1/* Instruction scheduling pass.  Selective scheduler and pipeliner.
2   Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "toplev.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
34#include "toplev.h"
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn.  */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass.  */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info.  */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists.  */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set.  */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils.  */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined.  */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71   each region.  */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index.  */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook.  */
78static struct cfg_hooks orig_cfg_hooks;
79
80
81/* Array containing reverse topological index of function basic blocks,
82   indexed by BB->INDEX.  */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array.  */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure.  */
89static struct
90{
91  /* The stack to which regsets are returned.  */
92  regset *v;
93
94  /* Its pointer.  */
95  int n;
96
97  /* Its size.  */
98  int s;
99
100  /* In VV we save all generated regsets so that, when destructing the
101     pool, we can compare it with V and check that every regset was returned
102     back to pool.  */
103  regset *vv;
104
105  /* The pointer of VV stack.  */
106  int nn;
107
108  /* Its size.  */
109  int ss;
110
111  /* The difference between allocated and returned regsets.  */
112  int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool.  */
116static struct
117{
118  /* The vector which holds previously emitted nops.  */
119  insn_t *v;
120
121  /* Its pointer.  */
122  int n;
123
124  /* Its size.  */
125  int s;
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes.  */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns.  */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134   EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
135rtx exit_insn = NULL_RTX;
136
137/* TRUE if while scheduling current region, which is loop, its preheader
138   was removed.  */
139bool preheader_removed = false;
140
141
142/* Forward static declarations.  */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
155static void sel_merge_blocks (basic_block, basic_block);
156static void sel_remove_loop_preheader (void);
157static bool bb_has_removable_jump_to_p (basic_block, basic_block);
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
162static void free_av_set (basic_block);
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
165static void sel_init_new_insn (insn_t, int);
166static void finish_insns (void);
167
168/* Various list functions.  */
169
170/* Copy an instruction list L.  */
171ilist_t
172ilist_copy (ilist_t l)
173{
174  ilist_t head = NULL, *tailp = &head;
175
176  while (l)
177    {
178      ilist_add (tailp, ILIST_INSN (l));
179      tailp = &ILIST_NEXT (*tailp);
180      l = ILIST_NEXT (l);
181    }
182
183  return head;
184}
185
186/* Invert an instruction list L.  */
187ilist_t
188ilist_invert (ilist_t l)
189{
190  ilist_t res = NULL;
191
192  while (l)
193    {
194      ilist_add (&res, ILIST_INSN (l));
195      l = ILIST_NEXT (l);
196    }
197
198  return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205  bnd_t bnd;
206
207  _list_add (lp);
208  bnd = BLIST_BND (*lp);
209
210  BND_TO (bnd) = to;
211  BND_PTR (bnd) = ptr;
212  BND_AV (bnd) = NULL;
213  BND_AV1 (bnd) = NULL;
214  BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP.  */
218void
219blist_remove (blist_t *lp)
220{
221  bnd_t b = BLIST_BND (*lp);
222
223  av_set_clear (&BND_AV (b));
224  av_set_clear (&BND_AV1 (b));
225  ilist_clear (&BND_PTR (b));
226
227  _list_remove (lp);
228}
229
230/* Init a fence tail L.  */
231void
232flist_tail_init (flist_tail_t l)
233{
234  FLIST_TAIL_HEAD (l) = NULL;
235  FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L.  */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242  while (l)
243    {
244      if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245	return FLIST_FENCE (l);
246
247      l = FLIST_NEXT (l);
248    }
249
250  return NULL;
251}
252
253/* Init the fields of F before running fill_insns.  */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257  FENCE_BNDS (f) = NULL;
258  FENCE_PROCESSED_P (f) = false;
259  FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
263static void
264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265           insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266           int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267           int cycle, int cycle_issued_insns, int issue_more,
268           bool starts_cycle_p, bool after_stall_p)
269{
270  fence_t f;
271
272  _list_add (lp);
273  f = FLIST_FENCE (*lp);
274
275  FENCE_INSN (f) = insn;
276
277  gcc_assert (state != NULL);
278  FENCE_STATE (f) = state;
279
280  FENCE_CYCLE (f) = cycle;
281  FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282  FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283  FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285  gcc_assert (dc != NULL);
286  FENCE_DC (f) = dc;
287
288  gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289  FENCE_TC (f) = tc;
290
291  FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292  FENCE_ISSUE_MORE (f) = issue_more;
293  FENCE_EXECUTING_INSNS (f) = executing_insns;
294  FENCE_READY_TICKS (f) = ready_ticks;
295  FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296  FENCE_SCHED_NEXT (f) = sched_next;
297
298  init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP.  */
302static void
303flist_remove (flist_t *lp)
304{
305  if (FENCE_INSN (FLIST_FENCE (*lp)))
306    fence_clear (FLIST_FENCE (*lp));
307  _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP.  */
311void
312flist_clear (flist_t *lp)
313{
314  while (*lp)
315    flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322  def_t d;
323
324  _list_add (dl);
325  d = DEF_LIST_DEF (*dl);
326
327  d->orig_insn = original_insn;
328  d->crosses_call = crosses_call;
329}
330
331
332/* Functions to work with target contexts.  */
333
334/* Bulk target context.  It is convenient for debugging purposes to ensure
335   that there are no uninitialized (null) target contexts.  */
336static tc_t bulk_tc = (tc_t) 1;
337
338/* Target hooks wrappers.  In the future we can provide some default
339   implementations for them.  */
340
341/* Allocate a store for the target context.  */
342static tc_t
343alloc_target_context (void)
344{
345  return (targetm.sched.alloc_sched_context
346	  ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350   If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351   Overwise, copy current backend context to TC.  */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355  if (targetm.sched.init_sched_context)
356    targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
360   int init_target_context ().  */
361tc_t
362create_target_context (bool clean_p)
363{
364  tc_t tc = alloc_target_context ();
365
366  init_target_context (tc, clean_p);
367  return tc;
368}
369
370/* Copy TC to the current backend context.  */
371void
372set_target_context (tc_t tc)
373{
374  if (targetm.sched.set_sched_context)
375    targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed.  Free any internal data.  */
379static void
380clear_target_context (tc_t tc)
381{
382  if (targetm.sched.clear_sched_context)
383    targetm.sched.clear_sched_context (tc);
384}
385
386/*  Clear and free it.  */
387static void
388delete_target_context (tc_t tc)
389{
390  clear_target_context (tc);
391
392  if (targetm.sched.free_sched_context)
393    targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397   NB: May be this should be a hook.  */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401  tc_t tmp = create_target_context (false);
402
403  set_target_context (from);
404  init_target_context (to, false);
405
406  set_target_context (tmp);
407  delete_target_context (tmp);
408}
409
410/* Create a copy of TC.  */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414  tc_t copy = alloc_target_context ();
415
416  copy_target_context (copy, tc);
417
418  return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
422   is the same as in init_target_context ().  */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426  clear_target_context (tc);
427  init_target_context (tc, clean_p);
428}
429
430/* Functions to work with dependence contexts.
431   Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432   context.  It accumulates information about processed insns to decide if
433   current insn is dependent on the processed ones.  */
434
435/* Make a copy of FROM in TO.  */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
439  init_deps (to, false);
440  deps_join (to, from);
441}
442
443/* Allocate store for dep context.  */
444static deps_t
445alloc_deps_context (void)
446{
447  return XNEW (struct deps_desc);
448}
449
450/* Allocate and initialize dep context.  */
451static deps_t
452create_deps_context (void)
453{
454  deps_t dc = alloc_deps_context ();
455
456  init_deps (dc, false);
457  return dc;
458}
459
460/* Create a copy of FROM.  */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464  deps_t to = alloc_deps_context ();
465
466  copy_deps_context (to, from);
467  return to;
468}
469
470/* Clean up internal data of DC.  */
471static void
472clear_deps_context (deps_t dc)
473{
474  free_deps (dc);
475}
476
477/* Clear and free DC.  */
478static void
479delete_deps_context (deps_t dc)
480{
481  clear_deps_context (dc);
482  free (dc);
483}
484
485/* Clear and init DC.  */
486static void
487reset_deps_context (deps_t dc)
488{
489  clear_deps_context (dc);
490  init_deps (dc, false);
491}
492
493/* This structure describes the dependence analysis hooks for advancing
494   dependence context.  */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496  {
497    NULL,
498
499    NULL, /* start_insn */
500    NULL, /* finish_insn */
501    NULL, /* start_lhs */
502    NULL, /* finish_lhs */
503    NULL, /* start_rhs */
504    NULL, /* finish_rhs */
505    haifa_note_reg_set,
506    haifa_note_reg_clobber,
507    haifa_note_reg_use,
508    NULL, /* note_mem_dep */
509    NULL, /* note_dep */
510
511    0, 0, 0
512  };
513
514/* Process INSN and add its impact on DC.  */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518  sched_deps_info = &advance_deps_context_sched_deps_info;
519  deps_analyze_insn (dc, insn);
520}
521
522
523/* Functions to work with DFA states.  */
524
525/* Allocate store for a DFA state.  */
526static state_t
527state_alloc (void)
528{
529  return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state.  */
533static state_t
534state_create (void)
535{
536  state_t state = state_alloc ();
537
538  state_reset (state);
539  advance_state (state);
540  return state;
541}
542
543/* Free DFA state.  */
544static void
545state_free (state_t state)
546{
547  free (state);
548}
549
550/* Make a copy of FROM in TO.  */
551static void
552state_copy (state_t to, state_t from)
553{
554  memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM.  */
558static state_t
559state_create_copy (state_t from)
560{
561  state_t to = state_alloc ();
562
563  state_copy (to, from);
564  return to;
565}
566
567
568/* Functions to work with fences.  */
569
570/* Clear the fence.  */
571static void
572fence_clear (fence_t f)
573{
574  state_t s = FENCE_STATE (f);
575  deps_t dc = FENCE_DC (f);
576  void *tc = FENCE_TC (f);
577
578  ilist_clear (&FENCE_BNDS (f));
579
580  gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581	      || (s == NULL && dc == NULL && tc == NULL));
582
583  if (s != NULL)
584    free (s);
585
586  if (dc != NULL)
587    delete_deps_context (dc);
588
589  if (tc != NULL)
590    delete_target_context (tc);
591  VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592  free (FENCE_READY_TICKS (f));
593  FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE.  */
597void
598init_fences (insn_t old_fence)
599{
600  insn_t succ;
601  succ_iterator si;
602  bool first = true;
603  int ready_ticks_size = get_max_uid () + 1;
604
605  FOR_EACH_SUCC_1 (succ, si, old_fence,
606                   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607    {
608
609      if (first)
610        first = false;
611      else
612        gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614      flist_add (&fences, succ,
615		 state_create (),
616		 create_deps_context () /* dc */,
617		 create_target_context (true) /* tc */,
618		 NULL_RTX /* last_scheduled_insn */,
619                 NULL, /* executing_insns */
620                 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621                 ready_ticks_size,
622                 NULL_RTX /* sched_next */,
623		 1 /* cycle */, 0 /* cycle_issued_insns */,
624		 issue_rate, /* issue_more */
625		 1 /* starts_cycle_p */, 0 /* after_stall_p */);
626    }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630   following rules: 1) state, target context and last scheduled insn are
631   propagated from fallthrough edge if it is available;
632   2) deps context and cycle is propagated from more probable edge;
633   3) all other fields are set to corresponding constant values.
634
635   INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636   READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637   and AFTER_STALL_P are the corresponding fields of the second fence.  */
638static void
639merge_fences (fence_t f, insn_t insn,
640	      state_t state, deps_t dc, void *tc,
641              rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642              int *ready_ticks, int ready_ticks_size,
643	      rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644{
645  insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647  gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648              && !sched_next && !FENCE_SCHED_NEXT (f));
649
650  /* Check if we can decide which path fences came.
651     If we can't (or don't want to) - reset all.  */
652  if (last_scheduled_insn == NULL
653      || last_scheduled_insn_old == NULL
654      /* This is a case when INSN is reachable on several paths from
655         one insn (this can happen when pipelining of outer loops is on and
656         there are two edges: one going around of inner loop and the other -
657         right through it; in such case just reset everything).  */
658      || last_scheduled_insn == last_scheduled_insn_old)
659    {
660      state_reset (FENCE_STATE (f));
661      state_free (state);
662
663      reset_deps_context (FENCE_DC (f));
664      delete_deps_context (dc);
665
666      reset_target_context (FENCE_TC (f), true);
667      delete_target_context (tc);
668
669      if (cycle > FENCE_CYCLE (f))
670        FENCE_CYCLE (f) = cycle;
671
672      FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673      FENCE_ISSUE_MORE (f) = issue_rate;
674      VEC_free (rtx, gc, executing_insns);
675      free (ready_ticks);
676      if (FENCE_EXECUTING_INSNS (f))
677        VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678                          VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679      if (FENCE_READY_TICKS (f))
680        memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681    }
682  else
683    {
684      edge edge_old = NULL, edge_new = NULL;
685      edge candidate;
686      succ_iterator si;
687      insn_t succ;
688
689      /* Find fallthrough edge.  */
690      gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691      candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
692
693      if (!candidate
694          || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695              && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696        {
697          /* No fallthrough edge leading to basic block of INSN.  */
698          state_reset (FENCE_STATE (f));
699          state_free (state);
700
701          reset_target_context (FENCE_TC (f), true);
702          delete_target_context (tc);
703
704          FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705	  FENCE_ISSUE_MORE (f) = issue_rate;
706        }
707      else
708        if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709          {
710            /* Would be weird if same insn is successor of several fallthrough
711               edges.  */
712            gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713                        != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715            state_free (FENCE_STATE (f));
716            FENCE_STATE (f) = state;
717
718            delete_target_context (FENCE_TC (f));
719            FENCE_TC (f) = tc;
720
721            FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722	    FENCE_ISSUE_MORE (f) = issue_more;
723          }
724        else
725          {
726            /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
727            state_free (state);
728            delete_target_context (tc);
729
730            gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731                        != BLOCK_FOR_INSN (last_scheduled_insn));
732          }
733
734        /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
735        FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736                         SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737          {
738            if (succ == insn)
739              {
740                /* No same successor allowed from several edges.  */
741                gcc_assert (!edge_old);
742                edge_old = si.e1;
743              }
744          }
745        /* Find edge of second predecessor (last_scheduled_insn->insn).  */
746        FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747                         SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748          {
749            if (succ == insn)
750              {
751                /* No same successor allowed from several edges.  */
752                gcc_assert (!edge_new);
753                edge_new = si.e1;
754              }
755          }
756
757        /* Check if we can choose most probable predecessor.  */
758        if (edge_old == NULL || edge_new == NULL)
759          {
760            reset_deps_context (FENCE_DC (f));
761            delete_deps_context (dc);
762            VEC_free (rtx, gc, executing_insns);
763            free (ready_ticks);
764
765            FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766            if (FENCE_EXECUTING_INSNS (f))
767              VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768                                VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769            if (FENCE_READY_TICKS (f))
770              memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771          }
772        else
773          if (edge_new->probability > edge_old->probability)
774            {
775              delete_deps_context (FENCE_DC (f));
776              FENCE_DC (f) = dc;
777              VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778              FENCE_EXECUTING_INSNS (f) = executing_insns;
779              free (FENCE_READY_TICKS (f));
780              FENCE_READY_TICKS (f) = ready_ticks;
781              FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782              FENCE_CYCLE (f) = cycle;
783            }
784          else
785            {
786              /* Leave DC and CYCLE untouched.  */
787              delete_deps_context (dc);
788              VEC_free (rtx, gc, executing_insns);
789              free (ready_ticks);
790            }
791    }
792
793  /* Fill remaining invariant fields.  */
794  if (after_stall_p)
795    FENCE_AFTER_STALL_P (f) = 1;
796
797  FENCE_ISSUED_INSNS (f) = 0;
798  FENCE_STARTS_CYCLE_P (f) = 1;
799  FENCE_SCHED_NEXT (f) = NULL;
800}
801
802/* Add a new fence to NEW_FENCES list, initializing it from all
803   other parameters.  */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
806               state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807               VEC(rtx, gc) *executing_insns, int *ready_ticks,
808               int ready_ticks_size, rtx sched_next, int cycle,
809               int cycle_issued_insns, int issue_rate,
810	       bool starts_cycle_p, bool after_stall_p)
811{
812  fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814  if (! f)
815    {
816      flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817		 last_scheduled_insn, executing_insns, ready_ticks,
818                 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819		 issue_rate, starts_cycle_p, after_stall_p);
820
821      FLIST_TAIL_TAILP (new_fences)
822	= &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823    }
824  else
825    {
826      merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827                    executing_insns, ready_ticks, ready_ticks_size,
828                    sched_next, cycle, issue_rate, after_stall_p);
829    }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836  fence_t f, old;
837  flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839  old = FLIST_FENCE (old_fences);
840  f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841                    FENCE_INSN (FLIST_FENCE (old_fences)));
842  if (f)
843    {
844      merge_fences (f, old->insn, old->state, old->dc, old->tc,
845                    old->last_scheduled_insn, old->executing_insns,
846                    old->ready_ticks, old->ready_ticks_size,
847                    old->sched_next, old->cycle, old->issue_more,
848                    old->after_stall_p);
849    }
850  else
851    {
852      _list_add (tailp);
853      FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854      *FLIST_FENCE (*tailp) = *old;
855      init_fence_for_scheduling (FLIST_FENCE (*tailp));
856    }
857  FENCE_INSN (old) = NULL;
858}
859
860/* Add a new fence to NEW_FENCES list and initialize most of its data
861   as a clean one.  */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865  int ready_ticks_size = get_max_uid () + 1;
866
867  add_to_fences (new_fences,
868                 succ, state_create (), create_deps_context (),
869                 create_target_context (true),
870                 NULL_RTX, NULL,
871                 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872                 NULL_RTX, FENCE_CYCLE (fence) + 1,
873                 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
874}
875
876/* Add a new fence to NEW_FENCES list and initialize all of its data
877   from FENCE and SUCC.  */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
881  int * new_ready_ticks
882    = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883
884  memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885          FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886  add_to_fences (new_fences,
887                 succ, state_create_copy (FENCE_STATE (fence)),
888                 create_copy_of_deps_context (FENCE_DC (fence)),
889                 create_copy_of_target_context (FENCE_TC (fence)),
890                 FENCE_LAST_SCHEDULED_INSN (fence),
891                 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892                 new_ready_ticks,
893                 FENCE_READY_TICKS_SIZE (fence),
894                 FENCE_SCHED_NEXT (fence),
895                 FENCE_CYCLE (fence),
896                 FENCE_ISSUED_INSNS (fence),
897		 FENCE_ISSUE_MORE (fence),
898                 FENCE_STARTS_CYCLE_P (fence),
899                 FENCE_AFTER_STALL_P (fence));
900}
901
902
903/* Functions to work with regset and nop pools.  */
904
905/* Returns the new regset from pool.  It might have some of the bits set
906   from the previous usage.  */
907regset
908get_regset_from_pool (void)
909{
910  regset rs;
911
912  if (regset_pool.n != 0)
913    rs = regset_pool.v[--regset_pool.n];
914  else
915    /* We need to create the regset.  */
916    {
917      rs = ALLOC_REG_SET (&reg_obstack);
918
919      if (regset_pool.nn == regset_pool.ss)
920	regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921                                     (regset_pool.ss = 2 * regset_pool.ss + 1));
922      regset_pool.vv[regset_pool.nn++] = rs;
923    }
924
925  regset_pool.diff++;
926
927  return rs;
928}
929
930/* Same as above, but returns the empty regset.  */
931regset
932get_clear_regset_from_pool (void)
933{
934  regset rs = get_regset_from_pool ();
935
936  CLEAR_REG_SET (rs);
937  return rs;
938}
939
940/* Return regset RS to the pool for future use.  */
941void
942return_regset_to_pool (regset rs)
943{
944  gcc_assert (rs);
945  regset_pool.diff--;
946
947  if (regset_pool.n == regset_pool.s)
948    regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949                                (regset_pool.s = 2 * regset_pool.s + 1));
950  regset_pool.v[regset_pool.n++] = rs;
951}
952
953#ifdef ENABLE_CHECKING
954/* This is used as a qsort callback for sorting regset pool stacks.
