1/* Define per-register tables for data flow info and register allocation.
2   Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
4   Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#ifndef GCC_REGS_H
23#define GCC_REGS_H
24
25#include "varray.h"
26#include "obstack.h"
27#include "hard-reg-set.h"
28#include "basic-block.h"
29
30#define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
31
32/* When you only have the mode of a pseudo register before it has a hard
33   register chosen for it, this reports the size of each hard register
34   a pseudo in such a mode would get allocated to.  A target may
35   override this.  */
36
37#ifndef REGMODE_NATURAL_SIZE
38#define REGMODE_NATURAL_SIZE(MODE)	UNITS_PER_WORD
39#endif
40
41#ifndef SMALL_REGISTER_CLASSES
42#define SMALL_REGISTER_CLASSES 0
43#endif
44
45/* Maximum register number used in this function, plus one.  */
46
47extern int max_regno;
48
49/* REG_N_REFS and REG_N_SETS are initialized by a call to
50   regstat_init_n_sets_and_refs from the current values of
51   DF_REG_DEF_COUNT and DF_REG_USE_COUNT.  REG_N_REFS and REG_N_SETS
52   should only be used if a pass need to change these values in some
53   magical way or or the pass needs to have accurate values for these
54   and is not using incremental df scanning.
55
56   At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
57   should be made to regstat_free_n_sets_and_refs.
58
59   Local alloc seems to play pretty loose with these values.
60   REG_N_REFS is set to 0 if the register is used in an asm.
61   Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
62   REG_N_SETS for three address insns.  Other passes seem to have
63   other special values.  */
64
65
66
67/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
68
69struct regstat_n_sets_and_refs_t
70{
71  int sets;			/* # of times (REG n) is set */
72  int refs;			/* # of times (REG n) is used or set */
73};
74
75extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
76
77/* Indexed by n, gives number of times (REG n) is used or set.  */
78static inline int
79REG_N_REFS(int regno)
80{
81  return regstat_n_sets_and_refs[regno].refs;
82}
83
84/* Indexed by n, gives number of times (REG n) is used or set.  */
85#define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
86#define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
87
88/* Indexed by n, gives number of times (REG n) is set.  */
89static inline int
90REG_N_SETS (int regno)
91{
92  return regstat_n_sets_and_refs[regno].sets;
93}
94
95/* Indexed by n, gives number of times (REG n) is set.  */
96#define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
97#define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
98
99
100/* Functions defined in reg-stat.c.  */
101extern void regstat_init_n_sets_and_refs (void);
102extern void regstat_free_n_sets_and_refs (void);
103extern void regstat_compute_ri (void);
104extern void regstat_free_ri (void);
105extern bitmap regstat_get_setjmp_crosses (void);
106extern void regstat_compute_calls_crossed (void);
107extern void regstat_free_calls_crossed (void);
108
109
110/* Register information indexed by register number.  This structure is
111   initialized by calling regstat_compute_ri and is destroyed by
112   calling regstat_free_ri.  */
113struct reg_info_t
114{
115  int freq;			/* # estimated frequency (REG n) is used or set */
116  int deaths;			/* # of times (REG n) dies */
117  int live_length;		/* # of instructions (REG n) is live */
118  int calls_crossed;		/* # of calls (REG n) is live across */
119  int freq_calls_crossed;	/* # estimated frequency (REG n) crosses call */
120  int throw_calls_crossed;	/* # of calls that may throw (REG n) is live across */
121  int basic_block;		/* # of basic blocks (REG n) is used in */
122};
123
124extern struct reg_info_t *reg_info_p;
125
126/* The number allocated elements of reg_info_p.  */
127extern size_t reg_info_p_size;
128
129/* Estimate frequency of references to register N.  */
130
131#define REG_FREQ(N) (reg_info_p[N].freq)
132
133/* The weights for each insn varies from 0 to REG_FREQ_BASE.
