1/* Chains of recurrences.
2   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22/* This file implements operations on chains of recurrences.  Chains
23   of recurrences are used for modeling evolution functions of scalar
24   variables.
25*/
26
27#include "config.h"
28#include "system.h"
29#include "coretypes.h"
30#include "tm.h"
31#include "ggc.h"
32#include "tree.h"
33#include "real.h"
34#include "diagnostic.h"
35#include "cfgloop.h"
36#include "tree-flow.h"
37#include "tree-chrec.h"
38#include "tree-pass.h"
39#include "params.h"
40#include "flags.h"
41#include "tree-scalar-evolution.h"
42
43
44
45/* Extended folder for chrecs.  */
46
47/* Determines whether CST is not a constant evolution.  */
48
49static inline bool
50is_not_constant_evolution (const_tree cst)
51{
52  return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
53}
54
55/* Fold CODE for a polynomial function and a constant.  */
56
57static inline tree
58chrec_fold_poly_cst (enum tree_code code,
59		     tree type,
60		     tree poly,
61		     tree cst)
62{
63  gcc_assert (poly);
64  gcc_assert (cst);
65  gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
66  gcc_assert (!is_not_constant_evolution (cst));
67  gcc_assert (type == chrec_type (poly));
68
69  switch (code)
70    {
71    case PLUS_EXPR:
72      return build_polynomial_chrec
73	(CHREC_VARIABLE (poly),
74	 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
75	 CHREC_RIGHT (poly));
76
77    case MINUS_EXPR:
78      return build_polynomial_chrec
79	(CHREC_VARIABLE (poly),
80	 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
81	 CHREC_RIGHT (poly));
82
83    case MULT_EXPR:
84      return build_polynomial_chrec
85	(CHREC_VARIABLE (poly),
86	 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
87	 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88
89    default:
90      return chrec_dont_know;
91    }
92}
93
94/* Fold the addition of two polynomial functions.  */
95
96static inline tree
97chrec_fold_plus_poly_poly (enum tree_code code,
98			   tree type,
99			   tree poly0,
100			   tree poly1)
101{
102  tree left, right;
103  struct loop *loop0 = get_chrec_loop (poly0);
104  struct loop *loop1 = get_chrec_loop (poly1);
105  tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
106
107  gcc_assert (poly0);
108  gcc_assert (poly1);
109  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
110  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
111  if (POINTER_TYPE_P (chrec_type (poly0)))
112    gcc_assert (chrec_type (poly1) == sizetype);
113  else
114    gcc_assert (chrec_type (poly0) == chrec_type (poly1));
115  gcc_assert (type == chrec_type (poly0));
116
117  /*
118    {a, +, b}_1 + {c, +, d}_2  ->  {{a, +, b}_1 + c, +, d}_2,
119    {a, +, b}_2 + {c, +, d}_1  ->  {{c, +, d}_1 + a, +, b}_2,
120    {a, +, b}_x + {c, +, d}_x  ->  {a+c, +, b+d}_x.  */
121  if (flow_loop_nested_p (loop0, loop1))
122    {
123      if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
124	return build_polynomial_chrec
125	  (CHREC_VARIABLE (poly1),
126	   chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
127	   CHREC_RIGHT (poly1));
128      else
129	return build_polynomial_chrec
130	  (CHREC_VARIABLE (poly1),
131	   chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
132	   chrec_fold_multiply (type, CHREC_RIGHT (poly1),
133				SCALAR_FLOAT_TYPE_P (type)
134				? build_real (type, dconstm1)
135				: build_int_cst_type (type, -1)));
136    }
137
138  if (flow_loop_nested_p (loop1, loop0))
139    {
140      if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
141	return build_polynomial_chrec
142	  (CHREC_VARIABLE (poly0),
143	   chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
144	   CHREC_RIGHT (poly0));
145      else
146	return build_polynomial_chrec
147	  (CHREC_VARIABLE (poly0),
148	   chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
149	   CHREC_RIGHT (poly0));
150    }
151
152  /* This function should never be called for chrecs of loops that
153     do not belong to the same loop nest.  */
154  gcc_assert (loop0 == loop1);
155
156  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
157    {
158      left = chrec_fold_plus
159	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
160      right = chrec_fold_plus
161	(rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
162    }
163  else
164    {
165      left = chrec_fold_minus
166	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
167      right = chrec_fold_minus
168	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
169    }
170
171  if (chrec_zerop (right))
172    return left;
173  else
174    return build_polynomial_chrec
175      (CHREC_VARIABLE (poly0), left, right);
176}
177
178
179
180/* Fold the multiplication of two polynomial functions.  */
181
182static inline tree
183chrec_fold_multiply_poly_poly (tree type,
184			       tree poly0,
185			       tree poly1)
186{
187  tree t0, t1, t2;
188  int var;
189  struct loop *loop0 = get_chrec_loop (poly0);
190  struct loop *loop1 = get_chrec_loop (poly1);
191
192  gcc_assert (poly0);
193  gcc_assert (poly1);
194  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
195  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
196  gcc_assert (chrec_type (poly0) == chrec_type (poly1));
197  gcc_assert (type == chrec_type (poly0));
198
199  /* {a, +, b}_1 * {c, +, d}_2  ->  {c*{a, +, b}_1, +, d}_2,