955   X and XX are addresses of two regsets.  They are never equal.  */
956static int
957cmp_v_in_regset_pool (const void *x, const void *xx)
958{
959  return *((const regset *) x) - *((const regset *) xx);
960}
961#endif
962
963/*  Free the regset pool possibly checking for memory leaks.  */
964void
965free_regset_pool (void)
966{
967#ifdef ENABLE_CHECKING
968  {
969    regset *v = regset_pool.v;
970    int i = 0;
971    int n = regset_pool.n;
972
973    regset *vv = regset_pool.vv;
974    int ii = 0;
975    int nn = regset_pool.nn;
976
977    int diff = 0;
978
979    gcc_assert (n <= nn);
980
981    /* Sort both vectors so it will be possible to compare them.  */
982    qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983    qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
984
985    while (ii < nn)
986      {
987        if (v[i] == vv[ii])
988          i++;
989        else
990          /* VV[II] was lost.  */
991          diff++;
992
993        ii++;
994      }
995
996    gcc_assert (diff == regset_pool.diff);
997  }
998#endif
999
1000  /* If not true - we have a memory leak.  */
1001  gcc_assert (regset_pool.diff == 0);
1002
1003  while (regset_pool.n)
1004    {
1005      --regset_pool.n;
1006      FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007    }
1008
1009  free (regset_pool.v);
1010  regset_pool.v = NULL;
1011  regset_pool.s = 0;
1012
1013  free (regset_pool.vv);
1014  regset_pool.vv = NULL;
1015  regset_pool.nn = 0;
1016  regset_pool.ss = 0;
1017
1018  regset_pool.diff = 0;
1019}
1020
1021
1022/* Functions to work with nop pools.  NOP insns are used as temporary
1023   placeholders of the insns being scheduled to allow correct update of
1024   the data sets.  When update is finished, NOPs are deleted.  */
1025
1026/* A vinsn that is used to represent a nop.  This vinsn is shared among all
1027   nops sel-sched generates.  */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool.  */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
1034  insn_t nop;
1035  bool old_p = nop_pool.n != 0;
1036  int flags;
1037
1038  if (old_p)
1039    nop = nop_pool.v[--nop_pool.n];
1040  else
1041    nop = nop_pattern;
1042
1043  nop = emit_insn_before (nop, insn);
1044
1045  if (old_p)
1046    flags = INSN_INIT_TODO_SSID;
1047  else
1048    flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
1050  set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051  sel_init_new_insn (nop, flags);
1052
1053  return nop;
1054}
1055
1056/* Remove NOP from the instruction stream and return it to the pool.  */
1057void
1058return_nop_to_pool (insn_t nop, bool full_tidying)
1059{
1060  gcc_assert (INSN_IN_STREAM_P (nop));
1061  sel_remove_insn (nop, false, full_tidying);
1062
1063  if (nop_pool.n == nop_pool.s)
1064    nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065                             (nop_pool.s = 2 * nop_pool.s + 1));
1066  nop_pool.v[nop_pool.n++] = nop;
1067}
1068
1069/* Free the nop pool.  */
1070void
1071free_nop_pool (void)
1072{
1073  nop_pool.n = 0;
1074  nop_pool.s = 0;
1075  free (nop_pool.v);
1076  nop_pool.v = NULL;
1077}
1078
1079
1080/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081   The callback is given two rtxes XX and YY and writes the new rtxes
1082   to NX and NY in case some needs to be skipped.  */
1083static int
1084skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085{
1086  const_rtx x = *xx;
1087  const_rtx y = *yy;
1088
1089  if (GET_CODE (x) == UNSPEC
1090      && (targetm.sched.skip_rtx_p == NULL
1091          || targetm.sched.skip_rtx_p (x)))
1092    {
1093      *nx = XVECEXP (x, 0, 0);
1094      *ny = CONST_CAST_RTX (y);
1095      return 1;
1096    }
1097
1098  if (GET_CODE (y) == UNSPEC
1099      && (targetm.sched.skip_rtx_p == NULL
1100          || targetm.sched.skip_rtx_p (y)))
1101    {
1102      *nx = CONST_CAST_RTX (x);
1103      *ny = XVECEXP (y, 0, 0);
1104      return 1;
1105    }
1106
1107  return 0;
1108}
1109
1110/* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1111   to support ia64 speculation.  When changes are needed, new rtx X and new mode
1112   NMODE are written, and the callback returns true.  */
1113static int
1114hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115                           rtx *nx, enum machine_mode* nmode)
1116{
1117  if (GET_CODE (x) == UNSPEC
1118      && targetm.sched.skip_rtx_p
1119      && targetm.sched.skip_rtx_p (x))
1120    {
1121      *nx = XVECEXP (x, 0 ,0);
1122      *nmode = VOIDmode;
1123      return 1;
1124    }
1125
1126  return 0;
1127}
1128
1129/* Returns LHS and RHS are ok to be scheduled separately.  */
1130static bool
1131lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132{
1133  if (lhs == NULL || rhs == NULL)
1134    return false;
1135
1136  /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137     to use reg, if const can be used.  Moreover, scheduling const as rhs may
1138     lead to mode mismatch cause consts don't have modes but they could be
1139     merged from branches where the same const used in different modes.  */
1140  if (CONSTANT_P (rhs))
1141    return false;
1142
1143  /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1144  if (COMPARISON_P (rhs))
1145      return false;
1146
1147  /* Do not allow single REG to be an rhs.  */
1148  if (REG_P (rhs))
1149    return false;
1150
1151  /* See comment at find_used_regs_1 (*1) for explanation of this
1152     restriction.  */
1153  /* FIXME: remove this later.  */
1154  if (MEM_P (lhs))
1155    return false;
1156
1157  /* This will filter all tricky things like ZERO_EXTRACT etc.
1158     For now we don't handle it.  */
1159  if (!REG_P (lhs) && !MEM_P (lhs))
1160    return false;
1161
1162  return true;
1163}
1164
1165/* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1166   FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1167   used e.g. for insns from recovery blocks.  */
1168static void
1169vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170{
1171  hash_rtx_callback_function hrcf;
1172  int insn_class;
1173
1174  VINSN_INSN_RTX (vi) = insn;
1175  VINSN_COUNT (vi) = 0;
1176  vi->cost = -1;
1177
1178  if (INSN_NOP_P (insn))
1179    return;
1180
1181  if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182    init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183  else
1184    deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1185
1186  /* Hash vinsn depending on whether it is separable or not.  */
1187  hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188  if (VINSN_SEPARABLE_P (vi))
1189    {
1190      rtx rhs = VINSN_RHS (vi);
1191
1192      VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193                                     NULL, NULL, false, hrcf);
1194      VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195                                         VOIDmode, NULL, NULL,
1196                                         false, hrcf);
1197    }
1198  else
1199    {
1200      VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201                                     NULL, NULL, false, hrcf);
1202      VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203    }
1204
1205  insn_class = haifa_classify_insn (insn);
1206  if (insn_class >= 2
1207      && (!targetm.sched.get_insn_spec_ds
1208          || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209              == 0)))
1210    VINSN_MAY_TRAP_P (vi) = true;
1211  else
1212    VINSN_MAY_TRAP_P (vi) = false;
1213}
1214
1215/* Indicate that VI has become the part of an rtx object.  */
1216void
1217vinsn_attach (vinsn_t vi)
1218{
1219  /* Assert that VI is not pending for deletion.  */
1220  gcc_assert (VINSN_INSN_RTX (vi));
1221
1222  VINSN_COUNT (vi)++;
1223}
1224
1225/* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1226   VINSN_TYPE (VI).  */
1227static vinsn_t
1228vinsn_create (insn_t insn, bool force_unique_p)
1229{
1230  vinsn_t vi = XCNEW (struct vinsn_def);
1231
1232  vinsn_init (vi, insn, force_unique_p);
1233  return vi;
1234}
1235
1236/* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1237   the copy.  */
1238vinsn_t
1239vinsn_copy (vinsn_t vi, bool reattach_p)
1240{
1241  rtx copy;
1242  bool unique = VINSN_UNIQUE_P (vi);
1243  vinsn_t new_vi;
1244
1245  copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246  new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247  if (reattach_p)
1248    {
1249      vinsn_detach (vi);
1250      vinsn_attach (new_vi);
1251    }
1252
1253  return new_vi;
1254}
1255
1256/* Delete the VI vinsn and free its data.  */
1257static void
1258vinsn_delete (vinsn_t vi)
1259{
1260  gcc_assert (VINSN_COUNT (vi) == 0);
1261
1262  if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263    {
1264      return_regset_to_pool (VINSN_REG_SETS (vi));
1265      return_regset_to_pool (VINSN_REG_USES (vi));
1266      return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267    }
1268
1269  free (vi);
1270}
1271
1272/* Indicate that VI is no longer a part of some rtx object.
1273   Remove VI if it is no longer needed.  */
1274void
1275vinsn_detach (vinsn_t vi)
1276{
1277  gcc_assert (VINSN_COUNT (vi) > 0);
1278
1279  if (--VINSN_COUNT (vi) == 0)
1280    vinsn_delete (vi);
1281}
1282
1283/* Returns TRUE if VI is a branch.  */
1284bool
1285vinsn_cond_branch_p (vinsn_t vi)
1286{
1287  insn_t insn;
1288
1289  if (!VINSN_UNIQUE_P (vi))
1290    return false;
1291
1292  insn = VINSN_INSN_RTX (vi);
1293  if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294    return false;
1295
1296  return control_flow_insn_p (insn);
1297}
1298
1299/* Return latency of INSN.  */
1300static int
1301sel_insn_rtx_cost (rtx insn)
1302{
1303  int cost;
1304
1305  /* A USE insn, or something else we don't need to
1306     understand.  We can't pass these directly to
1307     result_ready_cost or insn_default_latency because it will
1308     trigger a fatal error for unrecognizable insns.  */
1309  if (recog_memoized (insn) < 0)
1310    cost = 0;
1311  else
1312    {
1313      cost = insn_default_latency (insn);
1314
1315      if (cost < 0)
1316	cost = 0;
1317    }
1318
1319  return cost;
1320}
1321
1322/* Return the cost of the VI.
1323   !!! FIXME: Unify with haifa-sched.c: insn_cost ().  */
1324int
1325sel_vinsn_cost (vinsn_t vi)
1326{
1327  int cost = vi->cost;
1328
1329  if (cost < 0)
1330    {
1331      cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332      vi->cost = cost;
1333    }
1334
1335  return cost;
1336}
1337
1338
1339/* Functions for insn emitting.  */
1340
1341/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342   EXPR and SEQNO.  */
1343insn_t
1344sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345{
1346  insn_t new_insn;
1347
1348  gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
1350  new_insn = emit_insn_after (pattern, after);
1351  set_insn_init (expr, NULL, seqno);
1352  sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
1354  return new_insn;
1355}
1356
1357/* Force newly generated vinsns to be unique.  */
1358static bool init_insn_force_unique_p = false;
1359
1360/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361   initialize its data from EXPR and SEQNO.  */
1362insn_t
1363sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364				      insn_t after)
1365{
1366  insn_t insn;
1367
1368  gcc_assert (!init_insn_force_unique_p);
1369
1370  init_insn_force_unique_p = true;
1371  insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372  CANT_MOVE (insn) = 1;
1373  init_insn_force_unique_p = false;
1374
1375  return insn;
1376}
1377
1378/* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1379   take it as a new vinsn instead of EXPR's vinsn.
1380   We simplify insns later, after scheduling region in
1381   simplify_changed_insns.  */
1382insn_t
1383sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384                              insn_t after)
1385{
1386  expr_t emit_expr;
1387  insn_t insn;
1388  int flags;
1389
1390  emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391                             seqno);
1392  insn = EXPR_INSN_RTX (emit_expr);
1393  add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1394
1395  flags = INSN_INIT_TODO_SSID;
1396  if (INSN_LUID (insn) == 0)
1397    flags |= INSN_INIT_TODO_LUID;
1398  sel_init_new_insn (insn, flags);
1399
1400  return insn;
1401}
1402
1403/* Move insn from EXPR after AFTER.  */
1404insn_t
1405sel_move_insn (expr_t expr, int seqno, insn_t after)
1406{
1407  insn_t insn = EXPR_INSN_RTX (expr);
1408  basic_block bb = BLOCK_FOR_INSN (after);
1409  insn_t next = NEXT_INSN (after);
1410
1411  /* Assert that in move_op we disconnected this insn properly.  */
1412  gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413  PREV_INSN (insn) = after;
1414  NEXT_INSN (insn) = next;
1415
1416  NEXT_INSN (after) = insn;
1417  PREV_INSN (next) = insn;
1418
1419  /* Update links from insn to bb and vice versa.  */
1420  df_insn_change_bb (insn, bb);
1421  if (BB_END (bb) == after)
1422    BB_END (bb) = insn;
1423
1424  prepare_insn_expr (insn, seqno);
1425  return insn;
1426}
1427
1428
1429/* Functions to work with right-hand sides.  */
1430
1431/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432   VECT and return true when found.  Use NEW_VINSN for comparison only when
1433   COMPARE_VINSNS is true.  Write to INDP the index on which
1434   the search has stopped, such that inserting the new element at INDP will
1435   retain VECT's sort order.  */
1436static bool
1437find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438                        unsigned uid, vinsn_t new_vinsn,
1439                        bool compare_vinsns, int *indp)
1440{
1441  expr_history_def *arr;
1442  int i, j, len = VEC_length (expr_history_def, vect);
1443
1444  if (len == 0)
1445    {
1446      *indp = 0;
1447      return false;
1448    }
1449
1450  arr = VEC_address (expr_history_def, vect);
1451  i = 0, j = len - 1;
1452
1453  while (i <= j)
1454    {
1455      unsigned auid = arr[i].uid;
1456      vinsn_t avinsn = arr[i].new_expr_vinsn;
1457
1458      if (auid == uid
1459          /* When undoing transformation on a bookkeeping copy, the new vinsn
1460             may not be exactly equal to the one that is saved in the vector.
1461             This is because the insn whose copy we're checking was possibly
1462             substituted itself.  */
1463          && (! compare_vinsns
1464              || vinsn_equal_p (avinsn, new_vinsn)))
1465        {
1466          *indp = i;
1467          return true;
1468        }
1469      else if (auid > uid)
1470        break;
1471      i++;
1472    }
1473
1474  *indp = i;
1475  return false;
1476}
1477
1478/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1479   the position found or -1, if no such value is in vector.
1480   Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1481int
1482find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483                      vinsn_t new_vinsn, bool originators_p)
1484{
1485  int ind;
1486
1487  if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488                              false, &ind))
1489    return ind;
1490
1491  if (INSN_ORIGINATORS (insn) && originators_p)
1492    {
1493      unsigned uid;
1494      bitmap_iterator bi;
1495
1496      EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497        if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498          return ind;
1499    }
1500
1501  return -1;
1502}
1503
1504/* Insert new element in a sorted history vector pointed to by PVECT,
1505   if it is not there already.  The element is searched using
1506   UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507   the history of a transformation.  */
1508void
1509insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510                        unsigned uid, enum local_trans_type type,
1511                        vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512                        ds_t spec_ds)
1513{
1514  VEC(expr_history_def, heap) *vect = *pvect;
1515  expr_history_def temp;
1516  bool res;
1517  int ind;
1518
1519  res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
1521  if (res)
1522    {
1523      expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
1525      /* It is possible that speculation types of expressions that were
1526         propagated through different paths will be different here.  In this
1527         case, merge the status to get the correct check later.  */
1528      if (phist->spec_ds != spec_ds)
1529        phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530      return;
1531    }
1532
1533  temp.uid = uid;
1534  temp.old_expr_vinsn = old_expr_vinsn;
1535  temp.new_expr_vinsn = new_expr_vinsn;
1536  temp.spec_ds = spec_ds;
1537  temp.type = type;
1538
1539  vinsn_attach (old_expr_vinsn);
1540  vinsn_attach (new_expr_vinsn);
1541  VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542  *pvect = vect;
1543}
1544
1545/* Free history vector PVECT.  */
1546static void
1547free_history_vect (VEC (expr_history_def, heap) **pvect)
1548{
1549  unsigned i;
1550  expr_history_def *phist;
1551
1552  if (! *pvect)
1553    return;
1554
1555  for (i = 0;
1556       VEC_iterate (expr_history_def, *pvect, i, phist);
1557       i++)
1558    {
1559      vinsn_detach (phist->old_expr_vinsn);
1560      vinsn_detach (phist->new_expr_vinsn);
1561    }
1562
1563  VEC_free (expr_history_def, heap, *pvect);
1564  *pvect = NULL;
1565}
1566
1567/* Merge vector FROM to PVECT.  */
1568static void
1569merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570		    VEC (expr_history_def, heap) *from)
1571{
1572  expr_history_def *phist;
1573  int i;
1574
1575  /* We keep this vector sorted.  */
1576  for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577    insert_in_history_vect (pvect, phist->uid, phist->type,
1578                            phist->old_expr_vinsn, phist->new_expr_vinsn,
1579                            phist->spec_ds);
1580}
1581
1582/* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1583bool
1584vinsn_equal_p (vinsn_t x, vinsn_t y)
1585{
1586  rtx_equal_p_callback_function repcf;
1587
1588  if (x == y)
1589    return true;
1590
1591  if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592    return false;
1593
1594  if (VINSN_HASH (x) != VINSN_HASH (y))
1595    return false;
1596
1597  repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598  if (VINSN_SEPARABLE_P (x))
1599    {
1600      /* Compare RHSes of VINSNs.  */
1601      gcc_assert (VINSN_RHS (x));
1602      gcc_assert (VINSN_RHS (y));
1603
1604      return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1605    }
1606
1607  return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1608}
1609
1610
1611/* Functions for working with expressions.  */
1612
1613/* Initialize EXPR.  */
1614static void
1615init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616	   int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617	   ds_t spec_to_check_ds, int orig_sched_cycle,
1618	   VEC(expr_history_def, heap) *history, signed char target_available,
1619           bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620           bool cant_move)
1621{
1622  vinsn_attach (vi);
1623
1624  EXPR_VINSN (expr) = vi;
1625  EXPR_SPEC (expr) = spec;
1626  EXPR_USEFULNESS (expr) = use;
1627  EXPR_PRIORITY (expr) = priority;
1628  EXPR_PRIORITY_ADJ (expr) = 0;
1629  EXPR_SCHED_TIMES (expr) = sched_times;
1630  EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631  EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632  EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633  EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1634
1635  if (history)
1636    EXPR_HISTORY_OF_CHANGES (expr) = history;
1637  else
1638    EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1639
1640  EXPR_TARGET_AVAILABLE (expr) = target_available;
1641  EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642  EXPR_WAS_RENAMED (expr) = was_renamed;
1643  EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644  EXPR_CANT_MOVE (expr) = cant_move;
1645}
1646
1647/* Make a copy of the expr FROM into the expr TO.  */
1648void
1649copy_expr (expr_t to, expr_t from)
1650{
1651  VEC(expr_history_def, heap) *temp = NULL;
1652
1653  if (EXPR_HISTORY_OF_CHANGES (from))
1654    {
1655      unsigned i;
1656      expr_history_def *phist;
1657
1658      temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659      for (i = 0;
1660           VEC_iterate (expr_history_def, temp, i, phist);
1661           i++)
1662        {
1663          vinsn_attach (phist->old_expr_vinsn);
1664          vinsn_attach (phist->new_expr_vinsn);
1665        }
1666    }
1667
1668  init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669             EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670	     EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672	     EXPR_ORIG_SCHED_CYCLE (from), temp,
1673             EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674             EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675             EXPR_CANT_MOVE (from));
1676}
1677
1678/* Same, but the final expr will not ever be in av sets, so don't copy
1679   "uninteresting" data such as bitmap cache.  */
1680void
1681copy_expr_onside (expr_t to, expr_t from)
1682{
1683  init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684	     EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686	     EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687	     EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688             EXPR_CANT_MOVE (from));
1689}
1690
1691/* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1692   initializing new insns.  */
1693static void
1694prepare_insn_expr (insn_t insn, int seqno)
1695{
1696  expr_t expr = INSN_EXPR (insn);
1697  ds_t ds;
1698
1699  INSN_SEQNO (insn) = seqno;
1700  EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701  EXPR_SPEC (expr) = 0;
1702  EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703  EXPR_WAS_SUBSTITUTED (expr) = 0;
1704  EXPR_WAS_RENAMED (expr) = 0;
1705  EXPR_TARGET_AVAILABLE (expr) = 1;
1706  INSN_LIVE_VALID_P (insn) = false;
1707
1708  /* ??? If this expression is speculative, make its dependence
1709     as weak as possible.  We can filter this expression later
1710     in process_spec_exprs, because we do not distinguish
1711     between the status we got during compute_av_set and the
1712     existing status.  To be fixed.  */
1713  ds = EXPR_SPEC_DONE_DS (expr);
1714  if (ds)
1715    EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1716
1717  free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1718}
1719
1720/* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1721   is non-null when expressions are merged from different successors at
1722   a split point.  */
1723static void
1724update_target_availability (expr_t to, expr_t from, insn_t split_point)
1725{
1726  if (EXPR_TARGET_AVAILABLE (to) < 0
1727      || EXPR_TARGET_AVAILABLE (from) < 0)
1728    EXPR_TARGET_AVAILABLE (to) = -1;
1729  else
1730    {
1731      /* We try to detect the case when one of the expressions
1732         can only be reached through another one.  In this case,
1733         we can do better.  */
1734      if (split_point == NULL)
1735        {
1736          int toind, fromind;
1737
1738          toind = EXPR_ORIG_BB_INDEX (to);
1739          fromind = EXPR_ORIG_BB_INDEX (from);
1740
1741          if (toind && toind == fromind)
1742            /* Do nothing -- everything is done in
1743               merge_with_other_exprs.  */
1744            ;
1745          else
1746            EXPR_TARGET_AVAILABLE (to) = -1;
1747        }
1748      else
1749        EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1750    }
1751}
1752
1753/* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1754   is non-null when expressions are merged from different successors at
1755   a split point.  */
1756static void
1757update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1758{
1759  ds_t old_to_ds, old_from_ds;
1760
1761  old_to_ds = EXPR_SPEC_DONE_DS (to);
1762  old_from_ds = EXPR_SPEC_DONE_DS (from);
1763
1764  EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1765  EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1766  EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1767
1768  /* When merging e.g. control & data speculative exprs, or a control
1769     speculative with a control&data speculative one, we really have
1770     to change vinsn too.  Also, when speculative status is changed,
1771     we also need to record this as a transformation in expr's history.  */
1772  if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1773    {
1774      old_to_ds = ds_get_speculation_types (old_to_ds);
1775      old_from_ds = ds_get_speculation_types (old_from_ds);
1776
1777      if (old_to_ds != old_from_ds)
1778        {
1779          ds_t record_ds;
1780
1781          /* When both expressions are speculative, we need to change
1782             the vinsn first.  */
1783          if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1784            {
1785              int res;
1786
1787              res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1788              gcc_assert (res >= 0);
1789            }
1790
1791          if (split_point != NULL)
1792            {
1793              /* Record the change with proper status.  */
1794              record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1795              record_ds &= ~(old_to_ds & SPECULATIVE);
1796              record_ds &= ~(old_from_ds & SPECULATIVE);
1797
1798              insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1799                                      INSN_UID (split_point), TRANS_SPECULATION,
1800                                      EXPR_VINSN (from), EXPR_VINSN (to),
1801                                      record_ds);
1802            }
1803        }
1804    }
1805}
1806
1807
1808/* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1809   this is done along different paths.  */
1810void
1811merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1812{
1813  /* For now, we just set the spec of resulting expr to be minimum of the specs
1814     of merged exprs.  */
1815  if (EXPR_SPEC (to) > EXPR_SPEC (from))
1816    EXPR_SPEC (to) = EXPR_SPEC (from);
1817
1818  if (split_point)
1819    EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1820  else
1821    EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1822                                EXPR_USEFULNESS (from));
1823
1824  if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1825    EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1826
1827  if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1828    EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1829
1830  if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1831    EXPR_ORIG_BB_INDEX (to) = 0;
1832
1833  EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1834                                    EXPR_ORIG_SCHED_CYCLE (from));
1835
1836  EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1837  EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1838  EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1839
1840  merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1841		      EXPR_HISTORY_OF_CHANGES (from));
1842  update_target_availability (to, from, split_point);
1843  update_speculative_bits (to, from, split_point);
1844}
1845
1846/* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1847   in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1848   are merged from different successors at a split point.  */
1849void
1850merge_expr (expr_t to, expr_t from, insn_t split_point)
1851{
1852  vinsn_t to_vi = EXPR_VINSN (to);
1853  vinsn_t from_vi = EXPR_VINSN (from);
1854
1855  gcc_assert (vinsn_equal_p (to_vi, from_vi));
1856
1857  /* Make sure that speculative pattern is propagated into exprs that
1858     have non-speculative one.  This will provide us with consistent
1859     speculative bits and speculative patterns inside expr.  */
1860  if (EXPR_SPEC_DONE_DS (to) == 0
1861      && EXPR_SPEC_DONE_DS (from) != 0)
1862    change_vinsn_in_expr (to, EXPR_VINSN (from));
1863
1864  merge_expr_data (to, from, split_point);
1865  gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1866}
1867
1868/* Clear the information of this EXPR.  */
1869void
1870clear_expr (expr_t expr)
1871{
1872
1873  vinsn_detach (EXPR_VINSN (expr));
1874  EXPR_VINSN (expr) = NULL;
1875
1876  free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1877}
1878
1879/* For a given LV_SET, mark EXPR having unavailable target register.  */
1880static void
1881set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1882{
1883  if (EXPR_SEPARABLE_P (expr))
1884    {
1885      if (REG_P (EXPR_LHS (expr))
1886          && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1887	{
1888	  /* If it's an insn like r1 = use (r1, ...), and it exists in
1889	     different forms in each of the av_sets being merged, we can't say
1890	     whether original destination register is available or not.
