1/* Generic symbol-table support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22   MA 02110-1301, USA.  */
23
24/*
25SECTION
26	Symbols
27
28	BFD tries to maintain as much symbol information as it can when
29	it moves information from file to file. BFD passes information
30	to applications though the <<asymbol>> structure. When the
31	application requests the symbol table, BFD reads the table in
32	the native form and translates parts of it into the internal
33	format. To maintain more than the information passed to
34	applications, some targets keep some information ``behind the
35	scenes'' in a structure only the particular back end knows
36	about. For example, the coff back end keeps the original
37	symbol table structure as well as the canonical structure when
38	a BFD is read in. On output, the coff back end can reconstruct
39	the output symbol table so that no information is lost, even
40	information unique to coff which BFD doesn't know or
41	understand. If a coff symbol table were read, but were written
42	through an a.out back end, all the coff specific information
43	would be lost. The symbol table of a BFD
44	is not necessarily read in until a canonicalize request is
45	made. Then the BFD back end fills in a table provided by the
46	application with pointers to the canonical information.  To
47	output symbols, the application provides BFD with a table of
48	pointers to pointers to <<asymbol>>s. This allows applications
49	like the linker to output a symbol as it was read, since the ``behind
50	the scenes'' information will be still available.
51@menu
52@* Reading Symbols::
53@* Writing Symbols::
54@* Mini Symbols::
55@* typedef asymbol::
56@* symbol handling functions::
57@end menu
58
59INODE
60Reading Symbols, Writing Symbols, Symbols, Symbols
61SUBSECTION
62	Reading symbols
63
64	There are two stages to reading a symbol table from a BFD:
65	allocating storage, and the actual reading process. This is an
66	excerpt from an application which reads the symbol table:
67
68|	  long storage_needed;
69|	  asymbol **symbol_table;
70|	  long number_of_symbols;
71|	  long i;
72|
73|	  storage_needed = bfd_get_symtab_upper_bound (abfd);
74|
75|         if (storage_needed < 0)
76|           FAIL
77|
78|	  if (storage_needed == 0)
79|	    return;
80|
81|	  symbol_table = xmalloc (storage_needed);
82|	    ...
83|	  number_of_symbols =
84|	     bfd_canonicalize_symtab (abfd, symbol_table);
85|
86|         if (number_of_symbols < 0)
87|           FAIL
88|
89|	  for (i = 0; i < number_of_symbols; i++)
90|	    process_symbol (symbol_table[i]);
91
92	All storage for the symbols themselves is in an objalloc
93	connected to the BFD; it is freed when the BFD is closed.
94
95INODE
96Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97SUBSECTION
98	Writing symbols
99
100	Writing of a symbol table is automatic when a BFD open for
101	writing is closed. The application attaches a vector of
102	pointers to pointers to symbols to the BFD being written, and
103	fills in the symbol count. The close and cleanup code reads
104	through the table provided and performs all the necessary
105	operations. The BFD output code must always be provided with an
106	``owned'' symbol: one which has come from another BFD, or one
107	which has been created using <<bfd_make_empty_symbol>>.  Here is an
108	example showing the creation of a symbol table with only one element:
109
110|	#include "bfd.h"
111|	int main (void)
112|	{
113|	  bfd *abfd;
114|	  asymbol *ptrs[2];
115|	  asymbol *new;
116|
117|	  abfd = bfd_openw ("foo","a.out-sunos-big");
118|	  bfd_set_format (abfd, bfd_object);
119|	  new = bfd_make_empty_symbol (abfd);
120|	  new->name = "dummy_symbol";
121|	  new->section = bfd_make_section_old_way (abfd, ".text");
122|	  new->flags = BSF_GLOBAL;
123|	  new->value = 0x12345;
124|
125|	  ptrs[0] = new;
126|	  ptrs[1] = 0;
127|
128|	  bfd_set_symtab (abfd, ptrs, 1);
129|	  bfd_close (abfd);
130|	  return 0;
131|	}
132|
133|	./makesym
134|	nm foo
135|	00012345 A dummy_symbol
136
137	Many formats cannot represent arbitrary symbol information; for
138 	instance, the <<a.out>> object format does not allow an
139	arbitrary number of sections. A symbol pointing to a section
140	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
141	be described.
142
143INODE
144Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145SUBSECTION
146	Mini Symbols
147
148	Mini symbols provide read-only access to the symbol table.
149	They use less memory space, but require more time to access.
150	They can be useful for tools like nm or objdump, which may
151	have to handle symbol tables of extremely large executables.
152
153	The <<bfd_read_minisymbols>> function will read the symbols
154	into memory in an internal form.  It will return a <<void *>>
155	pointer to a block of memory, a symbol count, and the size of
156	each symbol.  The pointer is allocated using <<malloc>>, and
157	should be freed by the caller when it is no longer needed.
158
159	The function <<bfd_minisymbol_to_symbol>> will take a pointer
160	to a minisymbol, and a pointer to a structure returned by
161	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162	The return value may or may not be the same as the value from
163	<<bfd_make_empty_symbol>> which was passed in.
164
165*/
166
167/*
168DOCDD
169INODE
170typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
172*/
173/*
174SUBSECTION
175	typedef asymbol
176
177	An <<asymbol>> has the form:
178
179*/
180
181/*
182CODE_FRAGMENT
183
184.
