1/* Rewrite a program in Normal form into SSA.
2   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Diego Novillo <dnovillo@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "tree.h"
27#include "flags.h"
28#include "rtl.h"
29#include "tm_p.h"
30#include "langhooks.h"
31#include "hard-reg-set.h"
32#include "basic-block.h"
33#include "output.h"
34#include "expr.h"
35#include "function.h"
36#include "diagnostic.h"
37#include "bitmap.h"
38#include "tree-flow.h"
39#include "gimple.h"
40#include "tree-inline.h"
41#include "varray.h"
42#include "timevar.h"
43#include "hashtab.h"
44#include "tree-dump.h"
45#include "tree-pass.h"
46#include "cfgloop.h"
47#include "domwalk.h"
48#include "ggc.h"
49#include "params.h"
50#include "vecprim.h"
51
52
53/* This file builds the SSA form for a function as described in:
54   R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55   Computing Static Single Assignment Form and the Control Dependence
56   Graph. ACM Transactions on Programming Languages and Systems,
57   13(4):451-490, October 1991.  */
58
59/* Structure to map a variable VAR to the set of blocks that contain
60   definitions for VAR.  */
61struct def_blocks_d
62{
63  /* The variable.  */
64  tree var;
65
66  /* Blocks that contain definitions of VAR.  Bit I will be set if the
67     Ith block contains a definition of VAR.  */
68  bitmap def_blocks;
69
70  /* Blocks that contain a PHI node for VAR.  */
71  bitmap phi_blocks;
72
73  /* Blocks where VAR is live-on-entry.  Similar semantics as
74     DEF_BLOCKS.  */
75  bitmap livein_blocks;
76};
77
78
79/* Each entry in DEF_BLOCKS contains an element of type STRUCT
80   DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81   basic blocks where VAR is defined (assigned a new value).  It also
82   contains a bitmap of all the blocks where VAR is live-on-entry
83   (i.e., there is a use of VAR in block B without a preceding
84   definition in B).  The live-on-entry information is used when
85   computing PHI pruning heuristics.  */
86static htab_t def_blocks;
87
88/* Stack of trees used to restore the global currdefs to its original
89   state after completing rewriting of a block and its dominator
90   children.  Its elements have the following properties:
91
92   - An SSA_NAME (N) indicates that the current definition of the
93     underlying variable should be set to the given SSA_NAME.  If the
94     symbol associated with the SSA_NAME is not a GIMPLE register, the
95     next slot in the stack must be a _DECL node (SYM).  In this case,
96     the name N in the previous slot is the current reaching
97     definition for SYM.
98
99   - A _DECL node indicates that the underlying variable has no
100     current definition.
101
102   - A NULL node at the top entry is used to mark the last slot
103     associated with the current block.  */
104static VEC(tree,heap) *block_defs_stack;
105
106
107/* Set of existing SSA names being replaced by update_ssa.  */
108static sbitmap old_ssa_names;
109
110/* Set of new SSA names being added by update_ssa.  Note that both
111   NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112   the operations done on them are presence tests.  */
113static sbitmap new_ssa_names;
114
115sbitmap interesting_blocks;
116
117/* Set of SSA names that have been marked to be released after they
118   were registered in the replacement table.  They will be finally
119   released after we finish updating the SSA web.  */
120static bitmap names_to_release;
121
122static VEC(gimple_vec, heap) *phis_to_rewrite;
123
124/* The bitmap of non-NULL elements of PHIS_TO_REWRITE.  */
125static bitmap blocks_with_phis_to_rewrite;
126
127/* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES.  These sets need
128   to grow as the callers to register_new_name_mapping will typically
129   create new names on the fly.  FIXME.  Currently set to 1/3 to avoid
130   frequent reallocations but still need to find a reasonable growth
131   strategy.  */
132#define NAME_SETS_GROWTH_FACTOR	(MAX (3, num_ssa_names / 3))
133
134/* Tuple used to represent replacement mappings.  */
135struct repl_map_d
136{
137  tree name;
138  bitmap set;
139};
140
141
142/* NEW -> OLD_SET replacement table.  If we are replacing several
143   existing SSA names O_1, O_2, ..., O_j with a new name N_i,
144   then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }.  */
145static htab_t repl_tbl;
146
147/* The function the SSA updating data structures have been initialized for.
148   NULL if they need to be initialized by register_new_name_mapping.  */
149static struct function *update_ssa_initialized_fn = NULL;
150
151/* Statistics kept by update_ssa to use in the virtual mapping
152   heuristic.  If the number of virtual mappings is beyond certain
153   threshold, the updater will switch from using the mappings into
154   renaming the virtual symbols from scratch.  In some cases, the
155   large number of name mappings for virtual names causes significant
156   slowdowns in the PHI insertion code.  */
157struct update_ssa_stats_d
158{
159  unsigned num_virtual_mappings;
160  unsigned num_total_mappings;
161  bitmap virtual_symbols;
162  unsigned num_virtual_symbols;
163};
164static struct update_ssa_stats_d update_ssa_stats;
165
166/* Global data to attach to the main dominator walk structure.  */
167struct mark_def_sites_global_data
168{
169  /* This bitmap contains the variables which are set before they
170     are used in a basic block.  */
171  bitmap kills;
172};
173
174
175/* Information stored for SSA names.  */
176struct ssa_name_info
177{
178  /* The current reaching definition replacing this SSA name.  */
179  tree current_def;
180
181  /* This field indicates whether or not the variable may need PHI nodes.
182     See the enum's definition for more detailed information about the
183     states.  */
184  ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
185
186  /* Age of this record (so that info_for_ssa_name table can be cleared
187     quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
188     are assumed to be null.  */
189  unsigned age;
190};
191
192/* The information associated with names.  */
193typedef struct ssa_name_info *ssa_name_info_p;
194DEF_VEC_P (ssa_name_info_p);
195DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
196
197static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
198static unsigned current_info_for_ssa_name_age;
199
200/* The set of blocks affected by update_ssa.  */
201static bitmap blocks_to_update;
202
203/* The main entry point to the SSA renamer (rewrite_blocks) may be
204   called several times to do different, but related, tasks.
205   Initially, we need it to rename the whole program into SSA form.
206   At other times, we may need it to only rename into SSA newly
207   exposed symbols.  Finally, we can also call it to incrementally fix
208   an already built SSA web.  */
209enum rewrite_mode {
210    /* Convert the whole function into SSA form.  */
211    REWRITE_ALL,
212
213    /* Incrementally update the SSA web by replacing existing SSA
214       names with new ones.  See update_ssa for details.  */
215    REWRITE_UPDATE
216};
217
218
219
220
221/* Prototypes for debugging functions.  */
222extern void dump_tree_ssa (FILE *);
223extern void debug_tree_ssa (void);
224extern void debug_def_blocks (void);
225extern void dump_tree_ssa_stats (FILE *);
226extern void debug_tree_ssa_stats (void);
227extern void dump_update_ssa (FILE *);
228extern void debug_update_ssa (void);
229extern void dump_names_replaced_by (FILE *, tree);
230extern void debug_names_replaced_by (tree);
231extern void dump_def_blocks (FILE *);
232extern void debug_def_blocks (void);
233extern void dump_defs_stack (FILE *, int);
234extern void debug_defs_stack (int);
235extern void dump_currdefs (FILE *);
236extern void debug_currdefs (void);
237
238/* Return true if STMT needs to be rewritten.  When renaming a subset
239   of the variables, not all statements will be processed.  This is
240   decided in mark_def_sites.  */
241
242static inline bool
243rewrite_uses_p (gimple stmt)
244{
245  return gimple_visited_p (stmt);
246}
247
248
249/* Set the rewrite marker on STMT to the value given by REWRITE_P.  */
250
251static inline void
252set_rewrite_uses (gimple stmt, bool rewrite_p)
253{
254  gimple_set_visited (stmt, rewrite_p);
255}
256
257
258/* Return true if the DEFs created by statement STMT should be
259   registered when marking new definition sites.  This is slightly
260   different than rewrite_uses_p: it's used by update_ssa to
261   distinguish statements that need to have both uses and defs
262   processed from those that only need to have their defs processed.
263   Statements that define new SSA names only need to have their defs
264   registered, but they don't need to have their uses renamed.  */
265
266static inline bool
267register_defs_p (gimple stmt)
268{
269  return gimple_plf (stmt, GF_PLF_1) != 0;
270}
271
272
273/* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered.  */
274
275static inline void
276set_register_defs (gimple stmt, bool register_defs_p)
277{
278  gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
279}
280
281
282/* Get the information associated with NAME.  */
283
284static inline ssa_name_info_p
285get_ssa_name_ann (tree name)
286{
287  unsigned ver = SSA_NAME_VERSION (name);
288  unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
289  struct ssa_name_info *info;
290
291  if (ver >= len)
292    {
293      unsigned new_len = num_ssa_names;
294
295      VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
296      while (len++ < new_len)
297	{
298	  struct ssa_name_info *info = XCNEW (struct ssa_name_info);
299	  info->age = current_info_for_ssa_name_age;
300	  VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
301	}
302    }
303
304  info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
305  if (info->age < current_info_for_ssa_name_age)
306    {
307      info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
308      info->current_def = NULL_TREE;
309      info->age = current_info_for_ssa_name_age;
310    }
311
312  return info;
313}
314
315
316/* Clears info for SSA names.  */
317
318static void
319clear_ssa_name_info (void)
320{
321  current_info_for_ssa_name_age++;
322}
323
324
325/* Get phi_state field for VAR.  */
326
327static inline enum need_phi_state
328get_phi_state (tree var)
329{
330  if (TREE_CODE (var) == SSA_NAME)
331    return get_ssa_name_ann (var)->need_phi_state;
332  else
333    return var_ann (var)->need_phi_state;
334}
335
336
337/* Sets phi_state field for VAR to STATE.  */
338
339static inline void
340set_phi_state (tree var, enum need_phi_state state)
341{
342  if (TREE_CODE (var) == SSA_NAME)
343    get_ssa_name_ann (var)->need_phi_state = state;
344  else
345    var_ann (var)->need_phi_state = state;
346}
347
348
349/* Return the current definition for VAR.  */
350
351tree
352get_current_def (tree var)
353{
354  if (TREE_CODE (var) == SSA_NAME)
355    return get_ssa_name_ann (var)->current_def;
356  else
357    return var_ann (var)->current_def;
358}
359
360
361/* Sets current definition of VAR to DEF.  */
362
363void
364set_current_def (tree var, tree def)
365{
366  if (TREE_CODE (var) == SSA_NAME)
367    get_ssa_name_ann (var)->current_def = def;
368  else
369    var_ann (var)->current_def = def;
370}
371
372
373/* Compute global livein information given the set of blocks where
374   an object is locally live at the start of the block (LIVEIN)
375   and the set of blocks where the object is defined (DEF_BLOCKS).
376
377   Note: This routine augments the existing local livein information
378   to include global livein (i.e., it modifies the underlying bitmap
379   for LIVEIN).  */
380
381void
382compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
383{
384  basic_block bb, *worklist, *tos;
385  unsigned i;
386  bitmap_iterator bi;
387
388  tos = worklist
389    = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
390
391  EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
392    *tos++ = BASIC_BLOCK (i);
393
394  /* Iterate until the worklist is empty.  */
395  while (tos != worklist)
396    {
397      edge e;
398      edge_iterator ei;
399
400      /* Pull a block off the worklist.  */
401      bb = *--tos;
402
403      /* For each predecessor block.  */
404      FOR_EACH_EDGE (e, ei, bb->preds)
405	{
406	  basic_block pred = e->src;
407	  int pred_index = pred->index;
408
409	  /* None of this is necessary for the entry block.  */
410	  if (pred != ENTRY_BLOCK_PTR
411	      && ! bitmap_bit_p (livein, pred_index)
412	      && ! bitmap_bit_p (def_blocks, pred_index))
413	    {
414	      *tos++ = pred;
415	      bitmap_set_bit (livein, pred_index);
416	    }
417	}
418    }
419
420  free (worklist);
421}
422
423
424/* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
425   all statements in basic block BB.  */
426
427static void
428initialize_flags_in_bb (basic_block bb)
429{
430  gimple stmt;
431  gimple_stmt_iterator gsi;
432
433  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
434    {
435      gimple phi = gsi_stmt (gsi);
436      set_rewrite_uses (phi, false);
437      set_register_defs (phi, false);
438    }
439
440  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
441    {
442      stmt = gsi_stmt (gsi);
443
444      /* We are going to use the operand cache API, such as
445	 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST.  The operand
446	 cache for each statement should be up-to-date.  */
447      gcc_assert (!gimple_modified_p (stmt));
448      set_rewrite_uses (stmt, false);
449      set_register_defs (stmt, false);
450    }
451}
452
453/* Mark block BB as interesting for update_ssa.  */
454
455static void
456mark_block_for_update (basic_block bb)
457{
458  gcc_assert (blocks_to_update != NULL);
459  if (bitmap_bit_p (blocks_to_update, bb->index))
460    return;
461  bitmap_set_bit (blocks_to_update, bb->index);
462  initialize_flags_in_bb (bb);
463}
464
465/* Return the set of blocks where variable VAR is defined and the blocks
466   where VAR is live on entry (livein).  If no entry is found in
467   DEF_BLOCKS, a new one is created and returned.  */
468
469static inline struct def_blocks_d *
470get_def_blocks_for (tree var)
471{
472  struct def_blocks_d db, *db_p;
473  void **slot;
474
475  db.var = var;
476  slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
477  if (*slot == NULL)
478    {
479      db_p = XNEW (struct def_blocks_d);
480      db_p->var = var;
481      db_p->def_blocks = BITMAP_ALLOC (NULL);
482      db_p->phi_blocks = BITMAP_ALLOC (NULL);
483      db_p->livein_blocks = BITMAP_ALLOC (NULL);
484      *slot = (void *) db_p;
485    }
486  else
487    db_p = (struct def_blocks_d *) *slot;
488
489  return db_p;
490}
491
492
493/* Mark block BB as the definition site for variable VAR.  PHI_P is true if
494   VAR is defined by a PHI node.  */
495
496static void
497set_def_block (tree var, basic_block bb, bool phi_p)
498{
499  struct def_blocks_d *db_p;
500  enum need_phi_state state;
501
502  state = get_phi_state (var);
503  db_p = get_def_blocks_for (var);
504
505  /* Set the bit corresponding to the block where VAR is defined.  */
506  bitmap_set_bit (db_p->def_blocks, bb->index);
507  if (phi_p)
508    bitmap_set_bit (db_p->phi_blocks, bb->index);
509
510  /* Keep track of whether or not we may need to insert PHI nodes.
