1// Special functions -*- C++ -*-
2
3// Copyright (C) 2006, 2007, 2008, 2009
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11//
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16//
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/** @file tr1/bessel_function.tcc
27 *  This is an internal header file, included by other library headers.
28 *  You should not attempt to use it directly.
29 */
30
31//
32// ISO C++ 14882 TR1: 5.2  Special functions
33//
34
35// Written by Edward Smith-Rowland.
36//
37// References:
38//   (1) Handbook of Mathematical Functions,
39//       ed. Milton Abramowitz and Irene A. Stegun,
40//       Dover Publications,
41//       Section 9, pp. 355-434, Section 10 pp. 435-478
42//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
43//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
44//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
45//       2nd ed, pp. 240-245
46
47#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
48#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
49
50#include "special_function_util.h"
51
52namespace std
53{
54namespace tr1
55{
56
57  // [5.2] Special functions
58
59  // Implementation-space details.
60  namespace __detail
61  {
62
63    /**
64     *   @brief Compute the gamma functions required by the Temme series
65     *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
66     *   @f[
67     *     \Gamma_1 = \frac{1}{2\mu}
68     *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
69     *   @f]
70     *   and
71     *   @f[
72     *     \Gamma_2 = \frac{1}{2}
73     *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
74     *   @f]
75     *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
76     *   is the nearest integer to @f$ \nu @f$.
77     *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
78     *   are returned as well.
79     * 
80     *   The accuracy requirements on this are exquisite.
81     *
82     *   @param __mu     The input parameter of the gamma functions.
83     *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
84     *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
85     *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
86     *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
87     */
88    template <typename _Tp>
89    void
90    __gamma_temme(const _Tp __mu,
91                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92    {
93#if _GLIBCXX_USE_C99_MATH_TR1
94      __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
95      __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96#else
97      __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
98      __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
99#endif
100
101      if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
102        __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103      else
104        __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105
106      __gam2 = (__gammi + __gampl) / (_Tp(2));
107
108      return;
109    }
110
111
112    /**
113     *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
114     *           @f$ N_\nu(x) @f$ functions and their first derivatives
115     *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
116     *           These four functions are computed together for numerical
117     *           stability.
118     *
119     *   @param  __nu  The order of the Bessel functions.
120     *   @param  __x   The argument of the Bessel functions.
121     *   @param  __Jnu  The output Bessel function of the first kind.
122     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
123     *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
124     *   @param  __Npnu  The output derivative of the Neumann function.
125     */
126    template <typename _Tp>
127    void
128    __bessel_jn(const _Tp __nu, const _Tp __x,
129                _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
130    {
131      if (__x == _Tp(0))
132        {
133          if (__nu == _Tp(0))
134            {
135              __Jnu = _Tp(1);
136              __Jpnu = _Tp(0);
137            }
138          else if (__nu == _Tp(1))
139            {
140              __Jnu = _Tp(0);
141              __Jpnu = _Tp(0.5L);
142            }
143          else
144            {
145              __Jnu = _Tp(0);
146              __Jpnu = _Tp(0);
147            }
148          __Nnu = -std::numeric_limits<_Tp>::infinity();
149          __Npnu = std::numeric_limits<_Tp>::infinity();
150          return;
151        }
152
153      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
154      //  When the multiplier is N i.e.