185.typedef struct bfd_symbol
186.{
187.  {* A pointer to the BFD which owns the symbol. This information
188.     is necessary so that a back end can work out what additional
189.     information (invisible to the application writer) is carried
190.     with the symbol.
191.
192.     This field is *almost* redundant, since you can use section->owner
193.     instead, except that some symbols point to the global sections
194.     bfd_{abs,com,und}_section.  This could be fixed by making
195.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
196.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
197.
198.  {* The text of the symbol. The name is left alone, and not copied; the
199.     application may not alter it.  *}
200.  const char *name;
201.
202.  {* The value of the symbol.  This really should be a union of a
203.     numeric value with a pointer, since some flags indicate that
204.     a pointer to another symbol is stored here.  *}
205.  symvalue value;
206.
207.  {* Attributes of a symbol.  *}
208.#define BSF_NO_FLAGS    	0x00
209.
210.  {* The symbol has local scope; <<static>> in <<C>>. The value
211.     is the offset into the section of the data.  *}
212.#define BSF_LOCAL		(1 << 0)
213.
214.  {* The symbol has global scope; initialized data in <<C>>. The
215.     value is the offset into the section of the data.  *}
216.#define BSF_GLOBAL		(1 << 1)
217.
218.  {* The symbol has global scope and is exported. The value is
219.     the offset into the section of the data.  *}
220.#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
221.
222.  {* A normal C symbol would be one of:
223.     <<BSF_LOCAL>>, <<BSF_COMMON>>,  <<BSF_UNDEFINED>> or
224.     <<BSF_GLOBAL>>.  *}
225.
226.  {* The symbol is a debugging record. The value has an arbitrary
227.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
228.#define BSF_DEBUGGING		(1 << 2)
229.
230.  {* The symbol denotes a function entry point.  Used in ELF,
231.     perhaps others someday.  *}
232.#define BSF_FUNCTION		(1 << 3)
233.
234.  {* Used by the linker.  *}
235.#define BSF_KEEP		(1 << 5)
236.#define BSF_KEEP_G		(1 << 6)
237.
238.  {* A weak global symbol, overridable without warnings by
239.     a regular global symbol of the same name.  *}
240.#define BSF_WEAK		(1 << 7)
241.
242.  {* This symbol was created to point to a section, e.g. ELF's
243.     STT_SECTION symbols.  *}
244.#define BSF_SECTION_SYM	(1 << 8)
245.
246.  {* The symbol used to be a common symbol, but now it is
247.     allocated.  *}
248.#define BSF_OLD_COMMON		(1 << 9)
249.
250.  {* In some files the type of a symbol sometimes alters its
251.     location in an output file - ie in coff a <<ISFCN>> symbol
252.     which is also <<C_EXT>> symbol appears where it was
253.     declared and not at the end of a section.  This bit is set
254.     by the target BFD part to convey this information.  *}
255.#define BSF_NOT_AT_END		(1 << 10)
256.
257.  {* Signal that the symbol is the label of constructor section.  *}
258.#define BSF_CONSTRUCTOR	(1 << 11)
259.
260.  {* Signal that the symbol is a warning symbol.  The name is a
261.     warning.  The name of the next symbol is the one to warn about;
262.     if a reference is made to a symbol with the same name as the next
263.     symbol, a warning is issued by the linker.  *}
264.#define BSF_WARNING		(1 << 12)
265.
266.  {* Signal that the symbol is indirect.  This symbol is an indirect
267.     pointer to the symbol with the same name as the next symbol.  *}
268.#define BSF_INDIRECT		(1 << 13)
269.
270.  {* BSF_FILE marks symbols that contain a file name.  This is used
271.     for ELF STT_FILE symbols.  *}
272.#define BSF_FILE		(1 << 14)
273.
274.  {* Symbol is from dynamic linking information.  *}
275.#define BSF_DYNAMIC		(1 << 15)
276.
277.  {* The symbol denotes a data object.  Used in ELF, and perhaps
278.     others someday.  *}
279.#define BSF_OBJECT		(1 << 16)
280.
281.  {* This symbol is a debugging symbol.  The value is the offset
282.     into the section of the data.  BSF_DEBUGGING should be set
283.     as well.  *}
284.#define BSF_DEBUGGING_RELOC	(1 << 17)
285.
286.  {* This symbol is thread local.  Used in ELF.  *}
287.#define BSF_THREAD_LOCAL	(1 << 18)
288.
289.  {* This symbol represents a complex relocation expression,
290.     with the expression tree serialized in the symbol name.  *}
291.#define BSF_RELC		(1 << 19)
292.
293.  {* This symbol represents a signed complex relocation expression,
294.     with the expression tree serialized in the symbol name.  *}
295.#define BSF_SRELC		(1 << 20)
296.
297.  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298.#define BSF_SYNTHETIC		(1 << 21)
299.
300.  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301.     The dynamic linker will compute the value of this symbol by
302.     calling the function that it points to.  BSF_FUNCTION must
303.     also be also set.  *}
304.#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305.  {* This symbol is a globally unique data object.  The dynamic linker
306.     will make sure that in the entire process there is just one symbol
307.     with this name and type in use.  BSF_OBJECT must also be set.  *}
308.#define BSF_GNU_UNIQUE		(1 << 23)
309.