511
512     If we are in the UNKNOWN state, then this is the first definition
513     of VAR.  Additionally, we have not seen any uses of VAR yet, so
514     we do not need a PHI node for this variable at this time (i.e.,
515     transition to NEED_PHI_STATE_NO).
516
517     If we are in any other state, then we either have multiple definitions
518     of this variable occurring in different blocks or we saw a use of the
519     variable which was not dominated by the block containing the
520     definition(s).  In this case we may need a PHI node, so enter
521     state NEED_PHI_STATE_MAYBE.  */
522  if (state == NEED_PHI_STATE_UNKNOWN)
523    set_phi_state (var, NEED_PHI_STATE_NO);
524  else
525    set_phi_state (var, NEED_PHI_STATE_MAYBE);
526}
527
528
529/* Mark block BB as having VAR live at the entry to BB.  */
530
531static void
532set_livein_block (tree var, basic_block bb)
533{
534  struct def_blocks_d *db_p;
535  enum need_phi_state state = get_phi_state (var);
536
537  db_p = get_def_blocks_for (var);
538
539  /* Set the bit corresponding to the block where VAR is live in.  */
540  bitmap_set_bit (db_p->livein_blocks, bb->index);
541
542  /* Keep track of whether or not we may need to insert PHI nodes.
543
544     If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
545     by the single block containing the definition(s) of this variable.  If
546     it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
547     NEED_PHI_STATE_MAYBE.  */
548  if (state == NEED_PHI_STATE_NO)
549    {
550      int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
551
552      if (def_block_index == -1
553	  || ! dominated_by_p (CDI_DOMINATORS, bb,
554	                       BASIC_BLOCK (def_block_index)))
555	set_phi_state (var, NEED_PHI_STATE_MAYBE);
556    }
557  else
558    set_phi_state (var, NEED_PHI_STATE_MAYBE);
559}
560
561
562/* Return true if symbol SYM is marked for renaming.  */
563
564static inline bool
565symbol_marked_for_renaming (tree sym)
566{
567  return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
568}
569
570
571/* Return true if NAME is in OLD_SSA_NAMES.  */
572
573static inline bool
574is_old_name (tree name)
575{
576  unsigned ver = SSA_NAME_VERSION (name);
577  if (!new_ssa_names)
578    return false;
579  return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
580}
581
582
583/* Return true if NAME is in NEW_SSA_NAMES.  */
584
585static inline bool
586is_new_name (tree name)
587{
588  unsigned ver = SSA_NAME_VERSION (name);
589  if (!new_ssa_names)
590    return false;
591  return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
592}
593
594
595/* Hashing and equality functions for REPL_TBL.  */
596
597static hashval_t
598repl_map_hash (const void *p)
599{
600  return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
601}
602
603static int
604repl_map_eq (const void *p1, const void *p2)
605{
606  return ((const struct repl_map_d *)p1)->name
607	 == ((const struct repl_map_d *)p2)->name;
608}
609
610static void
611repl_map_free (void *p)
612{
613  BITMAP_FREE (((struct repl_map_d *)p)->set);
614  free (p);
615}
616
617
618/* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET).  */
619
620static inline bitmap
621names_replaced_by (tree new_tree)
622{
623  struct repl_map_d m;
624  void **slot;
625
626  m.name = new_tree;
627  slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
628
629  /* If N was not registered in the replacement table, return NULL.  */
630  if (slot == NULL || *slot == NULL)
631    return NULL;
632
633  return ((struct repl_map_d *) *slot)->set;
634}
635
636
637/* Add OLD to REPL_TBL[NEW_TREE].SET.  */
638
639static inline void
640add_to_repl_tbl (tree new_tree, tree old)
641{
642  struct repl_map_d m, *mp;
643  void **slot;
644
645  m.name = new_tree;
646  slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
647  if (*slot == NULL)
648    {
649      mp = XNEW (struct repl_map_d);
650      mp->name = new_tree;
651      mp->set = BITMAP_ALLOC (NULL);
652      *slot = (void *) mp;
653    }
654  else
655    mp = (struct repl_map_d *) *slot;
656
657  bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
658}
659
660
661/* Add a new mapping NEW_TREE -> OLD REPL_TBL.  Every entry N_i in REPL_TBL
662   represents the set of names O_1 ... O_j replaced by N_i.  This is
663   used by update_ssa and its helpers to introduce new SSA names in an
664   already formed SSA web.  */
665
666static void
667add_new_name_mapping (tree new_tree, tree old)
668{
669  timevar_push (TV_TREE_SSA_INCREMENTAL);
670
671  /* OLD and NEW_TREE must be different SSA names for the same symbol.  */
672  gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
673
674  /* If this mapping is for virtual names, we will need to update
675     virtual operands.  If this is a mapping for .MEM, then we gather
676     the symbols associated with each name.  */
677  if (!is_gimple_reg (new_tree))
678    {
679      tree sym;
680
681      update_ssa_stats.num_virtual_mappings++;
682      update_ssa_stats.num_virtual_symbols++;
683
684      /* Keep counts of virtual mappings and symbols to use in the
685	 virtual mapping heuristic.  If we have large numbers of
686	 virtual mappings for a relatively low number of symbols, it
687	 will make more sense to rename the symbols from scratch.
688	 Otherwise, the insertion of PHI nodes for each of the old
689	 names in these mappings will be very slow.  */
690      sym = SSA_NAME_VAR (new_tree);
691      bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
692    }
693
694  /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
695     caller may have created new names since the set was created.  */
696  if (new_ssa_names->n_bits <= num_ssa_names - 1)
697    {
698      unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
699      new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
700      old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
701    }
702
703  /* Update the REPL_TBL table.  */
704  add_to_repl_tbl (new_tree, old);
705
706  /* If OLD had already been registered as a new name, then all the
707     names that OLD replaces should also be replaced by NEW_TREE.  */
708  if (is_new_name (old))
709    bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
710
711  /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
712     respectively.  */
713  SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
714  SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
715
716  /* Update mapping counter to use in the virtual mapping heuristic.  */
717  update_ssa_stats.num_total_mappings++;
718
719  timevar_pop (TV_TREE_SSA_INCREMENTAL);
720}
721
722
723/* Call back for walk_dominator_tree used to collect definition sites
724   for every variable in the function.  For every statement S in block
725   BB:
726
727   1- Variables defined by S in the DEFS of S are marked in the bitmap
728      KILLS.
729
730   2- If S uses a variable VAR and there is no preceding kill of VAR,
731      then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
732
733   This information is used to determine which variables are live
734   across block boundaries to reduce the number of PHI nodes
735   we create.  */
736
737static void
738mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
739{
740  tree def;
741  use_operand_p use_p;
742  ssa_op_iter iter;
743
744  /* Since this is the first time that we rewrite the program into SSA
745     form, force an operand scan on every statement.  */
746  update_stmt (stmt);
747
748  gcc_assert (blocks_to_update == NULL);
749  set_register_defs (stmt, false);
750  set_rewrite_uses (stmt, false);
751
752  if (is_gimple_debug (stmt))
753    return;
754
755  /* If a variable is used before being set, then the variable is live
756     across a block boundary, so mark it live-on-entry to BB.  */
757  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
758    {
759      tree sym = USE_FROM_PTR (use_p);
760      gcc_assert (DECL_P (sym));
761      if (!bitmap_bit_p (kills, DECL_UID (sym)))
762	set_livein_block (sym, bb);
763      set_rewrite_uses (stmt, true);
764    }
765
766  /* Now process the defs.  Mark BB as the definition block and add
767     each def to the set of killed symbols.  */
768  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
769    {
770      gcc_assert (DECL_P (def));
771      set_def_block (def, bb, false);
772      bitmap_set_bit (kills, DECL_UID (def));
773      set_register_defs (stmt, true);
774    }
775
776  /* If we found the statement interesting then also mark the block BB
777     as interesting.  */
778  if (rewrite_uses_p (stmt) || register_defs_p (stmt))
779    SET_BIT (interesting_blocks, bb->index);
780}
781
782/* Structure used by prune_unused_phi_nodes to record bounds of the intervals
783   in the dfs numbering of the dominance tree.  */
784
785struct dom_dfsnum
786{
787  /* Basic block whose index this entry corresponds to.  */
788  unsigned bb_index;
789
790  /* The dfs number of this node.  */
791  unsigned dfs_num;
792};
793
794/* Compares two entries of type struct dom_dfsnum by dfs_num field.  Callback
795   for qsort.  */
796
797static int
798cmp_dfsnum (const void *a, const void *b)
799{
800  const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
801  const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
802
803  return (int) da->dfs_num - (int) db->dfs_num;
804}
805
806/* Among the intervals starting at the N points specified in DEFS, find
807   the one that contains S, and return its bb_index.  */
808
809static unsigned
810find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
811{
812  unsigned f = 0, t = n, m;
813
814  while (t > f + 1)
815    {
816      m = (f + t) / 2;
817      if (defs[m].dfs_num <= s)
818	f = m;
819      else
820	t = m;
821    }
822
823  return defs[f].bb_index;
824}
825
826/* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
827   KILLS is a bitmap of blocks where the value is defined before any use.  */
828
829static void
830prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
831{
832  VEC(int, heap) *worklist;
833  bitmap_iterator bi;
834  unsigned i, b, p, u, top;
835  bitmap live_phis;
836  basic_block def_bb, use_bb;
837  edge e;
838  edge_iterator ei;
839  bitmap to_remove;
840  struct dom_dfsnum *defs;
841  unsigned n_defs, adef;
842
843  if (bitmap_empty_p (uses))
844    {
845      bitmap_clear (phis);
846      return;
847    }
848
849  /* The phi must dominate a use, or an argument of a live phi.  Also, we
850     do not create any phi nodes in def blocks, unless they are also livein.  */
851  to_remove = BITMAP_ALLOC (NULL);
852  bitmap_and_compl (to_remove, kills, uses);
853  bitmap_and_compl_into (phis, to_remove);
854  if (bitmap_empty_p (phis))
855    {
856      BITMAP_FREE (to_remove);
857      return;
858    }
859
860  /* We want to remove the unnecessary phi nodes, but we do not want to compute
861     liveness information, as that may be linear in the size of CFG, and if
862     there are lot of different variables to rewrite, this may lead to quadratic
863     behavior.
864
865     Instead, we basically emulate standard dce.  We put all uses to worklist,
866     then for each of them find the nearest def that dominates them.  If this
867     def is a phi node, we mark it live, and if it was not live before, we
868     add the predecessors of its basic block to the worklist.
869
870     To quickly locate the nearest def that dominates use, we use dfs numbering
871     of the dominance tree (that is already available in order to speed up
872     queries).  For each def, we have the interval given by the dfs number on
873     entry to and on exit from the corresponding subtree in the dominance tree.
874     The nearest dominator for a given use is the smallest of these intervals
875     that contains entry and exit dfs numbers for the basic block with the use.
