1/*  Loop transformation code generation
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6    This file is part of GCC.
7
8    GCC is free software; you can redistribute it and/or modify it under
9    the terms of the GNU General Public License as published by the Free
10    Software Foundation; either version 3, or (at your option) any later
11    version.
12
13    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14    WARRANTY; without even the implied warranty of MERCHANTABILITY or
15    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16    for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "ggc.h"
27#include "tree.h"
28#include "target.h"
29#include "rtl.h"
30#include "basic-block.h"
31#include "diagnostic.h"
32#include "obstack.h"
33#include "tree-flow.h"
34#include "tree-dump.h"
35#include "timevar.h"
36#include "cfgloop.h"
37#include "expr.h"
38#include "optabs.h"
39#include "tree-chrec.h"
40#include "tree-data-ref.h"
41#include "tree-pass.h"
42#include "tree-scalar-evolution.h"
43#include "vec.h"
44#include "lambda.h"
45#include "vecprim.h"
46#include "pointer-set.h"
47
48/* This loop nest code generation is based on non-singular matrix
49   math.
50
51 A little terminology and a general sketch of the algorithm.  See "A singular
52 loop transformation framework based on non-singular matrices" by Wei Li and
53 Keshav Pingali for formal proofs that the various statements below are
54 correct.
55
56 A loop iteration space represents the points traversed by the loop.  A point in the
57 iteration space can be represented by a vector of size <loop depth>.  You can
58 therefore represent the iteration space as an integral combinations of a set
59 of basis vectors.
60
61 A loop iteration space is dense if every integer point between the loop
62 bounds is a point in the iteration space.  Every loop with a step of 1
63 therefore has a dense iteration space.
64
65 for i = 1 to 3, step 1 is a dense iteration space.
66
67 A loop iteration space is sparse if it is not dense.  That is, the iteration
68 space skips integer points that are within the loop bounds.
69
70 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
71 2 is skipped.
72
73 Dense source spaces are easy to transform, because they don't skip any
74 points to begin with.  Thus we can compute the exact bounds of the target
75 space using min/max and floor/ceil.
76
77 For a dense source space, we take the transformation matrix, decompose it
78 into a lower triangular part (H) and a unimodular part (U).
79 We then compute the auxiliary space from the unimodular part (source loop
80 nest . U = auxiliary space) , which has two important properties:
81  1. It traverses the iterations in the same lexicographic order as the source
82  space.
83  2. It is a dense space when the source is a dense space (even if the target
84  space is going to be sparse).
85
86 Given the auxiliary space, we use the lower triangular part to compute the
87 bounds in the target space by simple matrix multiplication.
88 The gaps in the target space (IE the new loop step sizes) will be the
89 diagonals of the H matrix.
90
91 Sparse source spaces require another step, because you can't directly compute
92 the exact bounds of the auxiliary and target space from the sparse space.
93 Rather than try to come up with a separate algorithm to handle sparse source
94 spaces directly, we just find a legal transformation matrix that gives you
95 the sparse source space, from a dense space, and then transform the dense
96 space.
97
98 For a regular sparse space, you can represent the source space as an integer
99 lattice, and the base space of that lattice will always be dense.  Thus, we
100 effectively use the lattice to figure out the transformation from the lattice
101 base space, to the sparse iteration space (IE what transform was applied to
102 the dense space to make it sparse).  We then compose this transform with the
103 transformation matrix specified by the user (since our matrix transformations
104 are closed under composition, this is okay).  We can then use the base space
105 (which is dense) plus the composed transformation matrix, to compute the rest
106 of the transform using the dense space algorithm above.
107
108 In other words, our sparse source space (B) is decomposed into a dense base
109 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
110 We then compute the composition of L and the user transformation matrix (T),
111 so that T is now a transform from A to the result, instead of from B to the
112 result.
113 IE A.(LT) = result instead of B.T = result
114 Since A is now a dense source space, we can use the dense source space
115 algorithm above to compute the result of applying transform (LT) to A.
116
117 Fourier-Motzkin elimination is used to compute the bounds of the base space
118 of the lattice.  */
119
120static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
121			     VEC(tree,heap) *, VEC(int,heap) *,
122			     VEC(tree,heap) *);
123/* Lattice stuff that is internal to the code generation algorithm.  */
124
125typedef struct lambda_lattice_s
126{
127  /* Lattice base matrix.  */
128  lambda_matrix base;
129  /* Lattice dimension.  */
130  int dimension;
131  /* Origin vector for the coefficients.  */
132  lambda_vector origin;
133  /* Origin matrix for the invariants.  */
134  lambda_matrix origin_invariants;
135  /* Number of invariants.  */
136  int invariants;
137} *lambda_lattice;
138
139#define LATTICE_BASE(T) ((T)->base)
140#define LATTICE_DIMENSION(T) ((T)->dimension)
141#define LATTICE_ORIGIN(T) ((T)->origin)
142#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
143#define LATTICE_INVARIANTS(T) ((T)->invariants)
144
145static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
146		       int, int);
147static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
148static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
149                                                   struct obstack *);
150
151static bool can_convert_to_perfect_nest (struct loop *);
152
153/* Create a new lambda body vector.  */
154
155lambda_body_vector
156lambda_body_vector_new (int size, struct obstack * lambda_obstack)
157{
158  lambda_body_vector ret;
159
160  ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
161  LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162  LBV_SIZE (ret) = size;
163  LBV_DENOMINATOR (ret) = 1;
164  return ret;
165}
166
167/* Compute the new coefficients for the vector based on the
168  *inverse* of the transformation matrix.  */
169
170lambda_body_vector
171lambda_body_vector_compute_new (lambda_trans_matrix transform,
172                                lambda_body_vector vect,
173                                struct obstack * lambda_obstack)
174{
175  lambda_body_vector temp;
176  int depth;
177
178  /* Make sure the matrix is square.  */
179  gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
180
181  depth = LTM_ROWSIZE (transform);
182
183  temp = lambda_body_vector_new (depth, lambda_obstack);
184  LBV_DENOMINATOR (temp) =
185    LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
186  lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
187			     LTM_MATRIX (transform), depth,
188			     LBV_COEFFICIENTS (temp));
189  LBV_SIZE (temp) = LBV_SIZE (vect);
190  return temp;
191}
192
193/* Print out a lambda body vector.  */
194
195void
196print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
197{
198  print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
199}
200
201/* Return TRUE if two linear expressions are equal.  */
202
203static bool
204lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
205	   int depth, int invariants)
206{
207  int i;
208
209  if (lle1 == NULL || lle2 == NULL)
210    return false;
211  if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
212    return false;
213  if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
214    return false;
215  for (i = 0; i < depth; i++)
216    if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
217      return false;
218  for (i = 0; i < invariants; i++)
219    if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
220	LLE_INVARIANT_COEFFICIENTS (lle2)[i])
221      return false;
222  return true;
223}
224
225/* Create a new linear expression with dimension DIM, and total number
226   of invariants INVARIANTS.  */
227
228lambda_linear_expression
229lambda_linear_expression_new (int dim, int invariants,
230                              struct obstack * lambda_obstack)
231{
232  lambda_linear_expression ret;
233
234  ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
235                                                 sizeof (*ret));
236  LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
237  LLE_CONSTANT (ret) = 0;
238  LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
239  LLE_DENOMINATOR (ret) = 1;
240  LLE_NEXT (ret) = NULL;
241
242  return ret;
243}
244
245/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
246   The starting letter used for variable names is START.  */
247
248static void
249print_linear_expression (FILE * outfile, lambda_vector expr, int size,
250			 char start)
251{
252  int i;
253  bool first = true;
254  for (i = 0; i < size; i++)
255    {
256      if (expr[i] != 0)
257	{
258	  if (first)
259	    {
260	      if (expr[i] < 0)
261		fprintf (outfile, "-");
262	      first = false;
263	    }
264	  else if (expr[i] > 0)
265	    fprintf (outfile, " + ");
266	  else
267	    fprintf (outfile, " - ");
268	  if (abs (expr[i]) == 1)
269	    fprintf (outfile, "%c", start + i);
270	  else
271	    fprintf (outfile, "%d%c", abs (expr[i]), start + i);
272	}
273    }
274}
275
276/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
277   depth/number of coefficients is given by DEPTH, the number of invariants is
278   given by INVARIANTS, and the character to start variable names with is given
279   by START.  */
280
281void
282print_lambda_linear_expression (FILE * outfile,
283				lambda_linear_expression expr,
284				int depth, int invariants, char start)
285{
286  fprintf (outfile, "\tLinear expression: ");
287  print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
288  fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
289  fprintf (outfile, "  invariants: ");
290  print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
291			   invariants, 'A');
292  fprintf (outfile, "  denominator: %d\n", LLE_DENOMINATOR (expr));
293}
294
295/* Print a lambda loop structure LOOP to OUTFILE.  The depth/number of
296   coefficients is given by DEPTH, the number of invariants is
297   given by INVARIANTS, and the character to start variable names with is given
298   by START.  */
299
300void
301print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
302		   int invariants, char start)
303{
304  int step;
305  lambda_linear_expression expr;
306
307  gcc_assert (loop);
308
309  expr = LL_LINEAR_OFFSET (loop);
310  step = LL_STEP (loop);
311  fprintf (outfile, "  step size = %d \n", step);
312
313  if (expr)
314    {
315      fprintf (outfile, "  linear offset: \n");
316      print_lambda_linear_expression (outfile, expr, depth, invariants,
317				      start);
318    }
319
320  fprintf (outfile, "  lower bound: \n");
321  for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
322    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
323  fprintf (outfile, "  upper bound: \n");
324  for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
325    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
326}
327
328/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
329   number of invariants.  */
330
331lambda_loopnest
332lambda_loopnest_new (int depth, int invariants,
333                     struct obstack * lambda_obstack)
334{
335  lambda_loopnest ret;
336  ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
337
338  LN_LOOPS (ret) = (lambda_loop *)
339      obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
340  LN_DEPTH (ret) = depth;
341  LN_INVARIANTS (ret) = invariants;
342
343  return ret;
344}
345
346/* Print a lambda loopnest structure, NEST, to OUTFILE.  The starting
347   character to use for loop names is given by START.  */
348
349void
350print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
351{
352  int i;
353  for (i = 0; i < LN_DEPTH (nest); i++)
354    {
355      fprintf (outfile, "Loop %c\n", start + i);
356      print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
357			 LN_INVARIANTS (nest), 'i');
358      fprintf (outfile, "\n");
359    }
360}
361
362/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
363   of invariants.  */
364
365static lambda_lattice
366lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
367{
368  lambda_lattice ret
369      = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
370  LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
371  LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
372  LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
373  LATTICE_DIMENSION (ret) = depth;
374  LATTICE_INVARIANTS (ret) = invariants;
375  return ret;
376}
377
378/* Compute the lattice base for NEST.  The lattice base is essentially a
379   non-singular transform from a dense base space to a sparse iteration space.