310.  flagword flags;
311.
312.  {* A pointer to the section to which this symbol is
313.     relative.  This will always be non NULL, there are special
314.     sections for undefined and absolute symbols.  *}
315.  struct bfd_section *section;
316.
317.  {* Back end special data.  *}
318.  union
319.    {
320.      void *p;
321.      bfd_vma i;
322.    }
323.  udata;
324.}
325.asymbol;
326.
327*/
328
329#include "sysdep.h"
330#include "bfd.h"
331#include "libbfd.h"
332#include "safe-ctype.h"
333#include "bfdlink.h"
334#include "aout/stab_gnu.h"
335
336/*
337DOCDD
338INODE
339symbol handling functions,  , typedef asymbol, Symbols
340SUBSECTION
341	Symbol handling functions
342*/
343
344/*
345FUNCTION
346	bfd_get_symtab_upper_bound
347
348DESCRIPTION
349	Return the number of bytes required to store a vector of pointers
350	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351	including a terminal NULL pointer. If there are no symbols in
352	the BFD, then return 0.  If an error occurs, return -1.
353
354.#define bfd_get_symtab_upper_bound(abfd) \
355.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356.
357*/
358
359/*
360FUNCTION
361	bfd_is_local_label
362
363SYNOPSIS
364        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366DESCRIPTION
367	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368	a compiler generated local label, else return FALSE.
369*/
370
371bfd_boolean
372bfd_is_local_label (bfd *abfd, asymbol *sym)
373{
374  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375     starts with '.' is local.  This would accidentally catch section names
376     if we didn't reject them here.  */
377  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378    return FALSE;
379  if (sym->name == NULL)
380    return FALSE;
381  return bfd_is_local_label_name (abfd, sym->name);
382}
383
384/*
385FUNCTION
386	bfd_is_local_label_name
387
388SYNOPSIS
389        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391DESCRIPTION
392	Return TRUE if a symbol with the name @var{name} in the BFD
393	@var{abfd} is a compiler generated local label, else return
394	FALSE.  This just checks whether the name has the form of a
395	local label.
396
397.#define bfd_is_local_label_name(abfd, name) \
398.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399.
400*/
401
402/*
403FUNCTION
404	bfd_is_target_special_symbol
405
406SYNOPSIS
407        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409DESCRIPTION
410	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411	special to the particular target represented by the BFD.  Such symbols
412	should normally not be mentioned to the user.
413
414.#define bfd_is_target_special_symbol(abfd, sym) \
415.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416.
417*/
418
419/*
420FUNCTION
421	bfd_canonicalize_symtab
422
423DESCRIPTION
424	Read the symbols from the BFD @var{abfd}, and fills in
425	the vector @var{location} with pointers to the symbols and
426	a trailing NULL.
427	Return the actual number of symbol pointers, not
428	including the NULL.
429
430.#define bfd_canonicalize_symtab(abfd, location) \
431.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432.
433*/
434
435/*
436FUNCTION
437	bfd_set_symtab
438
439SYNOPSIS
440	bfd_boolean bfd_set_symtab
441	  (bfd *abfd, asymbol **location, unsigned int count);
442
443DESCRIPTION
444	Arrange that when the output BFD @var{abfd} is closed,
445	the table @var{location} of @var{count} pointers to symbols
446	will be written.
447*/
448
449bfd_boolean
450bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451{
452  if (abfd->format != bfd_object || bfd_read_p (abfd))
453    {
454      bfd_set_error (bfd_error_invalid_operation);
455      return FALSE;
456    }
457
458  bfd_get_outsymbols (abfd) = location;
459  bfd_get_symcount (abfd) = symcount;
460  return TRUE;
461}
462
463/*
464FUNCTION
465	bfd_print_symbol_vandf
466
467SYNOPSIS
468	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470DESCRIPTION
471	Print the value and flags of the @var{symbol} supplied to the
472	stream @var{file}.
473*/
474void
475bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476{
477  FILE *file = (FILE *) arg;
478
479  flagword type = symbol->flags;
480
481  if (symbol->section != NULL)
482    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483  else
484    bfd_fprintf_vma (abfd, file, symbol->value);
485
486  /* This presumes that a symbol can not be both BSF_DEBUGGING and
487     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488     BSF_OBJECT.  */
489  fprintf (file, " %c%c%c%c%c%c%c",
490	   ((type & BSF_LOCAL)
491	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492	    : (type & BSF_GLOBAL) ? 'g'
493	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494	   (type & BSF_WEAK) ? 'w' : ' ',
495	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496	   (type & BSF_WARNING) ? 'W' : ' ',
497	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499	   ((type & BSF_FUNCTION)
500	    ? 'F'
501	    : ((type & BSF_FILE)
502	       ? 'f'
503	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504}
505
506/*
507FUNCTION
508	bfd_make_empty_symbol
509
510DESCRIPTION
511	Create a new <<asymbol>> structure for the BFD @var{abfd}
512	and return a pointer to it.
513
514	This routine is necessary because each back end has private
515	information surrounding the <<asymbol>>. Building your own
516	<<asymbol>> and pointing to it will not create the private
517	information, and will cause problems later on.