134   This constant does not need to be high, as in infrequently executed
135   regions we want to count instructions equivalently to optimize for
136   size instead of speed.  */
137#define REG_FREQ_MAX 1000
138
139/* Compute register frequency from the BB frequency.  When optimizing for size,
140   or profile driven feedback is available and the function is never executed,
141   frequency is always equivalent.  Otherwise rescale the basic block
142   frequency.  */
143#define REG_FREQ_FROM_BB(bb) (optimize_size				      \
144			      || (flag_branch_probabilities		      \
145				  && !ENTRY_BLOCK_PTR->count)		      \
146			      ? REG_FREQ_MAX				      \
147			      : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
148			      ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
149			      : 1)
150
151/* Indexed by N, gives number of insns in which register N dies.
152   Note that if register N is live around loops, it can die
153   in transitions between basic blocks, and that is not counted here.
154   So this is only a reliable indicator of how many regions of life there are
155   for registers that are contained in one basic block.  */
156
157#define REG_N_DEATHS(N) (reg_info_p[N].deaths)
158
159/* Get the number of consecutive words required to hold pseudo-reg N.  */
160
161#define PSEUDO_REGNO_SIZE(N) \
162  ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1)		\
163   / UNITS_PER_WORD)
164
165/* Get the number of bytes required to hold pseudo-reg N.  */
166
167#define PSEUDO_REGNO_BYTES(N) \
168  GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
169
170/* Get the machine mode of pseudo-reg N.  */
171
172#define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
173
174/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live.  */
175
176#define REG_N_CALLS_CROSSED(N)  (reg_info_p[N].calls_crossed)
177#define REG_FREQ_CALLS_CROSSED(N)  (reg_info_p[N].freq_calls_crossed)
178
179/* Indexed by N, gives number of CALL_INSNS that may throw, across which
180   (REG n) is live.  */
181
182#define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
183
184/* Total number of instructions at which (REG n) is live.  The larger
185   this is, the less priority (REG n) gets for allocation in a hard
186   register (in global-alloc).  This is set in df-problems.c whenever
187   register info is requested and remains valid for the rest of the
188   compilation of the function; it is used to control register
189   allocation.
190
191   local-alloc.c may alter this number to change the priority.
192
193   Negative values are special.
194   -1 is used to mark a pseudo reg which has a constant or memory equivalent
195   and is used infrequently enough that it should not get a hard register.
196   -2 is used to mark a pseudo reg for a parameter, when a frame pointer
197   is not required.  global.c makes an allocno for this but does
198   not try to assign a hard register to it.  */
199
200#define REG_LIVE_LENGTH(N)  (reg_info_p[N].live_length)
201
202/* Indexed by n, gives number of basic block that  (REG n) is used in.
203   If the value is REG_BLOCK_GLOBAL (-1),
204   it means (REG n) is used in more than one basic block.
205   REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
206   This information remains valid for the rest of the compilation
207   of the current function; it is used to control register allocation.  */
208
209#define REG_BLOCK_UNKNOWN 0
210#define REG_BLOCK_GLOBAL -1
211
212#define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
213
214/* Vector of substitutions of register numbers,
215   used to map pseudo regs into hardware regs.
216
217   This can't be folded into reg_n_info without changing all of the
218   machine dependent directories, since the reload functions
219   in the machine dependent files access it.  */
220
221extern short *reg_renumber;
222
223/* Vector indexed by machine mode saying whether there are regs of that mode.  */
224
225extern bool have_regs_of_mode [MAX_MACHINE_MODE];
226
227/* For each hard register, the widest mode object that it can contain.