876     If we store the bounds for all the uses to an array and sort it, we can
877     locate the nearest dominating def in logarithmic time by binary search.*/
878  bitmap_ior (to_remove, kills, phis);
879  n_defs = bitmap_count_bits (to_remove);
880  defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
881  defs[0].bb_index = 1;
882  defs[0].dfs_num = 0;
883  adef = 1;
884  EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
885    {
886      def_bb = BASIC_BLOCK (i);
887      defs[adef].bb_index = i;
888      defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
889      defs[adef + 1].bb_index = i;
890      defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
891      adef += 2;
892    }
893  BITMAP_FREE (to_remove);
894  gcc_assert (adef == 2 * n_defs + 1);
895  qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
896  gcc_assert (defs[0].bb_index == 1);
897
898  /* Now each DEFS entry contains the number of the basic block to that the
899     dfs number corresponds.  Change them to the number of basic block that
900     corresponds to the interval following the dfs number.  Also, for the
901     dfs_out numbers, increase the dfs number by one (so that it corresponds
902     to the start of the following interval, not to the end of the current
903     one).  We use WORKLIST as a stack.  */
904  worklist = VEC_alloc (int, heap, n_defs + 1);
905  VEC_quick_push (int, worklist, 1);
906  top = 1;
907  n_defs = 1;
908  for (i = 1; i < adef; i++)
909    {
910      b = defs[i].bb_index;
911      if (b == top)
912	{
913	  /* This is a closing element.  Interval corresponding to the top
914	     of the stack after removing it follows.  */
915	  VEC_pop (int, worklist);
916	  top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
917	  defs[n_defs].bb_index = top;
918	  defs[n_defs].dfs_num = defs[i].dfs_num + 1;
919	}
920      else
921	{
922	  /* Opening element.  Nothing to do, just push it to the stack and move
923	     it to the correct position.  */
924	  defs[n_defs].bb_index = defs[i].bb_index;
925	  defs[n_defs].dfs_num = defs[i].dfs_num;
926	  VEC_quick_push (int, worklist, b);
927	  top = b;
928	}
929
930      /* If this interval starts at the same point as the previous one, cancel
931	 the previous one.  */
932      if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
933	defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
934      else
935	n_defs++;
936    }
937  VEC_pop (int, worklist);
938  gcc_assert (VEC_empty (int, worklist));
939
940  /* Now process the uses.  */
941  live_phis = BITMAP_ALLOC (NULL);
942  EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
943    {
944      VEC_safe_push (int, heap, worklist, i);
945    }
946
947  while (!VEC_empty (int, worklist))
948    {
949      b = VEC_pop (int, worklist);
950      if (b == ENTRY_BLOCK)
951	continue;
952
953      /* If there is a phi node in USE_BB, it is made live.  Otherwise,
954	 find the def that dominates the immediate dominator of USE_BB
955	 (the kill in USE_BB does not dominate the use).  */
956      if (bitmap_bit_p (phis, b))
957	p = b;
958      else
959	{
960	  use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
961	  p = find_dfsnum_interval (defs, n_defs,
962				    bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
963	  if (!bitmap_bit_p (phis, p))
964	    continue;
965	}
966
967      /* If the phi node is already live, there is nothing to do.  */
968      if (bitmap_bit_p (live_phis, p))
969	continue;
970
971      /* Mark the phi as live, and add the new uses to the worklist.  */
972      bitmap_set_bit (live_phis, p);
973      def_bb = BASIC_BLOCK (p);
974      FOR_EACH_EDGE (e, ei, def_bb->preds)
975	{
976	  u = e->src->index;
977	  if (bitmap_bit_p (uses, u))
978	    continue;
979
980	  /* In case there is a kill directly in the use block, do not record
981	     the use (this is also necessary for correctness, as we assume that
982	     uses dominated by a def directly in their block have been filtered
983	     out before).  */
984	  if (bitmap_bit_p (kills, u))
985	    continue;
986
987	  bitmap_set_bit (uses, u);
988	  VEC_safe_push (int, heap, worklist, u);
989	}
990    }
991
992  VEC_free (int, heap, worklist);
993  bitmap_copy (phis, live_phis);
994  BITMAP_FREE (live_phis);
995  free (defs);
996}
997
998/* Return the set of blocks where variable VAR is defined and the blocks
999   where VAR is live on entry (livein).  Return NULL, if no entry is
1000   found in DEF_BLOCKS.  */
1001
1002static inline struct def_blocks_d *
1003find_def_blocks_for (tree var)
1004{
1005  struct def_blocks_d dm;
1006  dm.var = var;
1007  return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1008}
1009
1010
1011/* Retrieve or create a default definition for symbol SYM.  */
1012
1013static inline tree
1014get_default_def_for (tree sym)
1015{
1016  tree ddef = gimple_default_def (cfun, sym);
1017
1018  if (ddef == NULL_TREE)
1019    {
1020      ddef = make_ssa_name (sym, gimple_build_nop ());
1021      set_default_def (sym, ddef);
1022    }
1023
1024  return ddef;
1025}
1026
1027
1028/* Marks phi node PHI in basic block BB for rewrite.  */
1029
1030static void
1031mark_phi_for_rewrite (basic_block bb, gimple phi)
1032{
1033  gimple_vec phis;
1034  unsigned i, idx = bb->index;
1035
1036  if (rewrite_uses_p (phi))
1037    return;
1038
1039  set_rewrite_uses (phi, true);
1040
1041  if (!blocks_with_phis_to_rewrite)
1042    return;
1043
1044  bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1045  VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1046  for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1047    VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1048
1049  phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1050  if (!phis)
1051    phis = VEC_alloc (gimple, heap, 10);
1052
1053  VEC_safe_push (gimple, heap, phis, phi);
1054  VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1055}
1056
1057/* Insert PHI nodes for variable VAR using the iterated dominance
1058   frontier given in PHI_INSERTION_POINTS.  If UPDATE_P is true, this
1059   function assumes that the caller is incrementally updating the
1060   existing SSA form, in which case VAR may be an SSA name instead of
1061   a symbol.
1062
1063   PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1064   PHI node for VAR.  On exit, only the nodes that received a PHI node
1065   for VAR will be present in PHI_INSERTION_POINTS.  */
1066
1067static void
1068insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1069{
1070  unsigned bb_index;
1071  edge e;
1072  gimple phi;
1073  basic_block bb;
1074  bitmap_iterator bi;
1075  struct def_blocks_d *def_map;
1076
1077  def_map = find_def_blocks_for (var);
1078  gcc_assert (def_map);
1079
1080  /* Remove the blocks where we already have PHI nodes for VAR.  */
1081  bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1082
1083  /* Remove obviously useless phi nodes.  */
1084  prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1085			  def_map->livein_blocks);
1086
1087  /* And insert the PHI nodes.  */
1088  EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1089    {
1090      bb = BASIC_BLOCK (bb_index);
1091      if (update_p)
1092	mark_block_for_update (bb);
1093
1094      phi = NULL;
1095
1096      if (TREE_CODE (var) == SSA_NAME)
1097	{
1098	  /* If we are rewriting SSA names, create the LHS of the PHI
1099	     node by duplicating VAR.  This is useful in the case of
1100	     pointers, to also duplicate pointer attributes (alias
1101	     information, in particular).  */
1102	  edge_iterator ei;
1103	  tree new_lhs;
1104
1105	  gcc_assert (update_p);
1106	  phi = create_phi_node (var, bb);
1107
1108	  new_lhs = duplicate_ssa_name (var, phi);
1109	  gimple_phi_set_result (phi, new_lhs);
1110	  add_new_name_mapping (new_lhs, var);
1111
1112	  /* Add VAR to every argument slot of PHI.  We need VAR in
1113	     every argument so that rewrite_update_phi_arguments knows
1114	     which name is this PHI node replacing.  If VAR is a
1115	     symbol marked for renaming, this is not necessary, the
1116	     renamer will use the symbol on the LHS to get its
1117	     reaching definition.  */
1118	  FOR_EACH_EDGE (e, ei, bb->preds)
1119	    add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1120	}
1121      else
1122	{
1123	  tree tracked_var;
1124
1125	  gcc_assert (DECL_P (var));
1126	  phi = create_phi_node (var, bb);
1127
1128	  tracked_var = target_for_debug_bind (var);
1129	  if (tracked_var)
1130	    {
1131	      gimple note = gimple_build_debug_bind (tracked_var,
1132						     PHI_RESULT (phi),
1133						     phi);
1134	      gimple_stmt_iterator si = gsi_after_labels (bb);
1135	      gsi_insert_before (&si, note, GSI_SAME_STMT);
1136	    }
1137	}
1138
1139      /* Mark this PHI node as interesting for update_ssa.  */
1140      set_register_defs (phi, true);
1141      mark_phi_for_rewrite (bb, phi);
1142    }
1143}
1144
1145
1146/* Insert PHI nodes at the dominance frontier of blocks with variable
1147   definitions.  DFS contains the dominance frontier information for
1148   the flowgraph.  */
1149
1150static void
1151insert_phi_nodes (bitmap *dfs)
1152{
1153  referenced_var_iterator rvi;
1154  bitmap_iterator bi;
1155  tree var;
1156  bitmap vars;
1157  unsigned uid;
1158
1159  timevar_push (TV_TREE_INSERT_PHI_NODES);
1160
1161  /* Do two stages to avoid code generation differences for UID
1162     differences but no UID ordering differences.  */
1163
1164  vars = BITMAP_ALLOC (NULL);
1165  FOR_EACH_REFERENCED_VAR (var, rvi)
1166    {
1167      struct def_blocks_d *def_map;
1168
1169      def_map = find_def_blocks_for (var);
1170      if (def_map == NULL)
1171	continue;
1172
1173      if (get_phi_state (var) != NEED_PHI_STATE_NO)
1174	bitmap_set_bit (vars, DECL_UID (var));
1175    }
1176
1177  EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1178    {
1179      tree var = referenced_var (uid);
1180      struct def_blocks_d *def_map;
1181      bitmap idf;
1182
1183      def_map = find_def_blocks_for (var);
1184      idf = compute_idf (def_map->def_blocks, dfs);
1185      insert_phi_nodes_for (var, idf, false);
1186      BITMAP_FREE (idf);
1187    }
1188
1189  BITMAP_FREE (vars);
1190
1191  timevar_pop (TV_TREE_INSERT_PHI_NODES);
1192}
1193
1194
1195/* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1196   register DEF (an SSA_NAME) to be a new definition for SYM.  */
1197
1198static void
1199register_new_def (tree def, tree sym)
1200{
1201  tree currdef;
1202
1203  /* If this variable is set in a single basic block and all uses are
1204     dominated by the set(s) in that single basic block, then there is
1205     no reason to record anything for this variable in the block local
1206     definition stacks.  Doing so just wastes time and memory.
1207
1208     This is the same test to prune the set of variables which may
1209     need PHI nodes.  So we just use that information since it's already
1210     computed and available for us to use.  */
1211  if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1212    {
1213      set_current_def (sym, def);
1214      return;
1215    }
1216
1217  currdef = get_current_def (sym);
1218
1219  /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1220     SSA_NAME_VAR is not necessarily SYM.  In this case, also push SYM
1221     in the stack so that we know which symbol is being defined by
1222     this SSA name when we unwind the stack.  */
1223  if (currdef && !is_gimple_reg (sym))
1224    VEC_safe_push (tree, heap, block_defs_stack, sym);
1225
1226  /* Push the current reaching definition into BLOCK_DEFS_STACK.  This
1227     stack is later used by the dominator tree callbacks to restore
1228     the reaching definitions for all the variables defined in the
1229     block after a recursive visit to all its immediately dominated
1230     blocks.  If there is no current reaching definition, then just
1231     record the underlying _DECL node.  */
1232  VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1233
1234  /* Set the current reaching definition for SYM to be DEF.  */
1235  set_current_def (sym, def);
1236}
1237
1238
1239/* Perform a depth-first traversal of the dominator tree looking for
1240   variables to rename.  BB is the block where to start searching.
1241   Renaming is a five step process:
1242
1243   1- Every definition made by PHI nodes at the start of the blocks is
1244      registered as the current definition for the corresponding variable.
1245
1246   2- Every statement in BB is rewritten.  USE and VUSE operands are
1247      rewritten with their corresponding reaching definition.  DEF and
1248      VDEF targets are registered as new definitions.
1249
1250   3- All the PHI nodes in successor blocks of BB are visited.  The
1251      argument corresponding to BB is replaced with its current reaching
1252      definition.
1253
1254   4- Recursively rewrite every dominator child block of BB.
