1/* Vector API for GNU compiler.
2   Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Nathan Sidwell <nathan@codesourcery.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* The macros here implement a set of templated vector types and
26   associated interfaces.  These templates are implemented with
27   macros, as we're not in C++ land.  The interface functions are
28   typesafe and use static inline functions, sometimes backed by
29   out-of-line generic functions.  The vectors are designed to
30   interoperate with the GTY machinery.
31
32   Because of the different behavior of structure objects, scalar
33   objects and of pointers, there are three flavors, one for each of
34   these variants.  Both the structure object and pointer variants
35   pass pointers to objects around -- in the former case the pointers
36   are stored into the vector and in the latter case the pointers are
37   dereferenced and the objects copied into the vector.  The scalar
38   object variant is suitable for int-like objects, and the vector
39   elements are returned by value.
40
41   There are both 'index' and 'iterate' accessors.  The iterator
42   returns a boolean iteration condition and updates the iteration
43   variable passed by reference.  Because the iterator will be
44   inlined, the address-of can be optimized away.
45
46   The vectors are implemented using the trailing array idiom, thus
47   they are not resizeable without changing the address of the vector
48   object itself.  This means you cannot have variables or fields of
49   vector type -- always use a pointer to a vector.  The one exception
50   is the final field of a structure, which could be a vector type.
51   You will have to use the embedded_size & embedded_init calls to
52   create such objects, and they will probably not be resizeable (so
53   don't use the 'safe' allocation variants).  The trailing array
54   idiom is used (rather than a pointer to an array of data), because,
55   if we allow NULL to also represent an empty vector, empty vectors
56   occupy minimal space in the structure containing them.
57
58   Each operation that increases the number of active elements is
59   available in 'quick' and 'safe' variants.  The former presumes that
60   there is sufficient allocated space for the operation to succeed
61   (it dies if there is not).  The latter will reallocate the
62   vector, if needed.  Reallocation causes an exponential increase in
63   vector size.  If you know you will be adding N elements, it would
64   be more efficient to use the reserve operation before adding the
65   elements with the 'quick' operation.  This will ensure there are at
66   least as many elements as you ask for, it will exponentially
67   increase if there are too few spare slots.  If you want reserve a
68   specific number of slots, but do not want the exponential increase
69   (for instance, you know this is the last allocation), use the
70   reserve_exact operation.  You can also create a vector of a
71   specific size from the get go.
72
73   You should prefer the push and pop operations, as they append and
74   remove from the end of the vector. If you need to remove several
75   items in one go, use the truncate operation.  The insert and remove
76   operations allow you to change elements in the middle of the
77   vector.  There are two remove operations, one which preserves the
78   element ordering 'ordered_remove', and one which does not
79   'unordered_remove'.  The latter function copies the end element
80   into the removed slot, rather than invoke a memmove operation.  The
81   'lower_bound' function will determine where to place an item in the
82   array using insert that will maintain sorted order.
83
84   When a vector type is defined, first a non-memory managed version
85   is created.  You can then define either or both garbage collected
86   and heap allocated versions.  The allocation mechanism is specified
87   when the type is defined, and is therefore part of the type.  If
88   you need both gc'd and heap allocated versions, you still must have
89   *exactly* one definition of the common non-memory managed base vector.
90
91   If you need to directly manipulate a vector, then the 'address'
92   accessor will return the address of the start of the vector.  Also
93   the 'space' predicate will tell you whether there is spare capacity
94   in the vector.  You will not normally need to use these two functions.
95
96   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97   get the non-memory allocation version, and then a
98   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99   vectors.  Variables of vector type are declared using a
100   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
101   allocation strategy, and can be either 'gc' or 'heap' for garbage
102   collected and heap allocated respectively.  It can be 'none' to get
103   a vector that must be explicitly allocated (for instance as a
104   trailing array of another structure).  The characters O, P and I
105   indicate whether TYPEDEF is a pointer (P), object (O) or integral
106   (I) type.  Be careful to pick the correct one, as you'll get an
107   awkward and inefficient API if you use the wrong one.  There is a
108   check, which results in a compile-time warning, for the P and I
109   versions, but there is no check for the O versions, as that is not
110   possible in plain C.  Due to the way GTY works, you must annotate
111   any structures you wish to insert or reference from a vector with a
112   GTY(()) tag.  You need to do this even if you never declare the GC
113   allocated variants.
114
115   An example of their use would be,
116
117   DEF_VEC_P(tree);   // non-managed tree vector.
118   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
119   			        // appear at file scope.