1891	     However, this still works if destination register is not used
1892	     in the original expression: if the branch at which LV_SET we're
1893	     looking here is not actually 'other branch' in sense that same
1894	     expression is available through it (but it can't be determined
1895	     at computation stage because of transformations on one of the
1896	     branches), it still won't affect the availability.
1897	     Liveness of a register somewhere on a code motion path means
1898	     it's either read somewhere on a codemotion path, live on
1899	     'other' branch, live at the point immediately following
1900	     the original operation, or is read by the original operation.
1901	     The latter case is filtered out in the condition below.
1902	     It still doesn't cover the case when register is defined and used
1903	     somewhere within the code motion path, and in this case we could
1904	     miss a unifying code motion along both branches using a renamed
1905	     register, but it won't affect a code correctness since upon
1906	     an actual code motion a bookkeeping code would be generated.  */
1907	  if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1908			    REGNO (EXPR_LHS (expr))))
1909	    EXPR_TARGET_AVAILABLE (expr) = -1;
1910	  else
1911	    EXPR_TARGET_AVAILABLE (expr) = false;
1912	}
1913    }
1914  else
1915    {
1916      unsigned regno;
1917      reg_set_iterator rsi;
1918
1919      EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1920                                 0, regno, rsi)
1921        if (bitmap_bit_p (lv_set, regno))
1922          {
1923            EXPR_TARGET_AVAILABLE (expr) = false;
1924            break;
1925          }
1926
1927      EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1928                                 0, regno, rsi)
1929        if (bitmap_bit_p (lv_set, regno))
1930          {
1931            EXPR_TARGET_AVAILABLE (expr) = false;
1932            break;
1933          }
1934    }
1935}
1936
1937/* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1938   or dependence status have changed, 2 when also the target register
1939   became unavailable, 0 if nothing had to be changed.  */
1940int
1941speculate_expr (expr_t expr, ds_t ds)
1942{
1943  int res;
1944  rtx orig_insn_rtx;
1945  rtx spec_pat;
1946  ds_t target_ds, current_ds;
1947
1948  /* Obtain the status we need to put on EXPR.   */
1949  target_ds = (ds & SPECULATIVE);
1950  current_ds = EXPR_SPEC_DONE_DS (expr);
1951  ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1952
1953  orig_insn_rtx = EXPR_INSN_RTX (expr);
1954
1955  res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1956
1957  switch (res)
1958    {
1959    case 0:
1960      EXPR_SPEC_DONE_DS (expr) = ds;
1961      return current_ds != ds ? 1 : 0;
1962
1963    case 1:
1964      {
1965	rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1966	vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1967
1968	change_vinsn_in_expr (expr, spec_vinsn);
1969	EXPR_SPEC_DONE_DS (expr) = ds;
1970        EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1971
1972        /* Do not allow clobbering the address register of speculative
1973           insns.  */
1974        if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1975                          expr_dest_regno (expr)))
1976          {
1977            EXPR_TARGET_AVAILABLE (expr) = false;
1978            return 2;
1979          }
1980
1981	return 1;
1982      }
1983
1984    case -1:
1985      return -1;
1986
1987    default:
1988      gcc_unreachable ();
1989      return -1;
1990    }
1991}
1992
1993/* Return a destination register, if any, of EXPR.  */
1994rtx
1995expr_dest_reg (expr_t expr)
1996{
1997  rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1998
1999  if (dest != NULL_RTX && REG_P (dest))
2000    return dest;
2001
2002  return NULL_RTX;
2003}
2004
2005/* Returns the REGNO of the R's destination.  */
2006unsigned
2007expr_dest_regno (expr_t expr)
2008{
2009  rtx dest = expr_dest_reg (expr);
2010
2011  gcc_assert (dest != NULL_RTX);
2012  return REGNO (dest);
2013}
2014
2015/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2016   AV_SET having unavailable target register.  */
2017void
2018mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2019{
2020  expr_t expr;
2021  av_set_iterator avi;
2022
2023  FOR_EACH_EXPR (expr, avi, join_set)
2024    if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2025      set_unavailable_target_for_expr (expr, lv_set);
2026}
2027
2028
2029/* Av set functions.  */
2030
2031/* Add a new element to av set SETP.
2032   Return the element added.  */
2033static av_set_t
2034av_set_add_element (av_set_t *setp)
2035{
2036  /* Insert at the beginning of the list.  */
2037  _list_add (setp);
2038  return *setp;
2039}
2040
2041/* Add EXPR to SETP.  */
2042void
2043av_set_add (av_set_t *setp, expr_t expr)
2044{
2045  av_set_t elem;
2046
2047  gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2048  elem = av_set_add_element (setp);
2049  copy_expr (_AV_SET_EXPR (elem), expr);
2050}
2051
2052/* Same, but do not copy EXPR.  */
2053static void
2054av_set_add_nocopy (av_set_t *setp, expr_t expr)
2055{
2056  av_set_t elem;
2057
2058  elem = av_set_add_element (setp);
2059  *_AV_SET_EXPR (elem) = *expr;
2060}
2061
2062/* Remove expr pointed to by IP from the av_set.  */
2063void
2064av_set_iter_remove (av_set_iterator *ip)
2065{
2066  clear_expr (_AV_SET_EXPR (*ip->lp));
2067  _list_iter_remove (ip);
2068}
2069
2070/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2071   sense of vinsn_equal_p function. Return NULL if no such expr is
2072   in SET was found.  */
2073expr_t
2074av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2075{
2076  expr_t expr;
2077  av_set_iterator i;
2078
2079  FOR_EACH_EXPR (expr, i, set)
2080    if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2081      return expr;
2082  return NULL;
2083}
2084
2085/* Same, but also remove the EXPR found.   */
2086static expr_t
2087av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2088{
2089  expr_t expr;
2090  av_set_iterator i;
2091
2092  FOR_EACH_EXPR_1 (expr, i, setp)
2093    if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2094      {
2095        _list_iter_remove_nofree (&i);
2096        return expr;
2097      }
2098  return NULL;
2099}
2100
2101/* Search for an expr in SET, such that it's equivalent to EXPR in the
2102   sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2103   Returns NULL if no such expr is in SET was found.  */
2104static expr_t
2105av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2106{
2107  expr_t cur_expr;
2108  av_set_iterator i;
2109
2110  FOR_EACH_EXPR (cur_expr, i, set)
2111    {
2112      if (cur_expr == expr)
2113        continue;
2114      if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2115        return cur_expr;
2116    }
2117
2118  return NULL;
2119}
2120
2121/* If other expression is already in AVP, remove one of them.  */
2122expr_t
2123merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2124{
2125  expr_t expr2;
2126
2127  expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2128  if (expr2 != NULL)
2129    {
2130      /* Reset target availability on merge, since taking it only from one
2131	 of the exprs would be controversial for different code.  */
2132      EXPR_TARGET_AVAILABLE (expr2) = -1;
2133      EXPR_USEFULNESS (expr2) = 0;
2134
2135      merge_expr (expr2, expr, NULL);
2136
2137      /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2138      EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2139
2140      av_set_iter_remove (ip);
2141      return expr2;
2142    }
2143
2144  return expr;
2145}
2146
2147/* Return true if there is an expr that correlates to VI in SET.  */
2148bool
2149av_set_is_in_p (av_set_t set, vinsn_t vi)
2150{
2151  return av_set_lookup (set, vi) != NULL;
2152}
2153
2154/* Return a copy of SET.  */
2155av_set_t
2156av_set_copy (av_set_t set)
2157{
2158  expr_t expr;
2159  av_set_iterator i;
2160  av_set_t res = NULL;
2161
2162  FOR_EACH_EXPR (expr, i, set)
2163    av_set_add (&res, expr);
2164
2165  return res;
2166}
2167
2168/* Join two av sets that do not have common elements by attaching second set
2169   (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2170   _AV_SET_NEXT of first set's last element).  */
2171static void
2172join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2173{
2174  gcc_assert (*to_tailp == NULL);
2175  *to_tailp = *fromp;
2176  *fromp = NULL;
2177}
2178
2179/* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2180   pointed to by FROMP afterwards.  */
2181void
2182av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2183{
2184  expr_t expr1;
2185  av_set_iterator i;
2186
2187  /* Delete from TOP all exprs, that present in FROMP.  */
2188  FOR_EACH_EXPR_1 (expr1, i, top)
2189    {
2190      expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2191
2192      if (expr2)
2193	{
2194          merge_expr (expr2, expr1, insn);
2195	  av_set_iter_remove (&i);
2196	}
2197    }
2198
2199  join_distinct_sets (i.lp, fromp);
2200}
2201
2202/* Same as above, but also update availability of target register in
2203   TOP judging by TO_LV_SET and FROM_LV_SET.  */
2204void
2205av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2206                       regset from_lv_set, insn_t insn)
2207{
2208  expr_t expr1;
2209  av_set_iterator i;
2210  av_set_t *to_tailp, in_both_set = NULL;
2211
2212  /* Delete from TOP all expres, that present in FROMP.  */
2213  FOR_EACH_EXPR_1 (expr1, i, top)
2214    {
2215      expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2216
2217      if (expr2)
2218	{
2219          /* It may be that the expressions have different destination
2220             registers, in which case we need to check liveness here.  */
2221          if (EXPR_SEPARABLE_P (expr1))
2222            {
2223              int regno1 = (REG_P (EXPR_LHS (expr1))
2224                            ? (int) expr_dest_regno (expr1) : -1);
2225              int regno2 = (REG_P (EXPR_LHS (expr2))
2226                            ? (int) expr_dest_regno (expr2) : -1);
2227
2228              /* ??? We don't have a way to check restrictions for
2229               *other* register on the current path, we did it only
2230               for the current target register.  Give up.  */
2231              if (regno1 != regno2)
2232                EXPR_TARGET_AVAILABLE (expr2) = -1;
2233            }
2234          else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2235            EXPR_TARGET_AVAILABLE (expr2) = -1;
2236
2237          merge_expr (expr2, expr1, insn);
2238          av_set_add_nocopy (&in_both_set, expr2);
2239	  av_set_iter_remove (&i);
2240	}
2241      else
2242        /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2243           FROM_LV_SET.  */
2244        set_unavailable_target_for_expr (expr1, from_lv_set);
2245    }
2246  to_tailp = i.lp;
2247
2248  /* These expressions are not present in TOP.  Check liveness
2249     restrictions on TO_LV_SET.  */
2250  FOR_EACH_EXPR (expr1, i, *fromp)
2251    set_unavailable_target_for_expr (expr1, to_lv_set);
2252
2253  join_distinct_sets (i.lp, &in_both_set);
2254  join_distinct_sets (to_tailp, fromp);
2255}
2256
2257/* Clear av_set pointed to by SETP.  */
2258void
2259av_set_clear (av_set_t *setp)
2260{
2261  expr_t expr;
2262  av_set_iterator i;
2263
2264  FOR_EACH_EXPR_1 (expr, i, setp)
2265    av_set_iter_remove (&i);
2266
2267  gcc_assert (*setp == NULL);
2268}
2269
2270/* Leave only one non-speculative element in the SETP.  */
2271void
2272av_set_leave_one_nonspec (av_set_t *setp)
2273{
2274  expr_t expr;
2275  av_set_iterator i;
2276  bool has_one_nonspec = false;
2277
2278  /* Keep all speculative exprs, and leave one non-speculative
2279     (the first one).  */
2280  FOR_EACH_EXPR_1 (expr, i, setp)
2281    {
2282      if (!EXPR_SPEC_DONE_DS (expr))
2283	{
2284  	  if (has_one_nonspec)
2285	    av_set_iter_remove (&i);
2286	  else
2287	    has_one_nonspec = true;
2288	}
2289    }
2290}
2291
2292/* Return the N'th element of the SET.  */
2293expr_t
2294av_set_element (av_set_t set, int n)
2295{
2296  expr_t expr;
2297  av_set_iterator i;
2298
2299  FOR_EACH_EXPR (expr, i, set)
2300    if (n-- == 0)
2301      return expr;
2302
2303  gcc_unreachable ();
2304  return NULL;
2305}
2306
2307/* Deletes all expressions from AVP that are conditional branches (IFs).  */
2308void
2309av_set_substract_cond_branches (av_set_t *avp)
2310{
2311  av_set_iterator i;
2312  expr_t expr;
2313
2314  FOR_EACH_EXPR_1 (expr, i, avp)
2315    if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2316      av_set_iter_remove (&i);
2317}
2318
2319/* Multiplies usefulness attribute of each member of av-set *AVP by
2320   value PROB / ALL_PROB.  */
2321void
2322av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2323{
2324  av_set_iterator i;
2325  expr_t expr;
2326
2327  FOR_EACH_EXPR (expr, i, av)
2328    EXPR_USEFULNESS (expr) = (all_prob
2329                              ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2330                              : 0);
2331}
2332
2333/* Leave in AVP only those expressions, which are present in AV,
2334   and return it, merging history expressions.  */
2335void
2336av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2337{
2338  av_set_iterator i;
2339  expr_t expr, expr2;
2340
2341  FOR_EACH_EXPR_1 (expr, i, avp)
2342    if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2343      av_set_iter_remove (&i);
2344    else
2345      /* When updating av sets in bookkeeping blocks, we can add more insns
2346	 there which will be transformed but the upper av sets will not
2347	 reflect those transformations.  We then fail to undo those
2348	 when searching for such insns.  So merge the history saved
2349	 in the av set of the block we are processing.  */
2350      merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2351			  EXPR_HISTORY_OF_CHANGES (expr2));
2352}
2353
2354
2355
2356/* Dependence hooks to initialize insn data.  */
2357
2358/* This is used in hooks callable from dependence analysis when initializing
2359   instruction's data.  */
2360static struct
2361{
2362  /* Where the dependence was found (lhs/rhs).  */
2363  deps_where_t where;
2364
2365  /* The actual data object to initialize.  */
2366  idata_t id;
2367
2368  /* True when the insn should not be made clonable.  */
2369  bool force_unique_p;
2370
2371  /* True when insn should be treated as of type USE, i.e. never renamed.  */
2372  bool force_use_p;
2373} deps_init_id_data;
2374
2375
2376/* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2377   clonable.  */
2378static void
2379setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2380{
2381  int type;
2382
2383  /* Determine whether INSN could be cloned and return appropriate vinsn type.