1255
1256   5- Restore (in reverse order) the current reaching definition for every
1257      new definition introduced in this block.  This is done so that when
1258      we return from the recursive call, all the current reaching
1259      definitions are restored to the names that were valid in the
1260      dominator parent of BB.  */
1261
1262/* Return the current definition for variable VAR.  If none is found,
1263   create a new SSA name to act as the zeroth definition for VAR.  */
1264
1265static tree
1266get_reaching_def (tree var)
1267{
1268  tree currdef;
1269
1270  /* Lookup the current reaching definition for VAR.  */
1271  currdef = get_current_def (var);
1272
1273  /* If there is no reaching definition for VAR, create and register a
1274     default definition for it (if needed).  */
1275  if (currdef == NULL_TREE)
1276    {
1277      tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1278      currdef = get_default_def_for (sym);
1279      set_current_def (var, currdef);
1280    }
1281
1282  /* Return the current reaching definition for VAR, or the default
1283     definition, if we had to create one.  */
1284  return currdef;
1285}
1286
1287
1288/* SSA Rewriting Step 2.  Rewrite every variable used in each statement in
1289   the block with its immediate reaching definitions.  Update the current
1290   definition of a variable when a new real or virtual definition is found.  */
1291
1292static void
1293rewrite_stmt (gimple_stmt_iterator si)
1294{
1295  use_operand_p use_p;
1296  def_operand_p def_p;
1297  ssa_op_iter iter;
1298  gimple stmt = gsi_stmt (si);
1299
1300  /* If mark_def_sites decided that we don't need to rewrite this
1301     statement, ignore it.  */
1302  gcc_assert (blocks_to_update == NULL);
1303  if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1304    return;
1305
1306  if (dump_file && (dump_flags & TDF_DETAILS))
1307    {
1308      fprintf (dump_file, "Renaming statement ");
1309      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1310      fprintf (dump_file, "\n");
1311    }
1312
1313  /* Step 1.  Rewrite USES in the statement.  */
1314  if (rewrite_uses_p (stmt))
1315    FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1316      {
1317	tree var = USE_FROM_PTR (use_p);
1318	gcc_assert (DECL_P (var));
1319	SET_USE (use_p, get_reaching_def (var));
1320      }
1321
1322  /* Step 2.  Register the statement's DEF operands.  */
1323  if (register_defs_p (stmt))
1324    FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1325      {
1326	tree var = DEF_FROM_PTR (def_p);
1327	tree name = make_ssa_name (var, stmt);
1328	tree tracked_var;
1329	gcc_assert (DECL_P (var));
1330	SET_DEF (def_p, name);
1331	register_new_def (DEF_FROM_PTR (def_p), var);
1332
1333	tracked_var = target_for_debug_bind (var);
1334	if (tracked_var)
1335	  {
1336	    gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1337	    gsi_insert_after (&si, note, GSI_SAME_STMT);
1338	  }
1339      }
1340}
1341
1342
1343/* SSA Rewriting Step 3.  Visit all the successor blocks of BB looking for
1344   PHI nodes.  For every PHI node found, add a new argument containing the
1345   current reaching definition for the variable and the edge through which
1346   that definition is reaching the PHI node.  */
1347
1348static void
1349rewrite_add_phi_arguments (basic_block bb)
1350{
1351  edge e;
1352  edge_iterator ei;
1353
1354  FOR_EACH_EDGE (e, ei, bb->succs)
1355    {
1356      gimple phi;
1357      gimple_stmt_iterator gsi;
1358
1359      for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1360	   gsi_next (&gsi))
1361	{
1362	  tree currdef;
1363	  gimple stmt;
1364
1365	  phi = gsi_stmt (gsi);
1366	  currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1367	  stmt = SSA_NAME_DEF_STMT (currdef);
1368	  add_phi_arg (phi, currdef, e, gimple_location (stmt));
1369	}
1370    }
1371}
1372
1373/* SSA Rewriting Step 1.  Initialization, create a block local stack
1374   of reaching definitions for new SSA names produced in this block
1375   (BLOCK_DEFS).  Register new definitions for every PHI node in the
1376   block.  */
1377
1378static void
1379rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1380		     basic_block bb)
1381{
1382  gimple phi;
1383  gimple_stmt_iterator gsi;
1384
1385  if (dump_file && (dump_flags & TDF_DETAILS))
1386    fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1387
1388  /* Mark the unwind point for this block.  */
1389  VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1390
1391  /* Step 1.  Register new definitions for every PHI node in the block.
1392     Conceptually, all the PHI nodes are executed in parallel and each PHI
1393     node introduces a new version for the associated variable.  */
1394  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1395    {
1396      tree result;
1397
1398      phi = gsi_stmt (gsi);
1399      result = gimple_phi_result (phi);
1400      gcc_assert (is_gimple_reg (result));
1401      register_new_def (result, SSA_NAME_VAR (result));
1402    }
1403
1404  /* Step 2.  Rewrite every variable used in each statement in the block
1405     with its immediate reaching definitions.  Update the current definition
1406     of a variable when a new real or virtual definition is found.  */
1407  if (TEST_BIT (interesting_blocks, bb->index))
1408    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1409      rewrite_stmt (gsi);
1410
1411  /* Step 3.  Visit all the successor blocks of BB looking for PHI nodes.
1412     For every PHI node found, add a new argument containing the current
1413     reaching definition for the variable and the edge through which that
1414     definition is reaching the PHI node.  */
1415  rewrite_add_phi_arguments (bb);
1416}
1417
1418
1419
1420/* Called after visiting all the statements in basic block BB and all
1421   of its dominator children.  Restore CURRDEFS to its original value.  */
1422
1423static void
1424rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1425		     basic_block bb ATTRIBUTE_UNUSED)
1426{
1427  /* Restore CURRDEFS to its original state.  */
1428  while (VEC_length (tree, block_defs_stack) > 0)
1429    {
1430      tree tmp = VEC_pop (tree, block_defs_stack);
1431      tree saved_def, var;
1432
1433      if (tmp == NULL_TREE)
1434	break;
1435
1436      if (TREE_CODE (tmp) == SSA_NAME)
1437	{
1438	  /* If we recorded an SSA_NAME, then make the SSA_NAME the
1439	     current definition of its underlying variable.  Note that
1440	     if the SSA_NAME is not for a GIMPLE register, the symbol
1441	     being defined is stored in the next slot in the stack.
1442	     This mechanism is needed because an SSA name for a
1443	     non-register symbol may be the definition for more than
1444	     one symbol (e.g., SFTs, aliased variables, etc).  */
1445	  saved_def = tmp;
1446	  var = SSA_NAME_VAR (saved_def);
1447	  if (!is_gimple_reg (var))
1448	    var = VEC_pop (tree, block_defs_stack);
1449	}
1450      else
1451	{
1452	  /* If we recorded anything else, it must have been a _DECL
1453	     node and its current reaching definition must have been
1454	     NULL.  */
1455	  saved_def = NULL;
1456	  var = tmp;
1457	}
1458
1459      set_current_def (var, saved_def);
1460    }
1461}
1462
1463
1464/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1465
1466void
1467dump_decl_set (FILE *file, bitmap set)
1468{
1469  if (set)
1470    {
1471      bitmap_iterator bi;
1472      unsigned i;
1473
1474      fprintf (file, "{ ");
1475
1476      EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1477	{
1478	  print_generic_expr (file, referenced_var (i), 0);
1479	  fprintf (file, " ");
1480	}
1481
1482      fprintf (file, "}");
1483    }
1484  else
1485    fprintf (file, "NIL");
1486}
1487
1488
1489/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1490
1491void
1492debug_decl_set (bitmap set)
1493{
1494  dump_decl_set (stderr, set);
1495  fprintf (stderr, "\n");
1496}
1497
1498
1499/* Dump the renaming stack (block_defs_stack) to FILE.  Traverse the
1500   stack up to a maximum of N levels.  If N is -1, the whole stack is
1501   dumped.  New levels are created when the dominator tree traversal
1502   used for renaming enters a new sub-tree.  */
1503
1504void
1505dump_defs_stack (FILE *file, int n)
1506{
1507  int i, j;
1508
1509  fprintf (file, "\n\nRenaming stack");
1510  if (n > 0)
1511    fprintf (file, " (up to %d levels)", n);
1512  fprintf (file, "\n\n");
1513
1514  i = 1;
1515  fprintf (file, "Level %d (current level)\n", i);
1516  for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1517    {
1518      tree name, var;
1519
1520      name = VEC_index (tree, block_defs_stack, j);
1521      if (name == NULL_TREE)
1522	{
1523	  i++;
1524	  if (n > 0 && i > n)
1525	    break;
1526	  fprintf (file, "\nLevel %d\n", i);
1527	  continue;
1528	}
1529
1530      if (DECL_P (name))
1531	{
1532	  var = name;
1533	  name = NULL_TREE;
1534	}
1535      else
1536	{
1537	  var = SSA_NAME_VAR (name);
1538	  if (!is_gimple_reg (var))
1539	    {
1540	      j--;
1541	      var = VEC_index (tree, block_defs_stack, j);
1542	    }
1543	}
1544
1545      fprintf (file, "    Previous CURRDEF (");
1546      print_generic_expr (file, var, 0);
1547      fprintf (file, ") = ");
1548      if (name)
1549	print_generic_expr (file, name, 0);
1550      else
1551	fprintf (file, "<NIL>");
1552      fprintf (file, "\n");
1553    }
1554}
1555
1556
1557/* Dump the renaming stack (block_defs_stack) to stderr.  Traverse the
1558   stack up to a maximum of N levels.  If N is -1, the whole stack is
1559   dumped.  New levels are created when the dominator tree traversal
1560   used for renaming enters a new sub-tree.  */
1561
1562void
1563debug_defs_stack (int n)
1564{
1565  dump_defs_stack (stderr, n);
1566}
1567
1568
1569/* Dump the current reaching definition of every symbol to FILE.  */
1570
1571void
1572dump_currdefs (FILE *file)
1573{
1574  referenced_var_iterator i;
1575  tree var;
1576
1577  fprintf (file, "\n\nCurrent reaching definitions\n\n");
1578  FOR_EACH_REFERENCED_VAR (var, i)
1579    if (SYMS_TO_RENAME (cfun) == NULL
1580	|| bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1581      {
1582	fprintf (file, "CURRDEF (");
1583	print_generic_expr (file, var, 0);
1584	fprintf (file, ") = ");
1585	if (get_current_def (var))
1586	  print_generic_expr (file, get_current_def (var), 0);
1587	else
1588	  fprintf (file, "<NIL>");
1589	fprintf (file, "\n");
1590      }
1591}
1592
1593
1594/* Dump the current reaching definition of every symbol to stderr.  */
1595
1596void
1597debug_currdefs (void)
1598{
1599  dump_currdefs (stderr);
1600}
1601
1602
1603/* Dump SSA information to FILE.  */
1604
1605void
1606dump_tree_ssa (FILE *file)
1607{
1608  const char *funcname
1609    = lang_hooks.decl_printable_name (current_function_decl, 2);
1610
1611  fprintf (file, "SSA renaming information for %s\n\n", funcname);
1612
1613  dump_def_blocks (file);
1614  dump_defs_stack (file, -1);
1615  dump_currdefs (file);
1616  dump_tree_ssa_stats (file);
1617}
1618
1619
1620/* Dump SSA information to stderr.  */
1621
1622void
1623debug_tree_ssa (void)
1624{
1625  dump_tree_ssa (stderr);
1626}
1627
1628
1629/* Dump statistics for the hash table HTAB.  */
1630
1631static void
1632htab_statistics (FILE *file, htab_t htab)
1633{
1634  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1635	   (long) htab_size (htab),
1636	   (long) htab_elements (htab),
1637	   htab_collisions (htab));
1638}
1639
1640
1641/* Dump SSA statistics on FILE.  */
1642
1643void
1644dump_tree_ssa_stats (FILE *file)
1645{
1646  if (def_blocks || repl_tbl)
1647    fprintf (file, "\nHash table statistics:\n");
1648
1649  if (def_blocks)
1650    {
1651      fprintf (file, "    def_blocks:   ");
1652      htab_statistics (file, def_blocks);
1653    }
1654
1655  if (repl_tbl)
1656    {
1657      fprintf (file, "    repl_tbl:     ");
1658      htab_statistics (file, repl_tbl);
1659    }
1660
1661  if (def_blocks || repl_tbl)
1662    fprintf (file, "\n");
1663}
1664
1665
1666/* Dump SSA statistics on stderr.  */
1667
1668void
1669debug_tree_ssa_stats (void)
1670{
1671  dump_tree_ssa_stats (stderr);
1672}
1673
1674
1675/* Hashing and equality functions for DEF_BLOCKS.  */
1676
1677static hashval_t
1678def_blocks_hash (const void *p)
1679{
1680  return htab_hash_pointer
1681	((const void *)((const struct def_blocks_d *)p)->var);
1682}
1683
1684static int
1685def_blocks_eq (const void *p1, const void *p2)
1686{
1687  return ((const struct def_blocks_d *)p1)->var
1688	 == ((const struct def_blocks_d *)p2)->var;
1689}
1690
1691
1692/* Free memory allocated by one entry in DEF_BLOCKS.  */
1693
1694static void
1695def_blocks_free (void *p)
1696{
1697  struct def_blocks_d *entry = (struct def_blocks_d *) p;
1698  BITMAP_FREE (entry->def_blocks);
1699  BITMAP_FREE (entry->phi_blocks);
1700  BITMAP_FREE (entry->livein_blocks);
1701  free (entry);
1702}
1703
1704
1705/* Callback for htab_traverse to dump the DEF_BLOCKS hash table.  */
1706
1707static int
1708debug_def_blocks_r (void **slot, void *data)
1709{
1710  FILE *file = (FILE *) data;
1711  struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1712
1713  fprintf (file, "VAR: ");
1714  print_generic_expr (file, db_p->var, dump_flags);
1715  bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1716  bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1717  bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1718
1719  return 1;
1720}
1721
1722
1723/* Dump the DEF_BLOCKS hash table on FILE.  */
1724
1725void
1726dump_def_blocks (FILE *file)
1727{
1728  fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1729  if (def_blocks)
1730    htab_traverse (def_blocks, debug_def_blocks_r, file);
1731}
1732
1733
1734/* Dump the DEF_BLOCKS hash table on stderr.  */
1735
1736void
1737debug_def_blocks (void)
1738{
1739  dump_def_blocks (stderr);
1740}
1741
1742
1743/* Register NEW_NAME to be the new reaching definition for OLD_NAME.  */
1744
1745static inline void
1746register_new_update_single (tree new_name, tree old_name)
1747{
1748  tree currdef = get_current_def (old_name);
1749
1750  /* Push the current reaching definition into BLOCK_DEFS_STACK.