120
121   struct my_struct {
122     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
123   };
124
125   struct my_struct *s;
126
127   if (VEC_length(tree,s->v)) { we have some contents }
128   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130     { do something with elt }
131
132*/
133
134/* Macros to invoke API calls.  A single macro works for both pointer
135   and object vectors, but the argument and return types might well be
136   different.  In each macro, T is the typedef of the vector elements,
137   and A is the allocation strategy.  The allocation strategy is only
138   present when it is required.  Some of these macros pass the vector,
139   V, by reference (by taking its address), this is noted in the
140   descriptions.  */
141
142/* Length of vector
143   unsigned VEC_T_length(const VEC(T) *v);
144
145   Return the number of active elements in V.  V can be NULL, in which
146   case zero is returned.  */
147
148#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
149
150
151/* Check if vector is empty
152   int VEC_T_empty(const VEC(T) *v);
153
154   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
155
156#define VEC_empty(T,V)	(VEC_length (T,V) == 0)
157
158
159/* Get the final element of the vector.
160   T VEC_T_last(VEC(T) *v); // Integer
161   T VEC_T_last(VEC(T) *v); // Pointer
162   T *VEC_T_last(VEC(T) *v); // Object
163
164   Return the final element.  V must not be empty.  */
165
166#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167
168/* Index into vector
169   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172
173   Return the IX'th element.  If IX must be in the domain of V.  */
174
175#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176
177/* Iterate over vector
178   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181
182   Return iteration condition and update PTR to point to the IX'th
183   element.  At the end of iteration, sets PTR to NULL.  Use this to
184   iterate over the elements of a vector as follows,
185
186     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187       continue;  */
188
189#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190
191/* Allocate new vector.
192   VEC(T,A) *VEC_T_A_alloc(int reserve);
193
194   Allocate a new vector with space for RESERVE objects.  If RESERVE
195   is zero, NO vector is created.  */
196
197#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198
199/* Free a vector.
200   void VEC_T_A_free(VEC(T,A) *&);
201
202   Free a vector and set it to NULL.  */
203
204#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
205
206/* Use these to determine the required size and initialization of a
207   vector embedded within another structure (as the final member).
208
209   size_t VEC_T_embedded_size(int reserve);
210   void VEC_T_embedded_init(VEC(T) *v, int reserve);
211
212   These allow the caller to perform the memory allocation.  */
213
214#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
215#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216
217/* Copy a vector.
218   VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219
220   Copy the live elements of a vector into a new vector.  The new and
221   old vectors need not be allocated by the same mechanism.  */
222
223#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224
225/* Determine if a vector has additional capacity.
226
227   int VEC_T_space (VEC(T) *v,int reserve)
228
229   If V has space for RESERVE additional entries, return nonzero.  You
230   usually only need to use this if you are doing your own vector
231   reallocation, for instance on an embedded vector.  This returns
232   nonzero in exactly the same circumstances that VEC_T_reserve
233   will.  */
234
235#define VEC_space(T,V,R) \
236	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237
238/* Reserve space.
239   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240
241   Ensure that V has at least RESERVE slots available.  This will
242   create additional headroom.  Note this can cause V to be
243   reallocated.  Returns nonzero iff reallocation actually
244   occurred.  */
245
246#define VEC_reserve(T,A,V,R)	\
247	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248
249/* Reserve space exactly.
250   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251
252   Ensure that V has at least RESERVE slots available.  This will not
253   create additional headroom.  Note this can cause V to be
254   reallocated.  Returns nonzero iff reallocation actually
255   occurred.  */
256
257#define VEC_reserve_exact(T,A,V,R)	\
258	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259
260/* Push object with no reallocation
261   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
262   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
263   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264
265   Push a new element onto the end, returns a pointer to the slot
266   filled in. For object vectors, the new value can be NULL, in which
267   case NO initialization is performed.  There must
268   be sufficient space in the vector.  */
269
270#define VEC_quick_push(T,V,O)	\
271	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272
273/* Push object with reallocation
274   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
275   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
276   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277
278   Push a new element onto the end, returns a pointer to the slot
279   filled in. For object vectors, the new value can be NULL, in which
280   case NO initialization is performed.  Reallocates V, if needed.  */
281
282#define VEC_safe_push(T,A,V,O)		\
283	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284
285/* Pop element off end
286   T VEC_T_pop (VEC(T) *v);		// Integer
287   T VEC_T_pop (VEC(T) *v);		// Pointer
288   void VEC_T_pop (VEC(T) *v);		// Object
289
290   Pop the last element off the end. Returns the element popped, for
291   pointer vectors.  */
292
293#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294
295/* Truncate to specific length
296   void VEC_T_truncate (VEC(T) *v, unsigned len);
297
298   Set the length as specified.  The new length must be less than or
299   equal to the current length.  This is an O(1) operation.  */
300
301#define VEC_truncate(T,V,I)		\
302	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303
304/* Grow to a specific length.