518
519.#define bfd_make_empty_symbol(abfd) \
520.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521.
522*/
523
524/*
525FUNCTION
526	_bfd_generic_make_empty_symbol
527
528SYNOPSIS
529	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531DESCRIPTION
532	Create a new <<asymbol>> structure for the BFD @var{abfd}
533	and return a pointer to it.  Used by core file routines,
534	binary back-end and anywhere else where no private info
535	is needed.
536*/
537
538asymbol *
539_bfd_generic_make_empty_symbol (bfd *abfd)
540{
541  bfd_size_type amt = sizeof (asymbol);
542  asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543  if (new_symbol)
544    new_symbol->the_bfd = abfd;
545  return new_symbol;
546}
547
548/*
549FUNCTION
550	bfd_make_debug_symbol
551
552DESCRIPTION
553	Create a new <<asymbol>> structure for the BFD @var{abfd},
554	to be used as a debugging symbol.  Further details of its use have
555	yet to be worked out.
556
557.#define bfd_make_debug_symbol(abfd,ptr,size) \
558.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559.
560*/
561
562struct section_to_type
563{
564  const char *section;
565  char type;
566};
567
568/* Map section names to POSIX/BSD single-character symbol types.
569   This table is probably incomplete.  It is sorted for convenience of
570   adding entries.  Since it is so short, a linear search is used.  */
571static const struct section_to_type stt[] =
572{
573  {".bss", 'b'},
574  {"code", 't'},		/* MRI .text */
575  {".data", 'd'},
576  {"*DEBUG*", 'N'},
577  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
578  {".drectve", 'i'},            /* MSVC's .drective section */
579  {".edata", 'e'},              /* MSVC's .edata (export) section */
580  {".fini", 't'},		/* ELF fini section */
581  {".idata", 'i'},              /* MSVC's .idata (import) section */
582  {".init", 't'},		/* ELF init section */
583  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
584  {".rdata", 'r'},		/* Read only data.  */
585  {".rodata", 'r'},		/* Read only data.  */
586  {".sbss", 's'},		/* Small BSS (uninitialized data).  */
587  {".scommon", 'c'},		/* Small common.  */
588  {".sdata", 'g'},		/* Small initialized data.  */
589  {".text", 't'},
590  {"vars", 'd'},		/* MRI .data */
591  {"zerovars", 'b'},		/* MRI .bss */
592  {0, 0}
593};
594
595/* Return the single-character symbol type corresponding to
596   section S, or '?' for an unknown COFF section.
597
598   Check for any leading string which matches, so .text5 returns
599   't' as well as .text */
600
601static char
602coff_section_type (const char *s)
603{
604  const struct section_to_type *t;
605
606  for (t = &stt[0]; t->section; t++)
607    if (!strncmp (s, t->section, strlen (t->section)))
608      return t->type;
609
610  return '?';
611}
612
613/* Return the single-character symbol type corresponding to section
614   SECTION, or '?' for an unknown section.  This uses section flags to
615   identify sections.
616
617   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
618   we could perhaps obsolete coff_section_type.  */
619
620static char
621decode_section_type (const struct bfd_section *section)
622{
623  if (section->flags & SEC_CODE)
624    return 't';
625  if (section->flags & SEC_DATA)
626    {
627      if (section->flags & SEC_READONLY)
628	return 'r';
629      else if (section->flags & SEC_SMALL_DATA)
630	return 'g';
631      else
632	return 'd';
633    }
634  if ((section->flags & SEC_HAS_CONTENTS) == 0)
635    {
636      if (section->flags & SEC_SMALL_DATA)
637	return 's';
638      else
639	return 'b';
640    }
641  if (section->flags & SEC_DEBUGGING)
642    return 'N';
643  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
644    return 'n';
645
646  return '?';
647}
648
649/*
650FUNCTION
651	bfd_decode_symclass
652
653DESCRIPTION
654	Return a character corresponding to the symbol
655	class of @var{symbol}, or '?' for an unknown class.
656
657SYNOPSIS
658	int bfd_decode_symclass (asymbol *symbol);
659*/
660int
661bfd_decode_symclass (asymbol *symbol)
662{
663  char c;
664
665  if (symbol->section && bfd_is_com_section (symbol->section))
666    return 'C';
667  if (bfd_is_und_section (symbol->section))
668    {
669      if (symbol->flags & BSF_WEAK)
670	{
671	  /* If weak, determine if it's specifically an object
672	     or non-object weak.  */
673	  if (symbol->flags & BSF_OBJECT)
674	    return 'v';
675	  else
676	    return 'w';
677	}
678      else
679	return 'U';
680    }
681  if (bfd_is_ind_section (symbol->section))
682    return 'I';
683  if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
684    return 'i';
685  if (symbol->flags & BSF_WEAK)
686    {
687      /* If weak, determine if it's specifically an object
688	 or non-object weak.  */
689      if (symbol->flags & BSF_OBJECT)
690	return 'V';
691      else
692	return 'W';
693    }
694  if (symbol->flags & BSF_GNU_UNIQUE)
695    return 'u';
696  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697    return '?';
698
699  if (bfd_is_abs_section (symbol->section))
700    c = 'a';
701  else if (symbol->section)
702    {
703      c = coff_section_type (symbol->section->name);
704      if (c == '?')