1751     This stack is later used by the dominator tree callbacks to
1752     restore the reaching definitions for all the variables
1753     defined in the block after a recursive visit to all its
1754     immediately dominated blocks.  */
1755  VEC_reserve (tree, heap, block_defs_stack, 2);
1756  VEC_quick_push (tree, block_defs_stack, currdef);
1757  VEC_quick_push (tree, block_defs_stack, old_name);
1758
1759  /* Set the current reaching definition for OLD_NAME to be
1760     NEW_NAME.  */
1761  set_current_def (old_name, new_name);
1762}
1763
1764
1765/* Register NEW_NAME to be the new reaching definition for all the
1766   names in OLD_NAMES.  Used by the incremental SSA update routines to
1767   replace old SSA names with new ones.  */
1768
1769static inline void
1770register_new_update_set (tree new_name, bitmap old_names)
1771{
1772  bitmap_iterator bi;
1773  unsigned i;
1774
1775  EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1776    register_new_update_single (new_name, ssa_name (i));
1777}
1778
1779
1780
1781/* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1782   it is a symbol marked for renaming, replace it with USE_P's current
1783   reaching definition.  */
1784
1785static inline void
1786maybe_replace_use (use_operand_p use_p)
1787{
1788  tree rdef = NULL_TREE;
1789  tree use = USE_FROM_PTR (use_p);
1790  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1791
1792  if (symbol_marked_for_renaming (sym))
1793    rdef = get_reaching_def (sym);
1794  else if (is_old_name (use))
1795    rdef = get_reaching_def (use);
1796
1797  if (rdef && rdef != use)
1798    SET_USE (use_p, rdef);
1799}
1800
1801
1802/* Same as maybe_replace_use, but without introducing default stmts,
1803   returning false to indicate a need to do so.  */
1804
1805static inline bool
1806maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1807{
1808  tree rdef = NULL_TREE;
1809  tree use = USE_FROM_PTR (use_p);
1810  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1811
1812  if (symbol_marked_for_renaming (sym))
1813    rdef = get_current_def (sym);
1814  else if (is_old_name (use))
1815    {
1816      rdef = get_current_def (use);
1817      /* We can't assume that, if there's no current definition, the
1818	 default one should be used.  It could be the case that we've
1819	 rearranged blocks so that the earlier definition no longer
1820	 dominates the use.  */
1821      if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1822	rdef = use;
1823    }
1824  else
1825    rdef = use;
1826
1827  if (rdef && rdef != use)
1828    SET_USE (use_p, rdef);
1829
1830  return rdef != NULL_TREE;
1831}
1832
1833
1834/* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1835   or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1836   register it as the current definition for the names replaced by
1837   DEF_P.  */
1838
1839static inline void
1840maybe_register_def (def_operand_p def_p, gimple stmt,
1841		    gimple_stmt_iterator gsi)
1842{
1843  tree def = DEF_FROM_PTR (def_p);
1844  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1845
1846  /* If DEF is a naked symbol that needs renaming, create a new
1847     name for it.  */
1848  if (symbol_marked_for_renaming (sym))
1849    {
1850      if (DECL_P (def))
1851	{
1852	  tree tracked_var;
1853
1854	  def = make_ssa_name (def, stmt);
1855	  SET_DEF (def_p, def);
1856
1857	  tracked_var = target_for_debug_bind (sym);
1858	  if (tracked_var)
1859	    {
1860	      gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1861	      /* If stmt ends the bb, insert the debug stmt on the single
1862		 non-EH edge from the stmt.  */
1863	      if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1864		{
1865		  basic_block bb = gsi_bb (gsi);
1866		  edge_iterator ei;
1867		  edge e, ef = NULL;
1868		  FOR_EACH_EDGE (e, ei, bb->succs)
1869		    if (!(e->flags & EDGE_EH))
1870		      {
1871			gcc_assert (!ef);
1872			ef = e;
1873		      }
1874		  gcc_assert (ef
1875			      && single_pred_p (ef->dest)
1876			      && !phi_nodes (ef->dest)
1877			      && ef->dest != EXIT_BLOCK_PTR);
1878		  gsi_insert_on_edge_immediate (ef, note);
1879		}
1880	      else
1881		gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1882	    }
1883	}
1884
1885      register_new_update_single (def, sym);
1886    }
1887  else
1888    {
1889      /* If DEF is a new name, register it as a new definition
1890	 for all the names replaced by DEF.  */
1891      if (is_new_name (def))
1892	register_new_update_set (def, names_replaced_by (def));
1893
1894      /* If DEF is an old name, register DEF as a new
1895	 definition for itself.  */
1896      if (is_old_name (def))
1897	register_new_update_single (def, def);
1898    }
1899}
1900
1901
1902/* Update every variable used in the statement pointed-to by SI.  The
1903   statement is assumed to be in SSA form already.  Names in
1904   OLD_SSA_NAMES used by SI will be updated to their current reaching
1905   definition.  Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1906   will be registered as a new definition for their corresponding name
1907   in OLD_SSA_NAMES.  */
1908
1909static void
1910rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1911{
1912  use_operand_p use_p;
1913  def_operand_p def_p;
1914  ssa_op_iter iter;
1915
1916  /* Only update marked statements.  */
1917  if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1918    return;
1919
1920  if (dump_file && (dump_flags & TDF_DETAILS))
1921    {
1922      fprintf (dump_file, "Updating SSA information for statement ");
1923      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1924      fprintf (dump_file, "\n");
1925    }
1926
1927  /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1928     symbol is marked for renaming.  */
1929  if (rewrite_uses_p (stmt))
1930    {
1931      if (is_gimple_debug (stmt))
1932	{
1933	  bool failed = false;
1934
1935	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1936	    if (!maybe_replace_use_in_debug_stmt (use_p))
1937	      {
1938		failed = true;
1939		break;
1940	      }
1941
1942	  if (failed)
1943	    {
1944	      /* DOM sometimes threads jumps in such a way that a
1945		 debug stmt ends up referencing a SSA variable that no
1946		 longer dominates the debug stmt, but such that all
1947		 incoming definitions refer to the same definition in
1948		 an earlier dominator.  We could try to recover that
1949		 definition somehow, but this will have to do for now.
1950
1951		 Introducing a default definition, which is what
1952		 maybe_replace_use() would do in such cases, may
1953		 modify code generation, for the otherwise-unused
1954		 default definition would never go away, modifying SSA
1955		 version numbers all over.  */
1956	      gimple_debug_bind_reset_value (stmt);
1957	      update_stmt (stmt);
1958	    }
1959	}
1960      else
1961	{
1962	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1963	    maybe_replace_use (use_p);
1964	}
1965    }
1966
1967  /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1968     Also register definitions for names whose underlying symbol is
1969     marked for renaming.  */
1970  if (register_defs_p (stmt))
1971    FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1972      maybe_register_def (def_p, stmt, gsi);
1973}
1974
1975
1976/* Visit all the successor blocks of BB looking for PHI nodes.  For
1977   every PHI node found, check if any of its arguments is in
1978   OLD_SSA_NAMES.  If so, and if the argument has a current reaching
1979   definition, replace it.  */
1980
1981static void
1982rewrite_update_phi_arguments (basic_block bb)
1983{
1984  edge e;
1985  edge_iterator ei;
1986  unsigned i;
1987
1988  FOR_EACH_EDGE (e, ei, bb->succs)
1989    {
1990      gimple phi;
1991      gimple_vec phis;
1992
1993      if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1994	continue;
1995
1996      phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1997      for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1998	{
1999	  tree arg, lhs_sym, reaching_def = NULL;
2000	  use_operand_p arg_p;
2001
2002  	  gcc_assert (rewrite_uses_p (phi));
2003
2004	  arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2005	  arg = USE_FROM_PTR (arg_p);
2006
2007	  if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2008	    continue;
2009
2010	  lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2011
2012	  if (arg == NULL_TREE)
2013	    {
2014	      /* When updating a PHI node for a recently introduced
2015		 symbol we may find NULL arguments.  That's why we
2016		 take the symbol from the LHS of the PHI node.  */
2017	      reaching_def = get_reaching_def (lhs_sym);
2018
2019	    }
2020	  else
2021	    {
2022	      tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2023
2024	      if (symbol_marked_for_renaming (sym))
2025		reaching_def = get_reaching_def (sym);
2026	      else if (is_old_name (arg))
2027		reaching_def = get_reaching_def (arg);
2028	    }
2029
2030          /* Update the argument if there is a reaching def.  */
2031	  if (reaching_def)
2032	    {
2033	      gimple stmt;
2034	      source_location locus;
2035	      int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2036
2037	      SET_USE (arg_p, reaching_def);
2038	      stmt = SSA_NAME_DEF_STMT (reaching_def);
2039
2040	      /* Single element PHI nodes  behave like copies, so get the
2041		 location from the phi argument.  */
2042	      if (gimple_code (stmt) == GIMPLE_PHI &&
2043		  gimple_phi_num_args (stmt) == 1)
2044		locus = gimple_phi_arg_location (stmt, 0);
2045	      else
2046		locus = gimple_location (stmt);
2047
2048	      gimple_phi_arg_set_location (phi, arg_i, locus);
2049	    }
2050
2051
2052	  if (e->flags & EDGE_ABNORMAL)
2053	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2054	}
2055    }
2056}
2057
2058
2059/* Initialization of block data structures for the incremental SSA
2060   update pass.  Create a block local stack of reaching definitions
2061   for new SSA names produced in this block (BLOCK_DEFS).  Register
2062   new definitions for every PHI node in the block.  */
2063
2064static void
2065rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2066		            basic_block bb)
2067{
2068  edge e;
2069  edge_iterator ei;
2070  bool is_abnormal_phi;
2071  gimple_stmt_iterator gsi;
2072
2073  if (dump_file && (dump_flags & TDF_DETAILS))
2074    fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2075	     bb->index);
2076
2077  /* Mark the unwind point for this block.  */
2078  VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2079
2080  if (!bitmap_bit_p (blocks_to_update, bb->index))
2081    return;
2082
2083  /* Mark the LHS if any of the arguments flows through an abnormal
2084     edge.  */
2085  is_abnormal_phi = false;
2086  FOR_EACH_EDGE (e, ei, bb->preds)
2087    if (e->flags & EDGE_ABNORMAL)
2088      {
2089	is_abnormal_phi = true;
2090	break;
2091      }
2092
2093  /* If any of the PHI nodes is a replacement for a name in
2094     OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2095     register it as a new definition for its corresponding name.  Also
2096     register definitions for names whose underlying symbols are
2097     marked for renaming.  */
2098  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2099    {
2100      tree lhs, lhs_sym;
2101      gimple phi = gsi_stmt (gsi);
2102
2103      if (!register_defs_p (phi))
2104	continue;
2105
2106      lhs = gimple_phi_result (phi);
2107      lhs_sym = SSA_NAME_VAR (lhs);
2108
2109      if (symbol_marked_for_renaming (lhs_sym))
2110	register_new_update_single (lhs, lhs_sym);
2111      else
2112	{
2113
2114	  /* If LHS is a new name, register a new definition for all
2115	     the names replaced by LHS.  */
2116	  if (is_new_name (lhs))
2117	    register_new_update_set (lhs, names_replaced_by (lhs));
2118
2119	  /* If LHS is an OLD name, register it as a new definition
2120	     for itself.  */
2121	  if (is_old_name (lhs))
2122	    register_new_update_single (lhs, lhs);
2123	}
2124
2125      if (is_abnormal_phi)
2126	SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2127    }
2128
2129  /* Step 2.  Rewrite every variable used in each statement in the block.  */
2130  if (TEST_BIT (interesting_blocks, bb->index))
2131    {
2132      gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2133      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2134        rewrite_update_stmt (gsi_stmt (gsi), gsi);
2135    }
2136
2137  /* Step 3.  Update PHI nodes.  */
2138  rewrite_update_phi_arguments (bb);
2139}
2140
2141/* Called after visiting block BB.  Unwind BLOCK_DEFS_STACK to restore
2142   the current reaching definition of every name re-written in BB to
2143   the original reaching definition before visiting BB.  This
2144   unwinding must be done in the opposite order to what is done in
2145   register_new_update_set.  */
2146
2147static void
2148rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2149			    basic_block bb ATTRIBUTE_UNUSED)
2150{
2151  while (VEC_length (tree, block_defs_stack) > 0)
2152    {
2153      tree var = VEC_pop (tree, block_defs_stack);
2154      tree saved_def;
2155
2156      /* NULL indicates the unwind stop point for this block (see
2157	 rewrite_update_enter_block).  */
2158      if (var == NULL)
2159	return;
2160
2161      saved_def = VEC_pop (tree, block_defs_stack);
2162      set_current_def (var, saved_def);
2163    }
2164}
2165
2166
2167/* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2168   form.
2169
2170   ENTRY indicates the block where to start.  Every block dominated by
2171      ENTRY will be rewritten.
2172
2173   WHAT indicates what actions will be taken by the renamer (see enum
2174      rewrite_mode).
