
9934            {
9935              type = ada_lookup_struct_elt_type (type1,
9936                                                 &exp->elts[pc + 2].string,
9937                                                 1, 1, NULL);
9938              if (type == NULL)
9939                /* In this case, we assume that the field COULD exist
9940                   in some extension of the type.  Return an object of
9941                   "type" void, which will match any formal
9942                   (see ada_type_match).  */
9943                return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9944				   lval_memory);
9945            }
9946          else
9947            type =
9948              ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9949                                          0, NULL);
9950
9951          return value_zero (ada_aligned_type (type), lval_memory);
9952        }
9953      else
9954        arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9955        arg1 = unwrap_value (arg1);
9956        return ada_to_fixed_value (arg1);
9957
9958    case OP_TYPE:
9959      /* The value is not supposed to be used.  This is here to make it
9960         easier to accommodate expressions that contain types.  */
9961      (*pos) += 2;
9962      if (noside == EVAL_SKIP)
9963        goto nosideret;
9964      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9965        return allocate_value (exp->elts[pc + 1].type);
9966      else
9967        error (_("Attempt to use a type name as an expression"));
9968
9969    case OP_AGGREGATE:
9970    case OP_CHOICES:
9971    case OP_OTHERS:
9972    case OP_DISCRETE_RANGE:
9973    case OP_POSITIONAL:
9974    case OP_NAME:
9975      if (noside == EVAL_NORMAL)
9976	switch (op)
9977	  {
9978	  case OP_NAME:
9979	    error (_("Undefined name, ambiguous name, or renaming used in "
9980		     "component association: %s."), &exp->elts[pc+2].string);
9981	  case OP_AGGREGATE:
9982	    error (_("Aggregates only allowed on the right of an assignment"));
9983	  default:
9984	    internal_error (__FILE__, __LINE__,
9985			    _("aggregate apparently mangled"));
9986	  }
9987
9988      ada_forward_operator_length (exp, pc, &oplen, &nargs);
9989      *pos += oplen - 1;
9990      for (tem = 0; tem < nargs; tem += 1)
9991	ada_evaluate_subexp (NULL, exp, pos, noside);
9992      goto nosideret;
9993    }
9994
9995nosideret:
9996  return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9997}
9998
9999
10000                                /* Fixed point */
10001
10002/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10003   type name that encodes the 'small and 'delta information.
10004   Otherwise, return NULL.  */
10005
10006static const char *
10007fixed_type_info (struct type *type)
10008{
10009  const char *name = ada_type_name (type);
10010  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10011
10012  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10013    {
10014      const char *tail = strstr (name, "___XF_");
10015
10016      if (tail == NULL)
10017        return NULL;
10018      else
10019        return tail + 5;
10020    }
10021  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10022    return fixed_type_info (TYPE_TARGET_TYPE (type));
10023  else
10024    return NULL;
10025}
10026
10027/* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
10028
10029int
10030ada_is_fixed_point_type (struct type *type)
10031{
10032  return fixed_type_info (type) != NULL;
10033}
10034
10035/* Return non-zero iff TYPE represents a System.Address type.  */
10036
10037int
10038ada_is_system_address_type (struct type *type)
10039{
10040  return (TYPE_NAME (type)
10041          && strcmp (TYPE_NAME (type), "system__address") == 0);
10042}
10043
10044/* Assuming that TYPE is the representation of an Ada fixed-point
10045   type, return its delta, or -1 if the type is malformed and the
10046   delta cannot be determined.  */
10047
10048DOUBLEST
10049ada_delta (struct type *type)
10050{
10051  const char *encoding = fixed_type_info (type);
10052  DOUBLEST num, den;
10053
10054  /* Strictly speaking, num and den are encoded as integer.  However,
10055     they may not fit into a long, and they will have to be converted
10056     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10057  if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10058	      &num, &den) < 2)
10059    return -1.0;
10060  else
10061    return num / den;
10062}
10063
10064/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10065   factor ('SMALL value) associated with the type.  */
10066
10067static DOUBLEST
10068scaling_factor (struct type *type)
10069{
10070  const char *encoding = fixed_type_info (type);
10071  DOUBLEST num0, den0, num1, den1;
10072  int n;
10073
10074  /* Strictly speaking, num's and den's are encoded as integer.  However,
10075     they may not fit into a long, and they will have to be converted
10076     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10077  n = sscanf (encoding,
10078	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10079	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10080	      &num0, &den0, &num1, &den1);
10081
10082  if (n < 2)
10083    return 1.0;
10084  else if (n == 4)
10085    return num1 / den1;
10086  else
10087    return num0 / den0;
10088}
10089
10090
10091/* Assuming that X is the representation of a value of fixed-point
10092   type TYPE, return its floating-point equivalent.  */
10093
10094DOUBLEST
10095ada_fixed_to_float (struct type *type, LONGEST x)
10096{
10097  return (DOUBLEST) x *scaling_factor (type);
10098}
10099
10100/* The representation of a fixed-point value of type TYPE
10101   corresponding to the value X.  */
10102
10103LONGEST
10104ada_float_to_fixed (struct type *type, DOUBLEST x)
10105{
10106  return (LONGEST) (x / scaling_factor (type) + 0.5);
10107}
10108
10109
10110
10111                                /* Range types */
10112
10113/* Scan STR beginning at position K for a discriminant name, and
10114   return the value of that discriminant field of DVAL in *PX.  If
10115   PNEW_K is not null, put the position of the character beyond the
10116   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
10117   not alter *PX and *PNEW_K if unsuccessful.  */
10118
10119static int
10120scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10121                    int *pnew_k)
10122{
10123  static char *bound_buffer = NULL;
10124  static size_t bound_buffer_len = 0;
10125  char *bound;
10126  char *pend;
10127  struct value *bound_val;
10128
10129  if (dval == NULL || str == NULL || str[k] == '\0')
10130    return 0;
10131
10132  pend = strstr (str + k, "__");
10133  if (pend == NULL)
10134    {
10135      bound = str + k;
10136      k += strlen (bound);
10137    }
10138  else
10139    {
10140      GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10141      bound = bound_buffer;
10142      strncpy (bound_buffer, str + k, pend - (str + k));
10143      bound[pend - (str + k)] = '\0';
10144      k = pend - str;
10145    }
10146
10147  bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10148  if (bound_val == NULL)
10149    return 0;
10150
10151  *px = value_as_long (bound_val);
10152  if (pnew_k != NULL)
10153    *pnew_k = k;
10154  return 1;
10155}
10156
10157/* Value of variable named NAME in the current environment.  If
10158   no such variable found, then if ERR_MSG is null, returns 0, and
10159   otherwise causes an error with message ERR_MSG.  */
10160
10161static struct value *
10162get_var_value (char *name, char *err_msg)
10163{
10164  struct ada_symbol_info *syms;
10165  int nsyms;
10166
10167  nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10168                                  &syms);
10169
10170  if (nsyms != 1)
10171    {
10172      if (err_msg == NULL)
10173        return 0;
10174      else
10175        error (("%s"), err_msg);
10176    }
10177
10178  return value_of_variable (syms[0].sym, syms[0].block);
10179}
10180
10181/* Value of integer variable named NAME in the current environment.  If
10182   no such variable found, returns 0, and sets *FLAG to 0.  If
10183   successful, sets *FLAG to 1.  */
10184
10185LONGEST
10186get_int_var_value (char *name, int *flag)
10187{
10188  struct value *var_val = get_var_value (name, 0);
10189
10190  if (var_val == 0)
10191    {
10192      if (flag != NULL)
10193        *flag = 0;
10194      return 0;
10195    }
10196  else
10197    {
10198      if (flag != NULL)
10199        *flag = 1;
10200      return value_as_long (var_val);
10201    }
10202}
10203
10204
10205/* Return a range type whose base type is that of the range type named
10206   NAME in the current environment, and whose bounds are calculated
10207   from NAME according to the GNAT range encoding conventions.