380   We use it so that we don't have to specially handle the case of a sparse
381   iteration space in other parts of the algorithm.  As a result, this routine
382   only does something interesting (IE produce a matrix that isn't the
383   identity matrix) if NEST is a sparse space.  */
384
385static lambda_lattice
386lambda_lattice_compute_base (lambda_loopnest nest,
387                             struct obstack * lambda_obstack)
388{
389  lambda_lattice ret;
390  int depth, invariants;
391  lambda_matrix base;
392
393  int i, j, step;
394  lambda_loop loop;
395  lambda_linear_expression expression;
396
397  depth = LN_DEPTH (nest);
398  invariants = LN_INVARIANTS (nest);
399
400  ret = lambda_lattice_new (depth, invariants, lambda_obstack);
401  base = LATTICE_BASE (ret);
402  for (i = 0; i < depth; i++)
403    {
404      loop = LN_LOOPS (nest)[i];
405      gcc_assert (loop);
406      step = LL_STEP (loop);
407      /* If we have a step of 1, then the base is one, and the
408         origin and invariant coefficients are 0.  */
409      if (step == 1)
410	{
411	  for (j = 0; j < depth; j++)
412	    base[i][j] = 0;
413	  base[i][i] = 1;
414	  LATTICE_ORIGIN (ret)[i] = 0;
415	  for (j = 0; j < invariants; j++)
416	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
417	}
418      else
419	{
420	  /* Otherwise, we need the lower bound expression (which must
421	     be an affine function)  to determine the base.  */
422	  expression = LL_LOWER_BOUND (loop);
423	  gcc_assert (expression && !LLE_NEXT (expression)
424		      && LLE_DENOMINATOR (expression) == 1);
425
426	  /* The lower triangular portion of the base is going to be the
427	     coefficient times the step */
428	  for (j = 0; j < i; j++)
429	    base[i][j] = LLE_COEFFICIENTS (expression)[j]
430	      * LL_STEP (LN_LOOPS (nest)[j]);
431	  base[i][i] = step;
432	  for (j = i + 1; j < depth; j++)
433	    base[i][j] = 0;
434
435	  /* Origin for this loop is the constant of the lower bound
436	     expression.  */
437	  LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
438
439	  /* Coefficient for the invariants are equal to the invariant
440	     coefficients in the expression.  */
441	  for (j = 0; j < invariants; j++)
442	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
443	      LLE_INVARIANT_COEFFICIENTS (expression)[j];
444	}
445    }
446  return ret;
447}
448
449/* Compute the least common multiple of two numbers A and B .  */
450
451int
452least_common_multiple (int a, int b)
453{
454  return (abs (a) * abs (b) / gcd (a, b));
455}
456
457/* Perform Fourier-Motzkin elimination to calculate the bounds of the
458   auxiliary nest.
459   Fourier-Motzkin is a way of reducing systems of linear inequalities so that
460   it is easy to calculate the answer and bounds.
461   A sketch of how it works:
462   Given a system of linear inequalities, ai * xj >= bk, you can always
463   rewrite the constraints so they are all of the form
464   a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
465   in b1 ... bk, and some a in a1...ai)
466   You can then eliminate this x from the non-constant inequalities by
467   rewriting these as a <= b, x >= constant, and delete the x variable.
468   You can then repeat this for any remaining x variables, and then we have
469   an easy to use variable <= constant (or no variables at all) form that we
470   can construct our bounds from.
471
472   In our case, each time we eliminate, we construct part of the bound from
473   the ith variable, then delete the ith variable.
474
475   Remember the constant are in our vector a, our coefficient matrix is A,
476   and our invariant coefficient matrix is B.
477
478   SIZE is the size of the matrices being passed.
479   DEPTH is the loop nest depth.
480   INVARIANTS is the number of loop invariants.
481   A, B, and a are the coefficient matrix, invariant coefficient, and a
482   vector of constants, respectively.  */
483
484static lambda_loopnest
485compute_nest_using_fourier_motzkin (int size,
486				    int depth,
487				    int invariants,
488				    lambda_matrix A,
489				    lambda_matrix B,
490                                    lambda_vector a,
491                                    struct obstack * lambda_obstack)
492{
493
494  int multiple, f1, f2;
495  int i, j, k;
496  lambda_linear_expression expression;
497  lambda_loop loop;
498  lambda_loopnest auxillary_nest;
499  lambda_matrix swapmatrix, A1, B1;
500  lambda_vector swapvector, a1;
501  int newsize;
502
503  A1 = lambda_matrix_new (128, depth);
504  B1 = lambda_matrix_new (128, invariants);
505  a1 = lambda_vector_new (128);
506
507  auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
508
509  for (i = depth - 1; i >= 0; i--)
510    {
511      loop = lambda_loop_new ();
512      LN_LOOPS (auxillary_nest)[i] = loop;
513      LL_STEP (loop) = 1;
514
515      for (j = 0; j < size; j++)
516	{
517	  if (A[j][i] < 0)
518	    {
519	      /* Any linear expression in the matrix with a coefficient less
520		 than 0 becomes part of the new lower bound.  */
521              expression = lambda_linear_expression_new (depth, invariants,
522                                                         lambda_obstack);
523
524	      for (k = 0; k < i; k++)
525		LLE_COEFFICIENTS (expression)[k] = A[j][k];
526
527	      for (k = 0; k < invariants; k++)
528		LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
529
530	      LLE_DENOMINATOR (expression) = -1 * A[j][i];
531	      LLE_CONSTANT (expression) = -1 * a[j];
532
533	      /* Ignore if identical to the existing lower bound.  */
534	      if (!lle_equal (LL_LOWER_BOUND (loop),
535			      expression, depth, invariants))
536		{
537		  LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
538		  LL_LOWER_BOUND (loop) = expression;
539		}
540
541	    }
542	  else if (A[j][i] > 0)
543	    {
544	      /* Any linear expression with a coefficient greater than 0
545		 becomes part of the new upper bound.  */
546              expression = lambda_linear_expression_new (depth, invariants,
547                                                         lambda_obstack);
548	      for (k = 0; k < i; k++)
549		LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
550
551	      for (k = 0; k < invariants; k++)
552		LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
553
554	      LLE_DENOMINATOR (expression) = A[j][i];
555	      LLE_CONSTANT (expression) = a[j];
556
557	      /* Ignore if identical to the existing upper bound.  */
558	      if (!lle_equal (LL_UPPER_BOUND (loop),
559			      expression, depth, invariants))
560		{
561		  LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
562		  LL_UPPER_BOUND (loop) = expression;
563		}
564
565	    }
566	}
567
568      /* This portion creates a new system of linear inequalities by deleting
569	 the i'th variable, reducing the system by one variable.  */
570      newsize = 0;
571      for (j = 0; j < size; j++)
572	{
573	  /* If the coefficient for the i'th variable is 0, then we can just
574	     eliminate the variable straightaway.  Otherwise, we have to
575	     multiply through by the coefficients we are eliminating.  */
576	  if (A[j][i] == 0)
577	    {
578	      lambda_vector_copy (A[j], A1[newsize], depth);
579	      lambda_vector_copy (B[j], B1[newsize], invariants);
580	      a1[newsize] = a[j];
581	      newsize++;
582	    }
583	  else if (A[j][i] > 0)
584	    {
585	      for (k = 0; k < size; k++)
586		{
587		  if (A[k][i] < 0)
588		    {
589		      multiple = least_common_multiple (A[j][i], A[k][i]);
590		      f1 = multiple / A[j][i];
591		      f2 = -1 * multiple / A[k][i];
592
593		      lambda_vector_add_mc (A[j], f1, A[k], f2,
594					    A1[newsize], depth);
595		      lambda_vector_add_mc (B[j], f1, B[k], f2,
596					    B1[newsize], invariants);
597		      a1[newsize] = f1 * a[j] + f2 * a[k];
598		      newsize++;
599		    }
600		}
601	    }
602	}
603
604      swapmatrix = A;
605      A = A1;
606      A1 = swapmatrix;
607
608      swapmatrix = B;
609      B = B1;
610      B1 = swapmatrix;
611
612      swapvector = a;
613      a = a1;
614      a1 = swapvector;
615
616      size = newsize;
617    }
618
619  return auxillary_nest;
620}
621
622/* Compute the loop bounds for the auxiliary space NEST.
623   Input system used is Ax <= b.  TRANS is the unimodular transformation.
624   Given the original nest, this function will
625   1. Convert the nest into matrix form, which consists of a matrix for the
626   coefficients, a matrix for the
627   invariant coefficients, and a vector for the constants.
628   2. Use the matrix form to calculate the lattice base for the nest (which is
629   a dense space)
630   3. Compose the dense space transform with the user specified transform, to
631   get a transform we can easily calculate transformed bounds for.
632   4. Multiply the composed transformation matrix times the matrix form of the
633   loop.