305   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306
307   Grow the vector to a specific length.  The LEN must be as
308   long or longer than the current length.  The new elements are
309   uninitialized.  */
310
311#define VEC_safe_grow(T,A,V,I)		\
312	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313
314/* Grow to a specific length.
315   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
316
317   Grow the vector to a specific length.  The LEN must be as
318   long or longer than the current length.  The new elements are
319   initialized to zero.  */
320
321#define VEC_safe_grow_cleared(T,A,V,I)		\
322	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
323
324/* Replace element
325   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
326   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
327   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
328
329   Replace the IXth element of V with a new value, VAL.  For pointer
330   vectors returns the original value. For object vectors returns a
331   pointer to the new value.  For object vectors the new value can be
332   NULL, in which case no overwriting of the slot is actually
333   performed.  */
334
335#define VEC_replace(T,V,I,O)		\
336	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
337
338/* Insert object with no reallocation
339   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
340   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
341   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
342
343   Insert an element, VAL, at the IXth position of V. Return a pointer
344   to the slot created.  For vectors of object, the new value can be
345   NULL, in which case no initialization of the inserted slot takes
346   place. There must be sufficient space.  */
347
348#define VEC_quick_insert(T,V,I,O)	\
349	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
350
351/* Insert object with reallocation
352   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
353   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
354   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
355
356   Insert an element, VAL, at the IXth position of V. Return a pointer
357   to the slot created.  For vectors of object, the new value can be
358   NULL, in which case no initialization of the inserted slot takes
359   place. Reallocate V, if necessary.  */
360
361#define VEC_safe_insert(T,A,V,I,O)	\
362	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
363
364/* Remove element retaining order
365   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
366   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
367   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
368
369   Remove an element from the IXth position of V. Ordering of
370   remaining elements is preserved.  For pointer vectors returns the
371   removed object.  This is an O(N) operation due to a memmove.  */
372
373#define VEC_ordered_remove(T,V,I)	\
374	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
375
376/* Remove element destroying order
377   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
378   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
379   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
380
381   Remove an element from the IXth position of V. Ordering of
382   remaining elements is destroyed.  For pointer vectors returns the
383   removed object.  This is an O(1) operation.  */
384
385#define VEC_unordered_remove(T,V,I)	\
386	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
387
388/* Remove a block of elements
389   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
390
391   Remove LEN elements starting at the IXth.  Ordering is retained.
392   This is an O(1) operation.  */
393
394#define VEC_block_remove(T,V,I,L)	\
395	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
396
397/* Get the address of the array of elements
398   T *VEC_T_address (VEC(T) v)
399
400   If you need to directly manipulate the array (for instance, you
401   want to feed it to qsort), use this accessor.  */
402
403#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
404
405/* Find the first index in the vector not less than the object.
406   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
407                               bool (*lessthan) (const T, const T)); // Integer
408   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
409                               bool (*lessthan) (const T, const T)); // Pointer
410   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
411                               bool (*lessthan) (const T*, const T*)); // Object
412
413   Find the first position in which VAL could be inserted without
414   changing the ordering of V.  LESSTHAN is a function that returns
415   true if the first argument is strictly less than the second.  */
416
417#define VEC_lower_bound(T,V,O,LT)    \
418       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
419
420/* Reallocate an array of elements with prefix.  */
421extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
422extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
423extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
424extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
425				     MEM_STAT_DECL);
426extern void ggc_free (void *);
427#define vec_gc_free(V) ggc_free (V)
428extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
429extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
430extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
431extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
432				       MEM_STAT_DECL);
433extern void dump_vec_loc_statistics (void);
434#ifdef GATHER_STATISTICS
435void vec_heap_free (void *);
436#else
437#define vec_heap_free(V) free (V)
438#endif
439
440#if ENABLE_CHECKING
441#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
442#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
443#define VEC_CHECK_PASS ,file_,line_,function_