10208   Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
10209   corresponding range type from debug information; fall back to using it
10210   if symbol lookup fails.  If a new type must be created, allocate it
10211   like ORIG_TYPE was.  The bounds information, in general, is encoded
10212   in NAME, the base type given in the named range type.  */
10213
10214static struct type *
10215to_fixed_range_type (struct type *raw_type, struct value *dval)
10216{
10217  char *name;
10218  struct type *base_type;
10219  char *subtype_info;
10220
10221  gdb_assert (raw_type != NULL);
10222  gdb_assert (TYPE_NAME (raw_type) != NULL);
10223
10224  if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10225    base_type = TYPE_TARGET_TYPE (raw_type);
10226  else
10227    base_type = raw_type;
10228
10229  name = TYPE_NAME (raw_type);
10230  subtype_info = strstr (name, "___XD");
10231  if (subtype_info == NULL)
10232    {
10233      LONGEST L = ada_discrete_type_low_bound (raw_type);
10234      LONGEST U = ada_discrete_type_high_bound (raw_type);
10235
10236      if (L < INT_MIN || U > INT_MAX)
10237	return raw_type;
10238      else
10239	return create_range_type (alloc_type_copy (raw_type), raw_type,
10240				  ada_discrete_type_low_bound (raw_type),
10241				  ada_discrete_type_high_bound (raw_type));
10242    }
10243  else
10244    {
10245      static char *name_buf = NULL;
10246      static size_t name_len = 0;
10247      int prefix_len = subtype_info - name;
10248      LONGEST L, U;
10249      struct type *type;
10250      char *bounds_str;
10251      int n;
10252
10253      GROW_VECT (name_buf, name_len, prefix_len + 5);
10254      strncpy (name_buf, name, prefix_len);
10255      name_buf[prefix_len] = '\0';
10256
10257      subtype_info += 5;
10258      bounds_str = strchr (subtype_info, '_');
10259      n = 1;
10260
10261      if (*subtype_info == 'L')
10262        {
10263          if (!ada_scan_number (bounds_str, n, &L, &n)
10264              && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10265            return raw_type;
10266          if (bounds_str[n] == '_')
10267            n += 2;
10268          else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
10269            n += 1;
10270          subtype_info += 1;
10271        }
10272      else
10273        {
10274          int ok;
10275
10276          strcpy (name_buf + prefix_len, "___L");
10277          L = get_int_var_value (name_buf, &ok);
10278          if (!ok)
10279            {
10280              lim_warning (_("Unknown lower bound, using 1."));
10281              L = 1;
10282            }
10283        }
10284
10285      if (*subtype_info == 'U')
10286        {
10287          if (!ada_scan_number (bounds_str, n, &U, &n)
10288              && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10289            return raw_type;
10290        }
10291      else
10292        {
10293          int ok;
10294
10295          strcpy (name_buf + prefix_len, "___U");
10296          U = get_int_var_value (name_buf, &ok);
10297          if (!ok)
10298            {
10299              lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10300              U = L;
10301            }
10302        }
10303
10304      type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10305      TYPE_NAME (type) = name;
10306      return type;
10307    }
10308}
10309
10310/* True iff NAME is the name of a range type.  */
10311
10312int
10313ada_is_range_type_name (const char *name)
10314{
10315  return (name != NULL && strstr (name, "___XD"));
10316}
10317
10318
10319                                /* Modular types */
10320
10321/* True iff TYPE is an Ada modular type.  */
10322
10323int
10324ada_is_modular_type (struct type *type)
10325{
10326  struct type *subranged_type = base_type (type);
10327
10328  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10329          && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10330          && TYPE_UNSIGNED (subranged_type));
10331}
10332
10333/* Try to determine the lower and upper bounds of the given modular type
10334   using the type name only.  Return non-zero and set L and U as the lower
10335   and upper bounds (respectively) if successful.  */
10336
10337int
10338ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10339{
10340  char *name = ada_type_name (type);
10341  char *suffix;
10342  int k;
10343  LONGEST U;
10344
10345  if (name == NULL)
10346    return 0;
10347
10348  /* Discrete type bounds are encoded using an __XD suffix.  In our case,
10349     we are looking for static bounds, which means an __XDLU suffix.
10350     Moreover, we know that the lower bound of modular types is always
10351     zero, so the actual suffix should start with "__XDLU_0__", and
10352     then be followed by the upper bound value.  */
10353  suffix = strstr (name, "__XDLU_0__");
10354  if (suffix == NULL)
10355    return 0;
10356  k = 10;
10357  if (!ada_scan_number (suffix, k, &U, NULL))
10358    return 0;
10359
10360  *modulus = (ULONGEST) U + 1;
10361  return 1;
10362}
10363
10364/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
10365
10366ULONGEST
10367ada_modulus (struct type *type)
10368{
10369  return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10370}
10371
10372
10373/* Ada exception catchpoint support:
10374   ---------------------------------
10375
10376   We support 3 kinds of exception catchpoints:
10377     . catchpoints on Ada exceptions
10378     . catchpoints on unhandled Ada exceptions
10379     . catchpoints on failed assertions
10380
10381   Exceptions raised during failed assertions, or unhandled exceptions
10382   could perfectly be caught with the general catchpoint on Ada exceptions.
10383   However, we can easily differentiate these two special cases, and having
10384   the option to distinguish these two cases from the rest can be useful
10385   to zero-in on certain situations.
10386
10387   Exception catchpoints are a specialized form of breakpoint,
10388   since they rely on inserting breakpoints inside known routines
10389   of the GNAT runtime.  The implementation therefore uses a standard
10390   breakpoint structure of the BP_BREAKPOINT type, but with its own set
10391   of breakpoint_ops.
10392
10393   Support in the runtime for exception catchpoints have been changed
10394   a few times already, and these changes affect the implementation
10395   of these catchpoints.  In order to be able to support several
10396   variants of the runtime, we use a sniffer that will determine
10397   the runtime variant used by the program being debugged.
10398
10399   At this time, we do not support the use of conditions on Ada exception
10400   catchpoints.  The COND and COND_STRING fields are therefore set
10401   to NULL (most of the time, see below).
10402
10403   Conditions where EXP_STRING, COND, and COND_STRING are used:
10404
10405     When a user specifies the name of a specific exception in the case
10406     of catchpoints on Ada exceptions, we store the name of that exception
10407     in the EXP_STRING.  We then translate this request into an actual
10408     condition stored in COND_STRING, and then parse it into an expression
10409     stored in COND.  */
10410
10411/* The different types of catchpoints that we introduced for catching
10412   Ada exceptions.  */
10413
10414enum exception_catchpoint_kind
10415{
10416  ex_catch_exception,
10417  ex_catch_exception_unhandled,
10418  ex_catch_assert
10419};
10420
10421/* Ada's standard exceptions.  */
10422
10423static char *standard_exc[] = {
10424  "constraint_error",
10425  "program_error",
10426  "storage_error",
10427  "tasking_error"
10428};
10429
10430typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10431
10432/* A structure that describes how to support exception catchpoints
10433   for a given executable.  */
10434
10435struct exception_support_info
10436{
10437   /* The name of the symbol to break on in order to insert
10438      a catchpoint on exceptions.  */
10439   const char *catch_exception_sym;
10440
10441   /* The name of the symbol to break on in order to insert
10442      a catchpoint on unhandled exceptions.  */
10443   const char *catch_exception_unhandled_sym;
10444
10445   /* The name of the symbol to break on in order to insert
10446      a catchpoint on failed assertions.  */
10447   const char *catch_assert_sym;
10448
10449   /* Assuming that the inferior just triggered an unhandled exception
10450      catchpoint, this function is responsible for returning the address
10451      in inferior memory where the name of that exception is stored.