2384     That clonable insns which can be separated into lhs and rhs have type SET.
2385     Other clonable insns have type USE.  */
2386  type = GET_CODE (insn);
2387
2388  /* Only regular insns could be cloned.  */
2389  if (type == INSN && !force_unique_p)
2390    type = SET;
2391  else if (type == JUMP_INSN && simplejump_p (insn))
2392    type = PC;
2393  else if (type == DEBUG_INSN)
2394    type = !force_unique_p ? USE : INSN;
2395
2396  IDATA_TYPE (id) = type;
2397  IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2398  IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2399  IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2400}
2401
2402/* Start initializing insn data.  */
2403static void
2404deps_init_id_start_insn (insn_t insn)
2405{
2406  gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2407
2408  setup_id_for_insn (deps_init_id_data.id, insn,
2409                     deps_init_id_data.force_unique_p);
2410  deps_init_id_data.where = DEPS_IN_INSN;
2411}
2412
2413/* Start initializing lhs data.  */
2414static void
2415deps_init_id_start_lhs (rtx lhs)
2416{
2417  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2418  gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2419
2420  if (IDATA_TYPE (deps_init_id_data.id) == SET)
2421    {
2422      IDATA_LHS (deps_init_id_data.id) = lhs;
2423      deps_init_id_data.where = DEPS_IN_LHS;
2424    }
2425}
2426
2427/* Finish initializing lhs data.  */
2428static void
2429deps_init_id_finish_lhs (void)
2430{
2431  deps_init_id_data.where = DEPS_IN_INSN;
2432}
2433
2434/* Note a set of REGNO.  */
2435static void
2436deps_init_id_note_reg_set (int regno)
2437{
2438  haifa_note_reg_set (regno);
2439
2440  if (deps_init_id_data.where == DEPS_IN_RHS)
2441    deps_init_id_data.force_use_p = true;
2442
2443  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444    SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2445
2446#ifdef STACK_REGS
2447  /* Make instructions that set stack registers to be ineligible for
2448     renaming to avoid issues with find_used_regs.  */
2449  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2450    deps_init_id_data.force_use_p = true;
2451#endif
2452}
2453
2454/* Note a clobber of REGNO.  */
2455static void
2456deps_init_id_note_reg_clobber (int regno)
2457{
2458  haifa_note_reg_clobber (regno);
2459
2460  if (deps_init_id_data.where == DEPS_IN_RHS)
2461    deps_init_id_data.force_use_p = true;
2462
2463  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2464    SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2465}
2466
2467/* Note a use of REGNO.  */
2468static void
2469deps_init_id_note_reg_use (int regno)
2470{
2471  haifa_note_reg_use (regno);
2472
2473  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2474    SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2475}
2476
2477/* Start initializing rhs data.  */
2478static void
2479deps_init_id_start_rhs (rtx rhs)
2480{
2481  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2482
2483  /* And there was no sel_deps_reset_to_insn ().  */
2484  if (IDATA_LHS (deps_init_id_data.id) != NULL)
2485    {
2486      IDATA_RHS (deps_init_id_data.id) = rhs;
2487      deps_init_id_data.where = DEPS_IN_RHS;
2488    }
2489}
2490
2491/* Finish initializing rhs data.  */
2492static void
2493deps_init_id_finish_rhs (void)
2494{
2495  gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2496	      || deps_init_id_data.where == DEPS_IN_INSN);
2497  deps_init_id_data.where = DEPS_IN_INSN;
2498}
2499
2500/* Finish initializing insn data.  */
2501static void
2502deps_init_id_finish_insn (void)
2503{
2504  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2505
2506  if (IDATA_TYPE (deps_init_id_data.id) == SET)
2507    {
2508      rtx lhs = IDATA_LHS (deps_init_id_data.id);
2509      rtx rhs = IDATA_RHS (deps_init_id_data.id);
2510
2511      if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2512	  || deps_init_id_data.force_use_p)
2513	{
2514          /* This should be a USE, as we don't want to schedule its RHS
2515             separately.  However, we still want to have them recorded
2516             for the purposes of substitution.  That's why we don't
2517             simply call downgrade_to_use () here.  */
2518	  gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2519	  gcc_assert (!lhs == !rhs);
2520
2521	  IDATA_TYPE (deps_init_id_data.id) = USE;
2522	}
2523    }
2524
2525  deps_init_id_data.where = DEPS_IN_NOWHERE;
2526}
2527
2528/* This is dependence info used for initializing insn's data.  */
2529static struct sched_deps_info_def deps_init_id_sched_deps_info;
2530
2531/* This initializes most of the static part of the above structure.  */
2532static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2533  {
2534    NULL,
2535
2536    deps_init_id_start_insn,
2537    deps_init_id_finish_insn,
2538    deps_init_id_start_lhs,
2539    deps_init_id_finish_lhs,
2540    deps_init_id_start_rhs,
2541    deps_init_id_finish_rhs,
2542    deps_init_id_note_reg_set,
2543    deps_init_id_note_reg_clobber,
2544    deps_init_id_note_reg_use,
2545    NULL, /* note_mem_dep */
2546    NULL, /* note_dep */
2547
2548    0, /* use_cselib */
2549    0, /* use_deps_list */
2550    0 /* generate_spec_deps */
2551  };
2552
2553/* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2554   we don't actually need information about lhs and rhs.  */
2555static void
2556setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2557{
2558  rtx pat = PATTERN (insn);
2559
2560  if (NONJUMP_INSN_P (insn)
2561      && GET_CODE (pat) == SET
2562      && !force_unique_p)
2563    {
2564      IDATA_RHS (id) = SET_SRC (pat);
2565      IDATA_LHS (id) = SET_DEST (pat);
2566    }
2567  else
2568    IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2569}
2570
2571/* Possibly downgrade INSN to USE.  */
2572static void
2573maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2574{
2575  bool must_be_use = false;
2576  unsigned uid = INSN_UID (insn);
2577  df_ref *rec;
2578  rtx lhs = IDATA_LHS (id);
2579  rtx rhs = IDATA_RHS (id);
2580
2581  /* We downgrade only SETs.  */
2582  if (IDATA_TYPE (id) != SET)
2583    return;
2584
2585  if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2586    {
2587      IDATA_TYPE (id) = USE;
2588      return;
2589    }
2590
2591  for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2592    {
2593      df_ref def = *rec;
2594
2595      if (DF_REF_INSN (def)
2596          && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2597          && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2598        {
2599          must_be_use = true;
2600          break;
2601        }
2602
2603#ifdef STACK_REGS
2604      /* Make instructions that set stack registers to be ineligible for
2605	 renaming to avoid issues with find_used_regs.  */
2606      if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2607	{
2608	  must_be_use = true;
2609	  break;
2610	}
2611#endif
2612    }
2613
2614  if (must_be_use)
2615    IDATA_TYPE (id) = USE;
2616}
2617
2618/* Setup register sets describing INSN in ID.  */
2619static void
2620setup_id_reg_sets (idata_t id, insn_t insn)
2621{
2622  unsigned uid = INSN_UID (insn);
2623  df_ref *rec;
2624  regset tmp = get_clear_regset_from_pool ();
2625
2626  for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2627    {
2628      df_ref def = *rec;
2629      unsigned int regno = DF_REF_REGNO (def);
2630
2631      /* Post modifies are treated like clobbers by sched-deps.c.  */
2632      if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2633                                     | DF_REF_PRE_POST_MODIFY)))
2634        SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2635      else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2636        {
2637	  SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2638
2639#ifdef STACK_REGS
2640	  /* For stack registers, treat writes to them as writes
2641	     to the first one to be consistent with sched-deps.c.  */
2642	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2643	    SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2644#endif
2645	}
2646      /* Mark special refs that generate read/write def pair.  */
2647      if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2648          || regno == STACK_POINTER_REGNUM)
2649        bitmap_set_bit (tmp, regno);
2650    }
2651
2652  for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2653    {
2654      df_ref use = *rec;
2655      unsigned int regno = DF_REF_REGNO (use);
2656
2657      /* When these refs are met for the first time, skip them, as
2658         these uses are just counterparts of some defs.  */
2659      if (bitmap_bit_p (tmp, regno))
2660        bitmap_clear_bit (tmp, regno);
2661      else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2662	{
2663	  SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2664
2665#ifdef STACK_REGS
2666	  /* For stack registers, treat reads from them as reads from
2667	     the first one to be consistent with sched-deps.c.  */
2668	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2669	    SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2670#endif
2671	}
2672    }
2673
2674  return_regset_to_pool (tmp);
2675}
2676
2677/* Initialize instruction data for INSN in ID using DF's data.  */
2678static void
2679init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2680{
2681  gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2682
2683  setup_id_for_insn (id, insn, force_unique_p);
2684  setup_id_lhs_rhs (id, insn, force_unique_p);
2685
2686  if (INSN_NOP_P (insn))
2687    return;
2688
2689  maybe_downgrade_id_to_use (id, insn);
2690  setup_id_reg_sets (id, insn);
2691}
2692
2693/* Initialize instruction data for INSN in ID.  */
2694static void
2695deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2696{
2697  struct deps_desc _dc, *dc = &_dc;
2698
2699  deps_init_id_data.where = DEPS_IN_NOWHERE;
2700  deps_init_id_data.id = id;
2701  deps_init_id_data.force_unique_p = force_unique_p;
2702  deps_init_id_data.force_use_p = false;
2703
2704  init_deps (dc, false);
2705
2706  memcpy (&deps_init_id_sched_deps_info,
2707	  &const_deps_init_id_sched_deps_info,
2708	  sizeof (deps_init_id_sched_deps_info));
2709
2710  if (spec_info != NULL)
2711    deps_init_id_sched_deps_info.generate_spec_deps = 1;
2712
2713  sched_deps_info = &deps_init_id_sched_deps_info;
2714
2715  deps_analyze_insn (dc, insn);
2716
2717  free_deps (dc);
2718
2719  deps_init_id_data.id = NULL;
2720}
2721
2722
2723
2724/* Implement hooks for collecting fundamental insn properties like if insn is
2725   an ASM or is within a SCHED_GROUP.  */
2726
2727/* True when a "one-time init" data for INSN was already inited.  */
2728static bool
2729first_time_insn_init (insn_t insn)
2730{
2731  return INSN_LIVE (insn) == NULL;
2732}
2733
2734/* Hash an entry in a transformed_insns hashtable.  */
2735static hashval_t
2736hash_transformed_insns (const void *p)
2737{
2738  return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2739}
2740
2741/* Compare the entries in a transformed_insns hashtable.  */
2742static int
2743eq_transformed_insns (const void *p, const void *q)
2744{
2745  rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2746  rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2747
2748  if (INSN_UID (i1) == INSN_UID (i2))
2749    return 1;
2750  return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2751}
2752
2753/* Free an entry in a transformed_insns hashtable.  */
2754static void
2755free_transformed_insns (void *p)
2756{
2757  struct transformed_insns *pti = (struct transformed_insns *) p;
2758
2759  vinsn_detach (pti->vinsn_old);
2760  vinsn_detach (pti->vinsn_new);
2761  free (pti);
2762}
2763
2764/* Init the s_i_d data for INSN which should be inited just once, when
2765   we first see the insn.  */
2766static void
2767init_first_time_insn_data (insn_t insn)
2768{
2769  /* This should not be set if this is the first time we init data for
2770     insn.  */
2771  gcc_assert (first_time_insn_init (insn));
2772
2773  /* These are needed for nops too.  */
2774  INSN_LIVE (insn) = get_regset_from_pool ();
2775  INSN_LIVE_VALID_P (insn) = false;
2776
2777  if (!INSN_NOP_P (insn))
2778    {
2779      INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2780      INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2781      INSN_TRANSFORMED_INSNS (insn)
2782        = htab_create (16, hash_transformed_insns,
2783                       eq_transformed_insns, free_transformed_insns);
2784      init_deps (&INSN_DEPS_CONTEXT (insn), true);
2785    }
2786}
2787
2788/* Free almost all above data for INSN that is scheduled already.
2789   Used for extra-large basic blocks.  */
2790void
2791free_data_for_scheduled_insn (insn_t insn)
2792{
2793  gcc_assert (! first_time_insn_init (insn));
2794
2795  if (! INSN_ANALYZED_DEPS (insn))
2796    return;
2797
2798  BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2799  BITMAP_FREE (INSN_FOUND_DEPS (insn));
2800  htab_delete (INSN_TRANSFORMED_INSNS (insn));
2801
2802  /* This is allocated only for bookkeeping insns.  */
2803  if (INSN_ORIGINATORS (insn))
2804    BITMAP_FREE (INSN_ORIGINATORS (insn));
2805  free_deps (&INSN_DEPS_CONTEXT (insn));
2806
2807  INSN_ANALYZED_DEPS (insn) = NULL;
2808
2809  /* Clear the readonly flag so we would ICE when trying to recalculate
2810     the deps context (as we believe that it should not happen).  */
2811  (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2812}
2813
2814/* Free the same data as above for INSN.  */
2815static void
2816free_first_time_insn_data (insn_t insn)
2817{
2818  gcc_assert (! first_time_insn_init (insn));
2819
2820  free_data_for_scheduled_insn (insn);
2821  return_regset_to_pool (INSN_LIVE (insn));
2822  INSN_LIVE (insn) = NULL;
2823  INSN_LIVE_VALID_P (insn) = false;
2824}
2825
2826/* Initialize region-scope data structures for basic blocks.  */
2827static void
2828init_global_and_expr_for_bb (basic_block bb)
2829{
2830  if (sel_bb_empty_p (bb))
2831    return;
2832
2833  invalidate_av_set (bb);
2834}
2835
2836/* Data for global dependency analysis (to initialize CANT_MOVE and
2837   SCHED_GROUP_P).  */
2838static struct
2839{
2840  /* Previous insn.  */
2841  insn_t prev_insn;
2842} init_global_data;
2843
2844/* Determine if INSN is in the sched_group, is an asm or should not be
2845   cloned.  After that initialize its expr.  */
2846static void
2847init_global_and_expr_for_insn (insn_t insn)
2848{
2849  if (LABEL_P (insn))
2850    return;
2851
2852  if (NOTE_INSN_BASIC_BLOCK_P (insn))
2853    {
2854      init_global_data.prev_insn = NULL_RTX;
2855      return;
2856    }
2857
2858  gcc_assert (INSN_P (insn));
2859
2860  if (SCHED_GROUP_P (insn))
2861    /* Setup a sched_group.  */
2862    {
2863      insn_t prev_insn = init_global_data.prev_insn;
2864
2865      if (prev_insn)
2866	INSN_SCHED_NEXT (prev_insn) = insn;
2867
2868      init_global_data.prev_insn = insn;
2869    }
2870  else
2871    init_global_data.prev_insn = NULL_RTX;
2872
2873  if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2874      || asm_noperands (PATTERN (insn)) >= 0)
2875    /* Mark INSN as an asm.  */
2876    INSN_ASM_P (insn) = true;
2877
2878  {
2879    bool force_unique_p;
2880    ds_t spec_done_ds;
2881
2882    /* Certain instructions cannot be cloned.  */
2883    if (CANT_MOVE (insn)
2884	|| INSN_ASM_P (insn)
2885	|| SCHED_GROUP_P (insn)
2886	|| prologue_epilogue_contains (insn)
2887	/* Exception handling insns are always unique.  */
2888	|| (flag_non_call_exceptions && can_throw_internal (insn))
2889	/* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
2890	|| control_flow_insn_p (insn))
2891      force_unique_p = true;
2892    else
2893      force_unique_p = false;
2894
2895    if (targetm.sched.get_insn_spec_ds)
2896      {
2897	spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2898	spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2899      }
2900    else
2901      spec_done_ds = 0;
2902
2903    /* Initialize INSN's expr.  */
2904    init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2905	       REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2906	       spec_done_ds, 0, 0, NULL, true, false, false, false,
2907               CANT_MOVE (insn));
2908  }
2909
2910  init_first_time_insn_data (insn);
2911}
2912
2913/* Scan the region and initialize instruction data for basic blocks BBS.  */
2914void
2915sel_init_global_and_expr (bb_vec_t bbs)
2916{
2917  /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
2918  const struct sched_scan_info_def ssi =
2919    {
2920      NULL, /* extend_bb */
2921      init_global_and_expr_for_bb, /* init_bb */
2922      extend_insn_data, /* extend_insn */
2923      init_global_and_expr_for_insn /* init_insn */
2924    };
2925
2926  sched_scan (&ssi, bbs, NULL, NULL, NULL);
2927}
2928
2929/* Finalize region-scope data structures for basic blocks.  */
2930static void
2931finish_global_and_expr_for_bb (basic_block bb)
2932{
2933  av_set_clear (&BB_AV_SET (bb));
2934  BB_AV_LEVEL (bb) = 0;
2935}
2936
2937/* Finalize INSN's data.  */
2938static void
2939finish_global_and_expr_insn (insn_t insn)
2940{
2941  if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2942    return;
2943
2944  gcc_assert (INSN_P (insn));
2945
2946  if (INSN_LUID (insn) > 0)
2947    {
2948      free_first_time_insn_data (insn);
2949      INSN_WS_LEVEL (insn) = 0;
2950      CANT_MOVE (insn) = 0;
2951
2952      /* We can no longer assert this, as vinsns of this insn could be
2953         easily live in other insn's caches.  This should be changed to
2954         a counter-like approach among all vinsns.  */
2955      gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2956      clear_expr (INSN_EXPR (insn));
2957    }
2958}
2959
2960/* Finalize per instruction data for the whole region.  */
2961void
2962sel_finish_global_and_expr (void)
2963{
2964  {
2965    bb_vec_t bbs;
2966    int i;
2967
2968    bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2969
2970    for (i = 0; i < current_nr_blocks; i++)
2971      VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2972
2973    /* Clear AV_SETs and INSN_EXPRs.  */
2974    {
2975      const struct sched_scan_info_def ssi =
2976	{
2977	  NULL, /* extend_bb */
2978	  finish_global_and_expr_for_bb, /* init_bb */
2979	  NULL, /* extend_insn */
2980	  finish_global_and_expr_insn /* init_insn */
2981	};
2982
2983      sched_scan (&ssi, bbs, NULL, NULL, NULL);
2984    }
2985
2986    VEC_free (basic_block, heap, bbs);
2987  }
2988
2989  finish_insns ();
2990}
2991
2992
2993/* In the below hooks, we merely calculate whether or not a dependence
2994   exists, and in what part of insn.  However, we will need more data
2995   when we'll start caching dependence requests.  */
2996
2997/* Container to hold information for dependency analysis.  */
2998static struct
2999{
3000  deps_t dc;
3001
3002  /* A variable to track which part of rtx we are scanning in
3003     sched-deps.c: sched_analyze_insn ().  */
3004  deps_where_t where;
3005
3006  /* Current producer.  */
3007  insn_t pro;
3008
3009  /* Current consumer.  */
3010  vinsn_t con;
3011
3012  /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3013     X is from { INSN, LHS, RHS }.  */
3014  ds_t has_dep_p[DEPS_IN_NOWHERE];
3015} has_dependence_data;
3016
3017/* Start analyzing dependencies of INSN.  */
3018static void
3019has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3020{
3021  gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3022
3023  has_dependence_data.where = DEPS_IN_INSN;
3024}
3025
3026/* Finish analyzing dependencies of an insn.  */
3027static void
3028has_dependence_finish_insn (void)
3029{
3030  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3031
3032  has_dependence_data.where = DEPS_IN_NOWHERE;
3033}
3034
3035/* Start analyzing dependencies of LHS.  */
3036static void
3037has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3038{
3039  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3040
3041  if (VINSN_LHS (has_dependence_data.con) != NULL)
3042    has_dependence_data.where = DEPS_IN_LHS;
3043}
3044
3045/* Finish analyzing dependencies of an lhs.  */
3046static void
3047has_dependence_finish_lhs (void)
3048{
3049  has_dependence_data.where = DEPS_IN_INSN;
3050}
3051
3052/* Start analyzing dependencies of RHS.  */
3053static void
3054has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3055{
3056  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3057
3058  if (VINSN_RHS (has_dependence_data.con) != NULL)
3059    has_dependence_data.where = DEPS_IN_RHS;
3060}
3061
3062/* Start analyzing dependencies of an rhs.  */
3063static void
3064has_dependence_finish_rhs (void)
3065{
3066  gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3067	      || has_dependence_data.where == DEPS_IN_INSN);
3068
3069  has_dependence_data.where = DEPS_IN_INSN;
3070}
3071
3072/* Note a set of REGNO.  */
3073static void
3074has_dependence_note_reg_set (int regno)
3075{
3076  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3077
3078  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3079				       VINSN_INSN_RTX
3080				       (has_dependence_data.con)))
3081    {
3082      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3083
3084      if (reg_last->sets != NULL
3085	  || reg_last->clobbers != NULL)
3086	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3087
3088      if (reg_last->uses)
3089	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3090    }
3091}
3092
3093/* Note a clobber of REGNO.  */
3094static void
3095has_dependence_note_reg_clobber (int regno)
3096{
3097  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3098
3099  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3100				       VINSN_INSN_RTX
3101				       (has_dependence_data.con)))
3102    {
3103      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3104
3105      if (reg_last->sets)
3106	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3107
3108      if (reg_last->uses)
3109	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3110    }
3111}
3112
3113/* Note a use of REGNO.  */
3114static void
3115has_dependence_note_reg_use (int regno)
3116{
3117  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3118
3119  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3120				       VINSN_INSN_RTX
3121				       (has_dependence_data.con)))
3122    {
3123      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3124
3125      if (reg_last->sets)
3126	*dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3127
3128      if (reg_last->clobbers)
3129	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3130
3131      /* Handle BE_IN_SPEC.  */
3132      if (reg_last->uses)
3133	{
3134	  ds_t pro_spec_checked_ds;
3135
3136	  pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3137	  pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3138
3139	  if (pro_spec_checked_ds != 0)
3140	    /* Merge BE_IN_SPEC bits into *DSP.  */
3141	    *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3142				  NULL_RTX, NULL_RTX);
3143	}
3144    }
3145}
3146
3147/* Note a memory dependence.  */
3148static void
3149has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3150			     rtx pending_mem ATTRIBUTE_UNUSED,
3151			     insn_t pending_insn ATTRIBUTE_UNUSED,
3152			     ds_t ds ATTRIBUTE_UNUSED)
3153{
3154  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3155				       VINSN_INSN_RTX (has_dependence_data.con)))
3156    {
3157      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3158
3159      *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3160    }
3161}
3162
3163/* Note a dependence.  */
3164static void
3165has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3166			 ds_t ds ATTRIBUTE_UNUSED)
3167{
3168  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3169				       VINSN_INSN_RTX (has_dependence_data.con)))
3170    {
3171      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3172
3173      *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3174    }
3175}
3176
3177/* Mark the insn as having a hard dependence that prevents speculation.  */
3178void
3179sel_mark_hard_insn (rtx insn)
3180{
3181  int i;
3182
3183  /* Only work when we're in has_dependence_p mode.
3184     ??? This is a hack, this should actually be a hook.  */
3185  if (!has_dependence_data.dc || !has_dependence_data.pro)
3186    return;
3187
3188  gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3189  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3190
3191  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3192    has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3193}
3194
3195/* This structure holds the hooks for the dependency analysis used when
3196   actually processing dependencies in the scheduler.  */
3197static struct sched_deps_info_def has_dependence_sched_deps_info;
3198
3199/* This initializes most of the fields of the above structure.  */
3200static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3201  {
3202    NULL,
3203
3204    has_dependence_start_insn,
3205    has_dependence_finish_insn,
3206    has_dependence_start_lhs,
3207    has_dependence_finish_lhs,
3208    has_dependence_start_rhs,
3209    has_dependence_finish_rhs,
3210    has_dependence_note_reg_set,
3211    has_dependence_note_reg_clobber,
3212    has_dependence_note_reg_use,
3213    has_dependence_note_mem_dep,
3214    has_dependence_note_dep,
3215
3216    0, /* use_cselib */
3217    0, /* use_deps_list */
3218    0 /* generate_spec_deps */
3219  };
3220
3221/* Initialize has_dependence_sched_deps_info with extra spec field.  */
3222static void
3223setup_has_dependence_sched_deps_info (void)
3224{
3225  memcpy (&has_dependence_sched_deps_info,
3226	  &const_has_dependence_sched_deps_info,
3227	  sizeof (has_dependence_sched_deps_info));
3228
3229  if (spec_info != NULL)
3230    has_dependence_sched_deps_info.generate_spec_deps = 1;
3231
3232  sched_deps_info = &has_dependence_sched_deps_info;
3233}
3234
3235/* Remove all dependences found and recorded in has_dependence_data array.  */
3236void
3237sel_clear_has_dependence (void)
3238{
3239  int i;
3240
3241  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3242    has_dependence_data.has_dep_p[i] = 0;
3243}
3244
3245/* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3246   to the dependence information array in HAS_DEP_PP.  */
3247ds_t
3248has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3249{
3250  int i;
3251  ds_t ds;
3252  struct deps_desc *dc;
3253
3254  if (INSN_SIMPLEJUMP_P (pred))
3255    /* Unconditional jump is just a transfer of control flow.
3256       Ignore it.  */
3257    return false;
3258
3259  dc = &INSN_DEPS_CONTEXT (pred);
3260
3261  /* We init this field lazily.  */
3262  if (dc->reg_last == NULL)
3263    init_deps_reg_last (dc);
3264
3265  if (!dc->readonly)
3266    {
3267      has_dependence_data.pro = NULL;
3268      /* Initialize empty dep context with information about PRED.  */
3269      advance_deps_context (dc, pred);
3270      dc->readonly = 1;
3271    }
3272
3273  has_dependence_data.where = DEPS_IN_NOWHERE;
3274  has_dependence_data.pro = pred;
3275  has_dependence_data.con = EXPR_VINSN (expr);
3276  has_dependence_data.dc = dc;
3277
3278  sel_clear_has_dependence ();
3279
3280  /* Now catch all dependencies that would be generated between PRED and
3281     INSN.  */
3282  setup_has_dependence_sched_deps_info ();
3283  deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3284  has_dependence_data.dc = NULL;
3285
3286  /* When a barrier was found, set DEPS_IN_INSN bits.  */
3287  if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3288    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3289  else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3290    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3291
3292  /* Do not allow stores to memory to move through checks.  Currently
3293     we don't move this to sched-deps.c as the check doesn't have
3294     obvious places to which this dependence can be attached.
