1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
4<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
5<head>
6<meta name="generator" content="HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
7<title>Priority-Queue Performance Tests</title>
8<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
9</head>
10<body>
11<div id="page">
12<h1>Priority-Queue Performance Tests</h1>
13<h2><a name="settings" id="settings">Settings</a></h2>
14<p>This section describes performance tests and their results.
15    In the following, <a href="#gcc"><u>g++</u></a>, <a href="#msvc"><u>msvc++</u></a>, and <a href="#local"><u>local</u></a> (the build used for generating this
16    documentation) stand for three different builds:</p>
17<div id="gcc_settings_div">
18<div class="c1">
19<h3><a name="gcc" id="gcc"><u>g++</u></a></h3>
20<ul>
21<li>CPU speed - cpu MHz : 2660.644</li>
22<li>Memory - MemTotal: 484412 kB</li>
23<li>Platform -
24          Linux-2.6.12-9-386-i686-with-debian-testing-unstable</li>
25<li>Compiler - g++ (GCC) 4.0.2 20050808 (prerelease)
26          (Ubuntu 4.0.1-4ubuntu9) Copyright (C) 2005 Free Software
27          Foundation, Inc. This is free software; see the source
28          for copying conditions. There is NO warranty; not even
29          for MERCHANTABILITY or FITNESS FOR A PARTICULAR
30          PURPOSE.</li>
31</ul>
32</div>
33<div class="c2"></div>
34</div>
35<div id="msvc_settings_div">
36<div class="c1">
37<h3><a name="msvc" id="msvc"><u>msvc++</u></a></h3>
38<ul>
39<li>CPU speed - cpu MHz : 2660.554</li>
40<li>Memory - MemTotal: 484412 kB</li>
41<li>Platform - Windows XP Pro</li>
42<li>Compiler - Microsoft (R) 32-bit C/C++ Optimizing
43          Compiler Version 13.10.3077 for 80x86 Copyright (C)
44          Microsoft Corporation 1984-2002. All rights
45          reserved.</li>
46</ul>
47</div>
48<div class="c2"></div>
49</div>
50<div id="local_settings_div"><div style = "border-style: dotted; border-width: 1px; border-color: lightgray"><h3><a name = "local"><u>local</u></a></h3><ul>
51<li>CPU speed - cpu MHz		: 2250.000</li>
52<li>Memory - MemTotal:      2076248 kB</li>
53<li>Platform - Linux-2.6.16-1.2133_FC5-i686-with-redhat-5-Bordeaux</li>
54<li>Compiler - g++ (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1)
55Copyright (C) 2006 Free Software Foundation, Inc.
56This is free software; see the source for copying conditions.  There is NO
57warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
58</li>
59</ul>
60</div><div style = "width: 100%; height: 20px"></div></div>
61<h2><a name="pq_tests" id="pq_tests">Tests</a></h2>
62<ol>
63<li><a href="priority_queue_text_push_timing_test.html">Priority Queue
64      Text <tt>push</tt> Timing Test</a></li>
65<li><a href="priority_queue_text_push_pop_timing_test.html">Priority
66      Queue Text <tt>push</tt> and <tt>pop</tt> Timing
67      Test</a></li>
68<li><a href="priority_queue_random_int_push_timing_test.html">Priority
69      Queue Random Integer <tt>push</tt> Timing Test</a></li>
70<li><a href="priority_queue_random_int_push_pop_timing_test.html">Priority
71      Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
72      Test</a></li>
73<li><a href="priority_queue_text_pop_mem_usage_test.html">Priority Queue
74      Text <tt>pop</tt> Memory Use Test</a></li>
75<li><a href="priority_queue_text_join_timing_test.html">Priority Queue
76      Text <tt>join</tt> Timing Test</a></li>
77<li><a href="priority_queue_text_modify_up_timing_test.html">Priority
78      Queue Text <tt>modify</tt> Timing Test - I</a></li>
79<li><a href="priority_queue_text_modify_down_timing_test.html">Priority
80      Queue Text <tt>modify</tt> Timing Test - II</a></li>
81</ol>
82<h2><a name="pq_observations" id="pq_observations">Observations</a></h2>
83<h3><a name="pq_observations_cplx" id="pq_observations_cplx">Underlying Data Structures
84    Complexity</a></h3>
85<p>The following table shows the complexities of the different
86    underlying data structures in terms of orders of growth. It is
87    interesting to note that this table implies something about the
88    constants of the operations as well (see <a href="#pq_observations_amortized_push_pop">Amortized <tt>push</tt>
89    and <tt>pop</tt> operations</a>).</p>
90<table class="c1" width="100%" border="1" summary="pq complexities">
91<tr>
92<td align="left"></td>
93<td align="left"><tt>push</tt></td>
94<td align="left"><tt>pop</tt></td>
95<td align="left"><tt>modify</tt></td>
96<td align="left"><tt>erase</tt></td>
97<td align="left"><tt>join</tt></td>
98</tr>
99<tr>
100<td align="left">