634   5. Transform the newly created matrix (from step 4) back into a loop nest
635   using Fourier-Motzkin elimination to figure out the bounds.  */
636
637static lambda_loopnest
638lambda_compute_auxillary_space (lambda_loopnest nest,
639                                lambda_trans_matrix trans,
640                                struct obstack * lambda_obstack)
641{
642  lambda_matrix A, B, A1, B1;
643  lambda_vector a, a1;
644  lambda_matrix invertedtrans;
645  int depth, invariants, size;
646  int i, j;
647  lambda_loop loop;
648  lambda_linear_expression expression;
649  lambda_lattice lattice;
650
651  depth = LN_DEPTH (nest);
652  invariants = LN_INVARIANTS (nest);
653
654  /* Unfortunately, we can't know the number of constraints we'll have
655     ahead of time, but this should be enough even in ridiculous loop nest
656     cases. We must not go over this limit.  */
657  A = lambda_matrix_new (128, depth);
658  B = lambda_matrix_new (128, invariants);
659  a = lambda_vector_new (128);
660
661  A1 = lambda_matrix_new (128, depth);
662  B1 = lambda_matrix_new (128, invariants);
663  a1 = lambda_vector_new (128);
664
665  /* Store the bounds in the equation matrix A, constant vector a, and
666     invariant matrix B, so that we have Ax <= a + B.
667     This requires a little equation rearranging so that everything is on the
668     correct side of the inequality.  */
669  size = 0;
670  for (i = 0; i < depth; i++)
671    {
672      loop = LN_LOOPS (nest)[i];
673
674      /* First we do the lower bound.  */
675      if (LL_STEP (loop) > 0)
676	expression = LL_LOWER_BOUND (loop);
677      else
678	expression = LL_UPPER_BOUND (loop);
679
680      for (; expression != NULL; expression = LLE_NEXT (expression))
681	{
682	  /* Fill in the coefficient.  */
683	  for (j = 0; j < i; j++)
684	    A[size][j] = LLE_COEFFICIENTS (expression)[j];
685
686	  /* And the invariant coefficient.  */
687	  for (j = 0; j < invariants; j++)
688	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
689
690	  /* And the constant.  */
691	  a[size] = LLE_CONSTANT (expression);
692
693	  /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b.  IE put all
694	     constants and single variables on   */
695	  A[size][i] = -1 * LLE_DENOMINATOR (expression);
696	  a[size] *= -1;
697	  for (j = 0; j < invariants; j++)
698	    B[size][j] *= -1;
699
700	  size++;
701	  /* Need to increase matrix sizes above.  */
702	  gcc_assert (size <= 127);
703
704	}
705
706      /* Then do the exact same thing for the upper bounds.  */
707      if (LL_STEP (loop) > 0)
708	expression = LL_UPPER_BOUND (loop);
709      else
710	expression = LL_LOWER_BOUND (loop);
711
712      for (; expression != NULL; expression = LLE_NEXT (expression))
713	{
714	  /* Fill in the coefficient.  */
715	  for (j = 0; j < i; j++)
716	    A[size][j] = LLE_COEFFICIENTS (expression)[j];
717
718	  /* And the invariant coefficient.  */
719	  for (j = 0; j < invariants; j++)
720	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
721
722	  /* And the constant.  */
723	  a[size] = LLE_CONSTANT (expression);
724
725	  /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b.  */
726	  for (j = 0; j < i; j++)
727	    A[size][j] *= -1;
728	  A[size][i] = LLE_DENOMINATOR (expression);
729	  size++;
730	  /* Need to increase matrix sizes above.  */
731	  gcc_assert (size <= 127);
732
733	}
734    }
735
736  /* Compute the lattice base x = base * y + origin, where y is the
737     base space.  */
738  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
739
740  /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */
741
742  /* A1 = A * L */
743  lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
744
745  /* a1 = a - A * origin constant.  */
746  lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
747  lambda_vector_add_mc (a, 1, a1, -1, a1, size);
748
749  /* B1 = B - A * origin invariant.  */
750  lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
751		      invariants);
752  lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
753
754  /* Now compute the auxiliary space bounds by first inverting U, multiplying
755     it by A1, then performing Fourier-Motzkin.  */
756
757  invertedtrans = lambda_matrix_new (depth, depth);
758
759  /* Compute the inverse of U.  */
760  lambda_matrix_inverse (LTM_MATRIX (trans),
761			 invertedtrans, depth);
762
763  /* A = A1 inv(U).  */
764  lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
765
766  return compute_nest_using_fourier_motzkin (size, depth, invariants,
767                                             A, B1, a1, lambda_obstack);
768}
769
770/* Compute the loop bounds for the target space, using the bounds of
771   the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
772   The target space loop bounds are computed by multiplying the triangular
773   matrix H by the auxiliary nest, to get the new loop bounds.  The sign of
774   the loop steps (positive or negative) is then used to swap the bounds if
775   the loop counts downwards.
776   Return the target loopnest.  */
777
778static lambda_loopnest
779lambda_compute_target_space (lambda_loopnest auxillary_nest,
780                             lambda_trans_matrix H, lambda_vector stepsigns,
781                             struct obstack * lambda_obstack)
782{
783  lambda_matrix inverse, H1;
784  int determinant, i, j;
785  int gcd1, gcd2;
786  int factor;
787
788  lambda_loopnest target_nest;
789  int depth, invariants;
790  lambda_matrix target;
791
792  lambda_loop auxillary_loop, target_loop;
793  lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
794
795  depth = LN_DEPTH (auxillary_nest);
796  invariants = LN_INVARIANTS (auxillary_nest);
797
798  inverse = lambda_matrix_new (depth, depth);
799  determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
800
801  /* H1 is H excluding its diagonal.  */
802  H1 = lambda_matrix_new (depth, depth);
803  lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
804
805  for (i = 0; i < depth; i++)
806    H1[i][i] = 0;
807
808  /* Computes the linear offsets of the loop bounds.  */
809  target = lambda_matrix_new (depth, depth);
810  lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
811
812  target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
813
814  for (i = 0; i < depth; i++)
815    {
816
817      /* Get a new loop structure.  */
818      target_loop = lambda_loop_new ();
819      LN_LOOPS (target_nest)[i] = target_loop;
820
821      /* Computes the gcd of the coefficients of the linear part.  */
822      gcd1 = lambda_vector_gcd (target[i], i);
823
824      /* Include the denominator in the GCD.  */
825      gcd1 = gcd (gcd1, determinant);
826
827      /* Now divide through by the gcd.  */
828      for (j = 0; j < i; j++)
829	target[i][j] = target[i][j] / gcd1;
830
831      expression = lambda_linear_expression_new (depth, invariants,
832                                                 lambda_obstack);
833      lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
834      LLE_DENOMINATOR (expression) = determinant / gcd1;
835      LLE_CONSTANT (expression) = 0;
836      lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
837			   invariants);
838      LL_LINEAR_OFFSET (target_loop) = expression;
839    }
840
841  /* For each loop, compute the new bounds from H.  */
842  for (i = 0; i < depth; i++)
843    {
844      auxillary_loop = LN_LOOPS (auxillary_nest)[i];
845      target_loop = LN_LOOPS (target_nest)[i];
846      LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
847      factor = LTM_MATRIX (H)[i][i];
848
849      /* First we do the lower bound.  */
850      auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
851
852      for (; auxillary_expr != NULL;
853	   auxillary_expr = LLE_NEXT (auxillary_expr))
854	{
855          target_expr = lambda_linear_expression_new (depth, invariants,
856                                                      lambda_obstack);
857	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
858				     depth, inverse, depth,
859				     LLE_COEFFICIENTS (target_expr));
860	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
861				    LLE_COEFFICIENTS (target_expr), depth,
862				    factor);
863
864	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
865	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
866			      LLE_INVARIANT_COEFFICIENTS (target_expr),
867			      invariants);
868	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
869				    LLE_INVARIANT_COEFFICIENTS (target_expr),
870				    invariants, factor);
871	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
872
873	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
874	    {
875	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
876		* determinant;
877	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
878					(target_expr),
879					LLE_INVARIANT_COEFFICIENTS
880					(target_expr), invariants,
881					determinant);
882	      LLE_DENOMINATOR (target_expr) =
883		LLE_DENOMINATOR (target_expr) * determinant;
884	    }
885	  /* Find the gcd and divide by it here, rather than doing it
886	     at the tree level.  */
887	  gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
888	  gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
889				    invariants);
890	  gcd1 = gcd (gcd1, gcd2);
891	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
892	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
893	  for (j = 0; j < depth; j++)
894	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
895	  for (j = 0; j < invariants; j++)
896	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
897	  LLE_CONSTANT (target_expr) /= gcd1;
898	  LLE_DENOMINATOR (target_expr) /= gcd1;
899	  /* Ignore if identical to existing bound.  */
900	  if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
901			  invariants))
902	    {
903	      LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
904	      LL_LOWER_BOUND (target_loop) = target_expr;
905	    }
906	}
907      /* Now do the upper bound.  */
908      auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
909
910      for (; auxillary_expr != NULL;
911	   auxillary_expr = LLE_NEXT (auxillary_expr))
912	{
913          target_expr = lambda_linear_expression_new (depth, invariants,
914                                                      lambda_obstack);
915	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
916				     depth, inverse, depth,
917				     LLE_COEFFICIENTS (target_expr));
918	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
919				    LLE_COEFFICIENTS (target_expr), depth,
920				    factor);
921	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
922	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
923			      LLE_INVARIANT_COEFFICIENTS (target_expr),
924			      invariants);
925	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
926				    LLE_INVARIANT_COEFFICIENTS (target_expr),
927				    invariants, factor);
928	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
929
930	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
931	    {
932	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
933		* determinant;
934	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
935					(target_expr),
936					LLE_INVARIANT_COEFFICIENTS
937					(target_expr), invariants,
938					determinant);
939	      LLE_DENOMINATOR (target_expr) =
940		LLE_DENOMINATOR (target_expr) * determinant;
941	    }
942	  /* Find the gcd and divide by it here, instead of at the
943	     tree level.  */
944	  gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
945	  gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
946				    invariants);
947	  gcd1 = gcd (gcd1, gcd2);
948	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
949	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
950	  for (j = 0; j < depth; j++)
951	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
952	  for (j = 0; j < invariants; j++)
953	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
954	  LLE_CONSTANT (target_expr) /= gcd1;
955	  LLE_DENOMINATOR (target_expr) /= gcd1;
956	  /* Ignore if equal to existing bound.  */
957	  if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
958			  invariants))
959	    {
960	      LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
961	      LL_UPPER_BOUND (target_loop) = target_expr;
962	    }
963	}
964    }
965  for (i = 0; i < depth; i++)
966    {
967      target_loop = LN_LOOPS (target_nest)[i];
968      /* If necessary, exchange the upper and lower bounds and negate
969         the step size.  */
970      if (stepsigns[i] < 0)
971	{
972	  LL_STEP (target_loop) *= -1;
973	  tmp_expr = LL_LOWER_BOUND (target_loop);
974	  LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
975	  LL_UPPER_BOUND (target_loop) = tmp_expr;
976	}
977    }
978  return target_nest;
979}
980
981/* Compute the step signs of TRANS, using TRANS and stepsigns.  Return the new
982   result.  */
983
984static lambda_vector
985lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
986{
987  lambda_matrix matrix, H;
988  int size;
989  lambda_vector newsteps;
990  int i, j, factor, minimum_column;
991  int temp;
992
993  matrix = LTM_MATRIX (trans);
994  size = LTM_ROWSIZE (trans);
995  H = lambda_matrix_new (size, size);
996
997  newsteps = lambda_vector_new (size);
998  lambda_vector_copy (stepsigns, newsteps, size);
999
1000  lambda_matrix_copy (matrix, H, size, size);
1001
1002  for (j = 0; j < size; j++)
1003    {
1004      lambda_vector row;
1005      row = H[j];
1006      for (i = j; i < size; i++)
1007	if (row[i] < 0)
1008	  lambda_matrix_col_negate (H, size, i);
1009      while (lambda_vector_first_nz (row, size, j + 1) < size)
1010	{
1011	  minimum_column = lambda_vector_min_nz (row, size, j);
1012	  lambda_matrix_col_exchange (H, size, j, minimum_column);
1013
1014	  temp = newsteps[j];
1015	  newsteps[j] = newsteps[minimum_column];
1016	  newsteps[minimum_column] = temp;
1017
1018	  for (i = j + 1; i < size; i++)
1019	    {
1020	      factor = row[i] / row[j];
1021	      lambda_matrix_col_add (H, size, j, i, -1 * factor);
1022	    }
1023	}
1024    }
1025  return newsteps;
1026}
1027
1028/* Transform NEST according to TRANS, and return the new loopnest.