3295     FIMXE: this should go to a hook.  */
3296  if (EXPR_LHS (expr)
3297      && MEM_P (EXPR_LHS (expr))
3298      && sel_insn_is_speculation_check (pred))
3299    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3300
3301  *has_dep_pp = has_dependence_data.has_dep_p;
3302  ds = 0;
3303  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3304    ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3305			NULL_RTX, NULL_RTX);
3306
3307  return ds;
3308}
3309
3310
3311/* Dependence hooks implementation that checks dependence latency constraints
3312   on the insns being scheduled.  The entry point for these routines is
3313   tick_check_p predicate.  */
3314
3315static struct
3316{
3317  /* An expr we are currently checking.  */
3318  expr_t expr;
3319
3320  /* A minimal cycle for its scheduling.  */
3321  int cycle;
3322
3323  /* Whether we have seen a true dependence while checking.  */
3324  bool seen_true_dep_p;
3325} tick_check_data;
3326
3327/* Update minimal scheduling cycle for tick_check_insn given that it depends
3328   on PRO with status DS and weight DW.  */
3329static void
3330tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3331{
3332  expr_t con_expr = tick_check_data.expr;
3333  insn_t con_insn = EXPR_INSN_RTX (con_expr);
3334
3335  if (con_insn != pro_insn)
3336    {
3337      enum reg_note dt;
3338      int tick;
3339
3340      if (/* PROducer was removed from above due to pipelining.  */
3341	  !INSN_IN_STREAM_P (pro_insn)
3342	  /* Or PROducer was originally on the next iteration regarding the
3343	     CONsumer.  */
3344	  || (INSN_SCHED_TIMES (pro_insn)
3345	      - EXPR_SCHED_TIMES (con_expr)) > 1)
3346	/* Don't count this dependence.  */
3347        return;
3348
3349      dt = ds_to_dt (ds);
3350      if (dt == REG_DEP_TRUE)
3351        tick_check_data.seen_true_dep_p = true;
3352
3353      gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3354
3355      {
3356	dep_def _dep, *dep = &_dep;
3357
3358	init_dep (dep, pro_insn, con_insn, dt);
3359
3360	tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3361      }
3362
3363      /* When there are several kinds of dependencies between pro and con,
3364         only REG_DEP_TRUE should be taken into account.  */
3365      if (tick > tick_check_data.cycle
3366	  && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3367	tick_check_data.cycle = tick;
3368    }
3369}
3370
3371/* An implementation of note_dep hook.  */
3372static void
3373tick_check_note_dep (insn_t pro, ds_t ds)
3374{
3375  tick_check_dep_with_dw (pro, ds, 0);
3376}
3377
3378/* An implementation of note_mem_dep hook.  */
3379static void
3380tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3381{
3382  dw_t dw;
3383
3384  dw = (ds_to_dt (ds) == REG_DEP_TRUE
3385        ? estimate_dep_weak (mem1, mem2)
3386        : 0);
3387
3388  tick_check_dep_with_dw (pro, ds, dw);
3389}
3390
3391/* This structure contains hooks for dependence analysis used when determining
3392   whether an insn is ready for scheduling.  */
3393static struct sched_deps_info_def tick_check_sched_deps_info =
3394  {
3395    NULL,
3396
3397    NULL,
3398    NULL,
3399    NULL,
3400    NULL,
3401    NULL,
3402    NULL,
3403    haifa_note_reg_set,
3404    haifa_note_reg_clobber,
3405    haifa_note_reg_use,
3406    tick_check_note_mem_dep,
3407    tick_check_note_dep,
3408
3409    0, 0, 0
3410  };
3411
3412/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3413   scheduled.  Return 0 if all data from producers in DC is ready.  */
3414int
3415tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3416{
3417  int cycles_left;
3418  /* Initialize variables.  */
3419  tick_check_data.expr = expr;
3420  tick_check_data.cycle = 0;
3421  tick_check_data.seen_true_dep_p = false;
3422  sched_deps_info = &tick_check_sched_deps_info;
3423
3424  gcc_assert (!dc->readonly);
3425  dc->readonly = 1;
3426  deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3427  dc->readonly = 0;
3428
3429  cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3430
3431  return cycles_left >= 0 ? cycles_left : 0;
3432}
3433
3434
3435/* Functions to work with insns.  */
3436
3437/* Returns true if LHS of INSN is the same as DEST of an insn
3438   being moved.  */
3439bool
3440lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3441{
3442  rtx lhs = INSN_LHS (insn);
3443
3444  if (lhs == NULL || dest == NULL)
3445    return false;
3446
3447  return rtx_equal_p (lhs, dest);
3448}
3449
3450/* Return s_i_d entry of INSN.  Callable from debugger.  */
3451sel_insn_data_def
3452insn_sid (insn_t insn)
3453{
3454  return *SID (insn);
3455}
3456
3457/* True when INSN is a speculative check.  We can tell this by looking
3458   at the data structures of the selective scheduler, not by examining
3459   the pattern.  */
3460bool
3461sel_insn_is_speculation_check (rtx insn)
3462{
3463  return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3464}
3465
3466/* Extracts machine mode MODE and destination location DST_LOC
3467   for given INSN.  */
3468void
3469get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3470{
3471  rtx pat = PATTERN (insn);
3472
3473  gcc_assert (dst_loc);
3474  gcc_assert (GET_CODE (pat) == SET);
3475
3476  *dst_loc = SET_DEST (pat);
3477
3478  gcc_assert (*dst_loc);
3479  gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3480
3481  if (mode)
3482    *mode = GET_MODE (*dst_loc);
3483}
3484
3485/* Returns true when moving through JUMP will result in bookkeeping
3486   creation.  */
3487bool
3488bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3489{
3490  insn_t succ;
3491  succ_iterator si;
3492
3493  FOR_EACH_SUCC (succ, si, jump)
3494    if (sel_num_cfg_preds_gt_1 (succ))
3495      return true;
3496
3497  return false;
3498}
3499
3500/* Return 'true' if INSN is the only one in its basic block.  */
3501static bool
3502insn_is_the_only_one_in_bb_p (insn_t insn)
3503{
3504  return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3505}
3506
3507#ifdef ENABLE_CHECKING
3508/* Check that the region we're scheduling still has at most one
3509   backedge.  */
3510static void
3511verify_backedges (void)
3512{
3513  if (pipelining_p)
3514    {
3515      int i, n = 0;
3516      edge e;
3517      edge_iterator ei;
3518
3519      for (i = 0; i < current_nr_blocks; i++)
3520        FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3521          if (in_current_region_p (e->dest)
3522              && BLOCK_TO_BB (e->dest->index) < i)
3523            n++;
3524
3525      gcc_assert (n <= 1);
3526    }
3527}
3528#endif
3529
3530
3531/* Functions to work with control flow.  */
3532
3533/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3534   are sorted in topological order (it might have been invalidated by
3535   redirecting an edge).  */
3536static void
3537sel_recompute_toporder (void)
3538{
3539  int i, n, rgn;
3540  int *postorder, n_blocks;
3541
3542  postorder = XALLOCAVEC (int, n_basic_blocks);
3543  n_blocks = post_order_compute (postorder, false, false);
3544
3545  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3546  for (n = 0, i = n_blocks - 1; i >= 0; i--)
3547    if (CONTAINING_RGN (postorder[i]) == rgn)
3548      {
3549	BLOCK_TO_BB (postorder[i]) = n;
3550	BB_TO_BLOCK (n) = postorder[i];
3551	n++;
3552      }
3553
3554  /* Assert that we updated info for all blocks.  We may miss some blocks if
3555     this function is called when redirecting an edge made a block
3556     unreachable, but that block is not deleted yet.  */
3557  gcc_assert (n == RGN_NR_BLOCKS (rgn));
3558}
3559
3560/* Tidy the possibly empty block BB.  */
3561static bool
3562maybe_tidy_empty_bb (basic_block bb)
3563{
3564  basic_block succ_bb, pred_bb;
3565  VEC (basic_block, heap) *dom_bbs;
3566  edge e;
3567  edge_iterator ei;
3568  bool rescan_p;
3569
3570  /* Keep empty bb only if this block immediately precedes EXIT and
3571     has incoming non-fallthrough edge, or it has no predecessors or
3572     successors.  Otherwise remove it.  */
3573  if (!sel_bb_empty_p (bb)
3574      || (single_succ_p (bb)
3575          && single_succ (bb) == EXIT_BLOCK_PTR
3576          && (!single_pred_p (bb)
3577              || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3578      || EDGE_COUNT (bb->preds) == 0
3579      || EDGE_COUNT (bb->succs) == 0)
3580    return false;
3581
3582  /* Do not attempt to redirect complex edges.  */
3583  FOR_EACH_EDGE (e, ei, bb->preds)
3584    if (e->flags & EDGE_COMPLEX)
3585      return false;
3586
3587  free_data_sets (bb);
3588
3589  /* Do not delete BB if it has more than one successor.
3590     That can occur when we moving a jump.  */
3591  if (!single_succ_p (bb))
3592    {
3593      gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3594      sel_merge_blocks (bb->prev_bb, bb);
3595      return true;
3596    }
3597
3598  succ_bb = single_succ (bb);
3599  rescan_p = true;
3600  pred_bb = NULL;
3601  dom_bbs = NULL;
3602
3603  /* Redirect all non-fallthru edges to the next bb.  */
3604  while (rescan_p)
3605    {
3606      rescan_p = false;
3607
3608      FOR_EACH_EDGE (e, ei, bb->preds)
3609        {
3610          pred_bb = e->src;
3611
3612          if (!(e->flags & EDGE_FALLTHRU))
3613            {
3614	      /* We can not invalidate computed topological order by moving
3615	         the edge destination block (E->SUCC) along a fallthru edge.
3616
3617		 We will update dominators here only when we'll get
3618		 an unreachable block when redirecting, otherwise
3619		 sel_redirect_edge_and_branch will take care of it.  */
3620	      if (e->dest != bb
3621		  && single_pred_p (e->dest))
3622		VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3623              sel_redirect_edge_and_branch (e, succ_bb);
3624              rescan_p = true;
3625              break;
3626            }
3627	  /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3628	     to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3629	     still have to adjust it.  */
3630	  else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3631	    {
3632	      /* If possible, try to remove the unneeded conditional jump.  */
3633	      if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3634		  && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3635		{
3636		  if (!sel_remove_insn (BB_END (pred_bb), false, false))
3637		    tidy_fallthru_edge (e);
3638		}
3639	      else
3640		sel_redirect_edge_and_branch (e, succ_bb);
3641	      rescan_p = true;
3642	      break;
3643	    }
3644        }
3645    }
3646
3647  if (can_merge_blocks_p (bb->prev_bb, bb))
3648    sel_merge_blocks (bb->prev_bb, bb);
3649  else
3650    {
3651      /* This is a block without fallthru predecessor.  Just delete it.  */
3652      gcc_assert (pred_bb != NULL);
3653
3654      if (in_current_region_p (pred_bb))
3655	move_bb_info (pred_bb, bb);
3656      remove_empty_bb (bb, true);
3657    }
3658
3659  if (!VEC_empty (basic_block, dom_bbs))
3660    {
3661      VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3662      iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3663      VEC_free (basic_block, heap, dom_bbs);
3664    }
3665
3666  return true;
3667}
3668
3669/* Tidy the control flow after we have removed original insn from
3670   XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3671   is true, also try to optimize control flow on non-empty blocks.  */
3672bool
3673tidy_control_flow (basic_block xbb, bool full_tidying)
3674{
3675  bool changed = true;
3676  insn_t first, last;
3677
3678  /* First check whether XBB is empty.  */
3679  changed = maybe_tidy_empty_bb (xbb);
3680  if (changed || !full_tidying)
3681    return changed;
3682
3683  /* Check if there is a unnecessary jump after insn left.  */
3684  if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3685      && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3686      && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3687    {
3688      if (sel_remove_insn (BB_END (xbb), false, false))
3689        return true;
3690      tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3691    }
3692
3693  first = sel_bb_head (xbb);
3694  last = sel_bb_end (xbb);
3695  if (MAY_HAVE_DEBUG_INSNS)
3696    {
3697      if (first != last && DEBUG_INSN_P (first))
3698	do
3699	  first = NEXT_INSN (first);
3700	while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3701
3702      if (first != last && DEBUG_INSN_P (last))
3703	do
3704	  last = PREV_INSN (last);
3705	while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3706    }
3707  /* Check if there is an unnecessary jump in previous basic block leading
3708     to next basic block left after removing INSN from stream.
3709     If it is so, remove that jump and redirect edge to current
3710     basic block (where there was INSN before deletion).  This way
3711     when NOP will be deleted several instructions later with its
3712     basic block we will not get a jump to next instruction, which
3713     can be harmful.  */
3714  if (first == last
3715      && !sel_bb_empty_p (xbb)
3716      && INSN_NOP_P (last)
3717      /* Flow goes fallthru from current block to the next.  */
3718      && EDGE_COUNT (xbb->succs) == 1
3719      && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3720      /* When successor is an EXIT block, it may not be the next block.  */
3721      && single_succ (xbb) != EXIT_BLOCK_PTR
3722      /* And unconditional jump in previous basic block leads to
3723         next basic block of XBB and this jump can be safely removed.  */
3724      && in_current_region_p (xbb->prev_bb)
3725      && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3726      && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3727      /* Also this jump is not at the scheduling boundary.  */
3728      && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3729    {
3730      bool recompute_toporder_p;
3731      /* Clear data structures of jump - jump itself will be removed
3732         by sel_redirect_edge_and_branch.  */
3733      clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3734      recompute_toporder_p
3735        = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3736
3737      gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3738
3739      /* It can turn out that after removing unused jump, basic block
3740         that contained that jump, becomes empty too.  In such case
3741         remove it too.  */
3742      if (sel_bb_empty_p (xbb->prev_bb))
3743        changed = maybe_tidy_empty_bb (xbb->prev_bb);
3744      if (recompute_toporder_p)
3745	sel_recompute_toporder ();
3746    }
3747
3748#ifdef ENABLE_CHECKING
3749  verify_backedges ();
3750  verify_dominators (CDI_DOMINATORS);
3751#endif
3752
3753  return changed;
3754}
3755
3756/* Purge meaningless empty blocks in the middle of a region.  */
3757void
3758purge_empty_blocks (void)
3759{
3760  int i;
3761
3762  /* Do not attempt to delete the first basic block in the region.  */
3763  for (i = 1; i < current_nr_blocks; )
3764    {
3765      basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3766
3767      if (maybe_tidy_empty_bb (b))
3768	continue;
3769
3770      i++;
3771    }
3772}
3773
3774/* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3775   do not delete insn's data, because it will be later re-emitted.
3776   Return true if we have removed some blocks afterwards.  */
3777bool
3778sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3779{
3780  basic_block bb = BLOCK_FOR_INSN (insn);
3781
3782  gcc_assert (INSN_IN_STREAM_P (insn));
3783
3784  if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3785    {
3786      expr_t expr;
3787      av_set_iterator i;
3788
3789      /* When we remove a debug insn that is head of a BB, it remains
3790	 in the AV_SET of the block, but it shouldn't.  */
3791      FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3792	if (EXPR_INSN_RTX (expr) == insn)
3793	  {
3794	    av_set_iter_remove (&i);
3795	    break;
3796	  }
3797    }
3798
3799  if (only_disconnect)
3800    {
3801      insn_t prev = PREV_INSN (insn);
3802      insn_t next = NEXT_INSN (insn);
3803      basic_block bb = BLOCK_FOR_INSN (insn);
3804
3805      NEXT_INSN (prev) = next;
3806      PREV_INSN (next) = prev;
3807
3808      if (BB_HEAD (bb) == insn)
3809        {
3810          gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3811          BB_HEAD (bb) = prev;
3812        }
3813      if (BB_END (bb) == insn)
3814        BB_END (bb) = prev;
3815    }
3816  else
3817    {
3818      remove_insn (insn);
3819      clear_expr (INSN_EXPR (insn));
3820    }
3821
3822  /* It is necessary to null this fields before calling add_insn ().  */
3823  PREV_INSN (insn) = NULL_RTX;
3824  NEXT_INSN (insn) = NULL_RTX;
3825
3826  return tidy_control_flow (bb, full_tidying);
3827}
3828
3829/* Estimate number of the insns in BB.  */
3830static int
3831sel_estimate_number_of_insns (basic_block bb)
3832{
3833  int res = 0;
3834  insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3835
3836  for (; insn != next_tail; insn = NEXT_INSN (insn))
3837    if (NONDEBUG_INSN_P (insn))
3838      res++;
3839
3840  return res;
3841}
3842
3843/* We don't need separate luids for notes or labels.  */
3844static int
3845sel_luid_for_non_insn (rtx x)
3846{
3847  gcc_assert (NOTE_P (x) || LABEL_P (x));
3848
3849  return -1;
3850}
3851
3852/* Return seqno of the only predecessor of INSN.  */
3853static int
3854get_seqno_of_a_pred (insn_t insn)
3855{
3856  int seqno;
3857
3858  gcc_assert (INSN_SIMPLEJUMP_P (insn));
3859
3860  if (!sel_bb_head_p (insn))
3861    seqno = INSN_SEQNO (PREV_INSN (insn));
3862  else
3863    {
3864      basic_block bb = BLOCK_FOR_INSN (insn);
3865
3866      if (single_pred_p (bb)
3867	  && !in_current_region_p (single_pred (bb)))
3868	{
3869          /* We can have preds outside a region when splitting edges
3870             for pipelining of an outer loop.  Use succ instead.
3871             There should be only one of them.  */
3872	  insn_t succ = NULL;
3873          succ_iterator si;
3874          bool first = true;
3875
3876	  gcc_assert (flag_sel_sched_pipelining_outer_loops
3877		      && current_loop_nest);
3878          FOR_EACH_SUCC_1 (succ, si, insn,
3879                           SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3880            {
3881              gcc_assert (first);
3882              first = false;
3883            }
3884
3885	  gcc_assert (succ != NULL);
3886	  seqno = INSN_SEQNO (succ);
3887	}
3888      else
3889	{
3890	  insn_t *preds;
3891	  int n;
3892
3893	  cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3894	  gcc_assert (n == 1);
3895
3896	  seqno = INSN_SEQNO (preds[0]);
3897
3898	  free (preds);
3899	}
3900    }
3901
3902  return seqno;
3903}
3904
3905/*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
3906    with positive seqno exist.  */
3907int
3908get_seqno_by_preds (rtx insn)
3909{
3910  basic_block bb = BLOCK_FOR_INSN (insn);
3911  rtx tmp = insn, head = BB_HEAD (bb);
3912  insn_t *preds;
3913  int n, i, seqno;
3914
3915  while (tmp != head)
3916    if (INSN_P (tmp))
3917      return INSN_SEQNO (tmp);
3918    else
3919      tmp = PREV_INSN (tmp);
3920
3921  cfg_preds (bb, &preds, &n);
3922  for (i = 0, seqno = -1; i < n; i++)
3923    seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3924
3925  return seqno;
3926}
3927
3928
3929
3930/* Extend pass-scope data structures for basic blocks.  */
3931void
3932sel_extend_global_bb_info (void)
3933{
3934  VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3935			 last_basic_block);
3936}
3937
3938/* Extend region-scope data structures for basic blocks.  */
3939static void
3940extend_region_bb_info (void)
3941{
3942  VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3943			 last_basic_block);
3944}
3945
3946/* Extend all data structures to fit for all basic blocks.  */
3947static void
3948extend_bb_info (void)
3949{
3950  sel_extend_global_bb_info ();
3951  extend_region_bb_info ();
3952}
3953
3954/* Finalize pass-scope data structures for basic blocks.  */
3955void
3956sel_finish_global_bb_info (void)
3957{
3958  VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3959}
3960
3961/* Finalize region-scope data structures for basic blocks.  */
3962static void
3963finish_region_bb_info (void)
3964{
3965  VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3966}
3967
3968
3969/* Data for each insn in current region.  */
3970VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3971
3972/* A vector for the insns we've emitted.  */
3973static insn_vec_t new_insns = NULL;
3974
3975/* Extend data structures for insns from current region.  */
3976static void
3977extend_insn_data (void)
3978{
3979  int reserve;
3980
3981  sched_extend_target ();
3982  sched_deps_init (false);
3983
3984  /* Extend data structures for insns from current region.  */
3985  reserve = (sched_max_luid + 1
3986             - VEC_length (sel_insn_data_def, s_i_d));
3987  if (reserve > 0
3988      && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3989    {
3990      int size;
3991
3992      if (sched_max_luid / 2 > 1024)
3993        size = sched_max_luid + 1024;
3994      else
3995        size = 3 * sched_max_luid / 2;
3996
3997
3998      VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3999    }
4000}
4001
4002/* Finalize data structures for insns from current region.  */
4003static void
4004finish_insns (void)
4005{
4006  unsigned i;
4007
4008  /* Clear here all dependence contexts that may have left from insns that were
4009     removed during the scheduling.  */
4010  for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4011    {
4012      sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4013
4014      if (sid_entry->live)
4015        return_regset_to_pool (sid_entry->live);
4016      if (sid_entry->analyzed_deps)
4017	{
4018	  BITMAP_FREE (sid_entry->analyzed_deps);
4019	  BITMAP_FREE (sid_entry->found_deps);
4020          htab_delete (sid_entry->transformed_insns);
4021	  free_deps (&sid_entry->deps_context);
4022	}
4023      if (EXPR_VINSN (&sid_entry->expr))
4024        {
4025          clear_expr (&sid_entry->expr);
4026
4027          /* Also, clear CANT_MOVE bit here, because we really don't want it
4028             to be passed to the next region.  */
4029          CANT_MOVE_BY_LUID (i) = 0;
4030        }
4031    }
4032
4033  VEC_free (sel_insn_data_def, heap, s_i_d);
4034}
4035
4036/* A proxy to pass initialization data to init_insn ().  */
4037static sel_insn_data_def _insn_init_ssid;
4038static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4039
4040/* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4041static bool insn_init_create_new_vinsn_p;
4042
4043/* Set all necessary data for initialization of the new insn[s].  */
4044static expr_t
4045set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4046{
4047  expr_t x = &insn_init_ssid->expr;
4048
4049  copy_expr_onside (x, expr);
4050  if (vi != NULL)
4051    {
4052      insn_init_create_new_vinsn_p = false;
4053      change_vinsn_in_expr (x, vi);
4054    }
4055  else
4056    insn_init_create_new_vinsn_p = true;
4057
4058  insn_init_ssid->seqno = seqno;
4059  return x;
4060}
4061
4062/* Init data for INSN.  */
4063static void
4064init_insn_data (insn_t insn)
4065{
4066  expr_t expr;
4067  sel_insn_data_t ssid = insn_init_ssid;
4068
4069  /* The fields mentioned below are special and hence are not being
4070     propagated to the new insns.  */
4071  gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4072	      && !ssid->after_stall_p && ssid->sched_cycle == 0);
4073  gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4074
4075  expr = INSN_EXPR (insn);
4076  copy_expr (expr, &ssid->expr);
4077  prepare_insn_expr (insn, ssid->seqno);
4078
4079  if (insn_init_create_new_vinsn_p)
4080    change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4081
4082  if (first_time_insn_init (insn))
4083    init_first_time_insn_data (insn);
4084}
4085
4086/* This is used to initialize spurious jumps generated by
4087   sel_redirect_edge ().  */
4088static void
4089init_simplejump_data (insn_t insn)
4090{
4091  init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4092	     REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4093	     false, true);
4094  INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4095  init_first_time_insn_data (insn);
4096}
4097
4098/* Perform deferred initialization of insns.  This is used to process
4099   a new jump that may be created by redirect_edge.  */
4100void
4101sel_init_new_insn (insn_t insn, int flags)
4102{
4103  /* We create data structures for bb when the first insn is emitted in it.  */
4104  if (INSN_P (insn)
4105      && INSN_IN_STREAM_P (insn)
4106      && insn_is_the_only_one_in_bb_p (insn))
4107    {
4108      extend_bb_info ();
4109      create_initial_data_sets (BLOCK_FOR_INSN (insn));
4110    }
4111
4112  if (flags & INSN_INIT_TODO_LUID)
4113    sched_init_luids (NULL, NULL, NULL, insn);
4114
4115  if (flags & INSN_INIT_TODO_SSID)
4116    {
4117      extend_insn_data ();
4118      init_insn_data (insn);
4119      clear_expr (&insn_init_ssid->expr);
4120    }
4121
4122  if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4123    {
4124      extend_insn_data ();
4125      init_simplejump_data (insn);
4126    }
4127
4128  gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4129              == CONTAINING_RGN (BB_TO_BLOCK (0)));
4130}
4131
4132
4133/* Functions to init/finish work with lv sets.  */
4134
4135/* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4136static void
4137init_lv_set (basic_block bb)
4138{
4139  gcc_assert (!BB_LV_SET_VALID_P (bb));
4140
4141  BB_LV_SET (bb) = get_regset_from_pool ();
4142  COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4143  BB_LV_SET_VALID_P (bb) = true;
4144}
4145
4146/* Copy liveness information to BB from FROM_BB.  */
4147static void
4148copy_lv_set_from (basic_block bb, basic_block from_bb)
4149{
4150  gcc_assert (!BB_LV_SET_VALID_P (bb));
4151
4152  COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4153  BB_LV_SET_VALID_P (bb) = true;
4154}
4155
4156/* Initialize lv set of all bb headers.  */
4157void
4158init_lv_sets (void)
4159{
4160  basic_block bb;
4161
4162  /* Initialize of LV sets.  */
4163  FOR_EACH_BB (bb)
4164    init_lv_set (bb);
4165
4166  /* Don't forget EXIT_BLOCK.  */
4167  init_lv_set (EXIT_BLOCK_PTR);
4168}
4169
4170/* Release lv set of HEAD.  */
4171static void
4172free_lv_set (basic_block bb)
4173{
4174  gcc_assert (BB_LV_SET (bb) != NULL);
4175
4176  return_regset_to_pool (BB_LV_SET (bb));
4177  BB_LV_SET (bb) = NULL;
4178  BB_LV_SET_VALID_P (bb) = false;
4179}
4180
4181/* Finalize lv sets of all bb headers.  */
4182void
4183free_lv_sets (void)
4184{
4185  basic_block bb;
4186
4187  /* Don't forget EXIT_BLOCK.  */
4188  free_lv_set (EXIT_BLOCK_PTR);
4189
4190  /* Free LV sets.  */
4191  FOR_EACH_BB (bb)
4192    if (BB_LV_SET (bb))
4193      free_lv_set (bb);
4194}
4195
4196/* Initialize an invalid AV_SET for BB.