705	c = decode_section_type (symbol->section);
706    }
707  else
708    return '?';
709  if (symbol->flags & BSF_GLOBAL)
710    c = TOUPPER (c);
711  return c;
712
713  /* We don't have to handle these cases just yet, but we will soon:
714     N_SETV: 'v';
715     N_SETA: 'l';
716     N_SETT: 'x';
717     N_SETD: 'z';
718     N_SETB: 's';
719     N_INDR: 'i';
720     */
721}
722
723/*
724FUNCTION
725	bfd_is_undefined_symclass
726
727DESCRIPTION
728	Returns non-zero if the class symbol returned by
729	bfd_decode_symclass represents an undefined symbol.
730	Returns zero otherwise.
731
732SYNOPSIS
733	bfd_boolean bfd_is_undefined_symclass (int symclass);
734*/
735
736bfd_boolean
737bfd_is_undefined_symclass (int symclass)
738{
739  return symclass == 'U' || symclass == 'w' || symclass == 'v';
740}
741
742/*
743FUNCTION
744	bfd_symbol_info
745
746DESCRIPTION
747	Fill in the basic info about symbol that nm needs.
748	Additional info may be added by the back-ends after
749	calling this function.
750
751SYNOPSIS
752	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
753*/
754
755void
756bfd_symbol_info (asymbol *symbol, symbol_info *ret)
757{
758  ret->type = bfd_decode_symclass (symbol);
759
760  if (bfd_is_undefined_symclass (ret->type))
761    ret->value = 0;
762  else
763    ret->value = symbol->value + symbol->section->vma;
764
765  ret->name = symbol->name;
766}
767
768/*
769FUNCTION
770	bfd_copy_private_symbol_data
771
772SYNOPSIS
773	bfd_boolean bfd_copy_private_symbol_data
774	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775
776DESCRIPTION
777	Copy private symbol information from @var{isym} in the BFD
778	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
780	returns are:
781
782	o <<bfd_error_no_memory>> -
783	Not enough memory exists to create private data for @var{osec}.
784
785.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787.            (ibfd, isymbol, obfd, osymbol))
788.
789*/
790
791/* The generic version of the function which returns mini symbols.
792   This is used when the backend does not provide a more efficient
793   version.  It just uses BFD asymbol structures as mini symbols.  */
794
795long
796_bfd_generic_read_minisymbols (bfd *abfd,
797			       bfd_boolean dynamic,
798			       void **minisymsp,
799			       unsigned int *sizep)
800{
801  long storage;
802  asymbol **syms = NULL;
803  long symcount;
804
805  if (dynamic)
806    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
807  else
808    storage = bfd_get_symtab_upper_bound (abfd);
809  if (storage < 0)
810    goto error_return;
811  if (storage == 0)
812    return 0;
813
814  syms = (asymbol **) bfd_malloc (storage);
815  if (syms == NULL)
816    goto error_return;
817
818  if (dynamic)
819    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
820  else
821    symcount = bfd_canonicalize_symtab (abfd, syms);
822  if (symcount < 0)
823    goto error_return;
824
825  *minisymsp = syms;
826  *sizep = sizeof (asymbol *);
827  return symcount;
828
829 error_return:
830  bfd_set_error (bfd_error_no_symbols);
831  if (syms != NULL)
832    free (syms);
833  return -1;
834}
835
836/* The generic version of the function which converts a minisymbol to
837   an asymbol.  We don't worry about the sym argument we are passed;
838   we just return the asymbol the minisymbol points to.  */
839
840asymbol *
841_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
842				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
843				   const void *minisym,
844				   asymbol *sym ATTRIBUTE_UNUSED)
845{
846  return *(asymbol **) minisym;
847}
848
849/* Look through stabs debugging information in .stab and .stabstr
850   sections to find the source file and line closest to a desired
851   location.  This is used by COFF and ELF targets.  It sets *pfound
852   to TRUE if it finds some information.  The *pinfo field is used to
853   pass cached information in and out of this routine; this first time
854   the routine is called for a BFD, *pinfo should be NULL.  The value
855   placed in *pinfo should be saved with the BFD, and passed back each
856   time this function is called.  */
857
858/* We use a cache by default.  */
859
860#define ENABLE_CACHING
861
862/* We keep an array of indexentry structures to record where in the
863   stabs section we should look to find line number information for a
864   particular address.  */
865
866struct indexentry
867{
868  bfd_vma val;
869  bfd_byte *stab;
870  bfd_byte *str;
871  char *directory_name;
872  char *file_name;
873  char *function_name;
874};
875
876/* Compare two indexentry structures.  This is called via qsort.  */
877
878static int
879cmpindexentry (const void *a, const void *b)
880{
881  const struct indexentry *contestantA = (const struct indexentry *) a;
882  const struct indexentry *contestantB = (const struct indexentry *) b;
883
884  if (contestantA->val < contestantB->val)
885    return -1;
886  else if (contestantA->val > contestantB->val)
887    return 1;
888  else
889    return 0;
890}
891
892/* A pointer to this structure is stored in *pinfo.  */
893
894struct stab_find_info
895{
896  /* The .stab section.  */
897  asection *stabsec;
898  /* The .stabstr section.  */
899  asection *strsec;