155      //  fp_min = N * min()
156      //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
157      //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
158      const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
159      const int __max_iter = 15000;
160      const _Tp __x_min = _Tp(2);
161
162      const int __nl = (__x < __x_min
163                    ? static_cast<int>(__nu + _Tp(0.5L))
164                    : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
165
166      const _Tp __mu = __nu - __nl;
167      const _Tp __mu2 = __mu * __mu;
168      const _Tp __xi = _Tp(1) / __x;
169      const _Tp __xi2 = _Tp(2) * __xi;
170      _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171      int __isign = 1;
172      _Tp __h = __nu * __xi;
173      if (__h < __fp_min)
174        __h = __fp_min;
175      _Tp __b = __xi2 * __nu;
176      _Tp __d = _Tp(0);
177      _Tp __c = __h;
178      int __i;
179      for (__i = 1; __i <= __max_iter; ++__i)
180        {
181          __b += __xi2;
182          __d = __b - __d;
183          if (std::abs(__d) < __fp_min)
184            __d = __fp_min;
185          __c = __b - _Tp(1) / __c;
186          if (std::abs(__c) < __fp_min)
187            __c = __fp_min;
188          __d = _Tp(1) / __d;
189          const _Tp __del = __c * __d;
190          __h *= __del;
191          if (__d < _Tp(0))
192            __isign = -__isign;
193          if (std::abs(__del - _Tp(1)) < __eps)
194            break;
195        }
196      if (__i > __max_iter)
197        std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
198                                       "try asymptotic expansion."));
199      _Tp __Jnul = __isign * __fp_min;
200      _Tp __Jpnul = __h * __Jnul;
201      _Tp __Jnul1 = __Jnul;
202      _Tp __Jpnu1 = __Jpnul;
203      _Tp __fact = __nu * __xi;
204      for ( int __l = __nl; __l >= 1; --__l )
205        {
206          const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207          __fact -= __xi;
208          __Jpnul = __fact * __Jnutemp - __Jnul;
209          __Jnul = __Jnutemp;
210        }
211      if (__Jnul == _Tp(0))
212        __Jnul = __eps;
213      _Tp __f= __Jpnul / __Jnul;
214      _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
215      if (__x < __x_min)
216        {
217          const _Tp __x2 = __x / _Tp(2);
218          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
219          _Tp __fact = (std::abs(__pimu) < __eps
220                      ? _Tp(1) : __pimu / std::sin(__pimu));
221          _Tp __d = -std::log(__x2);
222          _Tp __e = __mu * __d;
223          _Tp __fact2 = (std::abs(__e) < __eps
224                       ? _Tp(1) : std::sinh(__e) / __e);
225          _Tp __gam1, __gam2, __gampl, __gammi;
226          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
227          _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
228                   * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229          __e = std::exp(__e);
230          _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
231          _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
232          const _Tp __pimu2 = __pimu / _Tp(2);
233          _Tp __fact3 = (std::abs(__pimu2) < __eps
234                       ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
235          _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
236          _Tp __c = _Tp(1);
237          __d = -__x2 * __x2;
238          _Tp __sum = __ff + __r * __q;
239          _Tp __sum1 = __p;
240          for (__i = 1; __i <= __max_iter; ++__i)
241            {
242              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
243              __c *= __d / _Tp(__i);
244              __p /= _Tp(__i) - __mu;
245              __q /= _Tp(__i) + __mu;
246              const _Tp __del = __c * (__ff + __r * __q);
247              __sum += __del; 
248              const _Tp __del1 = __c * __p - __i * __del;
249              __sum1 += __del1;
250              if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
251                break;
252            }
253          if ( __i > __max_iter )
254            std::__throw_runtime_error(__N("Bessel y series failed to converge "
255                                           "in __bessel_jn."));
256          __Nmu = -__sum;
257          __Nnu1 = -__sum1 * __xi2;
258          __Npmu = __mu * __xi * __Nmu - __Nnu1;
259          __Jmu = __w / (__Npmu - __f * __Nmu);
260        }
261      else
262        {
263          _Tp __a = _Tp(0.25L) - __mu2;
264          _Tp __q = _Tp(1);
265          _Tp __p = -__xi / _Tp(2);
266          _Tp __br = _Tp(2) * __x;
267          _Tp __bi = _Tp(2);
268          _Tp __fact = __a * __xi / (__p * __p + __q * __q);