1029   This involves
1030   1. Computing a lattice base for the transformation
1031   2. Composing the dense base with the specified transformation (TRANS)
1032   3. Decomposing the combined transformation into a lower triangular portion,
1033   and a unimodular portion.
1034   4. Computing the auxiliary nest using the unimodular portion.
1035   5. Computing the target nest using the auxiliary nest and the lower
1036   triangular portion.  */
1037
1038lambda_loopnest
1039lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
1040                           struct obstack * lambda_obstack)
1041{
1042  lambda_loopnest auxillary_nest, target_nest;
1043
1044  int depth, invariants;
1045  int i, j;
1046  lambda_lattice lattice;
1047  lambda_trans_matrix trans1, H, U;
1048  lambda_loop loop;
1049  lambda_linear_expression expression;
1050  lambda_vector origin;
1051  lambda_matrix origin_invariants;
1052  lambda_vector stepsigns;
1053  int f;
1054
1055  depth = LN_DEPTH (nest);
1056  invariants = LN_INVARIANTS (nest);
1057
1058  /* Keep track of the signs of the loop steps.  */
1059  stepsigns = lambda_vector_new (depth);
1060  for (i = 0; i < depth; i++)
1061    {
1062      if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1063	stepsigns[i] = 1;
1064      else
1065	stepsigns[i] = -1;
1066    }
1067
1068  /* Compute the lattice base.  */
1069  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
1070  trans1 = lambda_trans_matrix_new (depth, depth);
1071
1072  /* Multiply the transformation matrix by the lattice base.  */
1073
1074  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1075		      LTM_MATRIX (trans1), depth, depth, depth);
1076
1077  /* Compute the Hermite normal form for the new transformation matrix.  */
1078  H = lambda_trans_matrix_new (depth, depth);
1079  U = lambda_trans_matrix_new (depth, depth);
1080  lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1081			 LTM_MATRIX (U));
1082
1083  /* Compute the auxiliary loop nest's space from the unimodular
1084     portion.  */
1085  auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
1086
1087  /* Compute the loop step signs from the old step signs and the
1088     transformation matrix.  */
1089  stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1090
1091  /* Compute the target loop nest space from the auxiliary nest and
1092     the lower triangular matrix H.  */
1093  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
1094                                             lambda_obstack);
1095  origin = lambda_vector_new (depth);
1096  origin_invariants = lambda_matrix_new (depth, invariants);
1097  lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1098			     LATTICE_ORIGIN (lattice), origin);
1099  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1100		      origin_invariants, depth, depth, invariants);
1101
1102  for (i = 0; i < depth; i++)
1103    {
1104      loop = LN_LOOPS (target_nest)[i];
1105      expression = LL_LINEAR_OFFSET (loop);
1106      if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1107	f = 1;
1108      else
1109	f = LLE_DENOMINATOR (expression);
1110
1111      LLE_CONSTANT (expression) += f * origin[i];
1112
1113      for (j = 0; j < invariants; j++)
1114	LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1115	  f * origin_invariants[i][j];
1116    }
1117
1118  return target_nest;
1119
1120}
1121
1122/* Convert a gcc tree expression EXPR to a lambda linear expression, and
1123   return the new expression.  DEPTH is the depth of the loopnest.
1124   OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1125   in this nest.  INVARIANTS is the array of invariants for the loop.  EXTRA
1126   is the amount we have to add/subtract from the expression because of the
1127   type of comparison it is used in.  */
1128
1129static lambda_linear_expression
1130gcc_tree_to_linear_expression (int depth, tree expr,
1131			       VEC(tree,heap) *outerinductionvars,
1132                               VEC(tree,heap) *invariants, int extra,
1133                               struct obstack * lambda_obstack)
1134{
1135  lambda_linear_expression lle = NULL;
1136  switch (TREE_CODE (expr))
1137    {
1138    case INTEGER_CST:
1139      {
1140        lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
1141	LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1142	if (extra != 0)
1143	  LLE_CONSTANT (lle) += extra;
1144
1145	LLE_DENOMINATOR (lle) = 1;
1146      }
1147      break;
1148    case SSA_NAME:
1149      {
1150	tree iv, invar;
1151	size_t i;
1152	for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1153	  if (iv != NULL)
1154	    {
1155	      if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1156		{
1157                  lle = lambda_linear_expression_new (depth, 2 * depth,
1158                                                      lambda_obstack);
1159		  LLE_COEFFICIENTS (lle)[i] = 1;
1160		  if (extra != 0)
1161		    LLE_CONSTANT (lle) = extra;
1162
1163		  LLE_DENOMINATOR (lle) = 1;
1164		}
1165	    }
1166	for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1167	  if (invar != NULL)
1168	    {
1169	      if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1170		{
1171                  lle = lambda_linear_expression_new (depth, 2 * depth,
1172                                                      lambda_obstack);
1173		  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1174		  if (extra != 0)
1175		    LLE_CONSTANT (lle) = extra;
1176		  LLE_DENOMINATOR (lle) = 1;
1177		}
1178	    }
1179      }
1180      break;
1181    default:
1182      return NULL;
1183    }
1184
1185  return lle;
1186}
1187
1188/* Return the depth of the loopnest NEST */
1189
1190static int
1191depth_of_nest (struct loop *nest)
1192{
1193  size_t depth = 0;
1194  while (nest)
1195    {
1196      depth++;
1197      nest = nest->inner;
1198    }
1199  return depth;
1200}
1201
1202
1203/* Return true if OP is invariant in LOOP and all outer loops.  */
1204
1205static bool
1206invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1207{
1208  if (is_gimple_min_invariant (op))
1209    return true;
1210  if (loop_depth (loop) == 0)
1211    return true;
1212  if (!expr_invariant_in_loop_p (loop, op))
1213    return false;
1214  if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1215    return false;
1216  return true;
1217}
1218
1219/* Generate a lambda loop from a gcc loop LOOP.  Return the new lambda loop,
1220   or NULL if it could not be converted.