10452      Return zero if the address could not be computed.  */
10453   ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10454};
10455
10456static CORE_ADDR ada_unhandled_exception_name_addr (void);
10457static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10458
10459/* The following exception support info structure describes how to
10460   implement exception catchpoints with the latest version of the
10461   Ada runtime (as of 2007-03-06).  */
10462
10463static const struct exception_support_info default_exception_support_info =
10464{
10465  "__gnat_debug_raise_exception", /* catch_exception_sym */
10466  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10467  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10468  ada_unhandled_exception_name_addr
10469};
10470
10471/* The following exception support info structure describes how to
10472   implement exception catchpoints with a slightly older version
10473   of the Ada runtime.  */
10474
10475static const struct exception_support_info exception_support_info_fallback =
10476{
10477  "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10478  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10479  "system__assertions__raise_assert_failure",  /* catch_assert_sym */
10480  ada_unhandled_exception_name_addr_from_raise
10481};
10482
10483/* For each executable, we sniff which exception info structure to use
10484   and cache it in the following global variable.  */
10485
10486static const struct exception_support_info *exception_info = NULL;
10487
10488/* Inspect the Ada runtime and determine which exception info structure
10489   should be used to provide support for exception catchpoints.
10490
10491   This function will always set exception_info, or raise an error.  */
10492
10493static void
10494ada_exception_support_info_sniffer (void)
10495{
10496  struct symbol *sym;
10497
10498  /* If the exception info is already known, then no need to recompute it.  */
10499  if (exception_info != NULL)
10500    return;
10501
10502  /* Check the latest (default) exception support info.  */
10503  sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10504                         NULL, VAR_DOMAIN);
10505  if (sym != NULL)
10506    {
10507      exception_info = &default_exception_support_info;
10508      return;
10509    }
10510
10511  /* Try our fallback exception suport info.  */
10512  sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10513                         NULL, VAR_DOMAIN);
10514  if (sym != NULL)
10515    {
10516      exception_info = &exception_support_info_fallback;
10517      return;
10518    }
10519
10520  /* Sometimes, it is normal for us to not be able to find the routine
10521     we are looking for.  This happens when the program is linked with
10522     the shared version of the GNAT runtime, and the program has not been
10523     started yet.  Inform the user of these two possible causes if
10524     applicable.  */
10525
10526  if (ada_update_initial_language (language_unknown) != language_ada)
10527    error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
10528
10529  /* If the symbol does not exist, then check that the program is
10530     already started, to make sure that shared libraries have been
10531     loaded.  If it is not started, this may mean that the symbol is
10532     in a shared library.  */
10533
10534  if (ptid_get_pid (inferior_ptid) == 0)
10535    error (_("Unable to insert catchpoint. Try to start the program first."));
10536
10537  /* At this point, we know that we are debugging an Ada program and
10538     that the inferior has been started, but we still are not able to
10539     find the run-time symbols.  That can mean that we are in
10540     configurable run time mode, or that a-except as been optimized
10541     out by the linker...  In any case, at this point it is not worth
10542     supporting this feature.  */
10543
10544  error (_("Cannot insert catchpoints in this configuration."));
10545}
10546
10547/* An observer of "executable_changed" events.
10548   Its role is to clear certain cached values that need to be recomputed
10549   each time a new executable is loaded by GDB.  */
10550
10551static void
10552ada_executable_changed_observer (void)
10553{
10554  /* If the executable changed, then it is possible that the Ada runtime
10555     is different.  So we need to invalidate the exception support info
10556     cache.  */
10557  exception_info = NULL;
10558}
10559
10560/* True iff FRAME is very likely to be that of a function that is
10561   part of the runtime system.  This is all very heuristic, but is
10562   intended to be used as advice as to what frames are uninteresting
10563   to most users.  */
10564
10565static int
10566is_known_support_routine (struct frame_info *frame)
10567{
10568  struct symtab_and_line sal;
10569  char *func_name;
10570  enum language func_lang;
10571  int i;
10572
10573  /* If this code does not have any debugging information (no symtab),
10574     This cannot be any user code.  */
10575
10576  find_frame_sal (frame, &sal);
10577  if (sal.symtab == NULL)
10578    return 1;
10579
10580  /* If there is a symtab, but the associated source file cannot be
10581     located, then assume this is not user code:  Selecting a frame
10582     for which we cannot display the code would not be very helpful
10583     for the user.  This should also take care of case such as VxWorks
10584     where the kernel has some debugging info provided for a few units.  */
10585
10586  if (symtab_to_fullname (sal.symtab) == NULL)
10587    return 1;
10588
10589  /* Check the unit filename againt the Ada runtime file naming.
10590     We also check the name of the objfile against the name of some
10591     known system libraries that sometimes come with debugging info
10592     too.  */
10593
10594  for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10595    {
10596      re_comp (known_runtime_file_name_patterns[i]);
10597      if (re_exec (sal.symtab->filename))
10598        return 1;
10599      if (sal.symtab->objfile != NULL
10600          && re_exec (sal.symtab->objfile->name))
10601        return 1;
10602    }
10603
10604  /* Check whether the function is a GNAT-generated entity.  */
10605
10606  find_frame_funname (frame, &func_name, &func_lang, NULL);
10607  if (func_name == NULL)
10608    return 1;
10609
10610  for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10611    {
10612      re_comp (known_auxiliary_function_name_patterns[i]);
10613      if (re_exec (func_name))
10614        return 1;
10615    }
10616
10617  return 0;
10618}
10619
10620/* Find the first frame that contains debugging information and that is not
10621   part of the Ada run-time, starting from FI and moving upward.  */
10622
10623void
10624ada_find_printable_frame (struct frame_info *fi)
10625{
10626  for (; fi != NULL; fi = get_prev_frame (fi))
10627    {
10628      if (!is_known_support_routine (fi))
10629        {
10630          select_frame (fi);
10631          break;
10632        }
10633    }
10634
10635}
10636
10637/* Assuming that the inferior just triggered an unhandled exception
10638   catchpoint, return the address in inferior memory where the name
10639   of the exception is stored.
10640
10641   Return zero if the address could not be computed.  */
10642
10643static CORE_ADDR
10644ada_unhandled_exception_name_addr (void)
10645{
10646  return parse_and_eval_address ("e.full_name");
10647}
10648
10649/* Same as ada_unhandled_exception_name_addr, except that this function
10650   should be used when the inferior uses an older version of the runtime,
10651   where the exception name needs to be extracted from a specific frame
10652   several frames up in the callstack.  */
10653
10654static CORE_ADDR
10655ada_unhandled_exception_name_addr_from_raise (void)
10656{
10657  int frame_level;
10658  struct frame_info *fi;
10659
10660  /* To determine the name of this exception, we need to select
10661     the frame corresponding to RAISE_SYM_NAME.  This frame is
10662     at least 3 levels up, so we simply skip the first 3 frames
10663     without checking the name of their associated function.  */
10664  fi = get_current_frame ();
10665  for (frame_level = 0; frame_level < 3; frame_level += 1)
10666    if (fi != NULL)
10667      fi = get_prev_frame (fi);
10668
10669  while (fi != NULL)
10670    {
10671      char *func_name;
10672      enum language func_lang;
10673
10674      find_frame_funname (fi, &func_name, &func_lang, NULL);
10675      if (func_name != NULL
10676          && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10677        break; /* We found the frame we were looking for...  */
10678      fi = get_prev_frame (fi);
10679    }
10680
10681  if (fi == NULL)
10682    return 0;
10683
10684  select_frame (fi);
10685  return parse_and_eval_address ("id.full_name");
10686}
10687
10688/* Assuming the inferior just triggered an Ada exception catchpoint
10689   (of any type), return the address in inferior memory where the name
10690   of the exception is stored, if applicable.