2175
2176   BLOCKS are the set of interesting blocks for the dominator walker
2177      to process.  If this set is NULL, then all the nodes dominated
2178      by ENTRY are walked.  Otherwise, blocks dominated by ENTRY that
2179      are not present in BLOCKS are ignored.  */
2180
2181static void
2182rewrite_blocks (basic_block entry, enum rewrite_mode what)
2183{
2184  struct dom_walk_data walk_data;
2185
2186  /* Rewrite all the basic blocks in the program.  */
2187  timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2188
2189  /* Setup callbacks for the generic dominator tree walker.  */
2190  memset (&walk_data, 0, sizeof (walk_data));
2191
2192  walk_data.dom_direction = CDI_DOMINATORS;
2193
2194  if (what == REWRITE_ALL)
2195    {
2196      walk_data.before_dom_children = rewrite_enter_block;
2197      walk_data.after_dom_children = rewrite_leave_block;
2198    }
2199  else if (what == REWRITE_UPDATE)
2200    {
2201      walk_data.before_dom_children = rewrite_update_enter_block;
2202      walk_data.after_dom_children = rewrite_update_leave_block;
2203    }
2204  else
2205    gcc_unreachable ();
2206
2207  block_defs_stack = VEC_alloc (tree, heap, 10);
2208
2209  /* Initialize the dominator walker.  */
2210  init_walk_dominator_tree (&walk_data);
2211
2212  /* Recursively walk the dominator tree rewriting each statement in
2213     each basic block.  */
2214  walk_dominator_tree (&walk_data, entry);
2215
2216  /* Finalize the dominator walker.  */
2217  fini_walk_dominator_tree (&walk_data);
2218
2219  /* Debugging dumps.  */
2220  if (dump_file && (dump_flags & TDF_STATS))
2221    {
2222      dump_dfa_stats (dump_file);
2223      if (def_blocks)
2224	dump_tree_ssa_stats (dump_file);
2225    }
2226
2227  VEC_free (tree, heap, block_defs_stack);
2228
2229  timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2230}
2231
2232
2233/* Block processing routine for mark_def_sites.  Clear the KILLS bitmap
2234   at the start of each block, and call mark_def_sites for each statement.  */
2235
2236static void
2237mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2238{
2239  struct mark_def_sites_global_data *gd;
2240  bitmap kills;
2241  gimple_stmt_iterator gsi;
2242
2243  gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2244  kills = gd->kills;
2245
2246  bitmap_clear (kills);
2247  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2248    mark_def_sites (bb, gsi_stmt (gsi), kills);
2249}
2250
2251
2252/* Mark the definition site blocks for each variable, so that we know
2253   where the variable is actually live.
2254
2255   The INTERESTING_BLOCKS global will be filled in with all the blocks
2256   that should be processed by the renamer.  It is assumed that the
2257   caller has already initialized and zeroed it.  */
2258
2259static void
2260mark_def_site_blocks (void)
2261{
2262  struct dom_walk_data walk_data;
2263  struct mark_def_sites_global_data mark_def_sites_global_data;
2264
2265  /* Setup callbacks for the generic dominator tree walker to find and
2266     mark definition sites.  */
2267  walk_data.dom_direction = CDI_DOMINATORS;
2268  walk_data.initialize_block_local_data = NULL;
2269  walk_data.before_dom_children = mark_def_sites_block;
2270  walk_data.after_dom_children = NULL;
2271
2272  /* Notice that this bitmap is indexed using variable UIDs, so it must be
2273     large enough to accommodate all the variables referenced in the
2274     function, not just the ones we are renaming.  */
2275  mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2276  walk_data.global_data = &mark_def_sites_global_data;
2277
2278  /* We do not have any local data.  */
2279  walk_data.block_local_data_size = 0;
2280
2281  /* Initialize the dominator walker.  */
2282  init_walk_dominator_tree (&walk_data);
2283
2284  /* Recursively walk the dominator tree.  */
2285  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2286
2287  /* Finalize the dominator walker.  */
2288  fini_walk_dominator_tree (&walk_data);
2289
2290  /* We no longer need this bitmap, clear and free it.  */
2291  BITMAP_FREE (mark_def_sites_global_data.kills);
2292}
2293
2294
2295/* Initialize internal data needed during renaming.  */
2296
2297static void
2298init_ssa_renamer (void)
2299{
2300  tree var;
2301  referenced_var_iterator rvi;
2302
2303  cfun->gimple_df->in_ssa_p = false;
2304
2305  /* Allocate memory for the DEF_BLOCKS hash table.  */
2306  gcc_assert (def_blocks == NULL);
2307  def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2308                            def_blocks_eq, def_blocks_free);
2309
2310  FOR_EACH_REFERENCED_VAR(var, rvi)
2311    set_current_def (var, NULL_TREE);
2312}
2313
2314
2315/* Deallocate internal data structures used by the renamer.  */
2316
2317static void
2318fini_ssa_renamer (void)
2319{
2320  if (def_blocks)
2321    {
2322      htab_delete (def_blocks);
2323      def_blocks = NULL;
2324    }
2325
2326  cfun->gimple_df->in_ssa_p = true;
2327}
2328
2329/* Main entry point into the SSA builder.  The renaming process
2330   proceeds in four main phases:
2331
2332   1- Compute dominance frontier and immediate dominators, needed to
2333      insert PHI nodes and rename the function in dominator tree
2334      order.
2335
2336   2- Find and mark all the blocks that define variables
2337      (mark_def_site_blocks).
2338
2339   3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2340
2341   4- Rename all the blocks (rewrite_blocks) and statements in the program.
2342
2343   Steps 3 and 4 are done using the dominator tree walker
2344   (walk_dominator_tree).  */
2345
2346static unsigned int
2347rewrite_into_ssa (void)
2348{
2349  bitmap *dfs;
2350  basic_block bb;
2351
2352  timevar_push (TV_TREE_SSA_OTHER);
2353
2354  /* Initialize operand data structures.  */
2355  init_ssa_operands ();
2356
2357  /* Initialize internal data needed by the renamer.  */
2358  init_ssa_renamer ();
2359
2360  /* Initialize the set of interesting blocks.  The callback
2361     mark_def_sites will add to this set those blocks that the renamer
2362     should process.  */
2363  interesting_blocks = sbitmap_alloc (last_basic_block);
2364  sbitmap_zero (interesting_blocks);
2365
2366  /* Initialize dominance frontier.  */
2367  dfs = XNEWVEC (bitmap, last_basic_block);
2368  FOR_EACH_BB (bb)
2369    dfs[bb->index] = BITMAP_ALLOC (NULL);
2370
2371  /* 1- Compute dominance frontiers.  */
2372  calculate_dominance_info (CDI_DOMINATORS);
2373  compute_dominance_frontiers (dfs);
2374
2375  /* 2- Find and mark definition sites.  */
2376  mark_def_site_blocks ();
2377
2378  /* 3- Insert PHI nodes at dominance frontiers of definition blocks.  */
2379  insert_phi_nodes (dfs);
2380
2381  /* 4- Rename all the blocks.  */
2382  rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2383
2384  /* Free allocated memory.  */
2385  FOR_EACH_BB (bb)
2386    BITMAP_FREE (dfs[bb->index]);
2387  free (dfs);
2388
2389  sbitmap_free (interesting_blocks);
2390
2391  fini_ssa_renamer ();
2392
2393  timevar_pop (TV_TREE_SSA_OTHER);
2394  return 0;
2395}
2396
2397
2398struct gimple_opt_pass pass_build_ssa =
2399{
2400 {
2401  GIMPLE_PASS,
2402  "ssa",				/* name */
2403  NULL,					/* gate */
2404  rewrite_into_ssa,			/* execute */
2405  NULL,					/* sub */
2406  NULL,					/* next */
2407  0,					/* static_pass_number */
2408  TV_NONE,				/* tv_id */
2409  PROP_cfg | PROP_referenced_vars,	/* properties_required */
2410  PROP_ssa,				/* properties_provided */
2411  0,					/* properties_destroyed */
2412  0,					/* todo_flags_start */
2413  TODO_dump_func
2414    | TODO_update_ssa_only_virtuals
2415    | TODO_verify_ssa
2416    | TODO_remove_unused_locals		/* todo_flags_finish */
2417 }
2418};
2419
2420
2421/* Mark the definition of VAR at STMT and BB as interesting for the
2422   renamer.  BLOCKS is the set of blocks that need updating.  */
2423
2424static void
2425mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2426{
2427  gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2428  set_register_defs (stmt, true);
2429
2430  if (insert_phi_p)
2431    {
2432      bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2433
2434      set_def_block (var, bb, is_phi_p);
2435
2436      /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2437	 site for both itself and all the old names replaced by it.  */
2438      if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2439	{
2440	  bitmap_iterator bi;
2441	  unsigned i;
2442	  bitmap set = names_replaced_by (var);
2443	  if (set)
2444	    EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2445	      set_def_block (ssa_name (i), bb, is_phi_p);
2446	}
2447    }
2448}
2449
2450
2451/* Mark the use of VAR at STMT and BB as interesting for the
2452   renamer.  INSERT_PHI_P is true if we are going to insert new PHI
2453   nodes.  */
2454
2455static inline void
2456mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2457{
2458  basic_block def_bb = gimple_bb (stmt);
2459
2460  mark_block_for_update (def_bb);
2461  mark_block_for_update (bb);
2462
2463  if (gimple_code (stmt) == GIMPLE_PHI)
2464    mark_phi_for_rewrite (def_bb, stmt);
2465  else
2466    {
2467      set_rewrite_uses (stmt, true);
2468
2469      if (is_gimple_debug (stmt))
2470	return;
2471    }
2472
2473  /* If VAR has not been defined in BB, then it is live-on-entry
2474     to BB.  Note that we cannot just use the block holding VAR's
2475     definition because if VAR is one of the names in OLD_SSA_NAMES,
2476     it will have several definitions (itself and all the names that
2477     replace it).  */
2478  if (insert_phi_p)
2479    {
2480      struct def_blocks_d *db_p = get_def_blocks_for (var);
2481      if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2482	set_livein_block (var, bb);
2483    }
2484}
2485
2486
2487/* Do a dominator walk starting at BB processing statements that
2488   reference symbols in SYMS_TO_RENAME.  This is very similar to
2489   mark_def_sites, but the scan handles statements whose operands may
2490   already be SSA names.
2491
2492   If INSERT_PHI_P is true, mark those uses as live in the
2493   corresponding block.  This is later used by the PHI placement
2494   algorithm to make PHI pruning decisions.