1221   DEPTH is the depth of the loop.
1222   INVARIANTS is a pointer to the array of loop invariants.
1223   The induction variable for this loop should be stored in the parameter
1224   OURINDUCTIONVAR.
1225   OUTERINDUCTIONVARS is an array of induction variables for outer loops.  */
1226
1227static lambda_loop
1228gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1229			 VEC(tree,heap) ** invariants,
1230			 tree * ourinductionvar,
1231			 VEC(tree,heap) * outerinductionvars,
1232			 VEC(tree,heap) ** lboundvars,
1233			 VEC(tree,heap) ** uboundvars,
1234			 VEC(int,heap) ** steps,
1235                         struct obstack * lambda_obstack)
1236{
1237  gimple phi;
1238  gimple exit_cond;
1239  tree access_fn, inductionvar;
1240  tree step;
1241  lambda_loop lloop = NULL;
1242  lambda_linear_expression lbound, ubound;
1243  tree test_lhs, test_rhs;
1244  int stepint;
1245  int extra = 0;
1246  tree lboundvar, uboundvar, uboundresult;
1247
1248  /* Find out induction var and exit condition.  */
1249  inductionvar = find_induction_var_from_exit_cond (loop);
1250  exit_cond = get_loop_exit_condition (loop);
1251
1252  if (inductionvar == NULL || exit_cond == NULL)
1253    {
1254      if (dump_file && (dump_flags & TDF_DETAILS))
1255	fprintf (dump_file,
1256		 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1257      return NULL;
1258    }
1259
1260  if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
1261    {
1262
1263      if (dump_file && (dump_flags & TDF_DETAILS))
1264	fprintf (dump_file,
1265		 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1266
1267      return NULL;
1268    }
1269
1270  phi = SSA_NAME_DEF_STMT (inductionvar);
1271  if (gimple_code (phi) != GIMPLE_PHI)
1272    {
1273      tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1274      if (!op)
1275	{
1276
1277	  if (dump_file && (dump_flags & TDF_DETAILS))
1278	    fprintf (dump_file,
1279		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
1280
1281	  return NULL;
1282	}
1283
1284      phi = SSA_NAME_DEF_STMT (op);
1285      if (gimple_code (phi) != GIMPLE_PHI)
1286	{
1287	  if (dump_file && (dump_flags & TDF_DETAILS))
1288	    fprintf (dump_file,
1289		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
1290	  return NULL;
1291	}
1292    }
1293
1294  /* The induction variable name/version we want to put in the array is the
1295     result of the induction variable phi node.  */
1296  *ourinductionvar = PHI_RESULT (phi);
1297  access_fn = instantiate_parameters
1298    (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1299  if (access_fn == chrec_dont_know)
1300    {
1301      if (dump_file && (dump_flags & TDF_DETAILS))
1302	fprintf (dump_file,
1303		 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1304
1305      return NULL;
1306    }
1307
1308  step = evolution_part_in_loop_num (access_fn, loop->num);
1309  if (!step || step == chrec_dont_know)
1310    {
1311      if (dump_file && (dump_flags & TDF_DETAILS))
1312	fprintf (dump_file,
1313		 "Unable to convert loop: Cannot determine step of loop.\n");
1314
1315      return NULL;
1316    }
1317  if (TREE_CODE (step) != INTEGER_CST)
1318    {
1319
1320      if (dump_file && (dump_flags & TDF_DETAILS))
1321	fprintf (dump_file,
1322		 "Unable to convert loop: Step of loop is not integer.\n");
1323      return NULL;
1324    }
1325
1326  stepint = TREE_INT_CST_LOW (step);
1327
1328  /* Only want phis for induction vars, which will have two
1329     arguments.  */
1330  if (gimple_phi_num_args (phi) != 2)
1331    {
1332      if (dump_file && (dump_flags & TDF_DETAILS))
1333	fprintf (dump_file,
1334		 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1335      return NULL;
1336    }
1337
1338  /* Another induction variable check. One argument's source should be
1339     in the loop, one outside the loop.  */
1340  if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
1341      && flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
1342    {
1343
1344      if (dump_file && (dump_flags & TDF_DETAILS))
1345	fprintf (dump_file,
1346		 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1347
1348      return NULL;
1349    }
1350
1351  if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
1352    {
1353      lboundvar = PHI_ARG_DEF (phi, 1);
1354      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1355					      outerinductionvars, *invariants,
1356                                              0, lambda_obstack);
1357    }
1358  else
1359    {
1360      lboundvar = PHI_ARG_DEF (phi, 0);
1361      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1362					      outerinductionvars, *invariants,
1363                                              0, lambda_obstack);
1364    }
1365
1366  if (!lbound)
1367    {
1368
1369      if (dump_file && (dump_flags & TDF_DETAILS))
1370	fprintf (dump_file,
1371		 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1372
1373      return NULL;
1374    }
1375  /* One part of the test may be a loop invariant tree.  */
1376  VEC_reserve (tree, heap, *invariants, 1);
1377  test_lhs = gimple_cond_lhs (exit_cond);
1378  test_rhs = gimple_cond_rhs (exit_cond);
1379
1380  if (TREE_CODE (test_rhs) == SSA_NAME
1381      && invariant_in_loop_and_outer_loops (loop, test_rhs))
1382    VEC_quick_push (tree, *invariants, test_rhs);
1383  else if (TREE_CODE (test_lhs) == SSA_NAME
1384	   && invariant_in_loop_and_outer_loops (loop, test_lhs))
1385    VEC_quick_push (tree, *invariants, test_lhs);
1386
1387  /* The non-induction variable part of the test is the upper bound variable.
1388   */
1389  if (test_lhs == inductionvar)
1390    uboundvar = test_rhs;
1391  else
1392    uboundvar = test_lhs;
1393
1394  /* We only size the vectors assuming we have, at max, 2 times as many
1395     invariants as we do loops (one for each bound).
1396     This is just an arbitrary number, but it has to be matched against the
1397     code below.  */
1398  gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1399
1400
1401  /* We might have some leftover.  */
1402  if (gimple_cond_code (exit_cond) == LT_EXPR)
1403    extra = -1 * stepint;
1404  else if (gimple_cond_code (exit_cond) == NE_EXPR)
1405    extra = -1 * stepint;
1406  else if (gimple_cond_code (exit_cond) == GT_EXPR)
1407    extra = -1 * stepint;
1408  else if (gimple_cond_code (exit_cond) == EQ_EXPR)
1409    extra = 1 * stepint;
1410
1411  ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1412					  outerinductionvars,
1413                                          *invariants, extra, lambda_obstack);
1414  uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1415			 build_int_cst (TREE_TYPE (uboundvar), extra));
1416  VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1417  VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1418  VEC_safe_push (int, heap, *steps, stepint);
1419  if (!ubound)
1420    {
1421      if (dump_file && (dump_flags & TDF_DETAILS))
1422	fprintf (dump_file,
1423		 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1424      return NULL;
1425    }
1426
1427  lloop = lambda_loop_new ();
1428  LL_STEP (lloop) = stepint;
1429  LL_LOWER_BOUND (lloop) = lbound;
1430  LL_UPPER_BOUND (lloop) = ubound;
1431  return lloop;
1432}
1433
1434/* Given a LOOP, find the induction variable it is testing against in the exit
1435   condition.  Return the induction variable if found, NULL otherwise.  */
1436
1437tree
1438find_induction_var_from_exit_cond (struct loop *loop)
1439{
1440  gimple expr = get_loop_exit_condition (loop);
1441  tree ivarop;
1442  tree test_lhs, test_rhs;
1443  if (expr == NULL)
1444    return NULL_TREE;
1445  if (gimple_code (expr) != GIMPLE_COND)
1446    return NULL_TREE;
1447  test_lhs = gimple_cond_lhs (expr);
1448  test_rhs = gimple_cond_rhs (expr);
1449
1450  /* Find the side that is invariant in this loop. The ivar must be the other
1451     side.  */
1452
1453  if (expr_invariant_in_loop_p (loop, test_lhs))
1454      ivarop = test_rhs;
1455  else if (expr_invariant_in_loop_p (loop, test_rhs))
1456      ivarop = test_lhs;
1457  else
1458    return NULL_TREE;
1459
1460  if (TREE_CODE (ivarop) != SSA_NAME)
1461    return NULL_TREE;
1462  return ivarop;
1463}
1464
1465DEF_VEC_P(lambda_loop);
1466DEF_VEC_ALLOC_P(lambda_loop,heap);
1467
1468/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1469   Return the new loop nest.
1470   INDUCTIONVARS is a pointer to an array of induction variables for the
1471   loopnest that will be filled in during this process.
1472   INVARIANTS is a pointer to an array of invariants that will be filled in
1473   during this process.  */
1474
1475lambda_loopnest
1476gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1477				 VEC(tree,heap) **inductionvars,
1478                                 VEC(tree,heap) **invariants,
1479                                 struct obstack * lambda_obstack)
1480{
1481  lambda_loopnest ret = NULL;
1482  struct loop *temp = loop_nest;
1483  int depth = depth_of_nest (loop_nest);
1484  size_t i;
1485  VEC(lambda_loop,heap) *loops = NULL;
1486  VEC(tree,heap) *uboundvars = NULL;
1487  VEC(tree,heap) *lboundvars  = NULL;
1488  VEC(int,heap) *steps = NULL;
1489  lambda_loop newloop;
1490  tree inductionvar = NULL;
1491  bool perfect_nest = perfect_nest_p (loop_nest);
1492
1493  if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1494    goto fail;
1495
1496  while (temp)
1497    {
1498      newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1499					 &inductionvar, *inductionvars,
1500					 &lboundvars, &uboundvars,
1501                                         &steps, lambda_obstack);
1502      if (!newloop)
1503	goto fail;
1504
1505      VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1506      VEC_safe_push (lambda_loop, heap, loops, newloop);
1507      temp = temp->inner;
1508    }
1509
1510  if (!perfect_nest)
1511    {
1512      if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1513			    *inductionvars))
1514	{
1515	  if (dump_file)
1516	    fprintf (dump_file,
1517		     "Not a perfect loop nest and couldn't convert to one.\n");
1518	  goto fail;
1519	}
1520      else if (dump_file)
1521	fprintf (dump_file,
1522		 "Successfully converted loop nest to perfect loop nest.\n");
1523    }
1524
1525  ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
1526
1527  for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1528    LN_LOOPS (ret)[i] = newloop;
1529
1530 fail:
1531  VEC_free (lambda_loop, heap, loops);
1532  VEC_free (tree, heap, uboundvars);
1533  VEC_free (tree, heap, lboundvars);
1534  VEC_free (int, heap, steps);
1535
1536  return ret;
1537}
1538
1539/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1540   STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1541   inserted for us are stored.  INDUCTION_VARS is the array of induction
1542   variables for the loop this LBV is from.  TYPE is the tree type to use for
1543   the variables and trees involved.  */
1544
1545static tree
1546lbv_to_gcc_expression (lambda_body_vector lbv,
1547		       tree type, VEC(tree,heap) *induction_vars,
1548		       gimple_seq *stmts_to_insert)
1549{
1550  int k;
1551  tree resvar;
1552  tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1553
1554  k = LBV_DENOMINATOR (lbv);
1555  gcc_assert (k != 0);
1556  if (k != 1)
1557    expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1558
1559  resvar = create_tmp_var (type, "lbvtmp");
1560  add_referenced_var (resvar);
1561  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1562}
1563
1564/* Convert a linear expression from coefficient and constant form to a
1565   gcc tree.