10691
10692   Return zero if the address could not be computed, or if not relevant.  */
10693
10694static CORE_ADDR
10695ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10696                           struct breakpoint *b)
10697{
10698  switch (ex)
10699    {
10700      case ex_catch_exception:
10701        return (parse_and_eval_address ("e.full_name"));
10702        break;
10703
10704      case ex_catch_exception_unhandled:
10705        return exception_info->unhandled_exception_name_addr ();
10706        break;
10707
10708      case ex_catch_assert:
10709        return 0;  /* Exception name is not relevant in this case.  */
10710        break;
10711
10712      default:
10713        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10714        break;
10715    }
10716
10717  return 0; /* Should never be reached.  */
10718}
10719
10720/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10721   any error that ada_exception_name_addr_1 might cause to be thrown.
10722   When an error is intercepted, a warning with the error message is printed,
10723   and zero is returned.  */
10724
10725static CORE_ADDR
10726ada_exception_name_addr (enum exception_catchpoint_kind ex,
10727                         struct breakpoint *b)
10728{
10729  struct gdb_exception e;
10730  CORE_ADDR result = 0;
10731
10732  TRY_CATCH (e, RETURN_MASK_ERROR)
10733    {
10734      result = ada_exception_name_addr_1 (ex, b);
10735    }
10736
10737  if (e.reason < 0)
10738    {
10739      warning (_("failed to get exception name: %s"), e.message);
10740      return 0;
10741    }
10742
10743  return result;
10744}
10745
10746/* Implement the PRINT_IT method in the breakpoint_ops structure
10747   for all exception catchpoint kinds.  */
10748
10749static enum print_stop_action
10750print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10751{
10752  annotate_catchpoint (b->number);
10753
10754  if (ui_out_is_mi_like_p (uiout))
10755    {
10756      ui_out_field_string (uiout, "reason",
10757			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10758      ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10759    }
10760
10761  ui_out_text (uiout, "\nCatchpoint ");
10762  ui_out_field_int (uiout, "bkptno", b->number);
10763  ui_out_text (uiout, ", ");
10764
10765  switch (ex)
10766    {
10767      case ex_catch_exception:
10768      case ex_catch_exception_unhandled:
10769	{
10770	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10771	  char exception_name[256];
10772
10773	  if (addr != 0)
10774	    {
10775	      read_memory (addr, exception_name, sizeof (exception_name) - 1);
10776	      exception_name [sizeof (exception_name) - 1] = '\0';
10777	    }
10778	  else
10779	    {
10780	      /* For some reason, we were unable to read the exception
10781		 name.  This could happen if the Runtime was compiled
10782		 without debugging info, for instance.  In that case,
10783		 just replace the exception name by the generic string
10784		 "exception" - it will read as "an exception" in the
10785		 notification we are about to print.  */
10786	      sprintf (exception_name, "exception");
10787	    }
10788	  /* In the case of unhandled exception breakpoints, we print
10789	     the exception name as "unhandled EXCEPTION_NAME", to make
10790	     it clearer to the user which kind of catchpoint just got
10791	     hit.  We used ui_out_text to make sure that this extra
10792	     info does not pollute the exception name in the MI case.  */
10793	  if (ex == ex_catch_exception_unhandled)
10794	    ui_out_text (uiout, "unhandled ");
10795	  ui_out_field_string (uiout, "exception-name", exception_name);
10796	}
10797	break;
10798      case ex_catch_assert:
10799	/* In this case, the name of the exception is not really
10800	   important.  Just print "failed assertion" to make it clearer
10801	   that his program just hit an assertion-failure catchpoint.
10802	   We used ui_out_text because this info does not belong in
10803	   the MI output.  */
10804	ui_out_text (uiout, "failed assertion");
10805	break;
10806    }
10807  ui_out_text (uiout, " at ");
10808  ada_find_printable_frame (get_current_frame ());
10809
10810  return PRINT_SRC_AND_LOC;
10811}
10812
10813/* Implement the PRINT_ONE method in the breakpoint_ops structure
10814   for all exception catchpoint kinds.  */
10815
10816static void
10817print_one_exception (enum exception_catchpoint_kind ex,
10818                     struct breakpoint *b, struct bp_location **last_loc)
10819{
10820  struct value_print_options opts;
10821
10822  get_user_print_options (&opts);
10823  if (opts.addressprint)
10824    {
10825      annotate_field (4);
10826      ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10827    }
10828
10829  annotate_field (5);
10830  *last_loc = b->loc;
10831  switch (ex)
10832    {
10833      case ex_catch_exception:
10834        if (b->exp_string != NULL)
10835          {
10836            char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10837
10838            ui_out_field_string (uiout, "what", msg);
10839            xfree (msg);
10840          }
10841        else
10842          ui_out_field_string (uiout, "what", "all Ada exceptions");
10843
10844        break;
10845
10846      case ex_catch_exception_unhandled:
10847        ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10848        break;
10849
10850      case ex_catch_assert:
10851        ui_out_field_string (uiout, "what", "failed Ada assertions");
10852        break;
10853
10854      default:
10855        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10856        break;
10857    }
10858}
10859
10860/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10861   for all exception catchpoint kinds.  */
10862
10863static void
10864print_mention_exception (enum exception_catchpoint_kind ex,
10865                         struct breakpoint *b)
10866{
10867  switch (ex)
10868    {
10869      case ex_catch_exception:
10870        if (b->exp_string != NULL)
10871          printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10872                           b->number, b->exp_string);
10873        else
10874          printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10875
10876        break;
10877
10878      case ex_catch_exception_unhandled:
10879        printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10880                         b->number);
10881        break;
10882
10883      case ex_catch_assert:
10884        printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10885        break;
10886
10887      default:
10888        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10889        break;
10890    }
10891}
10892
10893/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10894   for all exception catchpoint kinds.  */
10895
10896static void
10897print_recreate_exception (enum exception_catchpoint_kind ex,
10898			  struct breakpoint *b, struct ui_file *fp)
10899{
10900  switch (ex)
10901    {
10902      case ex_catch_exception:
10903	fprintf_filtered (fp, "catch exception");
10904	if (b->exp_string != NULL)
10905	  fprintf_filtered (fp, " %s", b->exp_string);
10906	break;
10907
10908      case ex_catch_exception_unhandled:
10909	fprintf_filtered (fp, "catch exception unhandled");
10910	break;
10911
10912      case ex_catch_assert:
10913	fprintf_filtered (fp, "catch assert");
10914	break;
10915
10916      default:
10917	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10918    }
10919}
10920
10921/* Virtual table for "catch exception" breakpoints.  */
10922
10923static enum print_stop_action
10924print_it_catch_exception (struct breakpoint *b)
10925{
10926  return print_it_exception (ex_catch_exception, b);
10927}
10928
10929static void
10930print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10931{
10932  print_one_exception (ex_catch_exception, b, last_loc);
10933}
10934
10935static void
10936print_mention_catch_exception (struct breakpoint *b)
10937{
10938  print_mention_exception (ex_catch_exception, b);
10939}
10940
10941static void
10942print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10943{
10944  print_recreate_exception (ex_catch_exception, b, fp);
10945}
10946
10947static struct breakpoint_ops catch_exception_breakpoint_ops =
10948{
10949  NULL, /* insert */
10950  NULL, /* remove */
10951  NULL, /* breakpoint_hit */
10952  NULL, /* resources_needed */
10953  print_it_catch_exception,
10954  print_one_catch_exception,
10955  NULL, /* print_one_detail */
10956  print_mention_catch_exception,
10957  print_recreate_catch_exception
10958};
10959
10960/* Virtual table for "catch exception unhandled" breakpoints.  */
10961
10962static enum print_stop_action
10963print_it_catch_exception_unhandled (struct breakpoint *b)
10964{
10965  return print_it_exception (ex_catch_exception_unhandled, b);
10966}
10967
10968static void
10969print_one_catch_exception_unhandled (struct breakpoint *b,
10970				     struct bp_location **last_loc)
10971{
10972  print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10973}
10974
10975static void
10976print_mention_catch_exception_unhandled (struct breakpoint *b)
10977{
10978  print_mention_exception (ex_catch_exception_unhandled, b);
10979}
10980
10981static void
10982print_recreate_catch_exception_unhandled (struct breakpoint *b,
10983					  struct ui_file *fp)
10984{
10985  print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10986}
10987
10988static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10989  NULL, /* insert */
10990  NULL, /* remove */
10991  NULL, /* breakpoint_hit */
10992  NULL, /* resources_needed */
10993  print_it_catch_exception_unhandled,
10994  print_one_catch_exception_unhandled,
10995  NULL, /* print_one_detail */
10996  print_mention_catch_exception_unhandled,
10997  print_recreate_catch_exception_unhandled
10998};
10999
11000/* Virtual table for "catch assert" breakpoints.  */
11001
11002static enum print_stop_action
11003print_it_catch_assert (struct breakpoint *b)
11004{
11005  return print_it_exception (ex_catch_assert, b);
11006}
11007
11008static void
11009print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11010{
11011  print_one_exception (ex_catch_assert, b, last_loc);
11012}
11013
11014static void
11015print_mention_catch_assert (struct breakpoint *b)
11016{
11017  print_mention_exception (ex_catch_assert, b);
11018}
11019
11020static void
11021print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11022{
11023  print_recreate_exception (ex_catch_assert, b, fp);
11024}
11025
11026static struct breakpoint_ops catch_assert_breakpoint_ops = {
11027  NULL, /* insert */
11028  NULL, /* remove */
11029  NULL, /* breakpoint_hit */
11030  NULL, /* resources_needed */
11031  print_it_catch_assert,
11032  print_one_catch_assert,
11033  NULL, /* print_one_detail */
11034  print_mention_catch_assert,
11035  print_recreate_catch_assert
11036};
11037
11038/* Return non-zero if B is an Ada exception catchpoint.  */
11039
11040int
11041ada_exception_catchpoint_p (struct breakpoint *b)
11042{
11043  return (b->ops == &catch_exception_breakpoint_ops
11044          || b->ops == &catch_exception_unhandled_breakpoint_ops
11045          || b->ops == &catch_assert_breakpoint_ops);
11046}
11047
11048/* Return a newly allocated copy of the first space-separated token
11049   in ARGSP, and then adjust ARGSP to point immediately after that
11050   token.