444
445#define VEC_ASSERT(EXPR,OP,T,A) \
446  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
447
448extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
449     ATTRIBUTE_NORETURN;
450#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
451#else
452#define VEC_CHECK_INFO
453#define VEC_CHECK_DECL
454#define VEC_CHECK_PASS
455#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
456#endif
457
458/* Note: gengtype has hardwired knowledge of the expansions of the
459   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
460   expansions of these macros you may need to change gengtype too.  */
461
462#define VEC(T,A) VEC_##T##_##A
463#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
464
465/* Base of vector type, not user visible.  */
466#define VEC_T(T,B)							  \
467typedef struct VEC(T,B) 				 		  \
468{									  \
469  unsigned num;								  \
470  unsigned alloc;							  \
471  T vec[1];								  \
472} VEC(T,B)
473
474#define VEC_T_GTY(T,B)							  \
475typedef struct GTY(()) VEC(T,B)				 		  \
476{									  \
477  unsigned num;								  \
478  unsigned alloc;							  \
479  T GTY ((length ("%h.num"))) vec[1];					  \
480} VEC(T,B)
481
482/* Derived vector type, user visible.  */
483#define VEC_TA_GTY(T,B,A,GTY)						  \
484typedef struct GTY VEC(T,A)						  \
485{									  \
486  VEC(T,B) base;							  \
487} VEC(T,A)
488
489#define VEC_TA(T,B,A)							  \
490typedef struct VEC(T,A)							  \
491{									  \
492  VEC(T,B) base;							  \
493} VEC(T,A)
494
495/* Convert to base type.  */
496#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
497
498/* Vector of integer-like object.  */
499#define DEF_VEC_I(T)							  \
500static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
501{									  \
502  (void)~(T)0;								  \
503}									  \
504									  \
505VEC_T(T,base);								  \
506VEC_TA(T,base,none);							  \
507DEF_VEC_FUNC_P(T)							  \
508struct vec_swallow_trailing_semi
509#define DEF_VEC_ALLOC_I(T,A)						  \
510VEC_TA(T,base,A);							  \
511DEF_VEC_ALLOC_FUNC_I(T,A)						  \
512DEF_VEC_NONALLOC_FUNCS_I(T,A)						  \
513struct vec_swallow_trailing_semi
514
515/* Vector of pointer to object.  */
516#define DEF_VEC_P(T) 							  \
517static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
518{									  \
519  (void)((T)1 == (void *)1);						  \
520}									  \
521									  \
522VEC_T_GTY(T,base);							  \
523VEC_TA(T,base,none);							  \
524DEF_VEC_FUNC_P(T)							  \
525struct vec_swallow_trailing_semi
526#define DEF_VEC_ALLOC_P(T,A)						  \
527VEC_TA(T,base,A);							  \
528DEF_VEC_ALLOC_FUNC_P(T,A)						  \
529DEF_VEC_NONALLOC_FUNCS_P(T,A)						  \
530struct vec_swallow_trailing_semi
531
532#define DEF_VEC_FUNC_P(T)						  \
533static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
534{									  \
535  return vec_ ? vec_->num : 0;						  \
536}									  \
537									  \
538static inline T VEC_OP (T,base,last)					  \
539     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
540{									  \
541  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
542  									  \
543  return vec_->vec[vec_->num - 1];					  \
544}									  \
545									  \
546static inline T VEC_OP (T,base,index)					  \
547     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
548{									  \
549  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
550  									  \
551  return vec_->vec[ix_];						  \
552}									  \
553									  \
554static inline int VEC_OP (T,base,iterate)			  	  \
555     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
556{									  \
557  if (vec_ && ix_ < vec_->num)						  \
558    {									  \
559      *ptr = vec_->vec[ix_];						  \
560      return 1;								  \
561    }									  \
562  else									  \
563    {									  \
564      *ptr = (T) 0;							  \
565      return 0;								  \
566    }									  \
567}									  \
568									  \
569static inline size_t VEC_OP (T,base,embedded_size)			  \
570     (int alloc_)							  \
571{									  \
572  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
573}									  \
574									  \
575static inline void VEC_OP (T,base,embedded_init)			  \
576     (VEC(T,base) *vec_, int alloc_)					  \
577{									  \
578  vec_->num = 0;							  \
579  vec_->alloc = alloc_;							  \
580}									  \
581									  \
582static inline int VEC_OP (T,base,space)	       				  \
583     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
584{									  \
585  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
586  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
587}									  \
588									  \
589static inline T *VEC_OP (T,base,quick_push)				  \
590     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
591{									  \
592  T *slot_;								  \
593  									  \
594  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
595  slot_ = &vec_->vec[vec_->num++];					  \
596  *slot_ = obj_;							  \
597  									  \
598  return slot_;								  \
599}									  \
600									  \
601static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
602{									  \
603  T obj_;								  \
604									  \
605  VEC_ASSERT (vec_->num, "pop", T, base);				  \
606  obj_ = vec_->vec[--vec_->num];					  \
607									  \
608  return obj_;								  \
609}									  \
610									  \
611static inline void VEC_OP (T,base,truncate)				  \
612     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
613{									  \
614  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
615  if (vec_)								  \
616    vec_->num = size_;							  \
617}									  \
618									  \
619static inline T VEC_OP (T,base,replace)		  	     		  \
620     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
621{									  \
622  T old_obj_;								  \
623									  \
624  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
625  old_obj_ = vec_->vec[ix_];						  \
626  vec_->vec[ix_] = obj_;						  \
627									  \
628  return old_obj_;							  \
629}									  \
630									  \