269          _Tp __cr = __br + __q * __fact;
270          _Tp __ci = __bi + __p * __fact;
271          _Tp __den = __br * __br + __bi * __bi;
272          _Tp __dr = __br / __den;
273          _Tp __di = -__bi / __den;
274          _Tp __dlr = __cr * __dr - __ci * __di;
275          _Tp __dli = __cr * __di + __ci * __dr;
276          _Tp __temp = __p * __dlr - __q * __dli;
277          __q = __p * __dli + __q * __dlr;
278          __p = __temp;
279          int __i;
280          for (__i = 2; __i <= __max_iter; ++__i)
281            {
282              __a += _Tp(2 * (__i - 1));
283              __bi += _Tp(2);
284              __dr = __a * __dr + __br;
285              __di = __a * __di + __bi;
286              if (std::abs(__dr) + std::abs(__di) < __fp_min)
287                __dr = __fp_min;
288              __fact = __a / (__cr * __cr + __ci * __ci);
289              __cr = __br + __cr * __fact;
290              __ci = __bi - __ci * __fact;
291              if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292                __cr = __fp_min;
293              __den = __dr * __dr + __di * __di;
294              __dr /= __den;
295              __di /= -__den;
296              __dlr = __cr * __dr - __ci * __di;
297              __dli = __cr * __di + __ci * __dr;
298              __temp = __p * __dlr - __q * __dli;
299              __q = __p * __dli + __q * __dlr;
300              __p = __temp;
301              if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
302                break;
303          }
304          if (__i > __max_iter)
305            std::__throw_runtime_error(__N("Lentz's method failed "
306                                           "in __bessel_jn."));
307          const _Tp __gam = (__p - __f) / __q;
308          __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
309#if _GLIBCXX_USE_C99_MATH_TR1
310          __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311#else
312          if (__Jmu * __Jnul < _Tp(0))
313            __Jmu = -__Jmu;
314#endif
315          __Nmu = __gam * __Jmu;
316          __Npmu = (__p + __q / __gam) * __Nmu;
317          __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318      }
319      __fact = __Jmu / __Jnul;
320      __Jnu = __fact * __Jnul1;
321      __Jpnu = __fact * __Jpnu1;
322      for (__i = 1; __i <= __nl; ++__i)
323        {
324          const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
325          __Nmu = __Nnu1;
326          __Nnu1 = __Nnutemp;
327        }
328      __Nnu = __Nmu;
329      __Npnu = __nu * __xi * __Nmu - __Nnu1;
330
331      return;
332    }
333
334
335    /**
336     *   @brief This routine computes the asymptotic cylindrical Bessel
337     *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
338     *          \f$ N_{\nu} \f$.
339     *
340     *   References:
341     *    (1) Handbook of Mathematical Functions,
342     *        ed. Milton Abramowitz and Irene A. Stegun,
343     *        Dover Publications,
344     *        Section 9 p. 364, Equations 9.2.5-9.2.10
345     *
346     *   @param  __nu  The order of the Bessel functions.
347     *   @param  __x   The argument of the Bessel functions.
348     *   @param  __Jnu  The output Bessel function of the first kind.
349     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
350     */
351    template <typename _Tp>
352    void
353    __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x,
354                          _Tp & __Jnu, _Tp & __Nnu)
355    {
356      const _Tp __coef = std::sqrt(_Tp(2)
357                             / (__numeric_constants<_Tp>::__pi() * __x));
358      const _Tp __mu   = _Tp(4) * __nu * __nu;
359      const _Tp __mum1 = __mu - _Tp(1);
360      const _Tp __mum9 = __mu - _Tp(9);
361      const _Tp __mum25 = __mu - _Tp(25);
362      const _Tp __mum49 = __mu - _Tp(49);
363      const _Tp __xx = _Tp(64) * __x * __x;
364      const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
365                    * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
366      const _Tp __Q = __mum1 / (_Tp(8) * __x)
367                    * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
368
369      const _Tp __chi = __x - (__nu + _Tp(0.5L))
370                            * __numeric_constants<_Tp>::__pi_2();
371      const _Tp __c = std::cos(__chi);
372      const _Tp __s = std::sin(__chi);
373
374      __Jnu = __coef * (__c * __P - __s * __Q);
375      __Nnu = __coef * (__s * __P + __c * __Q);
376
377      return;
378    }
379
380
381    /**
382     *   @brief This routine returns the cylindrical Bessel functions
383     *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
384     *          by series expansion.