11051
11052   Return NULL if ARGPS does not contain any more tokens.  */
11053
11054static char *
11055ada_get_next_arg (char **argsp)
11056{
11057  char *args = *argsp;
11058  char *end;
11059  char *result;
11060
11061  /* Skip any leading white space.  */
11062
11063  while (isspace (*args))
11064    args++;
11065
11066  if (args[0] == '\0')
11067    return NULL; /* No more arguments.  */
11068
11069  /* Find the end of the current argument.  */
11070
11071  end = args;
11072  while (*end != '\0' && !isspace (*end))
11073    end++;
11074
11075  /* Adjust ARGSP to point to the start of the next argument.  */
11076
11077  *argsp = end;
11078
11079  /* Make a copy of the current argument and return it.  */
11080
11081  result = xmalloc (end - args + 1);
11082  strncpy (result, args, end - args);
11083  result[end - args] = '\0';
11084
11085  return result;
11086}
11087
11088/* Split the arguments specified in a "catch exception" command.
11089   Set EX to the appropriate catchpoint type.
11090   Set EXP_STRING to the name of the specific exception if
11091   specified by the user.  */
11092
11093static void
11094catch_ada_exception_command_split (char *args,
11095                                   enum exception_catchpoint_kind *ex,
11096                                   char **exp_string)
11097{
11098  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11099  char *exception_name;
11100
11101  exception_name = ada_get_next_arg (&args);
11102  make_cleanup (xfree, exception_name);
11103
11104  /* Check that we do not have any more arguments.  Anything else
11105     is unexpected.  */
11106
11107  while (isspace (*args))
11108    args++;
11109
11110  if (args[0] != '\0')
11111    error (_("Junk at end of expression"));
11112
11113  discard_cleanups (old_chain);
11114
11115  if (exception_name == NULL)
11116    {
11117      /* Catch all exceptions.  */
11118      *ex = ex_catch_exception;
11119      *exp_string = NULL;
11120    }
11121  else if (strcmp (exception_name, "unhandled") == 0)
11122    {
11123      /* Catch unhandled exceptions.  */
11124      *ex = ex_catch_exception_unhandled;
11125      *exp_string = NULL;
11126    }
11127  else
11128    {
11129      /* Catch a specific exception.  */
11130      *ex = ex_catch_exception;
11131      *exp_string = exception_name;
11132    }
11133}
11134
11135/* Return the name of the symbol on which we should break in order to
11136   implement a catchpoint of the EX kind.  */
11137
11138static const char *
11139ada_exception_sym_name (enum exception_catchpoint_kind ex)
11140{
11141  gdb_assert (exception_info != NULL);
11142
11143  switch (ex)
11144    {
11145      case ex_catch_exception:
11146        return (exception_info->catch_exception_sym);
11147        break;
11148      case ex_catch_exception_unhandled:
11149        return (exception_info->catch_exception_unhandled_sym);
11150        break;
11151      case ex_catch_assert:
11152        return (exception_info->catch_assert_sym);
11153        break;
11154      default:
11155        internal_error (__FILE__, __LINE__,
11156                        _("unexpected catchpoint kind (%d)"), ex);
11157    }
11158}
11159
11160/* Return the breakpoint ops "virtual table" used for catchpoints
11161   of the EX kind.  */
11162
11163static struct breakpoint_ops *
11164ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11165{
11166  switch (ex)
11167    {
11168      case ex_catch_exception:
11169        return (&catch_exception_breakpoint_ops);
11170        break;
11171      case ex_catch_exception_unhandled:
11172        return (&catch_exception_unhandled_breakpoint_ops);
11173        break;
11174      case ex_catch_assert:
11175        return (&catch_assert_breakpoint_ops);
11176        break;
11177      default:
11178        internal_error (__FILE__, __LINE__,
11179                        _("unexpected catchpoint kind (%d)"), ex);
11180    }
11181}
11182
11183/* Return the condition that will be used to match the current exception
11184   being raised with the exception that the user wants to catch.  This
11185   assumes that this condition is used when the inferior just triggered
11186   an exception catchpoint.
11187
11188   The string returned is a newly allocated string that needs to be
11189   deallocated later.  */
11190
11191static char *
11192ada_exception_catchpoint_cond_string (const char *exp_string)
11193{
11194  int i;
11195
11196  /* The standard exceptions are a special case.  They are defined in
11197     runtime units that have been compiled without debugging info; if
11198     EXP_STRING is the not-fully-qualified name of a standard
11199     exception (e.g. "constraint_error") then, during the evaluation
11200     of the condition expression, the symbol lookup on this name would
11201     *not* return this standard exception.  The catchpoint condition
11202     may then be set only on user-defined exceptions which have the
11203     same not-fully-qualified name (e.g. my_package.constraint_error).
11204
11205     To avoid this unexcepted behavior, these standard exceptions are
11206     systematically prefixed by "standard".  This means that "catch
11207     exception constraint_error" is rewritten into "catch exception
11208     standard.constraint_error".
11209
11210     If an exception named contraint_error is defined in another package of
11211     the inferior program, then the only way to specify this exception as a
11212     breakpoint condition is to use its fully-qualified named:
11213     e.g. my_package.constraint_error.  */
11214
11215  for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11216    {
11217      if (strcmp (standard_exc [i], exp_string) == 0)
11218	{
11219          return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11220                             exp_string);
11221	}
11222    }
11223  return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11224}
11225
11226/* Return the expression corresponding to COND_STRING evaluated at SAL.  */
11227
11228static struct expression *
11229ada_parse_catchpoint_condition (char *cond_string,
11230                                struct symtab_and_line sal)
11231{
11232  return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11233}
11234
11235/* Return the symtab_and_line that should be used to insert an exception
11236   catchpoint of the TYPE kind.