1566   Return the tree that represents the final value of the expression.
1567   LLE is the linear expression to convert.
1568   OFFSET is the linear offset to apply to the expression.
1569   TYPE is the tree type to use for the variables and math.
1570   INDUCTION_VARS is a vector of induction variables for the loops.
1571   INVARIANTS is a vector of the loop nest invariants.
1572   WRAP specifies what tree code to wrap the results in, if there is more than
1573   one (it is either MAX_EXPR, or MIN_EXPR).
1574   STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1575   statements that need to be inserted for the linear expression.  */
1576
1577static tree
1578lle_to_gcc_expression (lambda_linear_expression lle,
1579		       lambda_linear_expression offset,
1580		       tree type,
1581		       VEC(tree,heap) *induction_vars,
1582		       VEC(tree,heap) *invariants,
1583		       enum tree_code wrap, gimple_seq *stmts_to_insert)
1584{
1585  int k;
1586  tree resvar;
1587  tree expr = NULL_TREE;
1588  VEC(tree,heap) *results = NULL;
1589
1590  gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1591
1592  /* Build up the linear expressions.  */
1593  for (; lle != NULL; lle = LLE_NEXT (lle))
1594    {
1595      expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1596      expr = fold_build2 (PLUS_EXPR, type, expr,
1597			  build_linear_expr (type,
1598					     LLE_INVARIANT_COEFFICIENTS (lle),
1599					     invariants));
1600
1601      k = LLE_CONSTANT (lle);
1602      if (k)
1603	expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1604
1605      k = LLE_CONSTANT (offset);
1606      if (k)
1607	expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1608
1609      k = LLE_DENOMINATOR (lle);
1610      if (k != 1)
1611	expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1612			    type, expr, build_int_cst (type, k));
1613
1614      expr = fold (expr);
1615      VEC_safe_push (tree, heap, results, expr);
1616    }
1617
1618  gcc_assert (expr);
1619
1620  /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR.  */
1621  if (VEC_length (tree, results) > 1)
1622    {
1623      size_t i;
1624      tree op;
1625
1626      expr = VEC_index (tree, results, 0);
1627      for (i = 1; VEC_iterate (tree, results, i, op); i++)
1628	expr = fold_build2 (wrap, type, expr, op);
1629    }
1630
1631  VEC_free (tree, heap, results);
1632
1633  resvar = create_tmp_var (type, "lletmp");
1634  add_referenced_var (resvar);
1635  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1636}
1637
1638/* Remove the induction variable defined at IV_STMT.  */
1639
1640void
1641remove_iv (gimple iv_stmt)
1642{
1643  gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
1644
1645  if (gimple_code (iv_stmt) == GIMPLE_PHI)
1646    {
1647      unsigned i;
1648
1649      for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
1650	{
1651	  gimple stmt;
1652	  imm_use_iterator imm_iter;
1653	  tree arg = gimple_phi_arg_def (iv_stmt, i);
1654	  bool used = false;
1655
1656	  if (TREE_CODE (arg) != SSA_NAME)
1657	    continue;
1658
1659	  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
1660	    if (stmt != iv_stmt && !is_gimple_debug (stmt))
1661	      used = true;
1662
1663	  if (!used)
1664	    remove_iv (SSA_NAME_DEF_STMT (arg));
1665	}
1666
1667      remove_phi_node (&si, true);
1668    }
1669  else
1670    {
1671      gsi_remove (&si, true);
1672      release_defs (iv_stmt);
1673    }
1674}
1675
1676/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1677   it, back into gcc code.  This changes the
1678   loops, their induction variables, and their bodies, so that they
1679   match the transformed loopnest.
1680   OLD_LOOPNEST is the loopnest before we've replaced it with the new
1681   loopnest.
1682   OLD_IVS is a vector of induction variables from the old loopnest.
1683   INVARIANTS is a vector of loop invariants from the old loopnest.
1684   NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1685   TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1686   NEW_LOOPNEST.  */
1687
1688void
1689lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1690				 VEC(tree,heap) *old_ivs,
1691				 VEC(tree,heap) *invariants,
1692				 VEC(gimple,heap) **remove_ivs,
1693				 lambda_loopnest new_loopnest,
1694                                 lambda_trans_matrix transform,
1695                                 struct obstack * lambda_obstack)
1696{
1697  struct loop *temp;
1698  size_t i = 0;
1699  unsigned j;
1700  size_t depth = 0;
1701  VEC(tree,heap) *new_ivs = NULL;
1702  tree oldiv;
1703  gimple_stmt_iterator bsi;
1704
1705  transform = lambda_trans_matrix_inverse (transform);
1706
1707  if (dump_file)
1708    {
1709      fprintf (dump_file, "Inverse of transformation matrix:\n");
1710      print_lambda_trans_matrix (dump_file, transform);
1711    }
1712  depth = depth_of_nest (old_loopnest);
1713  temp = old_loopnest;
1714
1715  while (temp)
1716    {
1717      lambda_loop newloop;
1718      basic_block bb;
1719      edge exit;
1720      tree ivvar, ivvarinced;
1721      gimple exitcond;
1722      gimple_seq stmts;
1723      enum tree_code testtype;
1724      tree newupperbound, newlowerbound;
1725      lambda_linear_expression offset;
1726      tree type;
1727      bool insert_after;
1728      gimple inc_stmt;
1729
1730      oldiv = VEC_index (tree, old_ivs, i);
1731      type = TREE_TYPE (oldiv);
1732
1733      /* First, build the new induction variable temporary  */
1734
1735      ivvar = create_tmp_var (type, "lnivtmp");
1736      add_referenced_var (ivvar);
1737
1738      VEC_safe_push (tree, heap, new_ivs, ivvar);
1739
1740      newloop = LN_LOOPS (new_loopnest)[i];
1741
1742      /* Linear offset is a bit tricky to handle.  Punt on the unhandled
1743         cases for now.  */
1744      offset = LL_LINEAR_OFFSET (newloop);
1745
1746      gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1747		  lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1748
1749      /* Now build the  new lower bounds, and insert the statements
1750         necessary to generate it on the loop preheader.  */
1751      stmts = NULL;
1752      newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1753					     LL_LINEAR_OFFSET (newloop),
1754					     type,
1755					     new_ivs,
1756					     invariants, MAX_EXPR, &stmts);
1757
1758      if (stmts)
1759	{
1760	  gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
1761	  gsi_commit_edge_inserts ();
1762	}
1763      /* Build the new upper bound and insert its statements in the
1764         basic block of the exit condition */
1765      stmts = NULL;
1766      newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1767					     LL_LINEAR_OFFSET (newloop),
1768					     type,
1769					     new_ivs,
1770					     invariants, MIN_EXPR, &stmts);
1771      exit = single_exit (temp);
1772      exitcond = get_loop_exit_condition (temp);
1773      bb = gimple_bb (exitcond);
1774      bsi = gsi_after_labels (bb);
1775      if (stmts)
1776	gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
1777
1778      /* Create the new iv.  */
1779
1780      standard_iv_increment_position (temp, &bsi, &insert_after);
1781      create_iv (newlowerbound,
1782		 build_int_cst (type, LL_STEP (newloop)),
1783		 ivvar, temp, &bsi, insert_after, &ivvar,
1784		 NULL);
1785
1786      /* Unfortunately, the incremented ivvar that create_iv inserted may not
1787	 dominate the block containing the exit condition.
1788	 So we simply create our own incremented iv to use in the new exit
1789	 test,  and let redundancy elimination sort it out.  */
1790      inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
1791					       ivvar,
1792					       build_int_cst (type, LL_STEP (newloop)));
1793
1794      ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1795      gimple_assign_set_lhs (inc_stmt, ivvarinced);
1796      bsi = gsi_for_stmt (exitcond);
1797      gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
1798
1799      /* Replace the exit condition with the new upper bound
1800         comparison.  */
1801
1802      testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1803
1804      /* We want to build a conditional where true means exit the loop, and
1805	 false means continue the loop.