200     {a, +, b}_2 * {c, +, d}_1  ->  {a*{c, +, d}_1, +, b}_2,
201     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
202  if (flow_loop_nested_p (loop0, loop1))
203    /* poly0 is a constant wrt. poly1.  */
204    return build_polynomial_chrec
205      (CHREC_VARIABLE (poly1),
206       chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
207       CHREC_RIGHT (poly1));
208
209  if (flow_loop_nested_p (loop1, loop0))
210    /* poly1 is a constant wrt. poly0.  */
211    return build_polynomial_chrec
212      (CHREC_VARIABLE (poly0),
213       chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
214       CHREC_RIGHT (poly0));
215
216  gcc_assert (loop0 == loop1);
217
218  /* poly0 and poly1 are two polynomials in the same variable,
219     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
220
221  /* "a*c".  */
222  t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
223
224  /* "a*d + b*c".  */
225  t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
226  t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
227						       CHREC_RIGHT (poly0),
228						       CHREC_LEFT (poly1)));
229  /* "b*d".  */
230  t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
231  /* "a*d + b*c + b*d".  */
232  t1 = chrec_fold_plus (type, t1, t2);
233  /* "2*b*d".  */
234  t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
235			    ? build_real (type, dconst2)
236			    : build_int_cst (type, 2), t2);
237
238  var = CHREC_VARIABLE (poly0);
239  return build_polynomial_chrec (var, t0,
240				 build_polynomial_chrec (var, t1, t2));
241}
242
243/* When the operands are automatically_generated_chrec_p, the fold has
244   to respect the semantics of the operands.  */
245
246static inline tree
247chrec_fold_automatically_generated_operands (tree op0,
248					     tree op1)
249{
250  if (op0 == chrec_dont_know
251      || op1 == chrec_dont_know)
252    return chrec_dont_know;
253
254  if (op0 == chrec_known
255      || op1 == chrec_known)
256    return chrec_known;
257
258  if (op0 == chrec_not_analyzed_yet
259      || op1 == chrec_not_analyzed_yet)
260    return chrec_not_analyzed_yet;
261
262  /* The default case produces a safe result.  */
263  return chrec_dont_know;
264}
265
266/* Fold the addition of two chrecs.  */
267
268static tree
269chrec_fold_plus_1 (enum tree_code code, tree type,
270		   tree op0, tree op1)
271{
272  tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
273
274  if (automatically_generated_chrec_p (op0)
275      || automatically_generated_chrec_p (op1))
276    return chrec_fold_automatically_generated_operands (op0, op1);
277
278  switch (TREE_CODE (op0))
279    {
280    case POLYNOMIAL_CHREC:
281      switch (TREE_CODE (op1))
282	{
283	case POLYNOMIAL_CHREC:
284	  return chrec_fold_plus_poly_poly (code, type, op0, op1);
285
286	CASE_CONVERT:
287	  if (tree_contains_chrecs (op1, NULL))
288	    return chrec_dont_know;
289
290	default:
291	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
292	    return build_polynomial_chrec
293	      (CHREC_VARIABLE (op0),
294	       chrec_fold_plus (type, CHREC_LEFT (op0), op1),
295	       CHREC_RIGHT (op0));
296	  else
297	    return build_polynomial_chrec
298	      (CHREC_VARIABLE (op0),
299	       chrec_fold_minus (type, CHREC_LEFT (op0), op1),
300	       CHREC_RIGHT (op0));
301	}
302
303    CASE_CONVERT:
304      if (tree_contains_chrecs (op0, NULL))
305	return chrec_dont_know;
306
307    default:
308      switch (TREE_CODE (op1))
309	{
310	case POLYNOMIAL_CHREC:
311	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
312	    return build_polynomial_chrec
313	      (CHREC_VARIABLE (op1),
314	       chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
315	       CHREC_RIGHT (op1));
316	  else
317	    return build_polynomial_chrec
318	      (CHREC_VARIABLE (op1),
319	       chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
320	       chrec_fold_multiply (type, CHREC_RIGHT (op1),
321				    SCALAR_FLOAT_TYPE_P (type)
322				    ? build_real (type, dconstm1)
323				    : build_int_cst_type (type, -1)));
324
325	CASE_CONVERT:
326	  if (tree_contains_chrecs (op1, NULL))
327	    return chrec_dont_know;
328
329	default:
330	  {
331	    int size = 0;
332	    if ((tree_contains_chrecs (op0, &size)
333		 || tree_contains_chrecs (op1, &size))
334		&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
335	      return build2 (code, type, op0, op1);
336	    else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
337	      return fold_build2 (code, type,
338				  fold_convert (type, op0),
339				  fold_convert (op1_type, op1));
340	    else
341	      return chrec_dont_know;
342	  }
343	}
344    }
345}
346
347/* Fold the addition of two chrecs.  */
348
349tree
350chrec_fold_plus (tree type,
351		 tree op0,
352		 tree op1)
353{
354  enum tree_code code;
355  if (automatically_generated_chrec_p (op0)
356      || automatically_generated_chrec_p (op1))
357    return chrec_fold_automatically_generated_operands (op0, op1);
358
359  if (integer_zerop (op0))
360    return chrec_convert (type, op1, NULL);
361  if (integer_zerop (op1))
362    return chrec_convert (type, op0, NULL);
363
364  if (POINTER_TYPE_P (type))
365    code = POINTER_PLUS_EXPR;
366  else
367    code = PLUS_EXPR;
368
369  return chrec_fold_plus_1 (code, type, op0, op1);
370}
371
372/* Fold the subtraction of two chrecs.  */