631static inline T *VEC_OP (T,base,quick_insert)				  \
632     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
633{									  \
634  T *slot_;								  \
635									  \
636  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
637  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
638  slot_ = &vec_->vec[ix_];						  \
639  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
640  *slot_ = obj_;							  \
641  									  \
642  return slot_;								  \
643}									  \
644									  \
645static inline T VEC_OP (T,base,ordered_remove)				  \
646     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
647{									  \
648  T *slot_;								  \
649  T obj_;								  \
650									  \
651  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
652  slot_ = &vec_->vec[ix_];						  \
653  obj_ = *slot_;							  \
654  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
655									  \
656  return obj_;								  \
657}									  \
658									  \
659static inline T VEC_OP (T,base,unordered_remove)			  \
660     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
661{									  \
662  T *slot_;								  \
663  T obj_;								  \
664									  \
665  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
666  slot_ = &vec_->vec[ix_];						  \
667  obj_ = *slot_;							  \
668  *slot_ = vec_->vec[--vec_->num];					  \
669									  \
670  return obj_;								  \
671}									  \
672									  \
673static inline void VEC_OP (T,base,block_remove)				  \
674     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
675{									  \
676  T *slot_;								  \
677									  \
678  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
679  slot_ = &vec_->vec[ix_];						  \
680  vec_->num -= len_;							  \
681  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
682}									  \
683									  \
684static inline T *VEC_OP (T,base,address)				  \
685     (VEC(T,base) *vec_)						  \
686{									  \
687  return vec_ ? vec_->vec : 0;						  \
688}									  \
689									  \
690static inline unsigned VEC_OP (T,base,lower_bound)			  \
691     (VEC(T,base) *vec_, const T obj_,					  \
692      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
693{									  \
694   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
695   unsigned int half_, middle_;						  \
696   unsigned int first_ = 0;						  \
697   while (len_ > 0)							  \
698     {									  \
699        T middle_elem_;							  \
700        half_ = len_ >> 1;						  \
701        middle_ = first_;						  \
702        middle_ += half_;						  \
703        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
704        if (lessthan_ (middle_elem_, obj_))				  \
705          {								  \
706             first_ = middle_;						  \
707             ++first_;							  \
708             len_ = len_ - half_ - 1;					  \
709          }								  \
710        else								  \
711          len_ = half_;							  \
712     }									  \
713   return first_;							  \
714}
715
716#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
717static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
718     (int alloc_ MEM_STAT_DECL)						  \
719{									  \
720  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
721						 PASS_MEM_STAT);	  \
722}
723
724
725#define DEF_VEC_NONALLOC_FUNCS_P(T,A)					  \
726static inline void VEC_OP (T,A,free)					  \
727     (VEC(T,A) **vec_)							  \
728{									  \
729  if (*vec_)								  \
730    vec_##A##_free (*vec_);						  \
731  *vec_ = NULL;								  \
732}									  \
733									  \
734static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
735{									  \
736  size_t len_ = vec_ ? vec_->num : 0;					  \
737  VEC (T,A) *new_vec_ = NULL;						  \
738									  \
739  if (len_)								  \
740    {									  \
741      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
742			       (NULL, len_ PASS_MEM_STAT));		  \
743									  \
744      new_vec_->base.num = len_;					  \
745      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
746    }									  \
747  return new_vec_;							  \
748}									  \
749									  \
750static inline int VEC_OP (T,A,reserve)	       				  \
751     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
752{									  \
753  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
754				       VEC_CHECK_PASS);			  \
755		  							  \
756  if (extend)	  							  \
757    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
758		  							  \
759  return extend;							  \
760}									  \
761									  \
762static inline int VEC_OP (T,A,reserve_exact)  				  \
763     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
764{									  \
765  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
766				       VEC_CHECK_PASS);			  \
767		  							  \
768  if (extend)	  							  \
769    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
770						    PASS_MEM_STAT);	  \
771		  							  \
772  return extend;							  \
773}									  \
774									  \
775static inline void VEC_OP (T,A,safe_grow)				  \
776     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
777{									  \
778  VEC_ASSERT (size_ >= 0						  \
779	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
780						 "grow", T, A);		  \
781  VEC_OP (T,A,reserve_exact) (vec_,					  \
782			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
783			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
784  VEC_BASE (*vec_)->num = size_;					  \
785}									  \
786									  \
787static inline void VEC_OP (T,A,safe_grow_cleared)			  \
788     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
789{									  \
790  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
791  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
792  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
793	  sizeof (T) * (size_ - oldsize));				  \
794}									  \
795									  \
796static inline T *VEC_OP (T,A,safe_push)					  \
797     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