101<p><tt>std::priority_queue</tt></p>
102</td>
103<td align="left">
104<p><i>&Theta;(n)</i> worst</p>
105<p><i>&Theta;(log(n))</i> amortized</p>
106</td>
107<td align="left">
108<p class="c1">&Theta;(log(n)) Worst</p>
109</td>
110<td align="left">
111<p><i>Theta;(n log(n))</i> Worst</p>
112<p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
113</td>
114<td align="left">
115<p class="c3">&Theta;(n log(n))</p>
116<p><sub><a href="#std_mod2">[std note 2]</a></sub></p>
117</td>
118<td align="left">
119<p class="c3">&Theta;(n log(n))</p>
120<p><sub><a href="#std_mod1">[std note 1]</a></sub></p>
121</td>
122</tr>
123<tr>
124<td align="left">
125<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
126<p>with <tt>Tag</tt> =</p>
127<p><a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a></p>
128</td>
129<td align="left">
130<p class="c1">O(1)</p>
131</td>
132<td align="left">
133<p><i>&Theta;(n)</i> worst</p>
134<p><i>&Theta;(log(n))</i> amortized</p>
135</td>
136<td align="left">
137<p><i>&Theta;(n)</i> worst</p>
138<p><i>&Theta;(log(n))</i> amortized</p>
139</td>
140<td align="left">
141<p><i>&Theta;(n)</i> worst</p>
142<p><i>&Theta;(log(n))</i> amortized</p>
143</td>
144<td align="left">
145<p class="c1">O(1)</p>
146</td>
147</tr>
148<tr>
149<td align="left">
150<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
151<p>with <tt>Tag</tt> =</p>
152<p><a href="binary_heap_tag.html"><tt>binary_heap_tag</tt></a></p>
153</td>
154<td align="left">
155<p><i>&Theta;(n)</i> worst</p>
156<p><i>&Theta;(log(n))</i> amortized</p>
157</td>
158<td align="left">
159<p><i>&Theta;(n)</i> worst</p>
160<p><i>&Theta;(log(n))</i> amortized</p>
161</td>
162<td align="left">
163<p class="c1">&Theta;(n)</p>
164</td>
165<td align="left">
166<p class="c1">&Theta;(n)</p>
167</td>
168<td align="left">
169<p class="c1">&Theta;(n)</p>
170</td>
171</tr>
172<tr>
173<td align="left">
174<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
175<p>with <tt>Tag</tt> =</p>
176<p><a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a></p>
177</td>
178<td align="left">
179<p><i>&Theta;(log(n))</i> worst</p>
180<p><i>O(1)</i> amortized</p>
181</td>
182<td align="left">
183<p class="c1">&Theta;(log(n))</p>
184</td>
185<td align="left">
186<p class="c1">&Theta;(log(n))</p>
187</td>
188<td align="left">
189<p class="c1">&Theta;(log(n))</p>
190</td>
191<td align="left">
192<p class="c1">&Theta;(log(n))</p>
193</td>
194</tr>
195<tr>
196<td align="left">
197<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
198<p>with <tt>Tag</tt> =</p>
199<p><a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a></p>
200</td>
201<td align="left">
202<p class="c1">O(1)</p>
203</td>
204<td align="left">
205<p class="c1">&Theta;(log(n))</p>
206</td>
207<td align="left">
208<p class="c1">&Theta;(log(n))</p>
209</td>
210<td align="left">
211<p class="c1">&Theta;(log(n))</p>
212</td>
213<td align="left">
214<p class="c1">&Theta;(log(n))</p>
215</td>
216</tr>
217<tr>
218<td align="left">
219<p><a href="priority_queue.html"><tt>priority_queue</tt></a></p>
220<p>with <tt>Tag</tt> =</p>
221<p><a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a></p>
222</td>
223<td align="left">
224<p class="c1">O(1)</p>
225</td>
226<td align="left">
227<p><i>&Theta;(n)</i> worst</p>
228<p><i>&Theta;(log(n))</i> amortized</p>
229</td>
230<td align="left">
231<p><i>&Theta;(log(n))</i> worst</p>
232<p><i>O(1)</i> amortized,</p>or
233
234          <p><i>&Theta;(log(n))</i> amortized</p>
235<p><sub><a href="#thin_heap_note">[thin_heap_note]</a></sub></p>
236</td>
237<td align="left">
238<p><i>&Theta;(n)</i> worst</p>
239<p><i>&Theta;(log(n))</i> amortized</p>
240</td>
241<td align="left">
242<p class="c1">&Theta;(n)</p>
243</td>
244</tr>
245</table>
246<p><sub><a name="std_mod1" id="std_mod1">[std note 1]</a> This
247    is not a property of the algorithm, but rather due to the fact
248    that the STL's priority queue implementation does not support
249    iterators (and consequently the ability to access a specific
250    value inside it). If the priority queue is adapting an
251    <tt>std::vector</tt>, then it is still possible to reduce this
252    to <i>&Theta;(n)</i> by adapting over the STL's adapter and
253    using the fact that <tt>top</tt> returns a reference to the
254    first value; if, however, it is adapting an
255    <tt>std::deque</tt>, then this is impossible.</sub></p>
256<p><sub><a name="std_mod2" id="std_mod2">[std note 2]</a> As
257    with <a href="#std_mod1">[std note 1]</a>, this is not a
258    property of the algorithm, but rather the STL's implementation.