373
374tree
375chrec_fold_minus (tree type,
376		  tree op0,
377		  tree op1)
378{
379  if (automatically_generated_chrec_p (op0)
380      || automatically_generated_chrec_p (op1))
381    return chrec_fold_automatically_generated_operands (op0, op1);
382
383  if (integer_zerop (op1))
384    return op0;
385
386  return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
387}
388
389/* Fold the multiplication of two chrecs.  */
390
391tree
392chrec_fold_multiply (tree type,
393		     tree op0,
394		     tree op1)
395{
396  if (automatically_generated_chrec_p (op0)
397      || automatically_generated_chrec_p (op1))
398    return chrec_fold_automatically_generated_operands (op0, op1);
399
400  switch (TREE_CODE (op0))
401    {
402    case POLYNOMIAL_CHREC:
403      switch (TREE_CODE (op1))
404	{
405	case POLYNOMIAL_CHREC:
406	  return chrec_fold_multiply_poly_poly (type, op0, op1);
407
408	CASE_CONVERT:
409	  if (tree_contains_chrecs (op1, NULL))
410	    return chrec_dont_know;
411
412	default:
413	  if (integer_onep (op1))
414	    return op0;
415	  if (integer_zerop (op1))
416	    return build_int_cst (type, 0);
417
418	  return build_polynomial_chrec
419	    (CHREC_VARIABLE (op0),
420	     chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
421	     chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
422	}
423
424    CASE_CONVERT:
425      if (tree_contains_chrecs (op0, NULL))
426	return chrec_dont_know;
427
428    default:
429      if (integer_onep (op0))
430	return op1;
431
432      if (integer_zerop (op0))
433    	return build_int_cst (type, 0);
434
435      switch (TREE_CODE (op1))
436	{
437	case POLYNOMIAL_CHREC:
438	  return build_polynomial_chrec
439	    (CHREC_VARIABLE (op1),
440	     chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
441	     chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
442
443	CASE_CONVERT:
444	  if (tree_contains_chrecs (op1, NULL))
445	    return chrec_dont_know;
446
447	default:
448	  if (integer_onep (op1))
449	    return op0;
450	  if (integer_zerop (op1))
451	    return build_int_cst (type, 0);
452	  return fold_build2 (MULT_EXPR, type, op0, op1);
453	}
454    }
455}
456
457
458
459/* Operations.  */
460
461/* Evaluate the binomial coefficient.  Return NULL_TREE if the intermediate
462   calculation overflows, otherwise return C(n,k) with type TYPE.  */
463
464static tree
465tree_fold_binomial (tree type, tree n, unsigned int k)
466{
467  unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
468  HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
469  unsigned int i;
470  tree res;
471
472  /* Handle the most frequent cases.  */
473  if (k == 0)
474    return build_int_cst (type, 1);
475  if (k == 1)
476    return fold_convert (type, n);
477
478  /* Check that k <= n.  */
479  if (TREE_INT_CST_HIGH (n) == 0
480      && TREE_INT_CST_LOW (n) < k)
481    return NULL_TREE;
482
483  /* Numerator = n.  */
484  lnum = TREE_INT_CST_LOW (n);
485  hnum = TREE_INT_CST_HIGH (n);
486
487  /* Denominator = 2.  */
488  ldenom = 2;
489  hdenom = 0;
490
491  /* Index = Numerator-1.  */
492  if (lnum == 0)
493    {
494      hidx = hnum - 1;
495      lidx = ~ (unsigned HOST_WIDE_INT) 0;
496    }
497  else
498    {
499      hidx = hnum;
500      lidx = lnum - 1;
501    }
502
503  /* Numerator = Numerator*Index = n*(n-1).  */
504  if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
505    return NULL_TREE;
506
507  for (i = 3; i <= k; i++)
508    {
509      /* Index--.  */
510      if (lidx == 0)
511	{
512	  hidx--;
513	  lidx = ~ (unsigned HOST_WIDE_INT) 0;
514	}
515      else
516        lidx--;
517
518      /* Numerator *= Index.  */
519      if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
520	return NULL_TREE;
521
522      /* Denominator *= i.  */
523      mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
524    }
525
526  /* Result = Numerator / Denominator.  */
527  div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
528			&lres, &hres, &ldum, &hdum);
529
530  res = build_int_cst_wide (type, lres, hres);
531  return int_fits_type_p (res, type) ? res : NULL_TREE;
532}
533
534/* Helper function.  Use the Newton's interpolating formula for
535   evaluating the value of the evolution function.  */
536
537static tree
538chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
539{
540  tree arg0, arg1, binomial_n_k;
541  tree type = TREE_TYPE (chrec);
542  struct loop *var_loop = get_loop (var);
543
544  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
545	 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
546    chrec = CHREC_LEFT (chrec);
547
548  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
549      && CHREC_VARIABLE (chrec) == var)
550    {
551      arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
552      if (arg1 == chrec_dont_know)
553	return chrec_dont_know;
554      binomial_n_k = tree_fold_binomial (type, n, k);
555      if (!binomial_n_k)
556	return chrec_dont_know;
557      arg0 = fold_build2 (MULT_EXPR, type,
558			  CHREC_LEFT (chrec), binomial_n_k);
559      return chrec_fold_plus (type, arg0, arg1);
560    }
561
562  binomial_n_k = tree_fold_binomial (type, n, k);
563  if (!binomial_n_k)
564    return chrec_dont_know;
565
566  return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
567}
568
569/* Evaluates "CHREC (X)" when the varying variable is VAR.