900  /* The contents of the .stab section.  */
901  bfd_byte *stabs;
902  /* The contents of the .stabstr section.  */
903  bfd_byte *strs;
904
905  /* A table that indexes stabs by memory address.  */
906  struct indexentry *indextable;
907  /* The number of entries in indextable.  */
908  int indextablesize;
909
910#ifdef ENABLE_CACHING
911  /* Cached values to restart quickly.  */
912  struct indexentry *cached_indexentry;
913  bfd_vma cached_offset;
914  bfd_byte *cached_stab;
915  char *cached_file_name;
916#endif
917
918  /* Saved ptr to malloc'ed filename.  */
919  char *filename;
920};
921
922bfd_boolean
923_bfd_stab_section_find_nearest_line (bfd *abfd,
924				     asymbol **symbols,
925				     asection *section,
926				     bfd_vma offset,
927				     bfd_boolean *pfound,
928				     const char **pfilename,
929				     const char **pfnname,
930				     unsigned int *pline,
931				     void **pinfo)
932{
933  struct stab_find_info *info;
934  bfd_size_type stabsize, strsize;
935  bfd_byte *stab, *str;
936  bfd_byte *last_stab = NULL;
937  bfd_size_type stroff;
938  struct indexentry *indexentry;
939  char *file_name;
940  char *directory_name;
941  int saw_fun;
942  bfd_boolean saw_line, saw_func;
943
944  *pfound = FALSE;
945  *pfilename = bfd_get_filename (abfd);
946  *pfnname = NULL;
947  *pline = 0;
948
949  /* Stabs entries use a 12 byte format:
950       4 byte string table index
951       1 byte stab type
952       1 byte stab other field
953       2 byte stab desc field
954       4 byte stab value
955     FIXME: This will have to change for a 64 bit object format.
956
957     The stabs symbols are divided into compilation units.  For the
958     first entry in each unit, the type of 0, the value is the length
959     of the string table for this unit, and the desc field is the
960     number of stabs symbols for this unit.  */
961
962#define STRDXOFF (0)
963#define TYPEOFF (4)
964#define OTHEROFF (5)
965#define DESCOFF (6)
966#define VALOFF (8)
967#define STABSIZE (12)
968
969  info = (struct stab_find_info *) *pinfo;
970  if (info != NULL)
971    {
972      if (info->stabsec == NULL || info->strsec == NULL)
973	{
974	  /* No stabs debugging information.  */
975	  return TRUE;
976	}
977
978      stabsize = (info->stabsec->rawsize
979		  ? info->stabsec->rawsize
980		  : info->stabsec->size);
981      strsize = (info->strsec->rawsize
982		 ? info->strsec->rawsize
983		 : info->strsec->size);
984    }
985  else
986    {
987      long reloc_size, reloc_count;
988      arelent **reloc_vector;
989      int i;
990      char *name;
991      char *function_name;
992      bfd_size_type amt = sizeof *info;
993
994      info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
995      if (info == NULL)
996	return FALSE;
997
998      /* FIXME: When using the linker --split-by-file or
999	 --split-by-reloc options, it is possible for the .stab and
1000	 .stabstr sections to be split.  We should handle that.  */
1001
1002      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1003      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1004
1005      if (info->stabsec == NULL || info->strsec == NULL)
1006	{
1007	  /* Try SOM section names.  */
1008	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1009	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1010
1011	  if (info->stabsec == NULL || info->strsec == NULL)
1012	    {
1013	      /* No stabs debugging information.  Set *pinfo so that we
1014		 can return quickly in the info != NULL case above.  */
1015	      *pinfo = info;
1016	      return TRUE;
1017	    }
1018	}
1019
1020      stabsize = (info->stabsec->rawsize
1021		  ? info->stabsec->rawsize
1022		  : info->stabsec->size);
1023      strsize = (info->strsec->rawsize
1024		 ? info->strsec->rawsize
1025		 : info->strsec->size);
1026
1027      info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028      info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029      if (info->stabs == NULL || info->strs == NULL)
1030	return FALSE;
1031
1032      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033				      0, stabsize)
1034	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035					 0, strsize))
1036	return FALSE;
1037
1038      /* If this is a relocatable object file, we have to relocate
1039	 the entries in .stab.  This should always be simple 32 bit
1040	 relocations against symbols defined in this object file, so
1041	 this should be no big deal.  */
1042      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043      if (reloc_size < 0)
1044	return FALSE;
1045      reloc_vector = (arelent **) bfd_malloc (reloc_size);
1046      if (reloc_vector == NULL && reloc_size != 0)
1047	return FALSE;
1048      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1049					    symbols);
1050      if (reloc_count < 0)
1051	{
1052	  if (reloc_vector != NULL)
1053	    free (reloc_vector);
1054	  return FALSE;
1055	}
1056      if (reloc_count > 0)
1057	{
1058	  arelent **pr;
1059
1060	  for (pr = reloc_vector; *pr != NULL; pr++)
1061	    {
1062	      arelent *r;
1063	      unsigned long val;
1064	      asymbol *sym;
1065
1066	      r = *pr;
1067	      /* Ignore R_*_NONE relocs.  */
1068	      if (r->howto->dst_mask == 0)
1069		continue;
1070