4197   This set will be updated next time compute_av () process BB.  */
4198static void
4199invalidate_av_set (basic_block bb)
4200{
4201  gcc_assert (BB_AV_LEVEL (bb) <= 0
4202	      && BB_AV_SET (bb) == NULL);
4203
4204  BB_AV_LEVEL (bb) = -1;
4205}
4206
4207/* Create initial data sets for BB (they will be invalid).  */
4208static void
4209create_initial_data_sets (basic_block bb)
4210{
4211  if (BB_LV_SET (bb))
4212    BB_LV_SET_VALID_P (bb) = false;
4213  else
4214    BB_LV_SET (bb) = get_regset_from_pool ();
4215  invalidate_av_set (bb);
4216}
4217
4218/* Free av set of BB.  */
4219static void
4220free_av_set (basic_block bb)
4221{
4222  av_set_clear (&BB_AV_SET (bb));
4223  BB_AV_LEVEL (bb) = 0;
4224}
4225
4226/* Free data sets of BB.  */
4227void
4228free_data_sets (basic_block bb)
4229{
4230  free_lv_set (bb);
4231  free_av_set (bb);
4232}
4233
4234/* Exchange lv sets of TO and FROM.  */
4235static void
4236exchange_lv_sets (basic_block to, basic_block from)
4237{
4238  {
4239    regset to_lv_set = BB_LV_SET (to);
4240
4241    BB_LV_SET (to) = BB_LV_SET (from);
4242    BB_LV_SET (from) = to_lv_set;
4243  }
4244
4245  {
4246    bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4247
4248    BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4249    BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4250  }
4251}
4252
4253
4254/* Exchange av sets of TO and FROM.  */
4255static void
4256exchange_av_sets (basic_block to, basic_block from)
4257{
4258  {
4259    av_set_t to_av_set = BB_AV_SET (to);
4260
4261    BB_AV_SET (to) = BB_AV_SET (from);
4262    BB_AV_SET (from) = to_av_set;
4263  }
4264
4265  {
4266    int to_av_level = BB_AV_LEVEL (to);
4267
4268    BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4269    BB_AV_LEVEL (from) = to_av_level;
4270  }
4271}
4272
4273/* Exchange data sets of TO and FROM.  */
4274void
4275exchange_data_sets (basic_block to, basic_block from)
4276{
4277  exchange_lv_sets (to, from);
4278  exchange_av_sets (to, from);
4279}
4280
4281/* Copy data sets of FROM to TO.  */
4282void
4283copy_data_sets (basic_block to, basic_block from)
4284{
4285  gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4286  gcc_assert (BB_AV_SET (to) == NULL);
4287
4288  BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4289  BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4290
4291  if (BB_AV_SET_VALID_P (from))
4292    {
4293      BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4294    }
4295  if (BB_LV_SET_VALID_P (from))
4296    {
4297      gcc_assert (BB_LV_SET (to) != NULL);
4298      COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4299    }
4300}
4301
4302/* Return an av set for INSN, if any.  */
4303av_set_t
4304get_av_set (insn_t insn)
4305{
4306  av_set_t av_set;
4307
4308  gcc_assert (AV_SET_VALID_P (insn));
4309
4310  if (sel_bb_head_p (insn))
4311    av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4312  else
4313    av_set = NULL;
4314
4315  return av_set;
4316}
4317
4318/* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4319int
4320get_av_level (insn_t insn)
4321{
4322  int av_level;
4323
4324  gcc_assert (INSN_P (insn));
4325
4326  if (sel_bb_head_p (insn))
4327    av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4328  else
4329    av_level = INSN_WS_LEVEL (insn);
4330
4331  return av_level;
4332}
4333
4334
4335
4336/* Variables to work with control-flow graph.  */
4337
4338/* The basic block that already has been processed by the sched_data_update (),
4339   but hasn't been in sel_add_bb () yet.  */
4340static VEC (basic_block, heap) *last_added_blocks = NULL;
4341
4342/* A pool for allocating successor infos.  */
4343static struct
4344{
4345  /* A stack for saving succs_info structures.  */
4346  struct succs_info *stack;
4347
4348  /* Its size.  */
4349  int size;
4350
4351  /* Top of the stack.  */
4352  int top;
4353
4354  /* Maximal value of the top.  */
4355  int max_top;
4356}  succs_info_pool;
4357
4358/* Functions to work with control-flow graph.  */
4359
4360/* Return basic block note of BB.  */
4361insn_t
4362sel_bb_head (basic_block bb)
4363{
4364  insn_t head;
4365
4366  if (bb == EXIT_BLOCK_PTR)
4367    {
4368      gcc_assert (exit_insn != NULL_RTX);
4369      head = exit_insn;
4370    }
4371  else
4372    {
4373      insn_t note;
4374
4375      note = bb_note (bb);
4376      head = next_nonnote_insn (note);
4377
4378      if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4379	head = NULL_RTX;
4380    }
4381
4382  return head;
4383}
4384
4385/* Return true if INSN is a basic block header.  */
4386bool
4387sel_bb_head_p (insn_t insn)
4388{
4389  return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4390}
4391
4392/* Return last insn of BB.  */
4393insn_t
4394sel_bb_end (basic_block bb)
4395{
4396  if (sel_bb_empty_p (bb))
4397    return NULL_RTX;
4398
4399  gcc_assert (bb != EXIT_BLOCK_PTR);
4400
4401  return BB_END (bb);
4402}
4403
4404/* Return true if INSN is the last insn in its basic block.  */
4405bool
4406sel_bb_end_p (insn_t insn)
4407{
4408  return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4409}
4410
4411/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4412bool
4413sel_bb_empty_p (basic_block bb)
4414{
4415  return sel_bb_head (bb) == NULL;
4416}
4417
4418/* True when BB belongs to the current scheduling region.  */
4419bool
4420in_current_region_p (basic_block bb)
4421{
4422  if (bb->index < NUM_FIXED_BLOCKS)
4423    return false;
4424
4425  return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4426}
4427
4428/* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4429basic_block
4430fallthru_bb_of_jump (rtx jump)
4431{
4432  if (!JUMP_P (jump))
4433    return NULL;
4434
4435  if (!any_condjump_p (jump))
4436    return NULL;
4437
4438  /* A basic block that ends with a conditional jump may still have one successor
4439     (and be followed by a barrier), we are not interested.  */
4440  if (single_succ_p (BLOCK_FOR_INSN (jump)))
4441    return NULL;
4442
4443  return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4444}
4445
4446/* Remove all notes from BB.  */
4447static void
4448init_bb (basic_block bb)
4449{
4450  remove_notes (bb_note (bb), BB_END (bb));
4451  BB_NOTE_LIST (bb) = note_list;
4452}
4453
4454void
4455sel_init_bbs (bb_vec_t bbs, basic_block bb)
4456{
4457  const struct sched_scan_info_def ssi =
4458    {
4459      extend_bb_info, /* extend_bb */
4460      init_bb, /* init_bb */
4461      NULL, /* extend_insn */
4462      NULL /* init_insn */
4463    };
4464
4465  sched_scan (&ssi, bbs, bb, new_insns, NULL);
4466}
4467
4468/* Restore notes for the whole region.  */
4469static void
4470sel_restore_notes (void)
4471{
4472  int bb;
4473  insn_t insn;
4474
4475  for (bb = 0; bb < current_nr_blocks; bb++)
4476    {
4477      basic_block first, last;
4478
4479      first = EBB_FIRST_BB (bb);
4480      last = EBB_LAST_BB (bb)->next_bb;
4481
4482      do
4483	{
4484	  note_list = BB_NOTE_LIST (first);
4485	  restore_other_notes (NULL, first);
4486	  BB_NOTE_LIST (first) = NULL_RTX;
4487
4488	  FOR_BB_INSNS (first, insn)
4489	    if (NONDEBUG_INSN_P (insn))
4490	      reemit_notes (insn);
4491
4492          first = first->next_bb;
4493	}
4494      while (first != last);
4495    }
4496}
4497
4498/* Free per-bb data structures.  */
4499void
4500sel_finish_bbs (void)
4501{
4502  sel_restore_notes ();
4503
4504  /* Remove current loop preheader from this loop.  */
4505  if (current_loop_nest)
4506    sel_remove_loop_preheader ();
4507
4508  finish_region_bb_info ();
4509}
4510
4511/* Return true if INSN has a single successor of type FLAGS.  */
4512bool
4513sel_insn_has_single_succ_p (insn_t insn, int flags)
4514{
4515  insn_t succ;
4516  succ_iterator si;
4517  bool first_p = true;
4518
4519  FOR_EACH_SUCC_1 (succ, si, insn, flags)
4520    {
4521      if (first_p)
4522	first_p = false;
4523      else
4524	return false;
4525    }
4526
4527  return true;
4528}
4529
4530/* Allocate successor's info.  */
4531static struct succs_info *
4532alloc_succs_info (void)
4533{
4534  if (succs_info_pool.top == succs_info_pool.max_top)
4535    {
4536      int i;
4537
4538      if (++succs_info_pool.max_top >= succs_info_pool.size)
4539        gcc_unreachable ();
4540
4541      i = ++succs_info_pool.top;
4542      succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4543      succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4544      succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4545    }
4546  else
4547    succs_info_pool.top++;
4548
4549  return &succs_info_pool.stack[succs_info_pool.top];
4550}
4551
4552/* Free successor's info.  */
4553void
4554free_succs_info (struct succs_info * sinfo)
4555{
4556  gcc_assert (succs_info_pool.top >= 0
4557              && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4558  succs_info_pool.top--;
4559
4560  /* Clear stale info.  */
4561  VEC_block_remove (rtx, sinfo->succs_ok,
4562                    0, VEC_length (rtx, sinfo->succs_ok));
4563  VEC_block_remove (rtx, sinfo->succs_other,
4564                    0, VEC_length (rtx, sinfo->succs_other));
4565  VEC_block_remove (int, sinfo->probs_ok,
4566                    0, VEC_length (int, sinfo->probs_ok));
4567  sinfo->all_prob = 0;
4568  sinfo->succs_ok_n = 0;
4569  sinfo->all_succs_n = 0;
4570}
4571
4572/* Compute successor info for INSN.  FLAGS are the flags passed
4573   to the FOR_EACH_SUCC_1 iterator.  */
4574struct succs_info *
4575compute_succs_info (insn_t insn, short flags)
4576{
4577  succ_iterator si;
4578  insn_t succ;
4579  struct succs_info *sinfo = alloc_succs_info ();
4580
4581  /* Traverse *all* successors and decide what to do with each.  */
4582  FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4583    {
4584      /* FIXME: this doesn't work for skipping to loop exits, as we don't
4585         perform code motion through inner loops.  */
4586      short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4587
4588      if (current_flags & flags)
4589        {
4590          VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4591          VEC_safe_push (int, heap, sinfo->probs_ok,
4592                         /* FIXME: Improve calculation when skipping
4593                            inner loop to exits.  */
4594                         (si.bb_end
4595                          ? si.e1->probability
4596                          : REG_BR_PROB_BASE));
4597          sinfo->succs_ok_n++;
4598        }
4599      else
4600        VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4601
4602      /* Compute all_prob.  */
4603      if (!si.bb_end)
4604        sinfo->all_prob = REG_BR_PROB_BASE;
4605      else
4606        sinfo->all_prob += si.e1->probability;
4607
4608      sinfo->all_succs_n++;
4609    }
4610
4611  return sinfo;
4612}
4613
4614/* Return the predecessors of BB in PREDS and their number in N.
4615   Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4616static void
4617cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4618{
4619  edge e;
4620  edge_iterator ei;
4621
4622  gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4623
4624  FOR_EACH_EDGE (e, ei, bb->preds)
4625    {
4626      basic_block pred_bb = e->src;
4627      insn_t bb_end = BB_END (pred_bb);
4628
4629      if (!in_current_region_p (pred_bb))
4630	{
4631	  gcc_assert (flag_sel_sched_pipelining_outer_loops
4632		      && current_loop_nest);
4633	  continue;
4634	}
4635
4636      if (sel_bb_empty_p (pred_bb))
4637	cfg_preds_1 (pred_bb, preds, n, size);
4638      else
4639	{
4640	  if (*n == *size)
4641	    *preds = XRESIZEVEC (insn_t, *preds,
4642                                 (*size = 2 * *size + 1));
4643	  (*preds)[(*n)++] = bb_end;
4644	}
4645    }
4646
4647  gcc_assert (*n != 0
4648	      || (flag_sel_sched_pipelining_outer_loops
4649		  && current_loop_nest));
4650}
4651
4652/* Find all predecessors of BB and record them in PREDS and their number
4653   in N.  Empty blocks are skipped, and only normal (forward in-region)
4654   edges are processed.  */
4655static void
4656cfg_preds (basic_block bb, insn_t **preds, int *n)
4657{
4658  int size = 0;
4659
4660  *preds = NULL;
4661  *n = 0;
4662  cfg_preds_1 (bb, preds, n, &size);
4663}
4664
4665/* Returns true if we are moving INSN through join point.  */
4666bool
4667sel_num_cfg_preds_gt_1 (insn_t insn)
4668{
4669  basic_block bb;
4670
4671  if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4672    return false;
4673
4674  bb = BLOCK_FOR_INSN (insn);
4675
4676  while (1)
4677    {
4678      if (EDGE_COUNT (bb->preds) > 1)
4679	return true;
4680
4681      gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4682      bb = EDGE_PRED (bb, 0)->src;
4683
4684      if (!sel_bb_empty_p (bb))
4685	break;
4686    }
4687
4688  return false;
4689}
4690
4691/* Returns true when BB should be the end of an ebb.  Adapted from the
4692   code in sched-ebb.c.  */
4693bool
4694bb_ends_ebb_p (basic_block bb)
4695{
4696  basic_block next_bb = bb_next_bb (bb);
4697  edge e;
4698  edge_iterator ei;
4699
4700  if (next_bb == EXIT_BLOCK_PTR
4701      || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4702      || (LABEL_P (BB_HEAD (next_bb))
4703	  /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4704	     Work around that.  */
4705	  && !single_pred_p (next_bb)))
4706    return true;
4707
4708  if (!in_current_region_p (next_bb))
4709    return true;
4710
4711  FOR_EACH_EDGE (e, ei, bb->succs)
4712    if ((e->flags & EDGE_FALLTHRU) != 0)
4713      {
4714	gcc_assert (e->dest == next_bb);
4715
4716	return false;
4717      }
4718
4719  return true;
4720}
4721
4722/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4723   successor of INSN.  */
4724bool
4725in_same_ebb_p (insn_t insn, insn_t succ)
4726{
4727  basic_block ptr = BLOCK_FOR_INSN (insn);
4728
4729  for(;;)
4730    {
4731      if (ptr == BLOCK_FOR_INSN (succ))
4732        return true;
4733
4734      if (bb_ends_ebb_p (ptr))
4735        return false;
4736
4737      ptr = bb_next_bb (ptr);
4738    }
4739
4740  gcc_unreachable ();
4741  return false;
4742}
4743
4744/* Recomputes the reverse topological order for the function and
4745   saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4746   modified appropriately.  */
4747static void
4748recompute_rev_top_order (void)
4749{
4750  int *postorder;
4751  int n_blocks, i;
4752
4753  if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4754    {
4755      rev_top_order_index_len = last_basic_block;
4756      rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4757                                        rev_top_order_index_len);
4758    }
4759
4760  postorder = XNEWVEC (int, n_basic_blocks);
4761
4762  n_blocks = post_order_compute (postorder, true, false);
4763  gcc_assert (n_basic_blocks == n_blocks);
4764
4765  /* Build reverse function: for each basic block with BB->INDEX == K
4766     rev_top_order_index[K] is it's reverse topological sort number.  */
4767  for (i = 0; i < n_blocks; i++)
4768    {
4769      gcc_assert (postorder[i] < rev_top_order_index_len);
4770      rev_top_order_index[postorder[i]] = i;
4771    }
4772
4773  free (postorder);
4774}
4775
4776/* Clear all flags from insns in BB that could spoil its rescheduling.  */
4777void
4778clear_outdated_rtx_info (basic_block bb)
4779{
4780  rtx insn;
4781
4782  FOR_BB_INSNS (bb, insn)
4783    if (INSN_P (insn))
4784      {
4785	SCHED_GROUP_P (insn) = 0;
4786	INSN_AFTER_STALL_P (insn) = 0;
4787	INSN_SCHED_TIMES (insn) = 0;
4788	EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4789
4790        /* We cannot use the changed caches, as previously we could ignore
4791           the LHS dependence due to enabled renaming and transform
4792           the expression, and currently we'll be unable to do this.  */
4793        htab_empty (INSN_TRANSFORMED_INSNS (insn));
4794      }
4795}
4796
4797/* Add BB_NOTE to the pool of available basic block notes.  */
4798static void
4799return_bb_to_pool (basic_block bb)
4800{
4801  rtx note = bb_note (bb);
4802
4803  gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4804	      && bb->aux == NULL);
4805
4806  /* It turns out that current cfg infrastructure does not support
4807     reuse of basic blocks.  Don't bother for now.  */
4808  /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4809}
4810
4811/* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4812static rtx
4813get_bb_note_from_pool (void)
4814{
4815  if (VEC_empty (rtx, bb_note_pool))
4816    return NULL_RTX;
4817  else
4818    {
4819      rtx note = VEC_pop (rtx, bb_note_pool);
4820
4821      PREV_INSN (note) = NULL_RTX;
4822      NEXT_INSN (note) = NULL_RTX;
4823
4824      return note;
4825    }
4826}
4827
4828/* Free bb_note_pool.  */
4829void
4830free_bb_note_pool (void)
4831{
4832  VEC_free (rtx, heap, bb_note_pool);
4833}
4834
4835/* Setup scheduler pool and successor structure.  */
4836void
4837alloc_sched_pools (void)
4838{
4839  int succs_size;
4840
4841  succs_size = MAX_WS + 1;
4842  succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4843  succs_info_pool.size = succs_size;
4844  succs_info_pool.top = -1;
4845  succs_info_pool.max_top = -1;
4846
4847  sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4848                                        sizeof (struct _list_node), 500);
4849}
4850
4851/* Free the pools.  */
4852void
4853free_sched_pools (void)
4854{
4855  int i;
4856
4857  free_alloc_pool (sched_lists_pool);
4858  gcc_assert (succs_info_pool.top == -1);
4859  for (i = 0; i < succs_info_pool.max_top; i++)
4860    {
4861      VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4862      VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4863      VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4864    }
4865  free (succs_info_pool.stack);
4866}
4867
4868
4869/* Returns a position in RGN where BB can be inserted retaining
4870   topological order.  */
4871static int
4872find_place_to_insert_bb (basic_block bb, int rgn)
4873{
4874  bool has_preds_outside_rgn = false;
4875  edge e;
4876  edge_iterator ei;
4877
4878  /* Find whether we have preds outside the region.  */
4879  FOR_EACH_EDGE (e, ei, bb->preds)
4880    if (!in_current_region_p (e->src))
4881      {
4882        has_preds_outside_rgn = true;
4883        break;
4884      }
4885
4886  /* Recompute the top order -- needed when we have > 1 pred
4887     and in case we don't have preds outside.  */
4888  if (flag_sel_sched_pipelining_outer_loops
4889      && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4890    {
4891      int i, bbi = bb->index, cur_bbi;
4892
4893      recompute_rev_top_order ();
4894      for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4895        {
4896          cur_bbi = BB_TO_BLOCK (i);
4897          if (rev_top_order_index[bbi]
4898              < rev_top_order_index[cur_bbi])
4899            break;
4900        }
4901
4902      /* We skipped the right block, so we increase i.  We accomodate
4903         it for increasing by step later, so we decrease i.  */
4904      return (i + 1) - 1;
4905    }
4906  else if (has_preds_outside_rgn)
4907    {
4908      /* This is the case when we generate an extra empty block
4909         to serve as region head during pipelining.  */
4910      e = EDGE_SUCC (bb, 0);
4911      gcc_assert (EDGE_COUNT (bb->succs) == 1
4912                  && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4913                  && (BLOCK_TO_BB (e->dest->index) == 0));
4914      return -1;
4915    }
4916
4917  /* We don't have preds outside the region.  We should have
4918     the only pred, because the multiple preds case comes from
4919     the pipelining of outer loops, and that is handled above.