385     *
386     *   The modified cylindrical Bessel function is:
387     *   @f[
388     *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
389     *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
390     *   @f]
391     *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
392     *   \f$ Z = I \f$ or \f$ J \f$ respectively.
393     * 
394     *   See Abramowitz & Stegun, 9.1.10
395     *       Abramowitz & Stegun, 9.6.7
396     *    (1) Handbook of Mathematical Functions,
397     *        ed. Milton Abramowitz and Irene A. Stegun,
398     *        Dover Publications,
399     *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
400     *
401     *   @param  __nu  The order of the Bessel function.
402     *   @param  __x   The argument of the Bessel function.
403     *   @param  __sgn  The sign of the alternate terms
404     *                  -1 for the Bessel function of the first kind.
405     *                  +1 for the modified Bessel function of the first kind.
406     *   @return  The output Bessel function.
407     */
408    template <typename _Tp>
409    _Tp
410    __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn,
411                           const unsigned int __max_iter)
412    {
413
414      const _Tp __x2 = __x / _Tp(2);
415      _Tp __fact = __nu * std::log(__x2);
416#if _GLIBCXX_USE_C99_MATH_TR1
417      __fact -= std::tr1::lgamma(__nu + _Tp(1));
418#else
419      __fact -= __log_gamma(__nu + _Tp(1));
420#endif
421      __fact = std::exp(__fact);
422      const _Tp __xx4 = __sgn * __x2 * __x2;
423      _Tp __Jn = _Tp(1);
424      _Tp __term = _Tp(1);
425
426      for (unsigned int __i = 1; __i < __max_iter; ++__i)
427        {
428          __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
429          __Jn += __term;
430          if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
431            break;
432        }
433
434      return __fact * __Jn;
435    }
436
437
438    /**
439     *   @brief  Return the Bessel function of order \f$ \nu \f$:
440     *           \f$ J_{\nu}(x) \f$.
441     *
442     *   The cylindrical Bessel function is:
443     *   @f[
444     *    J_{\nu}(x) = \sum_{k=0}^{\infty}
445     *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
446     *   @f]
447     *
448     *   @param  __nu  The order of the Bessel function.
449     *   @param  __x   The argument of the Bessel function.
450     *   @return  The output Bessel function.
451     */
452    template<typename _Tp>
453    _Tp
454    __cyl_bessel_j(const _Tp __nu, const _Tp __x)
455    {
456      if (__nu < _Tp(0) || __x < _Tp(0))
457        std::__throw_domain_error(__N("Bad argument "
458                                      "in __cyl_bessel_j."));
459      else if (__isnan(__nu) || __isnan(__x))
460        return std::numeric_limits<_Tp>::quiet_NaN();
461      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
462        return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
463      else if (__x > _Tp(1000))
464        {
465          _Tp __J_nu, __N_nu;
466          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
467          return __J_nu;
468        }
469      else
470        {
471          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
472          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
473          return __J_nu;
474        }
475    }
476
477
478    /**
479     *   @brief  Return the Neumann function of order \f$ \nu \f$:
480     *           \f$ N_{\nu}(x) \f$.
481     *
482     *   The Neumann function is defined by:
483     *   @f[
484     *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
485     *                        {\sin \nu\pi}
486     *   @f]
487     *   where for integral \f$ \nu = n \f$ a limit is taken:
488     *   \f$ lim_{\nu \to n} \f$.
489     *
490     *   @param  __nu  The order of the Neumann function.
491     *   @param  __x   The argument of the Neumann function.
492     *   @return  The output Neumann function.