570   Example:  Given the following parameters,
571
572   var = 1
573   chrec = {3, +, 4}_1
574   x = 10
575
576   The result is given by the Newton's interpolating formula:
577   3 * \binom{10}{0} + 4 * \binom{10}{1}.
578*/
579
580tree
581chrec_apply (unsigned var,
582	     tree chrec,
583	     tree x)
584{
585  tree type = chrec_type (chrec);
586  tree res = chrec_dont_know;
587
588  if (automatically_generated_chrec_p (chrec)
589      || automatically_generated_chrec_p (x)
590
591      /* When the symbols are defined in an outer loop, it is possible
592	 to symbolically compute the apply, since the symbols are
593	 constants with respect to the varying loop.  */
594      || chrec_contains_symbols_defined_in_loop (chrec, var))
595    return chrec_dont_know;
596
597  if (dump_file && (dump_flags & TDF_DETAILS))
598    fprintf (dump_file, "(chrec_apply \n");
599
600  if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
601    x = build_real_from_int_cst (type, x);
602
603  if (evolution_function_is_affine_p (chrec))
604    {
605      /* "{a, +, b} (x)"  ->  "a + b*x".  */
606      x = chrec_convert_rhs (type, x, NULL);
607      res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
608      res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
609    }
610
611  else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
612    res = chrec;
613
614  else if (TREE_CODE (x) == INTEGER_CST
615	   && tree_int_cst_sgn (x) == 1)
616    /* testsuite/.../ssa-chrec-38.c.  */
617    res = chrec_evaluate (var, chrec, x, 0);
618  else
619    res = chrec_dont_know;
620
621  if (dump_file && (dump_flags & TDF_DETAILS))
622    {
623      fprintf (dump_file, "  (varying_loop = %d\n", var);
624      fprintf (dump_file, ")\n  (chrec = ");
625      print_generic_expr (dump_file, chrec, 0);
626      fprintf (dump_file, ")\n  (x = ");
627      print_generic_expr (dump_file, x, 0);
628      fprintf (dump_file, ")\n  (res = ");
629      print_generic_expr (dump_file, res, 0);
630      fprintf (dump_file, "))\n");
631    }
632
633  return res;
634}
635
636/* Replaces the initial condition in CHREC with INIT_COND.  */
637
638tree
639chrec_replace_initial_condition (tree chrec,
640				 tree init_cond)
641{
642  if (automatically_generated_chrec_p (chrec))
643    return chrec;
644
645  gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
646
647  switch (TREE_CODE (chrec))
648    {
649    case POLYNOMIAL_CHREC:
650      return build_polynomial_chrec
651	(CHREC_VARIABLE (chrec),
652	 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
653	 CHREC_RIGHT (chrec));
654
655    default:
656      return init_cond;
657    }
658}
659
660/* Returns the initial condition of a given CHREC.  */
661
662tree
663initial_condition (tree chrec)
664{
665  if (automatically_generated_chrec_p (chrec))
666    return chrec;
667
668  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
669    return initial_condition (CHREC_LEFT (chrec));
670  else
671    return chrec;
672}
673
674/* Returns a univariate function that represents the evolution in
675   LOOP_NUM.  Mask the evolution of any other loop.  */
676
677tree
678hide_evolution_in_other_loops_than_loop (tree chrec,
679					 unsigned loop_num)
680{
681  struct loop *loop = get_loop (loop_num), *chloop;
682  if (automatically_generated_chrec_p (chrec))
683    return chrec;
684
685  switch (TREE_CODE (chrec))
686    {
687    case POLYNOMIAL_CHREC:
688      chloop = get_chrec_loop (chrec);
689
690      if (chloop == loop)
691	return build_polynomial_chrec
692	  (loop_num,
693	   hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
694						    loop_num),
695	   CHREC_RIGHT (chrec));
696
697      else if (flow_loop_nested_p (chloop, loop))
698	/* There is no evolution in this loop.  */
699	return initial_condition (chrec);
700
701      else
702	{
703	  gcc_assert (flow_loop_nested_p (loop, chloop));
704	  return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
705							  loop_num);
706	}
707
708    default:
709      return chrec;
710    }
711}
712
713/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
714   true, otherwise returns the initial condition in LOOP_NUM.  */
715
716static tree
717chrec_component_in_loop_num (tree chrec,
718			     unsigned loop_num,
719			     bool right)
720{
721  tree component;
722  struct loop *loop = get_loop (loop_num), *chloop;
723
724  if (automatically_generated_chrec_p (chrec))
725    return chrec;
726
727  switch (TREE_CODE (chrec))
728    {
729    case POLYNOMIAL_CHREC:
730      chloop = get_chrec_loop (chrec);
731
732      if (chloop == loop)
733	{
734	  if (right)
735	    component = CHREC_RIGHT (chrec);
736	  else
737	    component = CHREC_LEFT (chrec);
738
739	  if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
740	      || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
741	    return component;
742
743	  else
744	    return build_polynomial_chrec
745	      (loop_num,
746	       chrec_component_in_loop_num (CHREC_LEFT (chrec),
747					    loop_num,
748					    right),
749	       component);
750	}
751
752      else if (flow_loop_nested_p (chloop, loop))
753	/* There is no evolution part in this loop.  */
754	return NULL_TREE;
755
756      else
757	{
758	  gcc_assert (flow_loop_nested_p (loop, chloop));
759	  return chrec_component_in_loop_num (CHREC_LEFT (chrec),
760					      loop_num,
761					      right);
762	}
763
764     default:
765      if (right)
766	return NULL_TREE;
767      else
768	return chrec;
769    }
770}
771
772/* Returns the evolution part in LOOP_NUM.  Example: the call
773   evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
774   {1, +, 2}_1  */
775
776tree