2495
2496   FIXME.  Most of this would be unnecessary if we could associate a
2497	   symbol to all the SSA names that reference it.  But that
2498	   sounds like it would be expensive to maintain.  Still, it
2499	   would be interesting to see if it makes better sense to do
2500	   that.  */
2501
2502static void
2503prepare_block_for_update (basic_block bb, bool insert_phi_p)
2504{
2505  basic_block son;
2506  gimple_stmt_iterator si;
2507  edge e;
2508  edge_iterator ei;
2509
2510  mark_block_for_update (bb);
2511
2512  /* Process PHI nodes marking interesting those that define or use
2513     the symbols that we are interested in.  */
2514  for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2515    {
2516      gimple phi = gsi_stmt (si);
2517      tree lhs_sym, lhs = gimple_phi_result (phi);
2518
2519      lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2520
2521      if (!symbol_marked_for_renaming (lhs_sym))
2522	continue;
2523
2524      mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2525
2526      /* Mark the uses in phi nodes as interesting.  It would be more correct
2527	 to process the arguments of the phi nodes of the successor edges of
2528	 BB at the end of prepare_block_for_update, however, that turns out
2529	 to be significantly more expensive.  Doing it here is conservatively
2530	 correct -- it may only cause us to believe a value to be live in a
2531	 block that also contains its definition, and thus insert a few more
2532	 phi nodes for it.  */
2533      FOR_EACH_EDGE (e, ei, bb->preds)
2534	mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2535    }
2536
2537  /* Process the statements.  */
2538  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2539    {
2540      gimple stmt;
2541      ssa_op_iter i;
2542      use_operand_p use_p;
2543      def_operand_p def_p;
2544
2545      stmt = gsi_stmt (si);
2546
2547      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2548	{
2549	  tree use = USE_FROM_PTR (use_p);
2550	  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2551	  if (symbol_marked_for_renaming (sym))
2552	    mark_use_interesting (sym, stmt, bb, insert_phi_p);
2553	}
2554
2555      FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2556	{
2557	  tree def = DEF_FROM_PTR (def_p);
2558	  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2559	  if (symbol_marked_for_renaming (sym))
2560	    mark_def_interesting (sym, stmt, bb, insert_phi_p);
2561	}
2562    }
2563
2564  /* Now visit all the blocks dominated by BB.  */
2565  for (son = first_dom_son (CDI_DOMINATORS, bb);
2566       son;
2567       son = next_dom_son (CDI_DOMINATORS, son))
2568    prepare_block_for_update (son, insert_phi_p);
2569}
2570
2571
2572/* Helper for prepare_names_to_update.  Mark all the use sites for
2573   NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2574   prepare_names_to_update.  */
2575
2576static void
2577prepare_use_sites_for (tree name, bool insert_phi_p)
2578{
2579  use_operand_p use_p;
2580  imm_use_iterator iter;
2581
2582  FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2583    {
2584      gimple stmt = USE_STMT (use_p);
2585      basic_block bb = gimple_bb (stmt);
2586
2587      if (gimple_code (stmt) == GIMPLE_PHI)
2588	{
2589	  int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2590	  edge e = gimple_phi_arg_edge (stmt, ix);
2591	  mark_use_interesting (name, stmt, e->src, insert_phi_p);
2592	}
2593      else
2594	{
2595	  /* For regular statements, mark this as an interesting use
2596	     for NAME.  */
2597	  mark_use_interesting (name, stmt, bb, insert_phi_p);
2598	}
2599    }
2600}
2601
2602
2603/* Helper for prepare_names_to_update.  Mark the definition site for
2604   NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2605   prepare_names_to_update.  */
2606
2607static void
2608prepare_def_site_for (tree name, bool insert_phi_p)
2609{
2610  gimple stmt;
2611  basic_block bb;
2612
2613  gcc_assert (names_to_release == NULL
2614	      || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2615
2616  stmt = SSA_NAME_DEF_STMT (name);
2617  bb = gimple_bb (stmt);
2618  if (bb)
2619    {
2620      gcc_assert (bb->index < last_basic_block);
2621      mark_block_for_update (bb);
2622      mark_def_interesting (name, stmt, bb, insert_phi_p);
2623    }
2624}
2625
2626
2627/* Mark definition and use sites of names in NEW_SSA_NAMES and
2628   OLD_SSA_NAMES.  INSERT_PHI_P is true if the caller wants to insert
2629   PHI nodes for newly created names.  */
2630
2631static void
2632prepare_names_to_update (bool insert_phi_p)
2633{
2634  unsigned i = 0;
2635  bitmap_iterator bi;
2636  sbitmap_iterator sbi;
2637
2638  /* If a name N from NEW_SSA_NAMES is also marked to be released,
2639     remove it from NEW_SSA_NAMES so that we don't try to visit its
2640     defining basic block (which most likely doesn't exist).  Notice
2641     that we cannot do the same with names in OLD_SSA_NAMES because we
2642     want to replace existing instances.  */
2643  if (names_to_release)
2644    EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2645      RESET_BIT (new_ssa_names, i);
2646
2647  /* First process names in NEW_SSA_NAMES.  Otherwise, uses of old
2648     names may be considered to be live-in on blocks that contain
2649     definitions for their replacements.  */
2650  EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2651    prepare_def_site_for (ssa_name (i), insert_phi_p);
2652
2653  /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2654     OLD_SSA_NAMES, but we have to ignore its definition site.  */
2655  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2656    {
2657      if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2658	prepare_def_site_for (ssa_name (i), insert_phi_p);
2659      prepare_use_sites_for (ssa_name (i), insert_phi_p);
2660    }
2661}
2662
2663
2664/* Dump all the names replaced by NAME to FILE.  */
2665
2666void
2667dump_names_replaced_by (FILE *file, tree name)
2668{
2669  unsigned i;
2670  bitmap old_set;
2671  bitmap_iterator bi;
2672
2673  print_generic_expr (file, name, 0);
2674  fprintf (file, " -> { ");
2675
2676  old_set = names_replaced_by (name);
2677  EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2678    {
2679      print_generic_expr (file, ssa_name (i), 0);
2680      fprintf (file, " ");
2681    }
2682
2683  fprintf (file, "}\n");
2684}
2685
2686
2687/* Dump all the names replaced by NAME to stderr.  */
2688
2689void
2690debug_names_replaced_by (tree name)
2691{
2692  dump_names_replaced_by (stderr, name);
2693}
2694
2695
2696/* Dump SSA update information to FILE.  */
2697
2698void
2699dump_update_ssa (FILE *file)
2700{
2701  unsigned i = 0;
2702  bitmap_iterator bi;
2703
2704  if (!need_ssa_update_p (cfun))
2705    return;
2706
2707  if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2708    {
2709      sbitmap_iterator sbi;
2710
2711      fprintf (file, "\nSSA replacement table\n");
2712      fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2713	             "O_1, ..., O_j\n\n");
2714
2715      EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2716	dump_names_replaced_by (file, ssa_name (i));
2717
2718      fprintf (file, "\n");
2719      fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2720	       update_ssa_stats.num_virtual_mappings);
2721      fprintf (file, "Number of real NEW -> OLD mappings:    %7u\n",
2722	       update_ssa_stats.num_total_mappings
2723	       - update_ssa_stats.num_virtual_mappings);
2724      fprintf (file, "Number of total NEW -> OLD mappings:   %7u\n",
2725	       update_ssa_stats.num_total_mappings);
2726
2727      fprintf (file, "\nNumber of virtual symbols: %u\n",
2728	       update_ssa_stats.num_virtual_symbols);
2729    }
2730
2731  if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2732    {
2733      fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2734      dump_decl_set (file, SYMS_TO_RENAME (cfun));
2735      fprintf (file, "\n");
2736    }
2737
2738  if (names_to_release && !bitmap_empty_p (names_to_release))
2739    {
2740      fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2741      EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2742	{
2743	  print_generic_expr (file, ssa_name (i), 0);
2744	  fprintf (file, " ");
2745	}
2746    }
2747
2748  fprintf (file, "\n\n");
2749}
2750
2751
2752/* Dump SSA update information to stderr.  */
2753
2754void
2755debug_update_ssa (void)
2756{
2757  dump_update_ssa (stderr);
2758}
2759
2760
2761/* Initialize data structures used for incremental SSA updates.  */
2762
2763static void
2764init_update_ssa (struct function *fn)
2765{
2766  /* Reserve more space than the current number of names.  The calls to
2767     add_new_name_mapping are typically done after creating new SSA
2768     names, so we'll need to reallocate these arrays.  */
2769  old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2770  sbitmap_zero (old_ssa_names);
2771
2772  new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2773  sbitmap_zero (new_ssa_names);
2774
2775  repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2776  names_to_release = NULL;
2777  memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2778  update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2779  update_ssa_initialized_fn = fn;
2780}
2781
2782
2783/* Deallocate data structures used for incremental SSA updates.  */
2784
2785void
2786delete_update_ssa (void)
2787{
2788  unsigned i;
2789  bitmap_iterator bi;
2790
2791  sbitmap_free (old_ssa_names);
2792  old_ssa_names = NULL;
2793
2794  sbitmap_free (new_ssa_names);
2795  new_ssa_names = NULL;
2796
2797  htab_delete (repl_tbl);
2798  repl_tbl = NULL;
2799
2800  bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2801  BITMAP_FREE (update_ssa_stats.virtual_symbols);
2802
2803  if (names_to_release)
2804    {
2805      EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2806	release_ssa_name (ssa_name (i));
2807      BITMAP_FREE (names_to_release);
2808    }
2809
2810  clear_ssa_name_info ();
2811
2812  fini_ssa_renamer ();
2813
2814  if (blocks_with_phis_to_rewrite)
2815    EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2816      {
2817	gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2818
2819	VEC_free (gimple, heap, phis);
2820	VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2821      }
2822
2823  BITMAP_FREE (blocks_with_phis_to_rewrite);
2824  BITMAP_FREE (blocks_to_update);
2825  update_ssa_initialized_fn = NULL;
2826}
2827
2828
2829/* Create a new name for OLD_NAME in statement STMT and replace the
2830   operand pointed to by DEF_P with the newly created name.  Return
2831   the new name and register the replacement mapping <NEW, OLD> in
2832   update_ssa's tables.  */
2833
2834tree
2835create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2836{
2837  tree new_name = duplicate_ssa_name (old_name, stmt);
2838
2839  SET_DEF (def, new_name);
2840
2841  if (gimple_code (stmt) == GIMPLE_PHI)
2842    {
2843      edge e;
2844      edge_iterator ei;
2845      basic_block bb = gimple_bb (stmt);
2846
2847      /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2848      FOR_EACH_EDGE (e, ei, bb->preds)
2849	if (e->flags & EDGE_ABNORMAL)
2850	  {
2851	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2852	    break;
2853	  }
2854    }
2855
2856  register_new_name_mapping (new_name, old_name);
2857
2858  /* For the benefit of passes that will be updating the SSA form on
2859     their own, set the current reaching definition of OLD_NAME to be
2860     NEW_NAME.  */
2861  set_current_def (old_name, new_name);
2862
2863  return new_name;
2864}
2865
2866
2867/* Register name NEW to be a replacement for name OLD.  This function
2868   must be called for every replacement that should be performed by
2869   update_ssa.  */
2870
2871void
2872register_new_name_mapping (tree new_tree, tree old)
2873{
2874  if (!update_ssa_initialized_fn)
2875    init_update_ssa (cfun);
2876
2877  gcc_assert (update_ssa_initialized_fn == cfun);
2878
2879  add_new_name_mapping (new_tree, old);
2880}
2881
2882
2883/* Register symbol SYM to be renamed by update_ssa.  */
2884
2885void
2886mark_sym_for_renaming (tree sym)
2887{
2888  bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2889}
2890
2891
2892/* Register all the symbols in SET to be renamed by update_ssa.  */
2893
2894void
2895mark_set_for_renaming (bitmap set)
2896{
2897  bitmap_iterator bi;
2898  unsigned i;
2899
2900  if (set == NULL || bitmap_empty_p (set))
2901    return;
2902
2903  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2904    mark_sym_for_renaming (referenced_var (i));
2905}
2906
2907
2908/* Return true if there is any work to be done by update_ssa
2909   for function FN.  */
2910
2911bool
2912need_ssa_update_p (struct function *fn)
2913{
2914  gcc_assert (fn != NULL);
2915  return (update_ssa_initialized_fn == fn
2916	  || (fn->gimple_df
2917	      && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2918}
2919
2920/* Return true if SSA name mappings have been registered for SSA updating.  */
2921
2922bool
2923name_mappings_registered_p (void)
2924{
2925  if (!update_ssa_initialized_fn)
2926    return false;
2927
2928  gcc_assert (update_ssa_initialized_fn == cfun);
2929
2930  return repl_tbl && htab_elements (repl_tbl) > 0;
2931}
2932
2933/* Return true if name N has been registered in the replacement table.  */
2934
2935bool
2936name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2937{
2938  if (!update_ssa_initialized_fn)
2939    return false;
2940
2941  gcc_assert (update_ssa_initialized_fn == cfun);
2942
2943  return is_new_name (n) || is_old_name (n);
2944}
2945
2946
2947/* Return the set of all the SSA names marked to be replaced.  */
2948
2949bitmap
2950ssa_names_to_replace (void)
2951{
2952  unsigned i = 0;
2953  bitmap ret;
2954  sbitmap_iterator sbi;
2955
2956  gcc_assert (update_ssa_initialized_fn == NULL
2957	      || update_ssa_initialized_fn == cfun);
2958
2959  ret = BITMAP_ALLOC (NULL);
2960  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2961    bitmap_set_bit (ret, i);
2962
2963  return ret;
2964}
2965
2966
2967/* Mark NAME to be released after update_ssa has finished.  */
2968
2969void
2970release_ssa_name_after_update_ssa (tree name)
2971{
2972  gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2973
2974  if (names_to_release == NULL)
2975    names_to_release = BITMAP_ALLOC (NULL);
2976
2977  bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2978}
2979
2980
2981/* Insert new PHI nodes to replace VAR.  DFS contains dominance
2982   frontier information.  BLOCKS is the set of blocks to be updated.
2983
2984   This is slightly different than the regular PHI insertion
2985   algorithm.  The value of UPDATE_FLAGS controls how PHI nodes for
2986   real names (i.e., GIMPLE registers) are inserted:
2987
2988   - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2989     nodes inside the region affected by the block that defines VAR
2990     and the blocks that define all its replacements.  All these
2991     definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2992
2993     First, we compute the entry point to the region (ENTRY).  This is
2994     given by the nearest common dominator to all the definition
2995     blocks. When computing the iterated dominance frontier (IDF), any
2996     block not strictly dominated by ENTRY is ignored.