1071	      if (r->howto->rightshift != 0
1072		  || r->howto->size != 2
1073		  || r->howto->bitsize != 32
1074		  || r->howto->pc_relative
1075		  || r->howto->bitpos != 0
1076		  || r->howto->dst_mask != 0xffffffff)
1077		{
1078		  (*_bfd_error_handler)
1079		    (_("Unsupported .stab relocation"));
1080		  bfd_set_error (bfd_error_invalid_operation);
1081		  if (reloc_vector != NULL)
1082		    free (reloc_vector);
1083		  return FALSE;
1084		}
1085
1086	      val = bfd_get_32 (abfd, info->stabs + r->address);
1087	      val &= r->howto->src_mask;
1088	      sym = *r->sym_ptr_ptr;
1089	      val += sym->value + sym->section->vma + r->addend;
1090	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1091	    }
1092	}
1093
1094      if (reloc_vector != NULL)
1095	free (reloc_vector);
1096
1097      /* First time through this function, build a table matching
1098	 function VM addresses to stabs, then sort based on starting
1099	 VM address.  Do this in two passes: once to count how many
1100	 table entries we'll need, and a second to actually build the
1101	 table.  */
1102
1103      info->indextablesize = 0;
1104      saw_fun = 1;
1105      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1106	{
1107	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1108	    {
1109	      /* N_SO with null name indicates EOF */
1110	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1111		continue;
1112
1113	      /* if we did not see a function def, leave space for one.  */
1114	      if (saw_fun == 0)
1115		++info->indextablesize;
1116
1117	      saw_fun = 0;
1118
1119	      /* two N_SO's in a row is a filename and directory. Skip */
1120	      if (stab + STABSIZE < info->stabs + stabsize
1121		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1122		{
1123		  stab += STABSIZE;
1124		}
1125	    }
1126	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1127	    {
1128	      saw_fun = 1;
1129	      ++info->indextablesize;
1130	    }
1131	}
1132
1133      if (saw_fun == 0)
1134	++info->indextablesize;
1135
1136      if (info->indextablesize == 0)
1137	return TRUE;
1138      ++info->indextablesize;
1139
1140      amt = info->indextablesize;
1141      amt *= sizeof (struct indexentry);
1142      info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1143      if (info->indextable == NULL)
1144	return FALSE;
1145
1146      file_name = NULL;
1147      directory_name = NULL;
1148      saw_fun = 1;
1149
1150      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1151	   i < info->indextablesize && stab < info->stabs + stabsize;
1152	   stab += STABSIZE)
1153	{
1154	  switch (stab[TYPEOFF])
1155	    {
1156	    case 0:
1157	      /* This is the first entry in a compilation unit.  */
1158	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1159		break;
1160	      str += stroff;
1161	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1162	      break;
1163
1164	    case N_SO:
1165	      /* The main file name.  */
1166
1167	      /* The following code creates a new indextable entry with
1168	         a NULL function name if there were no N_FUNs in a file.
1169	         Note that a N_SO without a file name is an EOF and
1170	         there could be 2 N_SO following it with the new filename
1171	         and directory.  */
1172	      if (saw_fun == 0)
1173		{
1174		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1175		  info->indextable[i].stab = last_stab;
1176		  info->indextable[i].str = str;
1177		  info->indextable[i].directory_name = directory_name;
1178		  info->indextable[i].file_name = file_name;
1179		  info->indextable[i].function_name = NULL;
1180		  ++i;
1181		}
1182	      saw_fun = 0;
1183
1184	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185	      if (*file_name == '\0')
1186		{
1187		  directory_name = NULL;
1188		  file_name = NULL;
1189		  saw_fun = 1;
1190		}
1191	      else
1192		{
1193		  last_stab = stab;
1194		  if (stab + STABSIZE >= info->stabs + stabsize
1195		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1196		    {
1197		      directory_name = NULL;
1198		    }
1199		  else
1200		    {
1201		      /* Two consecutive N_SOs are a directory and a
1202			 file name.  */
1203		      stab += STABSIZE;
1204		      directory_name = file_name;
1205		      file_name = ((char *) str
1206				   + bfd_get_32 (abfd, stab + STRDXOFF));
1207		    }
1208		}
1209	      break;
1210
1211	    case N_SOL:
1212	      /* The name of an include file.  */
1213	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1214	      break;
1215
1216	    case N_FUN:
1217	      /* A function name.  */
1218	      saw_fun = 1;
1219	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1220
1221	      if (*name == '\0')
1222		name = NULL;
1223
1224	      function_name = name;
1225
1226	      if (name == NULL)
1227		continue;
1228
1229	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1230	      info->indextable[i].stab = stab;
1231	      info->indextable[i].str = str;
1232	      info->indextable[i].directory_name = directory_name;
1233	      info->indextable[i].file_name = file_name;
1234	      info->indextable[i].function_name = function_name;
1235	      ++i;
1236	      break;
1237	    }
1238	}
1239
1240      if (saw_fun == 0)
1241	{