4920     Just take the bbi of this single pred.  */
4921  if (EDGE_COUNT (bb->succs) > 0)
4922    {
4923      int pred_bbi;
4924
4925      gcc_assert (EDGE_COUNT (bb->preds) == 1);
4926
4927      pred_bbi = EDGE_PRED (bb, 0)->src->index;
4928      return BLOCK_TO_BB (pred_bbi);
4929    }
4930  else
4931    /* BB has no successors.  It is safe to put it in the end.  */
4932    return current_nr_blocks - 1;
4933}
4934
4935/* Deletes an empty basic block freeing its data.  */
4936static void
4937delete_and_free_basic_block (basic_block bb)
4938{
4939  gcc_assert (sel_bb_empty_p (bb));
4940
4941  if (BB_LV_SET (bb))
4942    free_lv_set (bb);
4943
4944  bitmap_clear_bit (blocks_to_reschedule, bb->index);
4945
4946  /* Can't assert av_set properties because we use sel_aremove_bb
4947     when removing loop preheader from the region.  At the point of
4948     removing the preheader we already have deallocated sel_region_bb_info.  */
4949  gcc_assert (BB_LV_SET (bb) == NULL
4950              && !BB_LV_SET_VALID_P (bb)
4951              && BB_AV_LEVEL (bb) == 0
4952              && BB_AV_SET (bb) == NULL);
4953
4954  delete_basic_block (bb);
4955}
4956
4957/* Add BB to the current region and update the region data.  */
4958static void
4959add_block_to_current_region (basic_block bb)
4960{
4961  int i, pos, bbi = -2, rgn;
4962
4963  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4964  bbi = find_place_to_insert_bb (bb, rgn);
4965  bbi += 1;
4966  pos = RGN_BLOCKS (rgn) + bbi;
4967
4968  gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4969              && ebb_head[bbi] == pos);
4970
4971  /* Make a place for the new block.  */
4972  extend_regions ();
4973
4974  for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4975    BLOCK_TO_BB (rgn_bb_table[i])++;
4976
4977  memmove (rgn_bb_table + pos + 1,
4978           rgn_bb_table + pos,
4979           (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4980
4981  /* Initialize data for BB.  */
4982  rgn_bb_table[pos] = bb->index;
4983  BLOCK_TO_BB (bb->index) = bbi;
4984  CONTAINING_RGN (bb->index) = rgn;
4985
4986  RGN_NR_BLOCKS (rgn)++;
4987
4988  for (i = rgn + 1; i <= nr_regions; i++)
4989    RGN_BLOCKS (i)++;
4990}
4991
4992/* Remove BB from the current region and update the region data.  */
4993static void
4994remove_bb_from_region (basic_block bb)
4995{
4996  int i, pos, bbi = -2, rgn;
4997
4998  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4999  bbi = BLOCK_TO_BB (bb->index);
5000  pos = RGN_BLOCKS (rgn) + bbi;
5001
5002  gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5003              && ebb_head[bbi] == pos);
5004
5005  for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5006    BLOCK_TO_BB (rgn_bb_table[i])--;
5007
5008  memmove (rgn_bb_table + pos,
5009           rgn_bb_table + pos + 1,
5010           (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5011
5012  RGN_NR_BLOCKS (rgn)--;
5013  for (i = rgn + 1; i <= nr_regions; i++)
5014    RGN_BLOCKS (i)--;
5015}
5016
5017/* Add BB to the current region  and update all data.  If BB is NULL, add all
5018   blocks from last_added_blocks vector.  */
5019static void
5020sel_add_bb (basic_block bb)
5021{
5022  /* Extend luids so that new notes will receive zero luids.  */
5023  sched_init_luids (NULL, NULL, NULL, NULL);
5024  sched_init_bbs ();
5025  sel_init_bbs (last_added_blocks, NULL);
5026
5027  /* When bb is passed explicitly, the vector should contain
5028     the only element that equals to bb; otherwise, the vector
5029     should not be NULL.  */
5030  gcc_assert (last_added_blocks != NULL);
5031
5032  if (bb != NULL)
5033    {
5034      gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5035                  && VEC_index (basic_block,
5036                                last_added_blocks, 0) == bb);
5037      add_block_to_current_region (bb);
5038
5039      /* We associate creating/deleting data sets with the first insn
5040         appearing / disappearing in the bb.  */
5041      if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5042	create_initial_data_sets (bb);
5043
5044      VEC_free (basic_block, heap, last_added_blocks);
5045    }
5046  else
5047    /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5048    {
5049      int i;
5050      basic_block temp_bb = NULL;
5051
5052      for (i = 0;
5053           VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5054        {
5055          add_block_to_current_region (bb);
5056          temp_bb = bb;
5057        }
5058
5059      /* We need to fetch at least one bb so we know the region
5060         to update.  */
5061      gcc_assert (temp_bb != NULL);
5062      bb = temp_bb;
5063
5064      VEC_free (basic_block, heap, last_added_blocks);
5065    }
5066
5067  rgn_setup_region (CONTAINING_RGN (bb->index));
5068}
5069
5070/* Remove BB from the current region and update all data.
5071   If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5072static void
5073sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5074{
5075  unsigned idx = bb->index;
5076
5077  gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5078
5079  remove_bb_from_region (bb);
5080  return_bb_to_pool (bb);
5081  bitmap_clear_bit (blocks_to_reschedule, idx);
5082
5083  if (remove_from_cfg_p)
5084    {
5085      basic_block succ = single_succ (bb);
5086      delete_and_free_basic_block (bb);
5087      set_immediate_dominator (CDI_DOMINATORS, succ,
5088                               recompute_dominator (CDI_DOMINATORS, succ));
5089    }
5090
5091  rgn_setup_region (CONTAINING_RGN (idx));
5092}
5093
5094/* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5095static void
5096move_bb_info (basic_block merge_bb, basic_block empty_bb)
5097{
5098  gcc_assert (in_current_region_p (merge_bb));
5099
5100  concat_note_lists (BB_NOTE_LIST (empty_bb),
5101		     &BB_NOTE_LIST (merge_bb));
5102  BB_NOTE_LIST (empty_bb) = NULL_RTX;
5103
5104}
5105
5106/* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5107   region, but keep it in CFG.  */
5108static void
5109remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5110{
5111  /* The block should contain just a note or a label.
5112     We try to check whether it is unused below.  */
5113  gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5114              || LABEL_P (BB_HEAD (empty_bb)));
5115
5116  /* If basic block has predecessors or successors, redirect them.  */
5117  if (remove_from_cfg_p
5118      && (EDGE_COUNT (empty_bb->preds) > 0
5119	  || EDGE_COUNT (empty_bb->succs) > 0))
5120    {
5121      basic_block pred;
5122      basic_block succ;
5123
5124      /* We need to init PRED and SUCC before redirecting edges.  */
5125      if (EDGE_COUNT (empty_bb->preds) > 0)
5126	{
5127	  edge e;
5128
5129	  gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5130
5131	  e = EDGE_PRED (empty_bb, 0);
5132          gcc_assert (e->src == empty_bb->prev_bb
5133		      && (e->flags & EDGE_FALLTHRU));
5134
5135	  pred = empty_bb->prev_bb;
5136	}
5137      else
5138	pred = NULL;
5139
5140      if (EDGE_COUNT (empty_bb->succs) > 0)
5141	{
5142          /* We do not check fallthruness here as above, because
5143             after removing a jump the edge may actually be not fallthru.  */
5144	  gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5145	  succ = EDGE_SUCC (empty_bb, 0)->dest;
5146	}
5147      else
5148	succ = NULL;
5149
5150      if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5151        {
5152          edge e = EDGE_PRED (empty_bb, 0);
5153
5154          if (e->flags & EDGE_FALLTHRU)
5155            redirect_edge_succ_nodup (e, succ);
5156          else
5157            sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5158        }
5159
5160      if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5161	{
5162	  edge e = EDGE_SUCC (empty_bb, 0);
5163
5164	  if (find_edge (pred, e->dest) == NULL)
5165	    redirect_edge_pred (e, pred);
5166	}
5167    }
5168
5169  /* Finish removing.  */
5170  sel_remove_bb (empty_bb, remove_from_cfg_p);
5171}
5172
5173/* An implementation of create_basic_block hook, which additionally updates
5174   per-bb data structures.  */
5175static basic_block
5176sel_create_basic_block (void *headp, void *endp, basic_block after)
5177{
5178  basic_block new_bb;
5179  insn_t new_bb_note;
5180
5181  gcc_assert (flag_sel_sched_pipelining_outer_loops
5182              || last_added_blocks == NULL);
5183
5184  new_bb_note = get_bb_note_from_pool ();
5185
5186  if (new_bb_note == NULL_RTX)
5187    new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5188  else
5189    {
5190      new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5191					     new_bb_note, after);
5192      new_bb->aux = NULL;
5193    }
5194
5195  VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5196
5197  return new_bb;
5198}
5199
5200/* Implement sched_init_only_bb ().  */
5201static void
5202sel_init_only_bb (basic_block bb, basic_block after)
5203{
5204  gcc_assert (after == NULL);
5205
5206  extend_regions ();
5207  rgn_make_new_region_out_of_new_block (bb);
5208}
5209
5210/* Update the latch when we've splitted or merged it from FROM block to TO.
5211   This should be checked for all outer loops, too.  */
5212static void
5213change_loops_latches (basic_block from, basic_block to)
5214{
5215  gcc_assert (from != to);
5216
5217  if (current_loop_nest)
5218    {
5219      struct loop *loop;
5220
5221      for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5222        if (considered_for_pipelining_p (loop) && loop->latch == from)
5223          {
5224            gcc_assert (loop == current_loop_nest);
5225            loop->latch = to;
5226            gcc_assert (loop_latch_edge (loop));
5227          }
5228    }
5229}
5230
5231/* Splits BB on two basic blocks, adding it to the region and extending
5232   per-bb data structures.  Returns the newly created bb.  */
5233static basic_block
5234sel_split_block (basic_block bb, rtx after)
5235{
5236  basic_block new_bb;
5237  insn_t insn;
5238
5239  new_bb = sched_split_block_1 (bb, after);
5240  sel_add_bb (new_bb);
5241
5242  /* This should be called after sel_add_bb, because this uses
5243     CONTAINING_RGN for the new block, which is not yet initialized.
5244     FIXME: this function may be a no-op now.  */
5245  change_loops_latches (bb, new_bb);
5246
5247  /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5248  FOR_BB_INSNS (new_bb, insn)
5249   if (INSN_P (insn))
5250     EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5251
5252  if (sel_bb_empty_p (bb))
5253    {
5254      gcc_assert (!sel_bb_empty_p (new_bb));
5255
5256      /* NEW_BB has data sets that need to be updated and BB holds
5257	 data sets that should be removed.  Exchange these data sets
5258	 so that we won't lose BB's valid data sets.  */
5259      exchange_data_sets (new_bb, bb);
5260      free_data_sets (bb);
5261    }
5262
5263  if (!sel_bb_empty_p (new_bb)
5264      && bitmap_bit_p (blocks_to_reschedule, bb->index))
5265    bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5266
5267  return new_bb;
5268}
5269
5270/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5271   Otherwise returns NULL.  */
5272static rtx
5273check_for_new_jump (basic_block bb, int prev_max_uid)
5274{
5275  rtx end;
5276
5277  end = sel_bb_end (bb);
5278  if (end && INSN_UID (end) >= prev_max_uid)
5279    return end;
5280  return NULL;
5281}
5282
5283/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5284   New means having UID at least equal to PREV_MAX_UID.  */
5285static rtx
5286find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5287{
5288  rtx jump;
5289
5290  /* Return immediately if no new insns were emitted.  */
5291  if (get_max_uid () == prev_max_uid)
5292    return NULL;
5293
5294  /* Now check both blocks for new jumps.  It will ever be only one.  */
5295  if ((jump = check_for_new_jump (from, prev_max_uid)))
5296    return jump;
5297
5298  if (jump_bb != NULL
5299      && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5300    return jump;
5301  return NULL;
5302}
5303
5304/* Splits E and adds the newly created basic block to the current region.
5305   Returns this basic block.  */
5306basic_block
5307sel_split_edge (edge e)
5308{
5309  basic_block new_bb, src, other_bb = NULL;
5310  int prev_max_uid;
5311  rtx jump;
5312
5313  src = e->src;
5314  prev_max_uid = get_max_uid ();
5315  new_bb = split_edge (e);
5316
5317  if (flag_sel_sched_pipelining_outer_loops
5318      && current_loop_nest)
5319    {
5320      int i;
5321      basic_block bb;
5322
5323      /* Some of the basic blocks might not have been added to the loop.
5324         Add them here, until this is fixed in force_fallthru.  */
5325      for (i = 0;
5326           VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5327        if (!bb->loop_father)
5328          {
5329            add_bb_to_loop (bb, e->dest->loop_father);
5330
5331            gcc_assert (!other_bb && (new_bb->index != bb->index));
5332            other_bb = bb;
5333          }
5334    }
5335
5336  /* Add all last_added_blocks to the region.  */
5337  sel_add_bb (NULL);
5338
5339  jump = find_new_jump (src, new_bb, prev_max_uid);
5340  if (jump)
5341    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5342
5343  /* Put the correct lv set on this block.  */
5344  if (other_bb && !sel_bb_empty_p (other_bb))
5345    compute_live (sel_bb_head (other_bb));
5346
5347  return new_bb;
5348}
5349
5350/* Implement sched_create_empty_bb ().  */
5351static basic_block
5352sel_create_empty_bb (basic_block after)
5353{
5354  basic_block new_bb;
5355
5356  new_bb = sched_create_empty_bb_1 (after);
5357
5358  /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5359     later.  */
5360  gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5361	      && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5362
5363  VEC_free (basic_block, heap, last_added_blocks);
5364  return new_bb;
5365}
5366
5367/* Implement sched_create_recovery_block.  ORIG_INSN is where block
5368   will be splitted to insert a check.  */
5369basic_block
5370sel_create_recovery_block (insn_t orig_insn)
5371{
5372  basic_block first_bb, second_bb, recovery_block;
5373  basic_block before_recovery = NULL;
5374  rtx jump;
5375
5376  first_bb = BLOCK_FOR_INSN (orig_insn);
5377  if (sel_bb_end_p (orig_insn))
5378    {
5379      /* Avoid introducing an empty block while splitting.  */
5380      gcc_assert (single_succ_p (first_bb));
5381      second_bb = single_succ (first_bb);
5382    }
5383  else
5384    second_bb = sched_split_block (first_bb, orig_insn);
5385
5386  recovery_block = sched_create_recovery_block (&before_recovery);
5387  if (before_recovery)
5388    copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5389
5390  gcc_assert (sel_bb_empty_p (recovery_block));
5391  sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5392  if (current_loops != NULL)
5393    add_bb_to_loop (recovery_block, first_bb->loop_father);
5394
5395  sel_add_bb (recovery_block);
5396
5397  jump = BB_END (recovery_block);
5398  gcc_assert (sel_bb_head (recovery_block) == jump);
5399  sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5400
5401  return recovery_block;
5402}
5403
5404/* Merge basic block B into basic block A.  */
5405static void
5406sel_merge_blocks (basic_block a, basic_block b)
5407{
5408  gcc_assert (sel_bb_empty_p (b)
5409              && EDGE_COUNT (b->preds) == 1
5410              && EDGE_PRED (b, 0)->src == b->prev_bb);
5411
5412  move_bb_info (b->prev_bb, b);
5413  remove_empty_bb (b, false);
5414  merge_blocks (a, b);
5415  change_loops_latches (b, a);
5416}
5417
5418/* A wrapper for redirect_edge_and_branch_force, which also initializes
5419   data structures for possibly created bb and insns.  Returns the newly
5420   added bb or NULL, when a bb was not needed.  */
5421void
5422sel_redirect_edge_and_branch_force (edge e, basic_block to)
5423{
5424  basic_block jump_bb, src, orig_dest = e->dest;
5425  int prev_max_uid;
5426  rtx jump;
5427
5428  /* This function is now used only for bookkeeping code creation, where
5429     we'll never get the single pred of orig_dest block and thus will not
5430     hit unreachable blocks when updating dominator info.  */
5431  gcc_assert (!sel_bb_empty_p (e->src)
5432              && !single_pred_p (orig_dest));
5433  src = e->src;
5434  prev_max_uid = get_max_uid ();
5435  jump_bb = redirect_edge_and_branch_force (e, to);
5436
5437  if (jump_bb != NULL)
5438    sel_add_bb (jump_bb);
5439
5440  /* This function could not be used to spoil the loop structure by now,
5441     thus we don't care to update anything.  But check it to be sure.  */
5442  if (current_loop_nest
5443      && pipelining_p)
5444    gcc_assert (loop_latch_edge (current_loop_nest));
5445
5446  jump = find_new_jump (src, jump_bb, prev_max_uid);
5447  if (jump)
5448    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5449  set_immediate_dominator (CDI_DOMINATORS, to,
5450			   recompute_dominator (CDI_DOMINATORS, to));
5451  set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5452			   recompute_dominator (CDI_DOMINATORS, orig_dest));
5453}
5454
5455/* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5456   redirected edge are in reverse topological order.  */
5457bool
5458sel_redirect_edge_and_branch (edge e, basic_block to)
5459{
5460  bool latch_edge_p;
5461  basic_block src, orig_dest = e->dest;
5462  int prev_max_uid;
5463  rtx jump;
5464  edge redirected;
5465  bool recompute_toporder_p = false;
5466  bool maybe_unreachable = single_pred_p (orig_dest);
5467
5468  latch_edge_p = (pipelining_p
5469                  && current_loop_nest
5470                  && e == loop_latch_edge (current_loop_nest));
5471
5472  src = e->src;
5473  prev_max_uid = get_max_uid ();
5474
5475  redirected = redirect_edge_and_branch (e, to);
5476
5477  gcc_assert (redirected && last_added_blocks == NULL);
5478
5479  /* When we've redirected a latch edge, update the header.  */
5480  if (latch_edge_p)
5481    {
5482      current_loop_nest->header = to;
5483      gcc_assert (loop_latch_edge (current_loop_nest));
5484    }
5485
5486  /* In rare situations, the topological relation between the blocks connected
5487     by the redirected edge can change (see PR42245 for an example).  Update
5488     block_to_bb/bb_to_block.  */
5489  if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5490      && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5491    recompute_toporder_p = true;
5492
5493  jump = find_new_jump (src, NULL, prev_max_uid);
5494  if (jump)
5495    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5496
5497  /* Only update dominator info when we don't have unreachable blocks.