1806	 So swap the testtype if this isn't the way things are.*/
1807
1808      if (exit->flags & EDGE_FALSE_VALUE)
1809	testtype = swap_tree_comparison (testtype);
1810
1811      gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
1812      update_stmt (exitcond);
1813      VEC_replace (tree, new_ivs, i, ivvar);
1814
1815      i++;
1816      temp = temp->inner;
1817    }
1818
1819  /* Rewrite uses of the old ivs so that they are now specified in terms of
1820     the new ivs.  */
1821
1822  for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1823    {
1824      imm_use_iterator imm_iter;
1825      use_operand_p use_p;
1826      tree oldiv_def;
1827      gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1828      gimple stmt;
1829
1830      if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
1831        oldiv_def = PHI_RESULT (oldiv_stmt);
1832      else
1833	oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1834      gcc_assert (oldiv_def != NULL_TREE);
1835
1836      FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1837        {
1838	  tree newiv;
1839	  gimple_seq stmts;
1840	  lambda_body_vector lbv, newlbv;
1841
1842	  if (is_gimple_debug (stmt))
1843	    continue;
1844
1845	  /* Compute the new expression for the induction
1846	     variable.  */
1847	  depth = VEC_length (tree, new_ivs);
1848          lbv = lambda_body_vector_new (depth, lambda_obstack);
1849	  LBV_COEFFICIENTS (lbv)[i] = 1;
1850
1851          newlbv = lambda_body_vector_compute_new (transform, lbv,
1852                                                   lambda_obstack);
1853
1854	  stmts = NULL;
1855	  newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1856					 new_ivs, &stmts);
1857
1858	  if (stmts && gimple_code (stmt) != GIMPLE_PHI)
1859	    {
1860	      bsi = gsi_for_stmt (stmt);
1861	      gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
1862	    }
1863
1864	  FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1865	    propagate_value (use_p, newiv);
1866
1867	  if (stmts && gimple_code (stmt) == GIMPLE_PHI)
1868	    for (j = 0; j < gimple_phi_num_args (stmt); j++)
1869	      if (gimple_phi_arg_def (stmt, j) == newiv)
1870		gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
1871
1872	  update_stmt (stmt);
1873	}
1874
1875      /* Remove the now unused induction variable.  */
1876      VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
1877    }
1878  VEC_free (tree, heap, new_ivs);
1879}
1880
1881/* Return TRUE if this is not interesting statement from the perspective of
1882   determining if we have a perfect loop nest.  */
1883
1884static bool
1885not_interesting_stmt (gimple stmt)
1886{
1887  /* Note that COND_EXPR's aren't interesting because if they were exiting the
1888     loop, we would have already failed the number of exits tests.  */
1889  if (gimple_code (stmt) == GIMPLE_LABEL
1890      || gimple_code (stmt) == GIMPLE_GOTO
1891      || gimple_code (stmt) == GIMPLE_COND
1892      || is_gimple_debug (stmt))
1893    return true;
1894  return false;
1895}
1896
1897/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP.  */
1898
1899static bool
1900phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
1901{
1902  unsigned i;
1903  for (i = 0; i < gimple_phi_num_args (phi); i++)
1904    if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
1905      if (PHI_ARG_DEF (phi, i) == def)
1906	return true;
1907  return false;
1908}
1909
1910/* Return TRUE if STMT is a use of PHI_RESULT.  */
1911
1912static bool
1913stmt_uses_phi_result (gimple stmt, tree phi_result)
1914{
1915  tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1916
1917  /* This is conservatively true, because we only want SIMPLE bumpers
1918     of the form x +- constant for our pass.  */
1919  return (use == phi_result);
1920}
1921
1922/* STMT is a bumper stmt for LOOP if the version it defines is used in the
1923   in-loop-edge in a phi node, and the operand it uses is the result of that
1924   phi node.
1925   I.E. i_29 = i_3 + 1
1926        i_3 = PHI (0, i_29);  */
1927
1928static bool
1929stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
1930{
1931  gimple use;
1932  tree def;
1933  imm_use_iterator iter;
1934  use_operand_p use_p;
1935
1936  def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1937  if (!def)
1938    return false;
1939
1940  FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1941    {
1942      use = USE_STMT (use_p);
1943      if (gimple_code (use) == GIMPLE_PHI)
1944	{
1945	  if (phi_loop_edge_uses_def (loop, use, def))
1946	    if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1947	      return true;
1948	}
1949    }
1950  return false;
1951}
1952
1953
1954/* Return true if LOOP is a perfect loop nest.
1955   Perfect loop nests are those loop nests where all code occurs in the
1956   innermost loop body.
1957   If S is a program statement, then
1958
1959   i.e.
1960   DO I = 1, 20
1961       S1
1962       DO J = 1, 20
1963       ...
1964       END DO
1965   END DO
1966   is not a perfect loop nest because of S1.
1967
1968   DO I = 1, 20
1969      DO J = 1, 20
1970        S1
1971	...
1972      END DO
1973   END DO
1974   is a perfect loop nest.
1975
1976   Since we don't have high level loops anymore, we basically have to walk our
1977   statements and ignore those that are there because the loop needs them (IE
1978   the induction variable increment, and jump back to the top of the loop).  */
1979
1980bool
1981perfect_nest_p (struct loop *loop)
1982{
1983  basic_block *bbs;
1984  size_t i;
1985  gimple exit_cond;
1986
1987  /* Loops at depth 0 are perfect nests.  */
1988  if (!loop->inner)
1989    return true;
1990
1991  bbs = get_loop_body (loop);
1992  exit_cond = get_loop_exit_condition (loop);
1993
1994  for (i = 0; i < loop->num_nodes; i++)
1995    {
1996      if (bbs[i]->loop_father == loop)
1997	{
1998	  gimple_stmt_iterator bsi;
1999
2000	  for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2001	    {
2002	      gimple stmt = gsi_stmt (bsi);
2003
2004	      if (gimple_code (stmt) == GIMPLE_COND
2005		  && exit_cond != stmt)
2006		goto non_perfectly_nested;
2007
2008	      if (stmt == exit_cond
2009		  || not_interesting_stmt (stmt)
2010		  || stmt_is_bumper_for_loop (loop, stmt))
2011		continue;
2012
2013	    non_perfectly_nested:
2014	      free (bbs);
2015	      return false;
2016	    }
2017	}
2018    }
2019
2020  free (bbs);
2021
2022  return perfect_nest_p (loop->inner);
2023}
2024
2025/* Replace the USES of X in STMT, or uses with the same step as X with Y.
2026   YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2027   avoid creating duplicate temporaries and FIRSTBSI is statement
2028   iterator where new temporaries should be inserted at the beginning
2029   of body basic block.  */
2030
2031static void
2032replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
2033				int xstep, tree y, tree yinit,
2034				htab_t replacements,
2035				gimple_stmt_iterator *firstbsi)
2036{
2037  ssa_op_iter iter;
2038  use_operand_p use_p;
2039
2040  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2041    {
2042      tree use = USE_FROM_PTR (use_p);
2043      tree step = NULL_TREE;
2044      tree scev, init, val, var;
2045      gimple setstmt;
2046      struct tree_map *h, in;
2047      void **loc;
2048
2049      /* Replace uses of X with Y right away.  */
2050      if (use == x)
2051	{
2052	  SET_USE (use_p, y);
2053	  continue;
2054	}
2055
2056      scev = instantiate_parameters (loop,
2057				     analyze_scalar_evolution (loop, use));
2058
2059      if (scev == NULL || scev == chrec_dont_know)
2060	continue;
2061
2062      step = evolution_part_in_loop_num (scev, loop->num);
2063      if (step == NULL
2064	  || step == chrec_dont_know
2065	  || TREE_CODE (step) != INTEGER_CST
2066	  || int_cst_value (step) != xstep)
2067	continue;
2068
2069      /* Use REPLACEMENTS hash table to cache already created
2070	 temporaries.  */
2071      in.hash = htab_hash_pointer (use);
2072      in.base.from = use;
2073      h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
2074      if (h != NULL)
2075	{
2076	  SET_USE (use_p, h->to);
2077	  continue;
2078	}
2079
2080      /* USE which has the same step as X should be replaced
2081	 with a temporary set to Y + YINIT - INIT.  */
2082      init = initial_condition_in_loop_num (scev, loop->num);
2083      gcc_assert (init != NULL && init != chrec_dont_know);
2084      if (TREE_TYPE (use) == TREE_TYPE (y))
2085	{
2086	  val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2087	  val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2088	  if (val == y)
2089 	    {
2090	      /* If X has the same type as USE, the same step
2091		 and same initial value, it can be replaced by Y.  */
2092	      SET_USE (use_p, y);
2093	      continue;
2094	    }
2095	}
2096      else
2097	{
2098	  val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2099	  val = fold_convert (TREE_TYPE (use), val);
2100	  val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2101	}
2102
2103      /* Create a temporary variable and insert it at the beginning
2104	 of the loop body basic block, right after the PHI node
2105	 which sets Y.  */
2106      var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2107      add_referenced_var (var);
2108      val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
2109				      true, GSI_SAME_STMT);
2110      setstmt = gimple_build_assign (var, val);
2111      var = make_ssa_name (var, setstmt);
2112      gimple_assign_set_lhs (setstmt, var);
2113      gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
2114      update_stmt (setstmt);
2115      SET_USE (use_p, var);
2116      h = GGC_NEW (struct tree_map);
2117      h->hash = in.hash;
2118      h->base.from = use;
2119      h->to = var;
2120      loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2121      gcc_assert ((*(struct tree_map **)loc) == NULL);
2122      *(struct tree_map **) loc = h;
2123    }
2124}
2125
2126/* Return true if STMT is an exit PHI for LOOP */
2127
2128static bool
2129exit_phi_for_loop_p (struct loop *loop, gimple stmt)
2130{
2131  if (gimple_code (stmt) != GIMPLE_PHI
2132      || gimple_phi_num_args (stmt) != 1
2133      || gimple_bb (stmt) != single_exit (loop)->dest)
2134    return false;
2135
2136  return true;
2137}
2138
2139/* Return true if STMT can be put back into the loop INNER, by
2140   copying it to the beginning of that loop and changing the uses.  */
2141
2142static bool
2143can_put_in_inner_loop (struct loop *inner, gimple stmt)
2144{
2145  imm_use_iterator imm_iter;
2146  use_operand_p use_p;
2147
2148  gcc_assert (is_gimple_assign (stmt));
2149  if (gimple_vuse (stmt)
2150      || !stmt_invariant_in_loop_p (inner, stmt))
2151    return false;
2152
2153  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
2154    {
2155      if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2156	{
2157	  basic_block immbb = gimple_bb (USE_STMT (use_p));
2158
2159	  if (!flow_bb_inside_loop_p (inner, immbb))
2160	    return false;
2161	}
2162    }
2163  return true;