798{									  \
799  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
800									  \
801  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
802}									  \
803									  \
804static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
805     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
806{									  \
807  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
808									  \
809  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
810 				       VEC_CHECK_PASS);			  \
811}
812
813/* Vector of object.  */
814#define DEF_VEC_O(T)							  \
815VEC_T_GTY(T,base);							  \
816VEC_TA(T,base,none);						  \
817DEF_VEC_FUNC_O(T)							  \
818struct vec_swallow_trailing_semi
819#define DEF_VEC_ALLOC_O(T,A)						  \
820VEC_TA(T,base,A);							  \
821DEF_VEC_ALLOC_FUNC_O(T,A)						  \
822DEF_VEC_NONALLOC_FUNCS_O(T,A)						  \
823struct vec_swallow_trailing_semi
824
825#define DEF_VEC_FUNC_O(T)						  \
826static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
827{									  \
828  return vec_ ? vec_->num : 0;						  \
829}									  \
830									  \
831static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
832{									  \
833  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
834  									  \
835  return &vec_->vec[vec_->num - 1];					  \
836}									  \
837									  \
838static inline T *VEC_OP (T,base,index)					  \
839     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
840{									  \
841  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
842  									  \
843  return &vec_->vec[ix_];						  \
844}									  \
845									  \
846static inline int VEC_OP (T,base,iterate)			     	  \
847     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
848{									  \
849  if (vec_ && ix_ < vec_->num)						  \
850    {									  \
851      *ptr = &vec_->vec[ix_];						  \
852      return 1;								  \
853    }									  \
854  else									  \
855    {									  \
856      *ptr = 0;								  \
857      return 0;								  \
858    }									  \
859}									  \
860									  \
861static inline size_t VEC_OP (T,base,embedded_size)			  \
862     (int alloc_)							  \
863{									  \
864  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
865}									  \
866									  \
867static inline void VEC_OP (T,base,embedded_init)			  \
868     (VEC(T,base) *vec_, int alloc_)					  \
869{									  \
870  vec_->num = 0;							  \
871  vec_->alloc = alloc_;							  \
872}									  \
873									  \
874static inline int VEC_OP (T,base,space)	       				  \
875     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
876{									  \
877  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
878  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
879}									  \
880									  \
881static inline T *VEC_OP (T,base,quick_push)				  \
882     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
883{									  \
884  T *slot_;								  \
885  									  \
886  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
887  slot_ = &vec_->vec[vec_->num++];					  \
888  if (obj_)								  \
889    *slot_ = *obj_;							  \
890  									  \
891  return slot_;								  \
892}									  \
893									  \
894static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
895{									  \
896  VEC_ASSERT (vec_->num, "pop", T, base);				  \
897  --vec_->num;								  \
898}									  \
899									  \
900static inline void VEC_OP (T,base,truncate)				  \
901     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
902{									  \
903  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
904  if (vec_)								  \
905    vec_->num = size_;							  \
906}									  \
907									  \
908static inline T *VEC_OP (T,base,replace)				  \
909     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
910{									  \
911  T *slot_;								  \
912									  \
913  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
914  slot_ = &vec_->vec[ix_];						  \
915  if (obj_)								  \
916    *slot_ = *obj_;							  \
917									  \
918  return slot_;								  \
919}									  \
920									  \
921static inline T *VEC_OP (T,base,quick_insert)				  \
922     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
923{									  \
924  T *slot_;								  \
925									  \
926  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
927  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
928  slot_ = &vec_->vec[ix_];						  \
929  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
930  if (obj_)								  \
931    *slot_ = *obj_;							  \
932  									  \
933  return slot_;								  \
934}									  \
935									  \
936static inline void VEC_OP (T,base,ordered_remove)			  \
937     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
938{									  \
939  T *slot_;								  \
940									  \
941  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
942  slot_ = &vec_->vec[ix_];						  \
943  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
944}									  \
945									  \
946static inline void VEC_OP (T,base,unordered_remove)			  \
947     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
948{									  \
949  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
950  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
951}									  \
952									  \
953static inline void VEC_OP (T,base,block_remove)				  \
954     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
955{									  \
956  T *slot_;								  \
957									  \
958  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
959  slot_ = &vec_->vec[ix_];						  \
960  vec_->num -= len_;							  \
961  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
962}									  \
963									  \
964static inline T *VEC_OP (T,base,address)				  \
965     (VEC(T,base) *vec_)						  \
966{									  \
967  return vec_ ? vec_->vec : 0;						  \
968}									  \
969									  \
970static inline unsigned VEC_OP (T,base,lower_bound)			  \
971     (VEC(T,base) *vec_, const T *obj_,					  \