11237
11238   EX_STRING should contain the name of a specific exception
11239   that the catchpoint should catch, or NULL otherwise.
11240
11241   The idea behind all the remaining parameters is that their names match
11242   the name of certain fields in the breakpoint structure that are used to
11243   handle exception catchpoints.  This function returns the value to which
11244   these fields should be set, depending on the type of catchpoint we need
11245   to create.
11246
11247   If COND and COND_STRING are both non-NULL, any value they might
11248   hold will be free'ed, and then replaced by newly allocated ones.
11249   These parameters are left untouched otherwise.  */
11250
11251static struct symtab_and_line
11252ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11253                   char **addr_string, char **cond_string,
11254                   struct expression **cond, struct breakpoint_ops **ops)
11255{
11256  const char *sym_name;
11257  struct symbol *sym;
11258  struct symtab_and_line sal;
11259
11260  /* First, find out which exception support info to use.  */
11261  ada_exception_support_info_sniffer ();
11262
11263  /* Then lookup the function on which we will break in order to catch
11264     the Ada exceptions requested by the user.  */
11265
11266  sym_name = ada_exception_sym_name (ex);
11267  sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11268
11269  /* The symbol we're looking up is provided by a unit in the GNAT runtime
11270     that should be compiled with debugging information.  As a result, we
11271     expect to find that symbol in the symtabs.  If we don't find it, then
11272     the target most likely does not support Ada exceptions, or we cannot
11273     insert exception breakpoints yet, because the GNAT runtime hasn't been
11274     loaded yet.  */
11275
11276  /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11277     in such a way that no debugging information is produced for the symbol
11278     we are looking for.  In this case, we could search the minimal symbols
11279     as a fall-back mechanism.  This would still be operating in degraded
11280     mode, however, as we would still be missing the debugging information
11281     that is needed in order to extract the name of the exception being
11282     raised (this name is printed in the catchpoint message, and is also
11283     used when trying to catch a specific exception).  We do not handle
11284     this case for now.  */
11285
11286  if (sym == NULL)
11287    error (_("Unable to break on '%s' in this configuration."), sym_name);
11288
11289  /* Make sure that the symbol we found corresponds to a function.  */
11290  if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11291    error (_("Symbol \"%s\" is not a function (class = %d)"),
11292           sym_name, SYMBOL_CLASS (sym));
11293
11294  sal = find_function_start_sal (sym, 1);
11295
11296  /* Set ADDR_STRING.  */
11297
11298  *addr_string = xstrdup (sym_name);
11299
11300  /* Set the COND and COND_STRING (if not NULL).  */
11301
11302  if (cond_string != NULL && cond != NULL)
11303    {
11304      if (*cond_string != NULL)
11305        {
11306          xfree (*cond_string);
11307          *cond_string = NULL;
11308        }
11309      if (*cond != NULL)
11310        {
11311          xfree (*cond);
11312          *cond = NULL;
11313        }
11314      if (exp_string != NULL)
11315        {
11316          *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11317          *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11318        }
11319    }
11320
11321  /* Set OPS.  */
11322  *ops = ada_exception_breakpoint_ops (ex);
11323
11324  return sal;
11325}
11326
11327/* Parse the arguments (ARGS) of the "catch exception" command.
11328
11329   Set TYPE to the appropriate exception catchpoint type.
11330   If the user asked the catchpoint to catch only a specific
11331   exception, then save the exception name in ADDR_STRING.
11332
11333   See ada_exception_sal for a description of all the remaining
11334   function arguments of this function.  */
11335
11336struct symtab_and_line
11337ada_decode_exception_location (char *args, char **addr_string,
11338                               char **exp_string, char **cond_string,
11339                               struct expression **cond,
11340                               struct breakpoint_ops **ops)
11341{
11342  enum exception_catchpoint_kind ex;
11343
11344  catch_ada_exception_command_split (args, &ex, exp_string);
11345  return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11346                            cond, ops);
11347}
11348
11349struct symtab_and_line
11350ada_decode_assert_location (char *args, char **addr_string,
11351                            struct breakpoint_ops **ops)
11352{
11353  /* Check that no argument where provided at the end of the command.  */
11354
11355  if (args != NULL)
11356    {
11357      while (isspace (*args))
11358        args++;
11359      if (*args != '\0')
11360        error (_("Junk at end of arguments."));
11361    }
11362
11363  return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11364                            ops);
11365}
11366
11367                                /* Operators */
11368/* Information about operators given special treatment in functions
11369   below.  */
11370/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
11371
11372#define ADA_OPERATORS \
11373    OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11374    OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11375    OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11376    OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11377    OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11378    OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11379    OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11380    OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11381    OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11382    OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11383    OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11384    OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11385    OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11386    OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11387    OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11388    OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11389    OP_DEFN (OP_OTHERS, 1, 1, 0) \
11390    OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11391    OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11392
11393static void
11394ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11395		     int *argsp)
11396{
11397  switch (exp->elts[pc - 1].opcode)
11398    {
11399    default:
11400      operator_length_standard (exp, pc, oplenp, argsp);
11401      break;
11402
11403#define OP_DEFN(op, len, args, binop) \
11404    case op: *oplenp = len; *argsp = args; break;
11405      ADA_OPERATORS;
11406#undef OP_DEFN
11407
11408    case OP_AGGREGATE:
11409      *oplenp = 3;
11410      *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11411      break;
11412
11413    case OP_CHOICES:
11414      *oplenp = 3;
11415      *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11416      break;
11417    }
11418}
11419
11420/* Implementation of the exp_descriptor method operator_check.  */
11421
11422static int
11423ada_operator_check (struct expression *exp, int pos,
11424		    int (*objfile_func) (struct objfile *objfile, void *data),
11425		    void *data)
11426{
11427  const union exp_element *const elts = exp->elts;
11428  struct type *type = NULL;
11429
11430  switch (elts[pos].opcode)
11431    {
11432      case UNOP_IN_RANGE:
11433      case UNOP_QUAL:
11434	type = elts[pos + 1].type;
11435	break;
11436
11437      default:
11438	return operator_check_standard (exp, pos, objfile_func, data);
11439    }
11440
11441  /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
11442
11443  if (type && TYPE_OBJFILE (type)
11444      && (*objfile_func) (TYPE_OBJFILE (type), data))
11445    return 1;
11446
11447  return 0;
11448}
11449
11450static char *
11451ada_op_name (enum exp_opcode opcode)
11452{
11453  switch (opcode)
11454    {
11455    default:
11456      return op_name_standard (opcode);
11457
11458#define OP_DEFN(op, len, args, binop) case op: return #op;
11459      ADA_OPERATORS;
11460#undef OP_DEFN
11461
11462    case OP_AGGREGATE:
11463      return "OP_AGGREGATE";
11464    case OP_CHOICES:
11465      return "OP_CHOICES";
11466    case OP_NAME:
11467      return "OP_NAME";
11468    }
11469}