259    Again, if the priority queue is adapting an
260    <tt>std::vector</tt> then it is possible to reduce this to
261    <i>&Theta;(n)</i>, but with a very high constant (one must call
262    <tt>std::make_heap</tt> which is an expensive linear
263    operation); if the priority queue is adapting an
264    <tt>std::dequeu</tt>, then this is impossible.</sub></p>
265<p><sub><a name="thin_heap_note" id="thin_heap_note">[thin_heap_note]</a> A thin heap has
266    <i>&amp;Theta(log(n))</i> worst case <tt>modify</tt> time
267    always, but the amortized time depends on the nature of the
268    operation: I) if the operation increases the key (in the sense
269    of the priority queue's comparison functor), then the amortized
270    time is <i>O(1)</i>, but if II) it decreases it, then the
271    amortized time is the same as the worst case time. Note that
272    for most algorithms, I) is important and II) is not.</sub></p>
273<h3><a name="pq_observations_amortized_push_pop" id="pq_observations_amortized_push_pop">Amortized <tt>push</tt>
274    and <tt>pop</tt> operations</a></h3>
275<p>In many cases, a priority queue is needed primarily for
276    sequences of <tt>push</tt> and <tt>pop</tt> operations. All of
277    the underlying data structures have the same amortized
278    logarithmic complexity, but they differ in terms of
279    constants.</p>
280<p>The table above shows that the different data structures are
281    "constrained" in some respects. In general, if a data structure
282    has lower worst-case complexity than another, then it will
283    perform slower in the amortized sense. Thus, for example a
284    redundant-counter binomial heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
285    <tt>Tag</tt> = <a href="rc_binomial_heap_tag.html"><tt>rc_binomial_heap_tag</tt></a>)
286    has lower worst-case <tt>push</tt> performance than a binomial
287    heap (<a href="priority_queue.html"><tt>priority_queue</tt></a>
288    with <tt>Tag</tt> = <a href="binomial_heap_tag.html"><tt>binomial_heap_tag</tt></a>),
289    and so its amortized <tt>push</tt> performance is slower in
290    terms of constants.</p>
291<p>As the table shows, the "least constrained" underlying
292    data structures are binary heaps and pairing heaps.
293    Consequently, it is not surprising that they perform best in
294    terms of amortized constants.</p>
295<ol>
296<li>Pairing heaps seem to perform best for non-primitive
297      types (<i>e.g.</i>, <tt>std::string</tt>s), as shown by
298      <a href="priority_queue_text_push_timing_test.html">Priority
299      Queue Text <tt>push</tt> Timing Test</a> and <a href="priority_queue_text_push_pop_timing_test.html">Priority
300      Queue Text <tt>push</tt> and <tt>pop</tt> Timing
301      Test</a></li>
302<li>binary heaps seem to perform best for primitive types
303      (<i>e.g.</i>, <tt><b>int</b></tt>s), as shown by <a href="priority_queue_random_int_push_timing_test.html">Priority
304      Queue Random Integer <tt>push</tt> Timing Test</a> and
305      <a href="priority_queue_random_int_push_pop_timing_test.html">Priority
306      Queue Random Integer <tt>push</tt> and <tt>pop</tt> Timing
307      Test</a>.</li>
308</ol>
309<h3><a name="pq_observations_graph" id="pq_observations_graph">Graph Algorithms</a></h3>
310<p>In some graph algorithms, a decrease-key operation is
311    required [<a href="references.html#clrs2001">clrs2001</a>];
312    this operation is identical to <tt>modify</tt> if a value is
313    increased (in the sense of the priority queue's comparison
314    functor). The table above and <a href="priority_queue_text_modify_up_timing_test.html">Priority Queue
315    Text <tt>modify</tt> Timing Test - I</a> show that a thin heap
316    (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
317    <tt>Tag</tt> = <a href="thin_heap_tag.html"><tt>thin_heap_tag</tt></a>)
318    outperforms a pairing heap (<a href="priority_queue.html"><tt>priority_queue</tt></a> with
319    <tt>Tag</tt> =<tt>Tag</tt> = <a href="pairing_heap_tag.html"><tt>pairing_heap_tag</tt></a>),
320    but the rest of the tests show otherwise.</p>
321<p>This makes it difficult to decide which implementation to
322    use in this case. Dijkstra's shortest-path algorithm, for
323    example, requires <i>&Theta;(n)</i> <tt>push</tt> and
324    <tt>pop</tt> operations (in the number of vertices), but
325    <i>O(n<sup>2</sup>)</i> <tt>modify</tt> operations, which can
326    be in practice <i>&Theta;(n)</i> as well. It is difficult to
327    find an <i>a-priori</i> characterization of graphs in which the
328    <u>actual</u> number of <tt>modify</tt> operations will dwarf
329    the number of <tt>push</tt> and <tt>pop</tt> operations.</p>
330</div>
331</body>
332</html>
333