972      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
973{									  \
974   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
975   unsigned int half_, middle_;						  \
976   unsigned int first_ = 0;						  \
977   while (len_ > 0)							  \
978     {									  \
979        T *middle_elem_;						  \
980        half_ = len_ >> 1;						  \
981        middle_ = first_;						  \
982        middle_ += half_;						  \
983        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
984        if (lessthan_ (middle_elem_, obj_))				  \
985          {								  \
986             first_ = middle_;						  \
987             ++first_;							  \
988             len_ = len_ - half_ - 1;					  \
989          }								  \
990        else								  \
991          len_ = half_;							  \
992     }									  \
993   return first_;							  \
994}
995
996#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
997static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
998     (int alloc_ MEM_STAT_DECL)						  \
999{									  \
1000  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
1001						 offsetof (VEC(T,A),base.vec), \
1002						 sizeof (T)		  \
1003						 PASS_MEM_STAT);	  \
1004}
1005
1006#define DEF_VEC_NONALLOC_FUNCS_O(T,A)					  \
1007static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1008{									  \
1009  size_t len_ = vec_ ? vec_->num : 0;					  \
1010  VEC (T,A) *new_vec_ = NULL;						  \
1011									  \
1012  if (len_)								  \
1013    {									  \
1014      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
1015			       (NULL, len_,				  \
1016				offsetof (VEC(T,A),base.vec), sizeof (T)  \
1017				PASS_MEM_STAT));			  \
1018									  \
1019      new_vec_->base.num = len_;					  \
1020      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1021    }									  \
1022  return new_vec_;							  \
1023}									  \
1024									  \
1025static inline void VEC_OP (T,A,free)					  \
1026     (VEC(T,A) **vec_)							  \
1027{									  \
1028  if (*vec_)								  \
1029    vec_##A##_free (*vec_);						  \
1030  *vec_ = NULL;								  \
1031}									  \
1032									  \
1033static inline int VEC_OP (T,A,reserve)	   	    			  \
1034     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1035{									  \
1036  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1037				       VEC_CHECK_PASS);			  \
1038									  \
1039  if (extend)								  \
1040    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1041			   		      offsetof (VEC(T,A),base.vec),\
1042 					      sizeof (T)		  \
1043			   		      PASS_MEM_STAT);		  \
1044									  \
1045  return extend;							  \
1046}									  \
1047									  \
1048static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1049     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1050{									  \
1051  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1052				       VEC_CHECK_PASS);			  \
1053									  \
1054  if (extend)								  \
1055    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1056			 (*vec_, alloc_,				  \
1057			  offsetof (VEC(T,A),base.vec),			  \
1058			  sizeof (T) PASS_MEM_STAT);			  \
1059									  \
1060  return extend;							  \
1061}									  \
1062									  \
1063static inline void VEC_OP (T,A,safe_grow)				  \
1064     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1065{									  \
1066  VEC_ASSERT (size_ >= 0						  \
1067	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1068						 "grow", T, A);		  \
1069  VEC_OP (T,A,reserve_exact) (vec_,					  \
1070			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1071			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1072  VEC_BASE (*vec_)->num = size_;					  \
1073}									  \
1074									  \
1075static inline void VEC_OP (T,A,safe_grow_cleared)			  \
1076     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1077{									  \
1078  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
1079  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
1080  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
1081	  sizeof (T) * (size_ - oldsize));				  \
1082}									  \
1083									  \
1084static inline T *VEC_OP (T,A,safe_push)					  \
1085     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1086{									  \
1087  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1088									  \
1089  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1090}									  \
1091									  \
1092static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1093     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
1094 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1095{									  \
1096  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1097									  \
1098  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1099				       VEC_CHECK_PASS);			  \
1100}
1101
1102#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
1103static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
1104     (int alloc_ MEM_STAT_DECL)						  \
1105{									  \
1106  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
1107		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
1108		       sizeof (T) PASS_MEM_STAT);			  \
1109}
1110
1111#define DEF_VEC_NONALLOC_FUNCS_I(T,A)					  \
1112static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1113{									  \
1114  size_t len_ = vec_ ? vec_->num : 0;					  \
1115  VEC (T,A) *new_vec_ = NULL;						  \
1116									  \
1117  if (len_)								  \
1118    {									  \
1119      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
1120			       (NULL, len_,				  \
1121				offsetof (VEC(T,A),base.vec), sizeof (T)  \
1122				PASS_MEM_STAT));			  \
1123									  \
1124      new_vec_->base.num = len_;					  \
1125      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1126    }									  \
1127  return new_vec_;							  \
1128}									  \
1129									  \
1130static inline void VEC_OP (T,A,free)					  \
1131     (VEC(T,A) **vec_)							  \
1132{									  \