1242	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1243	  info->indextable[i].stab = last_stab;
1244	  info->indextable[i].str = str;
1245	  info->indextable[i].directory_name = directory_name;
1246	  info->indextable[i].file_name = file_name;
1247	  info->indextable[i].function_name = NULL;
1248	  ++i;
1249	}
1250
1251      info->indextable[i].val = (bfd_vma) -1;
1252      info->indextable[i].stab = info->stabs + stabsize;
1253      info->indextable[i].str = str;
1254      info->indextable[i].directory_name = NULL;
1255      info->indextable[i].file_name = NULL;
1256      info->indextable[i].function_name = NULL;
1257      ++i;
1258
1259      info->indextablesize = i;
1260      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1261	     cmpindexentry);
1262
1263      *pinfo = info;
1264    }
1265
1266  /* We are passed a section relative offset.  The offsets in the
1267     stabs information are absolute.  */
1268  offset += bfd_get_section_vma (abfd, section);
1269
1270#ifdef ENABLE_CACHING
1271  if (info->cached_indexentry != NULL
1272      && offset >= info->cached_offset
1273      && offset < (info->cached_indexentry + 1)->val)
1274    {
1275      stab = info->cached_stab;
1276      indexentry = info->cached_indexentry;
1277      file_name = info->cached_file_name;
1278    }
1279  else
1280#endif
1281    {
1282      long low, high;
1283      long mid = -1;
1284
1285      /* Cache non-existent or invalid.  Do binary search on
1286         indextable.  */
1287      indexentry = NULL;
1288
1289      low = 0;
1290      high = info->indextablesize - 1;
1291      while (low != high)
1292	{
1293	  mid = (high + low) / 2;
1294	  if (offset >= info->indextable[mid].val
1295	      && offset < info->indextable[mid + 1].val)
1296	    {
1297	      indexentry = &info->indextable[mid];
1298	      break;
1299	    }
1300
1301	  if (info->indextable[mid].val > offset)
1302	    high = mid;
1303	  else
1304	    low = mid + 1;
1305	}
1306
1307      if (indexentry == NULL)
1308	return TRUE;
1309
1310      stab = indexentry->stab + STABSIZE;
1311      file_name = indexentry->file_name;
1312    }
1313
1314  directory_name = indexentry->directory_name;
1315  str = indexentry->str;
1316
1317  saw_line = FALSE;
1318  saw_func = FALSE;
1319  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1320    {
1321      bfd_boolean done;
1322      bfd_vma val;
1323
1324      done = FALSE;
1325
1326      switch (stab[TYPEOFF])
1327	{
1328	case N_SOL:
1329	  /* The name of an include file.  */
1330	  val = bfd_get_32 (abfd, stab + VALOFF);
1331	  if (val <= offset)
1332	    {
1333	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1334	      *pline = 0;
1335	    }
1336	  break;
1337
1338	case N_SLINE:
1339	case N_DSLINE:
1340	case N_BSLINE:
1341	  /* A line number.  If the function was specified, then the value
1342	     is relative to the start of the function.  Otherwise, the
1343	     value is an absolute address.  */
1344	  val = ((indexentry->function_name ? indexentry->val : 0)
1345		 + bfd_get_32 (abfd, stab + VALOFF));
1346	  /* If this line starts before our desired offset, or if it's
1347	     the first line we've been able to find, use it.  The
1348	     !saw_line check works around a bug in GCC 2.95.3, which emits
1349	     the first N_SLINE late.  */
1350	  if (!saw_line || val <= offset)
1351	    {
1352	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1353
1354#ifdef ENABLE_CACHING
1355	      info->cached_stab = stab;
1356	      info->cached_offset = val;
1357	      info->cached_file_name = file_name;
1358	      info->cached_indexentry = indexentry;
1359#endif
1360	    }
1361	  if (val > offset)
1362	    done = TRUE;
1363	  saw_line = TRUE;
1364	  break;
1365
1366	case N_FUN:
1367	case N_SO:
1368	  if (saw_func || saw_line)
1369	    done = TRUE;
1370	  saw_func = TRUE;
1371	  break;
1372	}
1373
1374      if (done)
1375	break;
1376    }
1377
1378  *pfound = TRUE;
1379
1380  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1381      || directory_name == NULL)
1382    *pfilename = file_name;
1383  else
1384    {
1385      size_t dirlen;
1386
1387      dirlen = strlen (directory_name);
1388      if (info->filename == NULL
1389	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1390	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1391	{
1392	  size_t len;
1393
1394	  /* Don't free info->filename here.  objdump and other
1395	     apps keep a copy of a previously returned file name
1396	     pointer.  */
1397	  len = strlen (file_name) + 1;
1398	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1399	  if (info->filename == NULL)
1400	    return FALSE;
1401	  memcpy (info->filename, directory_name, dirlen);
1402	  memcpy (info->filename + dirlen, file_name, len);
1403	}
1404
1405      *pfilename = info->filename;
1406    }
1407
1408  if (indexentry->function_name != NULL)
1409    {
1410      char *s;
1411
1412      /* This will typically be something like main:F(0,1), so we want
1413         to clobber the colon.  It's OK to change the name, since the
1414         string is in our own local storage anyhow.  */
1415      s = strchr (indexentry->function_name, ':');
1416      if (s != NULL)
1417	*s = '\0';
1418
1419      *pfnname = indexentry->function_name;
1420    }
1421
1422  return TRUE;
1423}
1424