777evolution_part_in_loop_num (tree chrec,
778			    unsigned loop_num)
779{
780  return chrec_component_in_loop_num (chrec, loop_num, true);
781}
782
783/* Returns the initial condition in LOOP_NUM.  Example: the call
784   initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
785   {0, +, 1}_1  */
786
787tree
788initial_condition_in_loop_num (tree chrec,
789			       unsigned loop_num)
790{
791  return chrec_component_in_loop_num (chrec, loop_num, false);
792}
793
794/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
795   This function is essentially used for setting the evolution to
796   chrec_dont_know, for example after having determined that it is
797   impossible to say how many times a loop will execute.  */
798
799tree
800reset_evolution_in_loop (unsigned loop_num,
801			 tree chrec,
802			 tree new_evol)
803{
804  struct loop *loop = get_loop (loop_num);
805
806  if (POINTER_TYPE_P (chrec_type (chrec)))
807    gcc_assert (sizetype == chrec_type (new_evol));
808  else
809    gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
810
811  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
812      && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
813    {
814      tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
815					   new_evol);
816      tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
817					    new_evol);
818      return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
819		     build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
820		     left, right);
821    }
822
823  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
824	 && CHREC_VARIABLE (chrec) == loop_num)
825    chrec = CHREC_LEFT (chrec);
826
827  return build_polynomial_chrec (loop_num, chrec, new_evol);
828}
829
830/* Merges two evolution functions that were found by following two
831   alternate paths of a conditional expression.  */
832
833tree
834chrec_merge (tree chrec1,
835	     tree chrec2)
836{
837  if (chrec1 == chrec_dont_know
838      || chrec2 == chrec_dont_know)
839    return chrec_dont_know;
840
841  if (chrec1 == chrec_known
842      || chrec2 == chrec_known)
843    return chrec_known;
844
845  if (chrec1 == chrec_not_analyzed_yet)
846    return chrec2;
847  if (chrec2 == chrec_not_analyzed_yet)
848    return chrec1;
849
850  if (eq_evolutions_p (chrec1, chrec2))
851    return chrec1;
852
853  return chrec_dont_know;
854}
855
856
857
858/* Observers.  */
859
860/* Helper function for is_multivariate_chrec.  */
861
862static bool
863is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
864{
865  if (chrec == NULL_TREE)
866    return false;
867
868  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
869    {
870      if (CHREC_VARIABLE (chrec) != rec_var)
871	return true;
872      else
873	return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
874		|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
875    }
876  else
877    return false;
878}
879
880/* Determine whether the given chrec is multivariate or not.  */
881
882bool
883is_multivariate_chrec (const_tree chrec)
884{
885  if (chrec == NULL_TREE)
886    return false;
887
888  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
889    return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
890				       CHREC_VARIABLE (chrec))
891	    || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
892					  CHREC_VARIABLE (chrec)));
893  else
894    return false;
895}
896
897/* Determines whether the chrec contains symbolic names or not.  */
898
899bool
900chrec_contains_symbols (const_tree chrec)
901{
902  int i, n;
903
904  if (chrec == NULL_TREE)
905    return false;
906
907  if (TREE_CODE (chrec) == SSA_NAME
908      || TREE_CODE (chrec) == VAR_DECL
909      || TREE_CODE (chrec) == PARM_DECL
910      || TREE_CODE (chrec) == FUNCTION_DECL
911      || TREE_CODE (chrec) == LABEL_DECL
912      || TREE_CODE (chrec) == RESULT_DECL
913      || TREE_CODE (chrec) == FIELD_DECL)
914    return true;
915
916  n = TREE_OPERAND_LENGTH (chrec);
917  for (i = 0; i < n; i++)
918    if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
919      return true;
920  return false;
921}
922
923/* Determines whether the chrec contains undetermined coefficients.  */
924
925bool
926chrec_contains_undetermined (const_tree chrec)
927{
928  int i, n;
929
930  if (chrec == chrec_dont_know)
931    return true;
932
933  if (chrec == NULL_TREE)
934    return false;
935
936  n = TREE_OPERAND_LENGTH (chrec);
937  for (i = 0; i < n; i++)
938    if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
939      return true;
940  return false;
941}
942
943/* Determines whether the tree EXPR contains chrecs, and increment
944   SIZE if it is not a NULL pointer by an estimation of the depth of
945   the tree.  */
946
947bool
948tree_contains_chrecs (const_tree expr, int *size)
949{
950  int i, n;
951
952  if (expr == NULL_TREE)
953    return false;
954
955  if (size)
956    (*size)++;
957
958  if (tree_is_chrec (expr))
959    return true;
960
961  n = TREE_OPERAND_LENGTH (expr);
962  for (i = 0; i < n; i++)
963    if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
964      return true;
965  return false;
966}
967
968/* Recursive helper function.  */
969
970static bool
971evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
972{
973  if (evolution_function_is_constant_p (chrec))
974    return true;
975
976  if (TREE_CODE (chrec) == SSA_NAME
977      && (loopnum == 0
978	  || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
979    return true;
980
981  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
982    {
983      if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