11470
11471/* As for operator_length, but assumes PC is pointing at the first
11472   element of the operator, and gives meaningful results only for the
11473   Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
11474
11475static void
11476ada_forward_operator_length (struct expression *exp, int pc,
11477                             int *oplenp, int *argsp)
11478{
11479  switch (exp->elts[pc].opcode)
11480    {
11481    default:
11482      *oplenp = *argsp = 0;
11483      break;
11484
11485#define OP_DEFN(op, len, args, binop) \
11486    case op: *oplenp = len; *argsp = args; break;
11487      ADA_OPERATORS;
11488#undef OP_DEFN
11489
11490    case OP_AGGREGATE:
11491      *oplenp = 3;
11492      *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11493      break;
11494
11495    case OP_CHOICES:
11496      *oplenp = 3;
11497      *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11498      break;
11499
11500    case OP_STRING:
11501    case OP_NAME:
11502      {
11503	int len = longest_to_int (exp->elts[pc + 1].longconst);
11504
11505	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11506	*argsp = 0;
11507	break;
11508      }
11509    }
11510}
11511
11512static int
11513ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11514{
11515  enum exp_opcode op = exp->elts[elt].opcode;
11516  int oplen, nargs;
11517  int pc = elt;
11518  int i;
11519
11520  ada_forward_operator_length (exp, elt, &oplen, &nargs);
11521
11522  switch (op)
11523    {
11524      /* Ada attributes ('Foo).  */
11525    case OP_ATR_FIRST:
11526    case OP_ATR_LAST:
11527    case OP_ATR_LENGTH:
11528    case OP_ATR_IMAGE:
11529    case OP_ATR_MAX:
11530    case OP_ATR_MIN:
11531    case OP_ATR_MODULUS:
11532    case OP_ATR_POS:
11533    case OP_ATR_SIZE:
11534    case OP_ATR_TAG:
11535    case OP_ATR_VAL:
11536      break;
11537
11538    case UNOP_IN_RANGE:
11539    case UNOP_QUAL:
11540      /* XXX: gdb_sprint_host_address, type_sprint */
11541      fprintf_filtered (stream, _("Type @"));
11542      gdb_print_host_address (exp->elts[pc + 1].type, stream);
11543      fprintf_filtered (stream, " (");
11544      type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11545      fprintf_filtered (stream, ")");
11546      break;
11547    case BINOP_IN_BOUNDS:
11548      fprintf_filtered (stream, " (%d)",
11549			longest_to_int (exp->elts[pc + 2].longconst));
11550      break;
11551    case TERNOP_IN_RANGE:
11552      break;
11553
11554    case OP_AGGREGATE:
11555    case OP_OTHERS:
11556    case OP_DISCRETE_RANGE:
11557    case OP_POSITIONAL:
11558    case OP_CHOICES:
11559      break;
11560
11561    case OP_NAME:
11562    case OP_STRING:
11563      {
11564	char *name = &exp->elts[elt + 2].string;
11565	int len = longest_to_int (exp->elts[elt + 1].longconst);
11566
11567	fprintf_filtered (stream, "Text: `%.*s'", len, name);
11568	break;
11569      }
11570
11571    default:
11572      return dump_subexp_body_standard (exp, stream, elt);
11573    }
11574
11575  elt += oplen;
11576  for (i = 0; i < nargs; i += 1)
11577    elt = dump_subexp (exp, stream, elt);
11578
11579  return elt;
11580}
11581
11582/* The Ada extension of print_subexp (q.v.).  */
11583
11584static void
11585ada_print_subexp (struct expression *exp, int *pos,
11586                  struct ui_file *stream, enum precedence prec)
11587{
11588  int oplen, nargs, i;
11589  int pc = *pos;
11590  enum exp_opcode op = exp->elts[pc].opcode;
11591
11592  ada_forward_operator_length (exp, pc, &oplen, &nargs);
11593
11594  *pos += oplen;
11595  switch (op)
11596    {
11597    default:
11598      *pos -= oplen;
11599      print_subexp_standard (exp, pos, stream, prec);
11600      return;
11601
11602    case OP_VAR_VALUE:
11603      fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11604      return;
11605
11606    case BINOP_IN_BOUNDS:
11607      /* XXX: sprint_subexp */
11608      print_subexp (exp, pos, stream, PREC_SUFFIX);
11609      fputs_filtered (" in ", stream);
11610      print_subexp (exp, pos, stream, PREC_SUFFIX);
11611      fputs_filtered ("'range", stream);
11612      if (exp->elts[pc + 1].longconst > 1)
11613        fprintf_filtered (stream, "(%ld)",
11614                          (long) exp->elts[pc + 1].longconst);
11615      return;
11616
11617    case TERNOP_IN_RANGE:
11618      if (prec >= PREC_EQUAL)
11619        fputs_filtered ("(", stream);
11620      /* XXX: sprint_subexp */
11621      print_subexp (exp, pos, stream, PREC_SUFFIX);
11622      fputs_filtered (" in ", stream);
11623      print_subexp (exp, pos, stream, PREC_EQUAL);
11624      fputs_filtered (" .. ", stream);
11625      print_subexp (exp, pos, stream, PREC_EQUAL);
11626      if (prec >= PREC_EQUAL)
11627        fputs_filtered (")", stream);
11628      return;
11629
11630    case OP_ATR_FIRST:
11631    case OP_ATR_LAST:
11632    case OP_ATR_LENGTH:
11633    case OP_ATR_IMAGE:
11634    case OP_ATR_MAX:
11635    case OP_ATR_MIN:
11636    case OP_ATR_MODULUS:
11637    case OP_ATR_POS:
11638    case OP_ATR_SIZE:
11639    case OP_ATR_TAG:
11640    case OP_ATR_VAL:
11641      if (exp->elts[*pos].opcode == OP_TYPE)
11642        {
11643          if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11644            LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11645          *pos += 3;
11646        }
11647      else
11648        print_subexp (exp, pos, stream, PREC_SUFFIX);
11649      fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11650      if (nargs > 1)
11651        {
11652          int tem;
11653
11654          for (tem = 1; tem < nargs; tem += 1)
11655            {
11656              fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11657              print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11658            }
11659          fputs_filtered (")", stream);
11660        }
11661      return;
11662
11663    case UNOP_QUAL:
11664      type_print (exp->elts[pc + 1].type, "", stream, 0);
11665      fputs_filtered ("'(", stream);
11666      print_subexp (exp, pos, stream, PREC_PREFIX);
11667      fputs_filtered (")", stream);
11668      return;
11669
11670    case UNOP_IN_RANGE:
11671      /* XXX: sprint_subexp */
11672      print_subexp (exp, pos, stream, PREC_SUFFIX);
11673      fputs_filtered (" in ", stream);
11674      LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11675      return;
11676
11677    case OP_DISCRETE_RANGE:
11678      print_subexp (exp, pos, stream, PREC_SUFFIX);
11679      fputs_filtered ("..", stream);
11680      print_subexp (exp, pos, stream, PREC_SUFFIX);
11681      return;
11682
11683    case OP_OTHERS:
11684      fputs_filtered ("others => ", stream);
11685      print_subexp (exp, pos, stream, PREC_SUFFIX);
11686      return;
11687
11688    case OP_CHOICES:
11689      for (i = 0; i < nargs-1; i += 1)
11690	{
11691	  if (i > 0)
11692	    fputs_filtered ("|", stream);
11693	  print_subexp (exp, pos, stream, PREC_SUFFIX);
11694	}
11695      fputs_filtered (" => ", stream);
11696      print_subexp (exp, pos, stream, PREC_SUFFIX);
11697      return;
11698
11699    case OP_POSITIONAL:
11700      print_subexp (exp, pos, stream, PREC_SUFFIX);
11701      return;
11702
11703    case OP_AGGREGATE:
11704      fputs_filtered ("(", stream);
11705      for (i = 0; i < nargs; i += 1)
11706	{
11707	  if (i > 0)
11708	    fputs_filtered (", ", stream);
11709	  print_subexp (exp, pos, stream, PREC_SUFFIX);
11710	}
11711      fputs_filtered (")", stream);
11712      return;
11713    }
11714}
11715
11716/* Table mapping opcodes into strings for printing operators
11717   and precedences of the operators.  */
11718
11719static const struct op_print ada_op_print_tab[] = {
11720  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11721  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11722  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11723  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11724  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11725  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11726  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11727  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11728  {"<=", BINOP_LEQ, PREC_ORDER, 0},
11729  {">=", BINOP_GEQ, PREC_ORDER, 0},
11730  {">", BINOP_GTR, PREC_ORDER, 0},
11731  {"<", BINOP_LESS, PREC_ORDER, 0},
11732  {">>", BINOP_RSH, PREC_SHIFT, 0},
11733  {"<<", BINOP_LSH, PREC_SHIFT, 0},
11734  {"+", BINOP_ADD, PREC_ADD, 0},
11735  {"-", BINOP_SUB, PREC_ADD, 0},
11736  {"&", BINOP_CONCAT, PREC_ADD, 0},
11737  {"*", BINOP_MUL, PREC_MUL, 0},
11738  {"/", BINOP_DIV, PREC_MUL, 0},
11739  {"rem", BINOP_REM, PREC_MUL, 0},