228   This will be a MODE_INT mode if the register can hold integers.  Otherwise
229   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
230   register.  */
231
232extern enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
233
234/* Flag set by local-alloc or global-alloc if they decide to allocate
235   something in a call-clobbered register.  */
236
237extern int caller_save_needed;
238
239/* Predicate to decide whether to give a hard reg to a pseudo which
240   is referenced REFS times and would need to be saved and restored
241   around a call CALLS times.  */
242
243#ifndef CALLER_SAVE_PROFITABLE
244#define CALLER_SAVE_PROFITABLE(REFS, CALLS)  (4 * (CALLS) < (REFS))
245#endif
246
247/* On most machines a register class is likely to be spilled if it
248   only has one register.  */
249#ifndef CLASS_LIKELY_SPILLED_P
250#define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
251#endif
252
253/* Select a register mode required for caller save of hard regno REGNO.  */
254#ifndef HARD_REGNO_CALLER_SAVE_MODE
255#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
256  choose_hard_reg_mode (REGNO, NREGS, false)
257#endif
258
259/* Registers that get partially clobbered by a call in a given mode.
260   These must not be call used registers.  */
261#ifndef HARD_REGNO_CALL_PART_CLOBBERED
262#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
263#endif
264
265/* 1 if the corresponding class does contain register of given
266   mode.  */
267extern char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
268
269typedef unsigned short move_table[N_REG_CLASSES];
270
271/* Maximum cost of moving from a register in one class to a register
272   in another class.  */
273extern move_table *move_cost[MAX_MACHINE_MODE];
274
275/* Specify number of hard registers given machine mode occupy.  */
276extern unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
277
278/* Similar, but here we don't have to move if the first index is a
279   subset of the second so in that case the cost is zero.  */
280extern move_table *may_move_in_cost[MAX_MACHINE_MODE];
281
282/* Similar, but here we don't have to move if the first index is a
283   superset of the second so in that case the cost is zero.  */
284extern move_table *may_move_out_cost[MAX_MACHINE_MODE];
285
286/* Return an exclusive upper bound on the registers occupied by hard
287   register (reg:MODE REGNO).  */
288
289static inline unsigned int
290end_hard_regno (enum machine_mode mode, unsigned int regno)
291{
292  return regno + hard_regno_nregs[regno][(int) mode];
293}
294
295/* Likewise for hard register X.  */
296
297#define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))
298
299/* Likewise for hard or pseudo register X.  */
300
301#define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)
302
303/* Add to REGS all the registers required to store a value of mode MODE
304   in register REGNO.  */
305
306static inline void
307add_to_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
308		     unsigned int regno)
309{
310  unsigned int end_regno;
311
312  end_regno = end_hard_regno (mode, regno);
313  do
314    SET_HARD_REG_BIT (*regs, regno);
315  while (++regno < end_regno);
316}
317
318/* Likewise, but remove the registers.  */
319
320static inline void
321remove_from_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
322			  unsigned int regno)
323{
324  unsigned int end_regno;
325
326  end_regno = end_hard_regno (mode, regno);
327  do
328    CLEAR_HARD_REG_BIT (*regs, regno);
329  while (++regno < end_regno);
330}
331
332/* Return true if REGS contains the whole of (reg:MODE REGNO).  */
333
334static inline bool
335in_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
336		   unsigned int regno)
337{
338  unsigned int end_regno;
339
340  if (!TEST_HARD_REG_BIT (regs, regno))
341    return false;
342
343  end_regno = end_hard_regno (mode, regno);
344  while (++regno < end_regno)
345    if (!TEST_HARD_REG_BIT (regs, regno))
346      return false;
347
348  return true;
349}
350
351/* Return true if (reg:MODE REGNO) includes an element of REGS.  */
352
353static inline bool
354overlaps_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
355			 unsigned int regno)
356{
357  unsigned int end_regno;
358
359  if (TEST_HARD_REG_BIT (regs, regno))
360    return true;
361
362  end_regno = end_hard_regno (mode, regno);
363  while (++regno < end_regno)
364    if (TEST_HARD_REG_BIT (regs, regno))
365      return true;
366
367  return false;
368}
369
370#endif /* GCC_REGS_H */
371