984	  || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
985						     loopnum)
986	  || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
987						     loopnum))
988	return false;
989      return true;
990    }
991
992  switch (TREE_OPERAND_LENGTH (chrec))
993    {
994    case 2:
995      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
996						  loopnum))
997	return false;
998
999    case 1:
1000      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1001						  loopnum))
1002	return false;
1003      return true;
1004
1005    default:
1006      return false;
1007    }
1008
1009  return false;
1010}
1011
1012/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1013
1014bool
1015evolution_function_is_invariant_p (tree chrec, int loopnum)
1016{
1017  return evolution_function_is_invariant_rec_p (chrec, loopnum);
1018}
1019
1020/* Determine whether the given tree is an affine multivariate
1021   evolution.  */
1022
1023bool
1024evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1025{
1026  if (chrec == NULL_TREE)
1027    return false;
1028
1029  switch (TREE_CODE (chrec))
1030    {
1031    case POLYNOMIAL_CHREC:
1032      if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1033	{
1034	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1035	    return true;
1036	  else
1037	    {
1038	      if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1039		  && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1040		     != CHREC_VARIABLE (chrec)
1041		  && evolution_function_is_affine_multivariate_p
1042		  (CHREC_RIGHT (chrec), loopnum))
1043		return true;
1044	      else
1045		return false;
1046	    }
1047	}
1048      else
1049	{
1050	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1051	      && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1052	      && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1053	      && evolution_function_is_affine_multivariate_p
1054	      (CHREC_LEFT (chrec), loopnum))
1055	    return true;
1056	  else
1057	    return false;
1058	}
1059
1060    default:
1061      return false;
1062    }
1063}
1064
1065/* Determine whether the given tree is a function in zero or one
1066   variables.  */
1067
1068bool
1069evolution_function_is_univariate_p (const_tree chrec)
1070{
1071  if (chrec == NULL_TREE)
1072    return true;
1073
1074  switch (TREE_CODE (chrec))
1075    {
1076    case POLYNOMIAL_CHREC:
1077      switch (TREE_CODE (CHREC_LEFT (chrec)))
1078	{
1079	case POLYNOMIAL_CHREC:
1080	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1081	    return false;
1082	  if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1083	    return false;
1084	  break;
1085
1086	default:
1087	  break;
1088	}
1089
1090      switch (TREE_CODE (CHREC_RIGHT (chrec)))
1091	{
1092	case POLYNOMIAL_CHREC:
1093	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1094	    return false;
1095	  if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1096	    return false;
1097	  break;
1098
1099	default:
1100	  break;
1101	}
1102
1103    default:
1104      return true;
1105    }
1106}
1107
1108/* Returns the number of variables of CHREC.  Example: the call
1109   nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2.  */
1110
1111unsigned
1112nb_vars_in_chrec (tree chrec)
1113{
1114  if (chrec == NULL_TREE)
1115    return 0;
1116
1117  switch (TREE_CODE (chrec))
1118    {
1119    case POLYNOMIAL_CHREC:
1120      return 1 + nb_vars_in_chrec
1121	(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1122
1123    default:
1124      return 0;
1125    }
1126}
1127
1128static tree chrec_convert_1 (tree, tree, gimple, bool);
1129
1130/* Converts BASE and STEP of affine scev to TYPE.  LOOP is the loop whose iv
1131   the scev corresponds to.  AT_STMT is the statement at that the scev is
1132   evaluated.  USE_OVERFLOW_SEMANTICS is true if this function should assume that
1133   the rules for overflow of the given language apply (e.g., that signed
1134   arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1135   tests, but also to enforce that the result follows them.  Returns true if the
1136   conversion succeeded, false otherwise.  */
1137
1138bool
1139convert_affine_scev (struct loop *loop, tree type,
1140		     tree *base, tree *step, gimple at_stmt,
1141		     bool use_overflow_semantics)
1142{
1143  tree ct = TREE_TYPE (*step);
1144  bool enforce_overflow_semantics;
1145  bool must_check_src_overflow, must_check_rslt_overflow;
1146  tree new_base, new_step;
1147  tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1148
1149  /* In general,
1150     (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1151     but we must check some assumptions.
1152
1153     1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1154        of CT is smaller than the precision of TYPE.  For example, when we
1155	cast unsigned char [254, +, 1] to unsigned, the values on left side
1156	are 254, 255, 0, 1, ..., but those on the right side are
1157	254, 255, 256, 257, ...
1158     2) In case that we must also preserve the fact that signed ivs do not
1159        overflow, we must additionally check that the new iv does not wrap.
1160	For example, unsigned char [125, +, 1] casted to signed char could
1161	become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1162	which would confuse optimizers that assume that this does not
1163	happen.  */
1164  must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1165
1166  enforce_overflow_semantics = (use_overflow_semantics
1167				&& nowrap_type_p (type));
1168  if (enforce_overflow_semantics)
1169    {
1170      /* We can avoid checking whether the result overflows in the following
1171	 cases:
1172
1173	 -- must_check_src_overflow is true, and the range of TYPE is superset
1174	    of the range of CT -- i.e., in all cases except if CT signed and
1175	    TYPE unsigned.
1176         -- both CT and TYPE have the same precision and signedness, and we
1177	    verify instead that the source does not overflow (this may be
1178	    easier than verifying it for the result, as we may use the
1179	    information about the semantics of overflow in CT).  */
1180      if (must_check_src_overflow)
1181	{
1182	  if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1183	    must_check_rslt_overflow = true;
1184	  else
1185	    must_check_rslt_overflow = false;
1186	}
1187      else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1188	       && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1189	{
1190	  must_check_rslt_overflow = false;
1191	  must_check_src_overflow = true;
1192	}
1193      else
1194	must_check_rslt_overflow = true;
1195    }
1196  else
1197    must_check_rslt_overflow = false;
1198
1199  if (must_check_src_overflow
1200      && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1201				use_overflow_semantics))
1202    return false;
1203
1204  new_base = chrec_convert_1 (type, *base, at_stmt,
1205			      use_overflow_semantics);
1206  /* The step must be sign extended, regardless of the signedness
1207     of CT and TYPE.  This only needs to be handled specially when
1208     CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1209     (with values 100, 99, 98, ...) from becoming signed or unsigned
1210     [100, +, 255] with values 100, 355, ...; the sign-extension is
1211     performed by default when CT is signed.  */
1212  new_step = *step;
1213  if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1214    new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1215				use_overflow_semantics);
1216  new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1217
1218  if (automatically_generated_chrec_p (new_base)
1219      || automatically_generated_chrec_p (new_step))
1220    return false;
1221
1222  if (must_check_rslt_overflow
1223      /* Note that in this case we cannot use the fact that signed variables
1224	 do not overflow, as this is what we are verifying for the new iv.  */
1225      && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1226    return false;
1227
1228  *base = new_base;
1229  *step = new_step;
1230  return true;
1231}
1232
1233
1234/* Convert CHREC for the right hand side of a CREC.
1235   The increment for a pointer type is always sizetype.  */
1236tree
1237chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1238{
1239  if (POINTER_TYPE_P (type))
1240   type = sizetype;
1241  return chrec_convert (type, chrec, at_stmt);
1242}
1243
1244/* Convert CHREC to TYPE.  When the analyzer knows the context in
1245   which the CHREC is built, it sets AT_STMT to the statement that
1246   contains the definition of the analyzed variable, otherwise the
1247   conversion is less accurate: the information is used for
1248   determining a more accurate estimation of the number of iterations.
1249   By default AT_STMT could be safely set to NULL_TREE.
1250
1251   The following rule is always true: TREE_TYPE (chrec) ==
1252   TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1253   An example of what could happen when adding two chrecs and the type
1254   of the CHREC_RIGHT is different than CHREC_LEFT is:
1255
1256   {(uint) 0, +, (uchar) 10} +
1257   {(uint) 0, +, (uchar) 250}
1258
1259   that would produce a wrong result if CHREC_RIGHT is not (uint):
1260
1261   {(uint) 0, +, (uchar) 4}
1262
1263   instead of
1264
1265   {(uint) 0, +, (uint) 260}
1266*/
1267
1268tree
1269chrec_convert (tree type, tree chrec, gimple at_stmt)
1270{
1271  return chrec_convert_1 (type, chrec, at_stmt, true);
1272}
1273
1274/* Convert CHREC to TYPE.  When the analyzer knows the context in
1275   which the CHREC is built, it sets AT_STMT to the statement that
1276   contains the definition of the analyzed variable, otherwise the
1277   conversion is less accurate: the information is used for
1278   determining a more accurate estimation of the number of iterations.
1279   By default AT_STMT could be safely set to NULL_TREE.
1280
1281   USE_OVERFLOW_SEMANTICS is true if this function should assume that
1282   the rules for overflow of the given language apply (e.g., that signed
1283   arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1284   tests, but also to enforce that the result follows them.  */
1285
1286static tree
1287chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1288		 bool use_overflow_semantics)
1289{
1290  tree ct, res;
1291  tree base, step;
1292  struct loop *loop;
1293
1294  if (automatically_generated_chrec_p (chrec))
1295    return chrec;
1296
1297  ct = chrec_type (chrec);
1298  if (ct == type)
1299    return chrec;
1300
1301  if (!evolution_function_is_affine_p (chrec))
1302    goto keep_cast;
1303
1304  loop = get_chrec_loop (chrec);
1305  base = CHREC_LEFT (chrec);
1306  step = CHREC_RIGHT (chrec);
1307
1308  if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1309			   use_overflow_semantics))
1310    return build_polynomial_chrec (loop->num, base, step);
1311
1312  /* If we cannot propagate the cast inside the chrec, just keep the cast.  */
1313keep_cast:
1314  /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1315     may be more expensive.  We do want to perform this optimization here
1316     though for canonicalization reasons.  */
1317  if (use_overflow_semantics
1318      && (TREE_CODE (chrec) == PLUS_EXPR
1319	  || TREE_CODE (chrec) == MINUS_EXPR)
1320      && TREE_CODE (type) == INTEGER_TYPE
1321      && TREE_CODE (ct) == INTEGER_TYPE
1322      && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1323      && TYPE_OVERFLOW_UNDEFINED (ct))
1324    res = fold_build2 (TREE_CODE (chrec), type,
1325		       fold_convert (type, TREE_OPERAND (chrec, 0)),
1326		       fold_convert (type, TREE_OPERAND (chrec, 1)));
1327  else
1328    res = fold_convert (type, chrec);
1329
1330  /* Don't propagate overflows.  */
1331  if (CONSTANT_CLASS_P (res))
1332    TREE_OVERFLOW (res) = 0;
1333
1334  /* But reject constants that don't fit in their type after conversion.