11740  {"mod", BINOP_MOD, PREC_MUL, 0},
11741  {"**", BINOP_EXP, PREC_REPEAT, 0},
11742  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11743  {"-", UNOP_NEG, PREC_PREFIX, 0},
11744  {"+", UNOP_PLUS, PREC_PREFIX, 0},
11745  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11746  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11747  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11748  {".all", UNOP_IND, PREC_SUFFIX, 1},
11749  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11750  {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11751  {NULL, 0, 0, 0}
11752};
11753
11754enum ada_primitive_types {
11755  ada_primitive_type_int,
11756  ada_primitive_type_long,
11757  ada_primitive_type_short,
11758  ada_primitive_type_char,
11759  ada_primitive_type_float,
11760  ada_primitive_type_double,
11761  ada_primitive_type_void,
11762  ada_primitive_type_long_long,
11763  ada_primitive_type_long_double,
11764  ada_primitive_type_natural,
11765  ada_primitive_type_positive,
11766  ada_primitive_type_system_address,
11767  nr_ada_primitive_types
11768};
11769
11770static void
11771ada_language_arch_info (struct gdbarch *gdbarch,
11772			struct language_arch_info *lai)
11773{
11774  const struct builtin_type *builtin = builtin_type (gdbarch);
11775
11776  lai->primitive_type_vector
11777    = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11778			      struct type *);
11779
11780  lai->primitive_type_vector [ada_primitive_type_int]
11781    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11782			 0, "integer");
11783  lai->primitive_type_vector [ada_primitive_type_long]
11784    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11785			 0, "long_integer");
11786  lai->primitive_type_vector [ada_primitive_type_short]
11787    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11788			 0, "short_integer");
11789  lai->string_char_type
11790    = lai->primitive_type_vector [ada_primitive_type_char]
11791    = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11792  lai->primitive_type_vector [ada_primitive_type_float]
11793    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11794		       "float", NULL);
11795  lai->primitive_type_vector [ada_primitive_type_double]
11796    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11797		       "long_float", NULL);
11798  lai->primitive_type_vector [ada_primitive_type_long_long]
11799    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11800			 0, "long_long_integer");
11801  lai->primitive_type_vector [ada_primitive_type_long_double]
11802    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11803		       "long_long_float", NULL);
11804  lai->primitive_type_vector [ada_primitive_type_natural]
11805    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11806			 0, "natural");
11807  lai->primitive_type_vector [ada_primitive_type_positive]
11808    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11809			 0, "positive");
11810  lai->primitive_type_vector [ada_primitive_type_void]
11811    = builtin->builtin_void;
11812
11813  lai->primitive_type_vector [ada_primitive_type_system_address]
11814    = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11815  TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11816    = "system__address";
11817
11818  lai->bool_type_symbol = NULL;
11819  lai->bool_type_default = builtin->builtin_bool;
11820}
11821
11822				/* Language vector */
11823
11824/* Not really used, but needed in the ada_language_defn.  */
11825
11826static void
11827emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11828{
11829  ada_emit_char (c, type, stream, quoter, 1);
11830}
11831
11832static int
11833parse (void)
11834{
11835  warnings_issued = 0;
11836  return ada_parse ();
11837}
11838
11839static const struct exp_descriptor ada_exp_descriptor = {
11840  ada_print_subexp,
11841  ada_operator_length,
11842  ada_operator_check,
11843  ada_op_name,
11844  ada_dump_subexp_body,
11845  ada_evaluate_subexp
11846};
11847
11848const struct language_defn ada_language_defn = {
11849  "ada",                        /* Language name */
11850  language_ada,
11851  range_check_off,
11852  type_check_off,
11853  case_sensitive_on,            /* Yes, Ada is case-insensitive, but
11854                                   that's not quite what this means.  */
11855  array_row_major,
11856  macro_expansion_no,
11857  &ada_exp_descriptor,
11858  parse,
11859  ada_error,
11860  resolve,
11861  ada_printchar,                /* Print a character constant */
11862  ada_printstr,                 /* Function to print string constant */
11863  emit_char,                    /* Function to print single char (not used) */
11864  ada_print_type,               /* Print a type using appropriate syntax */
11865  ada_print_typedef,            /* Print a typedef using appropriate syntax */
11866  ada_val_print,                /* Print a value using appropriate syntax */
11867  ada_value_print,              /* Print a top-level value */
11868  NULL,                         /* Language specific skip_trampoline */
11869  NULL,                         /* name_of_this */
11870  ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
11871  basic_lookup_transparent_type,        /* lookup_transparent_type */
11872  ada_la_decode,                /* Language specific symbol demangler */
11873  NULL,                         /* Language specific
11874				   class_name_from_physname */
11875  ada_op_print_tab,             /* expression operators for printing */
11876  0,                            /* c-style arrays */
11877  1,                            /* String lower bound */
11878  ada_get_gdb_completer_word_break_characters,
11879  ada_make_symbol_completion_list,
11880  ada_language_arch_info,
11881  ada_print_array_index,
11882  default_pass_by_reference,
11883  c_get_string,
11884  LANG_MAGIC
11885};
11886
11887/* Provide a prototype to silence -Wmissing-prototypes.  */
11888extern initialize_file_ftype _initialize_ada_language;
11889
11890/* Command-list for the "set/show ada" prefix command.  */
11891static struct cmd_list_element *set_ada_list;
11892static struct cmd_list_element *show_ada_list;
11893
11894/* Implement the "set ada" prefix command.  */
11895
11896static void
11897set_ada_command (char *arg, int from_tty)
11898{
11899  printf_unfiltered (_(\
11900"\"set ada\" must be followed by the name of a setting.\n"));
11901  help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11902}
11903
11904/* Implement the "show ada" prefix command.  */
11905
11906static void
11907show_ada_command (char *args, int from_tty)
11908{
11909  cmd_show_list (show_ada_list, from_tty, "");
11910}
11911
11912void
11913_initialize_ada_language (void)
11914{
11915  add_language (&ada_language_defn);
11916
11917  add_prefix_cmd ("ada", no_class, set_ada_command,
11918                  _("Prefix command for changing Ada-specfic settings"),
11919                  &set_ada_list, "set ada ", 0, &setlist);
11920
11921  add_prefix_cmd ("ada", no_class, show_ada_command,
11922                  _("Generic command for showing Ada-specific settings."),
11923                  &show_ada_list, "show ada ", 0, &showlist);
11924
11925  add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11926                           &trust_pad_over_xvs, _("\
11927Enable or disable an optimization trusting PAD types over XVS types"), _("\
11928Show whether an optimization trusting PAD types over XVS types is activated"),
11929                           _("\
11930This is related to the encoding used by the GNAT compiler.  The debugger\n\
11931should normally trust the contents of PAD types, but certain older versions\n\
11932of GNAT have a bug that sometimes causes the information in the PAD type\n\
11933to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
11934work around this bug.  It is always safe to turn this option \"off\", but\n\
11935this incurs a slight performance penalty, so it is recommended to NOT change\n\
11936this option to \"off\" unless necessary."),
11937                            NULL, NULL, &set_ada_list, &show_ada_list);
11938
11939  varsize_limit = 65536;
11940
11941  obstack_init (&symbol_list_obstack);
11942
11943  decoded_names_store = htab_create_alloc
11944    (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11945     NULL, xcalloc, xfree);
11946
11947  observer_attach_executable_changed (ada_executable_changed_observer);
11948
11949  /* Setup per-inferior data.  */
11950  observer_attach_inferior_exit (ada_inferior_exit);
11951  ada_inferior_data
11952    = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11953}
11954