1133  if (*vec_)								  \
1134    vec_##A##_free (*vec_);						  \
1135  *vec_ = NULL;								  \
1136}									  \
1137									  \
1138static inline int VEC_OP (T,A,reserve)	   	    			  \
1139     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1140{									  \
1141  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1142				       VEC_CHECK_PASS);			  \
1143									  \
1144  if (extend)								  \
1145    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1146			   		      offsetof (VEC(T,A),base.vec),\
1147 					      sizeof (T)		  \
1148			   		      PASS_MEM_STAT);		  \
1149									  \
1150  return extend;							  \
1151}									  \
1152									  \
1153static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1154     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1155{									  \
1156  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1157				       VEC_CHECK_PASS);			  \
1158									  \
1159  if (extend)								  \
1160    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1161			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
1162			  sizeof (T) PASS_MEM_STAT);			  \
1163									  \
1164  return extend;							  \
1165}									  \
1166									  \
1167static inline void VEC_OP (T,A,safe_grow)				  \
1168     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1169{									  \
1170  VEC_ASSERT (size_ >= 0						  \
1171	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1172						 "grow", T, A);		  \
1173  VEC_OP (T,A,reserve_exact) (vec_,					  \
1174			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1175			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1176  VEC_BASE (*vec_)->num = size_;					  \
1177}									  \
1178									  \
1179static inline void VEC_OP (T,A,safe_grow_cleared)			  \
1180     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1181{									  \
1182  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
1183  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
1184  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
1185	  sizeof (T) * (size_ - oldsize));				  \
1186}									  \
1187									  \
1188static inline T *VEC_OP (T,A,safe_push)					  \
1189     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1190{									  \
1191  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1192									  \
1193  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1194}									  \
1195									  \
1196static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1197     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
1198 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1199{									  \
1200  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1201									  \
1202  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1203				       VEC_CHECK_PASS);			  \
1204}
1205
1206/* We support a vector which starts out with space on the stack and
1207   switches to heap space when forced to reallocate.  This works a
1208   little differently.  Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
1209   DEF_VEC_ALLOC_P_STACK(TYPE).  This uses alloca to get the initial
1210   space; because alloca can not be usefully called in an inline
1211   function, and because a macro can not define a macro, you must then
1212   write a #define for each type:
1213
1214   #define VEC_{TYPE}_stack_alloc(alloc)                          \
1215     VEC_stack_alloc({TYPE}, alloc)
1216
1217   This is really a hack and perhaps can be made better.  Note that
1218   this macro will wind up evaluating the ALLOC parameter twice.
1219
1220   Only the initial allocation will be made using alloca, so pass a
1221   reasonable estimate that doesn't use too much stack space; don't
1222   pass zero.  Don't return a VEC(TYPE,stack) vector from the function
1223   which allocated it.  */
1224
1225extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
1226extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
1227extern void *vec_stack_p_reserve_exact_1 (int, void *);
1228extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
1229extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
1230					 MEM_STAT_DECL);
1231extern void vec_stack_free (void *);
1232
1233#ifdef GATHER_STATISTICS
1234#define VEC_stack_alloc(T,alloc,name,line,function)			  \
1235  (VEC_OP (T,stack,alloc1)						  \
1236   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1237#else
1238#define VEC_stack_alloc(T,alloc)					  \
1239  (VEC_OP (T,stack,alloc1)						  \
1240   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1241#endif
1242
1243#define DEF_VEC_ALLOC_P_STACK(T)					  \
1244VEC_TA(T,base,stack);							  \
1245DEF_VEC_ALLOC_FUNC_P_STACK(T)						  \
1246DEF_VEC_NONALLOC_FUNCS_P(T,stack)					  \
1247struct vec_swallow_trailing_semi
1248
1249#define DEF_VEC_ALLOC_FUNC_P_STACK(T)					  \
1250static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1251     (int alloc_, VEC(T,stack)* space)					  \
1252{									  \
1253  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1254}
1255
1256#define DEF_VEC_ALLOC_O_STACK(T)					  \
1257VEC_TA(T,base,stack);							  \
1258DEF_VEC_ALLOC_FUNC_O_STACK(T)						  \
1259DEF_VEC_NONALLOC_FUNCS_O(T,stack)					  \
1260struct vec_swallow_trailing_semi
1261
1262#define DEF_VEC_ALLOC_FUNC_O_STACK(T)					  \
1263static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1264     (int alloc_, VEC(T,stack)* space)					  \
1265{									  \
1266  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1267}
1268
1269#define DEF_VEC_ALLOC_I_STACK(T)					  \
1270VEC_TA(T,base,stack);							  \
1271DEF_VEC_ALLOC_FUNC_I_STACK(T)						  \
1272DEF_VEC_NONALLOC_FUNCS_I(T,stack)					  \
1273struct vec_swallow_trailing_semi
1274
1275#define DEF_VEC_ALLOC_FUNC_I_STACK(T)					  \
1276static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1277     (int alloc_, VEC(T,stack)* space)					  \
1278{									  \
1279  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);   \
1280}
1281
1282#endif /* GCC_VEC_H */
1283