493     */
494    template<typename _Tp>
495    _Tp
496    __cyl_neumann_n(const _Tp __nu, const _Tp __x)
497    {
498      if (__nu < _Tp(0) || __x < _Tp(0))
499        std::__throw_domain_error(__N("Bad argument "
500                                      "in __cyl_neumann_n."));
501      else if (__isnan(__nu) || __isnan(__x))
502        return std::numeric_limits<_Tp>::quiet_NaN();
503      else if (__x > _Tp(1000))
504        {
505          _Tp __J_nu, __N_nu;
506          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
507          return __N_nu;
508        }
509      else
510        {
511          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
512          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
513          return __N_nu;
514        }
515    }
516
517
518    /**
519     *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
520     *           and Neumann @f$ n_n(x) @f$ functions and their first
521     *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
522     *           respectively.
523     *
524     *   @param  __n  The order of the spherical Bessel function.
525     *   @param  __x  The argument of the spherical Bessel function.
526     *   @param  __j_n  The output spherical Bessel function.
527     *   @param  __n_n  The output spherical Neumann function.
528     *   @param  __jp_n  The output derivative of the spherical Bessel function.
529     *   @param  __np_n  The output derivative of the spherical Neumann function.
530     */
531    template <typename _Tp>
532    void
533    __sph_bessel_jn(const unsigned int __n, const _Tp __x,
534                    _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
535    {
536      const _Tp __nu = _Tp(__n) + _Tp(0.5L);
537
538      _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
539      __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
540
541      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
542                         / std::sqrt(__x);
543
544      __j_n = __factor * __J_nu;
545      __n_n = __factor * __N_nu;
546      __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
547      __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
548
549      return;
550    }
551
552
553    /**
554     *   @brief  Return the spherical Bessel function
555     *           @f$ j_n(x) @f$ of order n.
556     *
557     *   The spherical Bessel function is defined by:
558     *   @f[
559     *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
560     *   @f]
561     *
562     *   @param  __n  The order of the spherical Bessel function.
563     *   @param  __x  The argument of the spherical Bessel function.
564     *   @return  The output spherical Bessel function.
565     */
566    template <typename _Tp>
567    _Tp
568    __sph_bessel(const unsigned int __n, const _Tp __x)
569    {
570      if (__x < _Tp(0))
571        std::__throw_domain_error(__N("Bad argument "
572                                      "in __sph_bessel."));
573      else if (__isnan(__x))
574        return std::numeric_limits<_Tp>::quiet_NaN();
575      else if (__x == _Tp(0))
576        {
577          if (__n == 0)
578            return _Tp(1);
579          else
580            return _Tp(0);
581        }
582      else
583        {
584          _Tp __j_n, __n_n, __jp_n, __np_n;
585          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
586          return __j_n;
587        }
588    }
589
590
591    /**
592     *   @brief  Return the spherical Neumann function
593     *           @f$ n_n(x) @f$.
594     *
595     *   The spherical Neumann function is defined by:
596     *   @f[
597     *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
598     *   @f]
599     *
600     *   @param  __n  The order of the spherical Neumann function.
601     *   @param  __x  The argument of the spherical Neumann function.
602     *   @return  The output spherical Neumann function.
603     */
604    template <typename _Tp>
605    _Tp
606    __sph_neumann(const unsigned int __n, const _Tp __x)
607    {
608      if (__x < _Tp(0))
609        std::__throw_domain_error(__N("Bad argument "
610                                      "in __sph_neumann."));
611      else if (__isnan(__x))
612        return std::numeric_limits<_Tp>::quiet_NaN();
613      else if (__x == _Tp(0))
614        return -std::numeric_limits<_Tp>::infinity();
615      else
616        {
617          _Tp __j_n, __n_n, __jp_n, __np_n;
618          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
619          return __n_n;
620        }
621    }
622
623  } // namespace std::tr1::__detail
624}
625}
626
627#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
628