2997
2998     We then call the standard PHI insertion algorithm with the pruned
2999     IDF.
3000
3001   - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3002     names is not pruned.  PHI nodes are inserted at every IDF block.  */
3003
3004static void
3005insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
3006                              unsigned update_flags)
3007{
3008  basic_block entry;
3009  struct def_blocks_d *db;
3010  bitmap idf, pruned_idf;
3011  bitmap_iterator bi;
3012  unsigned i;
3013
3014#if defined ENABLE_CHECKING
3015  if (TREE_CODE (var) == SSA_NAME)
3016    gcc_assert (is_old_name (var));
3017  else
3018    gcc_assert (symbol_marked_for_renaming (var));
3019#endif
3020
3021  /* Get all the definition sites for VAR.  */
3022  db = find_def_blocks_for (var);
3023
3024  /* No need to do anything if there were no definitions to VAR.  */
3025  if (db == NULL || bitmap_empty_p (db->def_blocks))
3026    return;
3027
3028  /* Compute the initial iterated dominance frontier.  */
3029  idf = compute_idf (db->def_blocks, dfs);
3030  pruned_idf = BITMAP_ALLOC (NULL);
3031
3032  if (TREE_CODE (var) == SSA_NAME)
3033    {
3034      if (update_flags == TODO_update_ssa)
3035	{
3036	  /* If doing regular SSA updates for GIMPLE registers, we are
3037	     only interested in IDF blocks dominated by the nearest
3038	     common dominator of all the definition blocks.  */
3039	  entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3040						    db->def_blocks);
3041	  if (entry != ENTRY_BLOCK_PTR)
3042	    EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3043	      if (BASIC_BLOCK (i) != entry
3044		  && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3045		bitmap_set_bit (pruned_idf, i);
3046	}
3047      else
3048	{
3049	  /* Otherwise, do not prune the IDF for VAR.  */
3050	  gcc_assert (update_flags == TODO_update_ssa_full_phi);
3051	  bitmap_copy (pruned_idf, idf);
3052	}
3053    }
3054  else
3055    {
3056      /* Otherwise, VAR is a symbol that needs to be put into SSA form
3057	 for the first time, so we need to compute the full IDF for
3058	 it.  */
3059      bitmap_copy (pruned_idf, idf);
3060    }
3061
3062  if (!bitmap_empty_p (pruned_idf))
3063    {
3064      /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3065	 are included in the region to be updated.  The feeding blocks
3066	 are important to guarantee that the PHI arguments are renamed
3067	 properly.  */
3068
3069      /* FIXME, this is not needed if we are updating symbols.  We are
3070	 already starting at the ENTRY block anyway.  */
3071      bitmap_ior_into (blocks, pruned_idf);
3072      EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3073	{
3074	  edge e;
3075	  edge_iterator ei;
3076	  basic_block bb = BASIC_BLOCK (i);
3077
3078	  FOR_EACH_EDGE (e, ei, bb->preds)
3079	    if (e->src->index >= 0)
3080	      bitmap_set_bit (blocks, e->src->index);
3081	}
3082
3083      insert_phi_nodes_for (var, pruned_idf, true);
3084    }
3085
3086  BITMAP_FREE (pruned_idf);
3087  BITMAP_FREE (idf);
3088}
3089
3090
3091/* Heuristic to determine whether SSA name mappings for virtual names
3092   should be discarded and their symbols rewritten from scratch.  When
3093   there is a large number of mappings for virtual names, the
3094   insertion of PHI nodes for the old names in the mappings takes
3095   considerable more time than if we inserted PHI nodes for the
3096   symbols instead.
3097
3098   Currently the heuristic takes these stats into account:
3099
3100   	- Number of mappings for virtual SSA names.
3101	- Number of distinct virtual symbols involved in those mappings.
3102
3103   If the number of virtual mappings is much larger than the number of
3104   virtual symbols, then it will be faster to compute PHI insertion
3105   spots for the symbols.  Even if this involves traversing the whole
3106   CFG, which is what happens when symbols are renamed from scratch.  */
3107
3108static bool
3109switch_virtuals_to_full_rewrite_p (void)
3110{
3111  if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3112    return false;
3113
3114  if (update_ssa_stats.num_virtual_mappings
3115      > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3116        * update_ssa_stats.num_virtual_symbols)
3117    return true;
3118
3119  return false;
3120}
3121
3122
3123/* Remove every virtual mapping and mark all the affected virtual
3124   symbols for renaming.  */
3125
3126static void
3127switch_virtuals_to_full_rewrite (void)
3128{
3129  unsigned i = 0;
3130  sbitmap_iterator sbi;
3131
3132  if (dump_file)
3133    {
3134      fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3135      fprintf (dump_file, "\tNumber of virtual mappings:       %7u\n",
3136	       update_ssa_stats.num_virtual_mappings);
3137      fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3138	       update_ssa_stats.num_virtual_symbols);
3139      fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3140	                  "faster than processing\nthe name mappings.\n\n");
3141    }
3142
3143  /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3144     Note that it is not really necessary to remove the mappings from
3145     REPL_TBL, that would only waste time.  */
3146  EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3147    if (!is_gimple_reg (ssa_name (i)))
3148      RESET_BIT (new_ssa_names, i);
3149
3150  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3151    if (!is_gimple_reg (ssa_name (i)))
3152      RESET_BIT (old_ssa_names, i);
3153
3154  mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3155}
3156
3157
3158/* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3159   existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3160
3161   1- The names in OLD_SSA_NAMES dominated by the definitions of
3162      NEW_SSA_NAMES are all re-written to be reached by the
3163      appropriate definition from NEW_SSA_NAMES.
3164
3165   2- If needed, new PHI nodes are added to the iterated dominance
3166      frontier of the blocks where each of NEW_SSA_NAMES are defined.
3167
3168   The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3169   calling register_new_name_mapping for every pair of names that the
3170   caller wants to replace.
3171
3172   The caller identifies the new names that have been inserted and the
3173   names that need to be replaced by calling register_new_name_mapping
3174   for every pair <NEW, OLD>.  Note that the function assumes that the
3175   new names have already been inserted in the IL.
3176
3177   For instance, given the following code:
3178
3179     1	L0:
3180     2	x_1 = PHI (0, x_5)
3181     3	if (x_1 < 10)
3182     4	  if (x_1 > 7)
3183     5	    y_2 = 0
3184     6	  else
3185     7	    y_3 = x_1 + x_7
3186     8	  endif
3187     9	  x_5 = x_1 + 1
3188     10   goto L0;
3189     11	endif
3190
3191   Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3192
3193     1	L0:
3194     2	x_1 = PHI (0, x_5)
3195     3	if (x_1 < 10)
3196     4	  x_10 = ...
3197     5	  if (x_1 > 7)
3198     6	    y_2 = 0
3199     7	  else
3200     8	    x_11 = ...
3201     9	    y_3 = x_1 + x_7
3202     10	  endif
3203     11	  x_5 = x_1 + 1
3204     12	  goto L0;
3205     13	endif
3206
3207   We want to replace all the uses of x_1 with the new definitions of
3208   x_10 and x_11.  Note that the only uses that should be replaced are
3209   those at lines 5, 9 and 11.  Also, the use of x_7 at line 9 should
3210   *not* be replaced (this is why we cannot just mark symbol 'x' for
3211   renaming).
3212
3213   Additionally, we may need to insert a PHI node at line 11 because
3214   that is a merge point for x_10 and x_11.  So the use of x_1 at line
3215   11 will be replaced with the new PHI node.  The insertion of PHI
3216   nodes is optional.  They are not strictly necessary to preserve the
3217   SSA form, and depending on what the caller inserted, they may not
3218   even be useful for the optimizers.  UPDATE_FLAGS controls various
3219   aspects of how update_ssa operates, see the documentation for
3220   TODO_update_ssa*.  */
3221
3222void
3223update_ssa (unsigned update_flags)
3224{
3225  basic_block bb, start_bb;
3226  bitmap_iterator bi;
3227  unsigned i = 0;
3228  bool insert_phi_p;
3229  sbitmap_iterator sbi;
3230
3231  if (!need_ssa_update_p (cfun))
3232    return;
3233
3234  timevar_push (TV_TREE_SSA_INCREMENTAL);
3235
3236  if (!update_ssa_initialized_fn)
3237    init_update_ssa (cfun);
3238  gcc_assert (update_ssa_initialized_fn == cfun);
3239
3240  blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3241  if (!phis_to_rewrite)
3242    phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3243  blocks_to_update = BITMAP_ALLOC (NULL);
3244
3245  /* Ensure that the dominance information is up-to-date.  */
3246  calculate_dominance_info (CDI_DOMINATORS);
3247
3248  /* Only one update flag should be set.  */
3249  gcc_assert (update_flags == TODO_update_ssa
3250              || update_flags == TODO_update_ssa_no_phi
3251	      || update_flags == TODO_update_ssa_full_phi
3252	      || update_flags == TODO_update_ssa_only_virtuals);
3253
3254  /* If we only need to update virtuals, remove all the mappings for
3255     real names before proceeding.  The caller is responsible for
3256     having dealt with the name mappings before calling update_ssa.  */
3257  if (update_flags == TODO_update_ssa_only_virtuals)
3258    {
3259      sbitmap_zero (old_ssa_names);
3260      sbitmap_zero (new_ssa_names);
3261      htab_empty (repl_tbl);
3262    }
3263
3264  insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3265
3266  if (insert_phi_p)
3267    {
3268      /* If the caller requested PHI nodes to be added, initialize
3269	 live-in information data structures (DEF_BLOCKS).  */
3270
3271      /* For each SSA name N, the DEF_BLOCKS table describes where the
3272	 name is defined, which blocks have PHI nodes for N, and which
3273	 blocks have uses of N (i.e., N is live-on-entry in those
3274	 blocks).  */
3275      def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3276				def_blocks_eq, def_blocks_free);
3277    }
3278  else
3279    {
3280      def_blocks = NULL;
3281    }
3282
3283  /* Heuristic to avoid massive slow downs when the replacement
3284     mappings include lots of virtual names.  */
3285  if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3286    switch_virtuals_to_full_rewrite ();
3287
3288  /* If there are names defined in the replacement table, prepare
3289     definition and use sites for all the names in NEW_SSA_NAMES and
3290     OLD_SSA_NAMES.  */
3291  if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3292    {
3293      prepare_names_to_update (insert_phi_p);
3294
3295      /* If all the names in NEW_SSA_NAMES had been marked for
3296	 removal, and there are no symbols to rename, then there's
3297	 nothing else to do.  */
3298      if (sbitmap_first_set_bit (new_ssa_names) < 0
3299	  && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3300	goto done;
3301    }
3302
3303  /* Next, determine the block at which to start the renaming process.  */
3304  if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3305    {
3306      /* If we have to rename some symbols from scratch, we need to
3307	 start the process at the root of the CFG.  FIXME, it should
3308	 be possible to determine the nearest block that had a
3309	 definition for each of the symbols that are marked for
3310	 updating.  For now this seems more work than it's worth.  */
3311      start_bb = ENTRY_BLOCK_PTR;
3312
3313      /* Traverse the CFG looking for existing definitions and uses of
3314	 symbols in SYMS_TO_RENAME.  Mark interesting blocks and
3315	 statements and set local live-in information for the PHI
3316	 placement heuristics.  */
3317      prepare_block_for_update (start_bb, insert_phi_p);
3318    }
3319  else
3320    {
3321      /* Otherwise, the entry block to the region is the nearest
3322	 common dominator for the blocks in BLOCKS.  */
3323      start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3324						   blocks_to_update);
3325    }
3326
3327  /* If requested, insert PHI nodes at the iterated dominance frontier
3328     of every block, creating new definitions for names in OLD_SSA_NAMES
3329     and for symbols in SYMS_TO_RENAME.  */
3330  if (insert_phi_p)
3331    {
3332      bitmap *dfs;
3333
3334      /* If the caller requested PHI nodes to be added, compute
3335	 dominance frontiers.  */
3336      dfs = XNEWVEC (bitmap, last_basic_block);
3337      FOR_EACH_BB (bb)
3338	dfs[bb->index] = BITMAP_ALLOC (NULL);
3339      compute_dominance_frontiers (dfs);
3340
3341      if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3342	{
3343	  sbitmap_iterator sbi;
3344
3345	  /* insert_update_phi_nodes_for will call add_new_name_mapping
3346	     when inserting new PHI nodes, so the set OLD_SSA_NAMES
3347	     will grow while we are traversing it (but it will not
3348	     gain any new members).  Copy OLD_SSA_NAMES to a temporary
3349	     for traversal.  */
3350	  sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3351	  sbitmap_copy (tmp, old_ssa_names);
3352	  EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3353	    insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3354	                                  update_flags);
3355	  sbitmap_free (tmp);
3356	}
3357
3358      EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3359	insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3360	                              update_flags);
3361
3362      FOR_EACH_BB (bb)
3363	BITMAP_FREE (dfs[bb->index]);
3364      free (dfs);
3365
3366      /* Insertion of PHI nodes may have added blocks to the region.
3367	 We need to re-compute START_BB to include the newly added
3368	 blocks.  */
3369      if (start_bb != ENTRY_BLOCK_PTR)
3370	start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3371						     blocks_to_update);
3372    }
3373
3374  /* Reset the current definition for name and symbol before renaming
3375     the sub-graph.  */
3376  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3377    set_current_def (ssa_name (i), NULL_TREE);
3378
3379  EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3380    set_current_def (referenced_var (i), NULL_TREE);
3381
3382  /* Now start the renaming process at START_BB.  */
3383  interesting_blocks = sbitmap_alloc (last_basic_block);
3384  sbitmap_zero (interesting_blocks);
3385  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3386    SET_BIT (interesting_blocks, i);
3387
3388  rewrite_blocks (start_bb, REWRITE_UPDATE);
3389
3390  sbitmap_free (interesting_blocks);
3391
3392  /* Debugging dumps.  */
3393  if (dump_file)
3394    {
3395      int c;
3396      unsigned i;
3397
3398      dump_update_ssa (dump_file);
3399
3400      fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3401	       start_bb->index);
3402
3403      c = 0;
3404      EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3405	c++;
3406      fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3407      fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3408	       c, PERCENT (c, last_basic_block));
3409
3410      if (dump_flags & TDF_DETAILS)
3411	{
3412	  fprintf (dump_file, "Affected blocks: ");
3413	  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3414	    fprintf (dump_file, "%u ", i);
3415	  fprintf (dump_file, "\n");
3416	}
3417
3418      fprintf (dump_file, "\n\n");
3419    }
3420
3421  /* Free allocated memory.  */
3422done:
3423  delete_update_ssa ();
3424
3425  timevar_pop (TV_TREE_SSA_INCREMENTAL);
3426}
3427