5498     Otherwise we'll update in maybe_tidy_empty_bb.  */
5499  if (!maybe_unreachable)
5500    {
5501      set_immediate_dominator (CDI_DOMINATORS, to,
5502                               recompute_dominator (CDI_DOMINATORS, to));
5503      set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5504                               recompute_dominator (CDI_DOMINATORS, orig_dest));
5505    }
5506  return recompute_toporder_p;
5507}
5508
5509/* This variable holds the cfg hooks used by the selective scheduler.  */
5510static struct cfg_hooks sel_cfg_hooks;
5511
5512/* Register sel-sched cfg hooks.  */
5513void
5514sel_register_cfg_hooks (void)
5515{
5516  sched_split_block = sel_split_block;
5517
5518  orig_cfg_hooks = get_cfg_hooks ();
5519  sel_cfg_hooks = orig_cfg_hooks;
5520
5521  sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5522
5523  set_cfg_hooks (sel_cfg_hooks);
5524
5525  sched_init_only_bb = sel_init_only_bb;
5526  sched_split_block = sel_split_block;
5527  sched_create_empty_bb = sel_create_empty_bb;
5528}
5529
5530/* Unregister sel-sched cfg hooks.  */
5531void
5532sel_unregister_cfg_hooks (void)
5533{
5534  sched_create_empty_bb = NULL;
5535  sched_split_block = NULL;
5536  sched_init_only_bb = NULL;
5537
5538  set_cfg_hooks (orig_cfg_hooks);
5539}
5540
5541
5542/* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5543   LABEL is where this jump should be directed.  */
5544rtx
5545create_insn_rtx_from_pattern (rtx pattern, rtx label)
5546{
5547  rtx insn_rtx;
5548
5549  gcc_assert (!INSN_P (pattern));
5550
5551  start_sequence ();
5552
5553  if (label == NULL_RTX)
5554    insn_rtx = emit_insn (pattern);
5555  else if (DEBUG_INSN_P (label))
5556    insn_rtx = emit_debug_insn (pattern);
5557  else
5558    {
5559      insn_rtx = emit_jump_insn (pattern);
5560      JUMP_LABEL (insn_rtx) = label;
5561      ++LABEL_NUSES (label);
5562    }
5563
5564  end_sequence ();
5565
5566  sched_init_luids (NULL, NULL, NULL, NULL);
5567  sched_extend_target ();
5568  sched_deps_init (false);
5569
5570  /* Initialize INSN_CODE now.  */
5571  recog_memoized (insn_rtx);
5572  return insn_rtx;
5573}
5574
5575/* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5576   must not be clonable.  */
5577vinsn_t
5578create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5579{
5580  gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5581
5582  /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5583  return vinsn_create (insn_rtx, force_unique_p);
5584}
5585
5586/* Create a copy of INSN_RTX.  */
5587rtx
5588create_copy_of_insn_rtx (rtx insn_rtx)
5589{
5590  rtx res;
5591
5592  if (DEBUG_INSN_P (insn_rtx))
5593    return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5594					 insn_rtx);
5595
5596  gcc_assert (NONJUMP_INSN_P (insn_rtx));
5597
5598  res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5599                                      NULL_RTX);
5600  return res;
5601}
5602
5603/* Change vinsn field of EXPR to hold NEW_VINSN.  */
5604void
5605change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5606{
5607  vinsn_detach (EXPR_VINSN (expr));
5608
5609  EXPR_VINSN (expr) = new_vinsn;
5610  vinsn_attach (new_vinsn);
5611}
5612
5613/* Helpers for global init.  */
5614/* This structure is used to be able to call existing bundling mechanism
5615   and calculate insn priorities.  */
5616static struct haifa_sched_info sched_sel_haifa_sched_info =
5617{
5618  NULL, /* init_ready_list */
5619  NULL, /* can_schedule_ready_p */
5620  NULL, /* schedule_more_p */
5621  NULL, /* new_ready */
5622  NULL, /* rgn_rank */
5623  sel_print_insn, /* rgn_print_insn */
5624  contributes_to_priority,
5625  NULL, /* insn_finishes_block_p */
5626
5627  NULL, NULL,
5628  NULL, NULL,
5629  0, 0,
5630
5631  NULL, /* add_remove_insn */
5632  NULL, /* begin_schedule_ready */
5633  NULL, /* advance_target_bb */
5634  SEL_SCHED | NEW_BBS
5635};
5636
5637/* Setup special insns used in the scheduler.  */
5638void
5639setup_nop_and_exit_insns (void)
5640{
5641  gcc_assert (nop_pattern == NULL_RTX
5642	      && exit_insn == NULL_RTX);
5643
5644  nop_pattern = constm1_rtx;
5645
5646  start_sequence ();
5647  emit_insn (nop_pattern);
5648  exit_insn = get_insns ();
5649  end_sequence ();
5650  set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5651}
5652
5653/* Free special insns used in the scheduler.  */
5654void
5655free_nop_and_exit_insns (void)
5656{
5657  exit_insn = NULL_RTX;
5658  nop_pattern = NULL_RTX;
5659}
5660
5661/* Setup a special vinsn used in new insns initialization.  */
5662void
5663setup_nop_vinsn (void)
5664{
5665  nop_vinsn = vinsn_create (exit_insn, false);
5666  vinsn_attach (nop_vinsn);
5667}
5668
5669/* Free a special vinsn used in new insns initialization.  */
5670void
5671free_nop_vinsn (void)
5672{
5673  gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5674  vinsn_detach (nop_vinsn);
5675  nop_vinsn = NULL;
5676}
5677
5678/* Call a set_sched_flags hook.  */
5679void
5680sel_set_sched_flags (void)
5681{
5682  /* ??? This means that set_sched_flags were called, and we decided to
5683     support speculation.  However, set_sched_flags also modifies flags
5684     on current_sched_info, doing this only at global init.  And we
5685     sometimes change c_s_i later.  So put the correct flags again.  */
5686  if (spec_info && targetm.sched.set_sched_flags)
5687    targetm.sched.set_sched_flags (spec_info);
5688}
5689
5690/* Setup pointers to global sched info structures.  */
5691void
5692sel_setup_sched_infos (void)
5693{
5694  rgn_setup_common_sched_info ();
5695
5696  memcpy (&sel_common_sched_info, common_sched_info,
5697	  sizeof (sel_common_sched_info));
5698
5699  sel_common_sched_info.fix_recovery_cfg = NULL;
5700  sel_common_sched_info.add_block = NULL;
5701  sel_common_sched_info.estimate_number_of_insns
5702    = sel_estimate_number_of_insns;
5703  sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5704  sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5705
5706  common_sched_info = &sel_common_sched_info;
5707
5708  current_sched_info = &sched_sel_haifa_sched_info;
5709  current_sched_info->sched_max_insns_priority =
5710    get_rgn_sched_max_insns_priority ();
5711
5712  sel_set_sched_flags ();
5713}
5714
5715
5716/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5717   *BB_ORD_INDEX after that is increased.  */
5718static void
5719sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5720{
5721  RGN_NR_BLOCKS (rgn) += 1;
5722  RGN_DONT_CALC_DEPS (rgn) = 0;
5723  RGN_HAS_REAL_EBB (rgn) = 0;
5724  CONTAINING_RGN (bb->index) = rgn;
5725  BLOCK_TO_BB (bb->index) = *bb_ord_index;
5726  rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5727  (*bb_ord_index)++;
5728
5729  /* FIXME: it is true only when not scheduling ebbs.  */
5730  RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5731}
5732
5733/* Functions to support pipelining of outer loops.  */
5734
5735/* Creates a new empty region and returns it's number.  */
5736static int
5737sel_create_new_region (void)
5738{
5739  int new_rgn_number = nr_regions;
5740
5741  RGN_NR_BLOCKS (new_rgn_number) = 0;
5742
5743  /* FIXME: This will work only when EBBs are not created.  */
5744  if (new_rgn_number != 0)
5745    RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5746      RGN_NR_BLOCKS (new_rgn_number - 1);
5747  else
5748    RGN_BLOCKS (new_rgn_number) = 0;
5749
5750  /* Set the blocks of the next region so the other functions may
5751     calculate the number of blocks in the region.  */
5752  RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5753    RGN_NR_BLOCKS (new_rgn_number);
5754
5755  nr_regions++;
5756
5757  return new_rgn_number;
5758}
5759
5760/* If X has a smaller topological sort number than Y, returns -1;
5761   if greater, returns 1.  */
5762static int
5763bb_top_order_comparator (const void *x, const void *y)
5764{
5765  basic_block bb1 = *(const basic_block *) x;
5766  basic_block bb2 = *(const basic_block *) y;
5767
5768  gcc_assert (bb1 == bb2
5769	      || rev_top_order_index[bb1->index]
5770		 != rev_top_order_index[bb2->index]);
5771
5772  /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5773     bbs with greater number should go earlier.  */
5774  if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5775    return -1;
5776  else
5777    return 1;
5778}
5779
5780/* Create a region for LOOP and return its number.  If we don't want
5781   to pipeline LOOP, return -1.  */
5782static int
5783make_region_from_loop (struct loop *loop)
5784{
5785  unsigned int i;
5786  int new_rgn_number = -1;
5787  struct loop *inner;
5788
5789  /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5790  int bb_ord_index = 0;
5791  basic_block *loop_blocks;
5792  basic_block preheader_block;
5793
5794  if (loop->num_nodes
5795      > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5796    return -1;
5797
5798  /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
5799  for (inner = loop->inner; inner; inner = inner->inner)
5800    if (flow_bb_inside_loop_p (inner, loop->latch))
5801      return -1;
5802
5803  loop->ninsns = num_loop_insns (loop);
5804  if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5805    return -1;
5806
5807  loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5808
5809  for (i = 0; i < loop->num_nodes; i++)
5810    if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5811      {
5812	free (loop_blocks);
5813	return -1;
5814      }
5815
5816  preheader_block = loop_preheader_edge (loop)->src;
5817  gcc_assert (preheader_block);
5818  gcc_assert (loop_blocks[0] == loop->header);
5819
5820  new_rgn_number = sel_create_new_region ();
5821
5822  sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5823  SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5824
5825  for (i = 0; i < loop->num_nodes; i++)
5826    {
5827      /* Add only those blocks that haven't been scheduled in the inner loop.
5828	 The exception is the basic blocks with bookkeeping code - they should
5829	 be added to the region (and they actually don't belong to the loop
5830	 body, but to the region containing that loop body).  */
5831
5832      gcc_assert (new_rgn_number >= 0);
5833
5834      if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5835	{
5836	  sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5837                                   new_rgn_number);
5838	  SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5839	}
5840    }
5841
5842  free (loop_blocks);
5843  MARK_LOOP_FOR_PIPELINING (loop);
5844
5845  return new_rgn_number;
5846}
5847
5848/* Create a new region from preheader blocks LOOP_BLOCKS.  */
5849void
5850make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5851{
5852  unsigned int i;
5853  int new_rgn_number = -1;
5854  basic_block bb;
5855
5856  /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5857  int bb_ord_index = 0;
5858
5859  new_rgn_number = sel_create_new_region ();
5860
5861  for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5862    {
5863      gcc_assert (new_rgn_number >= 0);
5864
5865      sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5866    }
5867
5868  VEC_free (basic_block, heap, *loop_blocks);
5869  gcc_assert (*loop_blocks == NULL);
5870}
5871
5872
5873/* Create region(s) from loop nest LOOP, such that inner loops will be
5874   pipelined before outer loops.  Returns true when a region for LOOP
5875   is created.  */
5876static bool
5877make_regions_from_loop_nest (struct loop *loop)
5878{
5879  struct loop *cur_loop;
5880  int rgn_number;
5881
5882  /* Traverse all inner nodes of the loop.  */
5883  for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5884    if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5885      return false;
5886
5887  /* At this moment all regular inner loops should have been pipelined.
5888     Try to create a region from this loop.  */
5889  rgn_number = make_region_from_loop (loop);
5890
5891  if (rgn_number < 0)
5892    return false;
5893
5894  VEC_safe_push (loop_p, heap, loop_nests, loop);
5895  return true;
5896}
5897
5898/* Initalize data structures needed.  */
5899void
5900sel_init_pipelining (void)
5901{
5902  /* Collect loop information to be used in outer loops pipelining.  */
5903  loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5904                       | LOOPS_HAVE_FALLTHRU_PREHEADERS
5905		       | LOOPS_HAVE_RECORDED_EXITS
5906		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5907  current_loop_nest = NULL;
5908
5909  bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5910  sbitmap_zero (bbs_in_loop_rgns);
5911
5912  recompute_rev_top_order ();
5913}
5914
5915/* Returns a struct loop for region RGN.  */
5916loop_p
5917get_loop_nest_for_rgn (unsigned int rgn)
5918{
5919  /* Regions created with extend_rgns don't have corresponding loop nests,
5920     because they don't represent loops.  */
5921  if (rgn < VEC_length (loop_p, loop_nests))
5922    return VEC_index (loop_p, loop_nests, rgn);
5923  else
5924    return NULL;
5925}
5926
5927/* True when LOOP was included into pipelining regions.   */
5928bool
5929considered_for_pipelining_p (struct loop *loop)
5930{
5931  if (loop_depth (loop) == 0)
5932    return false;
5933
5934  /* Now, the loop could be too large or irreducible.  Check whether its
5935     region is in LOOP_NESTS.
5936     We determine the region number of LOOP as the region number of its
5937     latch.  We can't use header here, because this header could be
5938     just removed preheader and it will give us the wrong region number.
5939     Latch can't be used because it could be in the inner loop too.  */
5940  if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5941    {
5942      int rgn = CONTAINING_RGN (loop->latch->index);
5943
5944      gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5945      return true;
5946    }
5947
5948  return false;
5949}
5950
5951/* Makes regions from the rest of the blocks, after loops are chosen
5952   for pipelining.  */
5953static void
5954make_regions_from_the_rest (void)
5955{
5956  int cur_rgn_blocks;
5957  int *loop_hdr;
5958  int i;
5959
5960  basic_block bb;
5961  edge e;
5962  edge_iterator ei;
5963  int *degree;
5964
5965  /* Index in rgn_bb_table where to start allocating new regions.  */
5966  cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5967
5968  /* Make regions from all the rest basic blocks - those that don't belong to
5969     any loop or belong to irreducible loops.  Prepare the data structures
5970     for extend_rgns.  */
5971
5972  /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5973     LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5974     loop.  */
5975  loop_hdr = XNEWVEC (int, last_basic_block);
5976  degree = XCNEWVEC (int, last_basic_block);
5977
5978
5979  /* For each basic block that belongs to some loop assign the number
5980     of innermost loop it belongs to.  */
5981  for (i = 0; i < last_basic_block; i++)
5982    loop_hdr[i] = -1;
5983
5984  FOR_EACH_BB (bb)
5985    {
5986      if (bb->loop_father && !bb->loop_father->num == 0
5987	  && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5988	loop_hdr[bb->index] = bb->loop_father->num;
5989    }
5990
5991  /* For each basic block degree is calculated as the number of incoming
5992     edges, that are going out of bbs that are not yet scheduled.
5993     The basic blocks that are scheduled have degree value of zero.  */
5994  FOR_EACH_BB (bb)
5995    {
5996      degree[bb->index] = 0;
5997
5998      if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5999	{
6000	  FOR_EACH_EDGE (e, ei, bb->preds)
6001	    if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6002	      degree[bb->index]++;
6003	}
6004      else
6005	degree[bb->index] = -1;
6006    }
6007
6008  extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6009
6010  /* Any block that did not end up in a region is placed into a region
6011     by itself.  */
6012  FOR_EACH_BB (bb)
6013    if (degree[bb->index] >= 0)
6014      {
6015	rgn_bb_table[cur_rgn_blocks] = bb->index;
6016	RGN_NR_BLOCKS (nr_regions) = 1;
6017	RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6018        RGN_DONT_CALC_DEPS (nr_regions) = 0;
6019	RGN_HAS_REAL_EBB (nr_regions) = 0;
6020	CONTAINING_RGN (bb->index) = nr_regions++;
6021	BLOCK_TO_BB (bb->index) = 0;
6022      }
6023
6024  free (degree);
6025  free (loop_hdr);
6026}
6027
6028/* Free data structures used in pipelining of loops.  */
6029void sel_finish_pipelining (void)
6030{
6031  loop_iterator li;
6032  struct loop *loop;
6033
6034  /* Release aux fields so we don't free them later by mistake.  */
6035  FOR_EACH_LOOP (li, loop, 0)
6036    loop->aux = NULL;
6037
6038  loop_optimizer_finalize ();
6039
6040  VEC_free (loop_p, heap, loop_nests);
6041
6042  free (rev_top_order_index);
6043  rev_top_order_index = NULL;
6044}
6045
6046/* This function replaces the find_rgns when
6047   FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6048void
6049sel_find_rgns (void)
6050{
6051  sel_init_pipelining ();
6052  extend_regions ();
6053
6054  if (current_loops)
6055    {
6056      loop_p loop;
6057      loop_iterator li;
6058
6059      FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6060				? LI_FROM_INNERMOST
6061				: LI_ONLY_INNERMOST))
6062	make_regions_from_loop_nest (loop);
6063    }
6064
6065  /* Make regions from all the rest basic blocks and schedule them.
6066     These blocks include blocks that don't belong to any loop or belong
6067     to irreducible loops.  */
6068  make_regions_from_the_rest ();
6069
6070  /* We don't need bbs_in_loop_rgns anymore.  */
6071  sbitmap_free (bbs_in_loop_rgns);
6072  bbs_in_loop_rgns = NULL;
6073}
6074
6075/* Adds the preheader blocks from previous loop to current region taking
6076   it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6077   This function is only used with -fsel-sched-pipelining-outer-loops.  */
6078void
6079sel_add_loop_preheaders (void)
6080{
6081  int i;
6082  basic_block bb;
6083  VEC(basic_block, heap) *preheader_blocks
6084    = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6085
6086  for (i = 0;
6087       VEC_iterate (basic_block, preheader_blocks, i, bb);
6088       i++)
6089    {
6090      VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6091      sel_add_bb (bb);
6092    }
6093
6094  VEC_free (basic_block, heap, preheader_blocks);
6095}
6096
6097/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6098   Please note that the function should also work when pipelining_p is
6099   false, because it is used when deciding whether we should or should
6100   not reschedule pipelined code.  */
6101bool
6102sel_is_loop_preheader_p (basic_block bb)
6103{
6104  if (current_loop_nest)
6105    {
6106      struct loop *outer;
6107
6108      if (preheader_removed)
6109        return false;
6110
6111      /* Preheader is the first block in the region.  */
6112      if (BLOCK_TO_BB (bb->index) == 0)
6113        return true;
6114
6115      /* We used to find a preheader with the topological information.
6116         Check that the above code is equivalent to what we did before.  */
6117
6118      if (in_current_region_p (current_loop_nest->header))
6119	gcc_assert (!(BLOCK_TO_BB (bb->index)
6120		      < BLOCK_TO_BB (current_loop_nest->header->index)));
6121
6122      /* Support the situation when the latch block of outer loop
6123         could be from here.  */
6124      for (outer = loop_outer (current_loop_nest);
6125	   outer;
6126	   outer = loop_outer (outer))
6127        if (considered_for_pipelining_p (outer) && outer->latch == bb)
6128          gcc_unreachable ();
6129    }
6130
6131  return false;
6132}
6133
6134/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6135   can be removed, making the corresponding edge fallthrough (assuming that
6136   all basic blocks between JUMP_BB and DEST_BB are empty).  */
6137static bool
6138bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6139{
6140  if (!onlyjump_p (BB_END (jump_bb))
6141      || tablejump_p (BB_END (jump_bb), NULL, NULL))
6142    return false;
6143
6144  /* Several outgoing edges, abnormal edge or destination of jump is
6145     not DEST_BB.  */
6146  if (EDGE_COUNT (jump_bb->succs) != 1
6147      || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6148      || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6149    return false;
6150
6151  /* If not anything of the upper.  */
6152  return true;
6153}
6154
6155/* Removes the loop preheader from the current region and saves it in
6156   PREHEADER_BLOCKS of the father loop, so they will be added later to
6157   region that represents an outer loop.  */
6158static void
6159sel_remove_loop_preheader (void)
6160{
6161  int i, old_len;
6162  int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6163  basic_block bb;
6164  bool all_empty_p = true;
6165  VEC(basic_block, heap) *preheader_blocks
6166    = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6167
6168  gcc_assert (current_loop_nest);
6169  old_len = VEC_length (basic_block, preheader_blocks);
6170
6171  /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6172  for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6173    {
6174      bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6175
6176      /* If the basic block belongs to region, but doesn't belong to
6177	 corresponding loop, then it should be a preheader.  */
6178      if (sel_is_loop_preheader_p (bb))
6179        {
6180          VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6181          if (BB_END (bb) != bb_note (bb))
6182            all_empty_p = false;
6183        }
6184    }
6185
6186  /* Remove these blocks only after iterating over the whole region.  */
6187  for (i = VEC_length (basic_block, preheader_blocks) - 1;
6188       i >= old_len;
6189       i--)
6190    {
6191      bb =  VEC_index (basic_block, preheader_blocks, i);
6192      sel_remove_bb (bb, false);
6193    }
6194
6195  if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6196    {
6197      if (!all_empty_p)
6198        /* Immediately create new region from preheader.  */
6199        make_region_from_loop_preheader (&preheader_blocks);
6200      else
6201        {
6202          /* If all preheader blocks are empty - dont create new empty region.
6203             Instead, remove them completely.  */
6204          for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6205            {
6206              edge e;
6207              edge_iterator ei;
6208              basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6209
6210              /* Redirect all incoming edges to next basic block.  */
6211              for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6212                {
6213                  if (! (e->flags & EDGE_FALLTHRU))
6214                    redirect_edge_and_branch (e, bb->next_bb);
6215                  else
6216                    redirect_edge_succ (e, bb->next_bb);
6217                }
6218              gcc_assert (BB_NOTE_LIST (bb) == NULL);
6219              delete_and_free_basic_block (bb);
6220
6221              /* Check if after deleting preheader there is a nonconditional
6222                 jump in PREV_BB that leads to the next basic block NEXT_BB.
6223                 If it is so - delete this jump and clear data sets of its
6224                 basic block if it becomes empty.  */
6225	      if (next_bb->prev_bb == prev_bb
6226                  && prev_bb != ENTRY_BLOCK_PTR
6227                  && bb_has_removable_jump_to_p (prev_bb, next_bb))
6228                {
6229                  redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6230                  if (BB_END (prev_bb) == bb_note (prev_bb))
6231                    free_data_sets (prev_bb);
6232                }
6233
6234              set_immediate_dominator (CDI_DOMINATORS, next_bb,
6235                                       recompute_dominator (CDI_DOMINATORS,
6236                                                            next_bb));
6237            }
6238        }
6239      VEC_free (basic_block, heap, preheader_blocks);
6240    }
6241  else
6242    /* Store preheader within the father's loop structure.  */
6243    SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6244			       preheader_blocks);
6245}
6246#endif
6247