1335     This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1336     natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1337     and can cause problems later when computing niters of loops.  Note
1338     that we don't do the check before converting because we don't want
1339     to reject conversions of negative chrecs to unsigned types.  */
1340  if (TREE_CODE (res) == INTEGER_CST
1341      && TREE_CODE (type) == INTEGER_TYPE
1342      && !int_fits_type_p (res, type))
1343    res = chrec_dont_know;
1344
1345  return res;
1346}
1347
1348/* Convert CHREC to TYPE, without regard to signed overflows.  Returns the new
1349   chrec if something else than what chrec_convert would do happens, NULL_TREE
1350   otherwise.  */
1351
1352tree
1353chrec_convert_aggressive (tree type, tree chrec)
1354{
1355  tree inner_type, left, right, lc, rc, rtype;
1356
1357  if (automatically_generated_chrec_p (chrec)
1358      || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1359    return NULL_TREE;
1360
1361  inner_type = TREE_TYPE (chrec);
1362  if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1363    return NULL_TREE;
1364
1365  rtype = POINTER_TYPE_P (type) ? sizetype : type;
1366
1367  left = CHREC_LEFT (chrec);
1368  right = CHREC_RIGHT (chrec);
1369  lc = chrec_convert_aggressive (type, left);
1370  if (!lc)
1371    lc = chrec_convert (type, left, NULL);
1372  rc = chrec_convert_aggressive (rtype, right);
1373  if (!rc)
1374    rc = chrec_convert (rtype, right, NULL);
1375
1376  return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1377}
1378
1379/* Returns true when CHREC0 == CHREC1.  */
1380
1381bool
1382eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1383{
1384  if (chrec0 == NULL_TREE
1385      || chrec1 == NULL_TREE
1386      || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1387    return false;
1388
1389  if (chrec0 == chrec1)
1390    return true;
1391
1392  switch (TREE_CODE (chrec0))
1393    {
1394    case INTEGER_CST:
1395      return operand_equal_p (chrec0, chrec1, 0);
1396
1397    case POLYNOMIAL_CHREC:
1398      return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1399	      && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1400	      && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1401    default:
1402      return false;
1403    }
1404}
1405
1406/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1407   EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1408   which of these cases happens.  */
1409
1410enum ev_direction
1411scev_direction (const_tree chrec)
1412{
1413  const_tree step;
1414
1415  if (!evolution_function_is_affine_p (chrec))
1416    return EV_DIR_UNKNOWN;
1417
1418  step = CHREC_RIGHT (chrec);
1419  if (TREE_CODE (step) != INTEGER_CST)
1420    return EV_DIR_UNKNOWN;
1421
1422  if (tree_int_cst_sign_bit (step))
1423    return EV_DIR_DECREASES;
1424  else
1425    return EV_DIR_GROWS;
1426}
1427
1428/* Iterates over all the components of SCEV, and calls CBCK.  */
1429
1430void
1431for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1432{
1433  switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1434    {
1435    case 3:
1436      for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1437
1438    case 2:
1439      for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1440
1441    case 1:
1442      for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1443
1444    default:
1445      cbck (scev, data);
1446      break;
1447    }
1448}
1449
1450/* Returns true when the operation can be part of a linear
1451   expression.  */
1452
1453static inline bool
1454operator_is_linear (tree scev)
1455{
1456  switch (TREE_CODE (scev))
1457    {
1458    case INTEGER_CST:
1459    case POLYNOMIAL_CHREC:
1460    case PLUS_EXPR:
1461    case POINTER_PLUS_EXPR:
1462    case MULT_EXPR:
1463    case MINUS_EXPR:
1464    case NEGATE_EXPR:
1465    case SSA_NAME:
1466    case NON_LVALUE_EXPR:
1467    case BIT_NOT_EXPR:
1468    CASE_CONVERT:
1469      return true;
1470
1471    default:
1472      return false;
1473    }
1474}
1475
1476/* Return true when SCEV is a linear expression.  Linear expressions
1477   can contain additions, substractions and multiplications.
1478   Multiplications are restricted to constant scaling: "cst * x".  */
1479
1480bool
1481scev_is_linear_expression (tree scev)
1482{
1483  if (scev == NULL
1484      || !operator_is_linear (scev))
1485    return false;
1486
1487  if (TREE_CODE (scev) == MULT_EXPR)
1488    return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1489	     && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1490
1491  if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1492      && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1493    return false;
1494
1495  switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1496    {
1497    case 3:
1498      return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1499	&& scev_is_linear_expression (TREE_OPERAND (scev, 1))
1500	&& scev_is_linear_expression (TREE_OPERAND (scev, 2));
1501
1502    case 2:
1503      return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1504	&& scev_is_linear_expression (TREE_OPERAND (scev, 1));
1505
1506    case 1:
1507      return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1508
1509    case 0:
1510      return true;
1511
1512    default:
1513      return false;
1514    }
1515}
1516
1517/* Determines whether the expression CHREC contains only interger consts
1518   in the right parts.  */
1519
1520bool
1521evolution_function_right_is_integer_cst (const_tree chrec)
1522{
1523  if (chrec == NULL_TREE)
1524    return false;
1525
1526  switch (TREE_CODE (chrec))
1527    {
1528    case INTEGER_CST:
1529      return true;
1530
1531    case POLYNOMIAL_CHREC:
1532      return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1533	&& (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1534	    || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1535
1536    CASE_CONVERT:
1537      return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1538
1539    default:
1540      return false;
1541    }
1542}
1543
1544