2164}
2165
2166/* Return true if STMT can be put *after* the inner loop of LOOP.  */
2167
2168static bool
2169can_put_after_inner_loop (struct loop *loop, gimple stmt)
2170{
2171  imm_use_iterator imm_iter;
2172  use_operand_p use_p;
2173
2174  if (gimple_vuse (stmt))
2175    return false;
2176
2177  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
2178    {
2179      if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2180	{
2181	  basic_block immbb = gimple_bb (USE_STMT (use_p));
2182
2183	  if (!dominated_by_p (CDI_DOMINATORS,
2184			       immbb,
2185			       loop->inner->header)
2186	      && !can_put_in_inner_loop (loop->inner, stmt))
2187	    return false;
2188	}
2189    }
2190  return true;
2191}
2192
2193/* Return true when the induction variable IV is simple enough to be
2194   re-synthesized.  */
2195
2196static bool
2197can_duplicate_iv (tree iv, struct loop *loop)
2198{
2199  tree scev = instantiate_parameters
2200    (loop, analyze_scalar_evolution (loop, iv));
2201
2202  if (!automatically_generated_chrec_p (scev))
2203    {
2204      tree step = evolution_part_in_loop_num (scev, loop->num);
2205
2206      if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
2207	return true;
2208    }
2209
2210  return false;
2211}
2212
2213/* If this is a scalar operation that can be put back into the inner
2214   loop, or after the inner loop, through copying, then do so. This
2215   works on the theory that any amount of scalar code we have to
2216   reduplicate into or after the loops is less expensive that the win
2217   we get from rearranging the memory walk the loop is doing so that
2218   it has better cache behavior.  */
2219
2220static bool
2221cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
2222{
2223  use_operand_p use_a, use_b;
2224  imm_use_iterator imm_iter;
2225  ssa_op_iter op_iter, op_iter1;
2226  tree op0 = gimple_assign_lhs (stmt);
2227
2228  /* The statement should not define a variable used in the inner
2229     loop.  */
2230  if (TREE_CODE (op0) == SSA_NAME
2231      && !can_duplicate_iv (op0, loop))
2232    FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2233      if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
2234	return true;
2235
2236  FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2237    {
2238      gimple node;
2239      tree op = USE_FROM_PTR (use_a);
2240
2241      /* The variables should not be used in both loops.  */
2242      if (!can_duplicate_iv (op, loop))
2243	FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2244	  if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
2245	    return true;
2246
2247      /* The statement should not use the value of a scalar that was
2248	 modified in the loop.  */
2249      node = SSA_NAME_DEF_STMT (op);
2250      if (gimple_code (node) == GIMPLE_PHI)
2251	FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2252	  {
2253	    tree arg = USE_FROM_PTR (use_b);
2254
2255	    if (TREE_CODE (arg) == SSA_NAME)
2256	      {
2257		gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
2258
2259		if (gimple_bb (arg_stmt)
2260		    && (gimple_bb (arg_stmt)->loop_father == loop->inner))
2261		  return true;
2262	      }
2263	  }
2264    }
2265
2266  return false;
2267}
2268/* Return true when BB contains statements that can harm the transform
2269   to a perfect loop nest.  */
2270
2271static bool
2272cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
2273{
2274  gimple_stmt_iterator bsi;
2275  gimple exit_condition = get_loop_exit_condition (loop);
2276
2277  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2278    {
2279      gimple stmt = gsi_stmt (bsi);
2280
2281      if (stmt == exit_condition
2282	  || not_interesting_stmt (stmt)
2283	  || stmt_is_bumper_for_loop (loop, stmt))
2284	continue;
2285
2286      if (is_gimple_assign (stmt))
2287	{
2288	  if (cannot_convert_modify_to_perfect_nest (stmt, loop))
2289	    return true;
2290
2291	  if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
2292	    continue;
2293
2294	  if (can_put_in_inner_loop (loop->inner, stmt)
2295	      || can_put_after_inner_loop (loop, stmt))
2296	    continue;
2297	}
2298
2299      /* If the bb of a statement we care about isn't dominated by the
2300	 header of the inner loop, then we can't handle this case
2301	 right now.  This test ensures that the statement comes
2302	 completely *after* the inner loop.  */
2303      if (!dominated_by_p (CDI_DOMINATORS,
2304			   gimple_bb (stmt),
2305			   loop->inner->header))
2306	return true;
2307    }
2308
2309  return false;
2310}
2311
2312
2313/* Return TRUE if LOOP is an imperfect nest that we can convert to a
2314   perfect one.  At the moment, we only handle imperfect nests of
2315   depth 2, where all of the statements occur after the inner loop.  */
2316
2317static bool
2318can_convert_to_perfect_nest (struct loop *loop)
2319{
2320  basic_block *bbs;
2321  size_t i;
2322  gimple_stmt_iterator si;
2323
2324  /* Can't handle triply nested+ loops yet.  */
2325  if (!loop->inner || loop->inner->inner)
2326    return false;
2327
2328  bbs = get_loop_body (loop);
2329  for (i = 0; i < loop->num_nodes; i++)
2330    if (bbs[i]->loop_father == loop
2331	&& cannot_convert_bb_to_perfect_nest (bbs[i], loop))
2332      goto fail;
2333
2334  /* We also need to make sure the loop exit only has simple copy phis in it,
2335     otherwise we don't know how to transform it into a perfect nest.  */
2336  for (si = gsi_start_phis (single_exit (loop)->dest);
2337       !gsi_end_p (si);
2338       gsi_next (&si))
2339    if (gimple_phi_num_args (gsi_stmt (si)) != 1)
2340      goto fail;
2341
2342  free (bbs);
2343  return true;
2344
2345 fail:
2346  free (bbs);
2347  return false;
2348}
2349
2350
2351DEF_VEC_I(source_location);
2352DEF_VEC_ALLOC_I(source_location,heap);
2353
2354/* Transform the loop nest into a perfect nest, if possible.
2355   LOOP is the loop nest to transform into a perfect nest
2356   LBOUNDS are the lower bounds for the loops to transform
2357   UBOUNDS are the upper bounds for the loops to transform
2358   STEPS is the STEPS for the loops to transform.
2359   LOOPIVS is the induction variables for the loops to transform.
2360
2361   Basically, for the case of
2362
2363   FOR (i = 0; i < 50; i++)
2364    {
2365     FOR (j =0; j < 50; j++)
2366     {
2367        <whatever>
2368     }
2369     <some code>
2370    }
2371
2372   This function will transform it into a perfect loop nest by splitting the
2373   outer loop into two loops, like so:
2374
2375   FOR (i = 0; i < 50; i++)
2376   {
2377     FOR (j = 0; j < 50; j++)
2378     {
2379         <whatever>
2380     }
2381   }
2382
2383   FOR (i = 0; i < 50; i ++)
2384   {
2385    <some code>
2386   }
2387
2388   Return FALSE if we can't make this loop into a perfect nest.  */
2389
2390static bool
2391perfect_nestify (struct loop *loop,
2392		 VEC(tree,heap) *lbounds,
2393		 VEC(tree,heap) *ubounds,
2394		 VEC(int,heap) *steps,
2395		 VEC(tree,heap) *loopivs)
2396{
2397  basic_block *bbs;
2398  gimple exit_condition;
2399  gimple cond_stmt;
2400  basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2401  int i;
2402  gimple_stmt_iterator bsi, firstbsi;
2403  bool insert_after;
2404  edge e;
2405  struct loop *newloop;
2406  gimple phi;
2407  tree uboundvar;
2408  gimple stmt;
2409  tree oldivvar, ivvar, ivvarinced;
2410  VEC(tree,heap) *phis = NULL;
2411  VEC(source_location,heap) *locations = NULL;
2412  htab_t replacements = NULL;
2413
2414  /* Create the new loop.  */
2415  olddest = single_exit (loop)->dest;
2416  preheaderbb = split_edge (single_exit (loop));
2417  headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2418
2419  /* Push the exit phi nodes that we are moving.  */
2420  for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
2421    {
2422      phi = gsi_stmt (bsi);
2423      VEC_reserve (tree, heap, phis, 2);
2424      VEC_reserve (source_location, heap, locations, 1);
2425      VEC_quick_push (tree, phis, PHI_RESULT (phi));
2426      VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2427      VEC_quick_push (source_location, locations,
2428		      gimple_phi_arg_location (phi, 0));
2429    }
2430  e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2431
2432  /* Remove the exit phis from the old basic block.  */
2433  for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
2434    remove_phi_node (&bsi, false);
2435
2436  /* and add them back to the new basic block.  */
2437  while (VEC_length (tree, phis) != 0)
2438    {
2439      tree def;
2440      tree phiname;
2441      source_location locus;
2442      def = VEC_pop (tree, phis);
2443      phiname = VEC_pop (tree, phis);
2444      locus = VEC_pop (source_location, locations);
2445      phi = create_phi_node (phiname, preheaderbb);
2446      add_phi_arg (phi, def, single_pred_edge (preheaderbb), locus);
2447    }
2448  flush_pending_stmts (e);
2449  VEC_free (tree, heap, phis);
2450
2451  bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2452  latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2453  make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2454  cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
2455				 NULL_TREE, NULL_TREE);
2456  bsi = gsi_start_bb (bodybb);
2457  gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
2458  e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2459  make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2460  make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2461
2462  /* Update the loop structures.  */
2463  newloop = duplicate_loop (loop, olddest->loop_father);
2464  newloop->header = headerbb;
2465  newloop->latch = latchbb;
2466  add_bb_to_loop (latchbb, newloop);
2467  add_bb_to_loop (bodybb, newloop);
2468  add_bb_to_loop (headerbb, newloop);
2469  set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2470  set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2471  set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2472			   single_exit (loop)->src);
2473  set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2474  set_immediate_dominator (CDI_DOMINATORS, olddest,
2475			   recompute_dominator (CDI_DOMINATORS, olddest));
2476  /* Create the new iv.  */
2477  oldivvar = VEC_index (tree, loopivs, 0);
2478  ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2479  add_referenced_var (ivvar);
2480  standard_iv_increment_position (newloop, &bsi, &insert_after);
2481  create_iv (VEC_index (tree, lbounds, 0),
2482	     build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2483	     ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2484
2485  /* Create the new upper bound.  This may be not just a variable, so we copy
2486     it to one just in case.  */
2487
2488  exit_condition = get_loop_exit_condition (newloop);
2489  uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
2490			      "uboundvar");
2491  add_referenced_var (uboundvar);
2492  stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
2493  uboundvar = make_ssa_name (uboundvar, stmt);
2494  gimple_assign_set_lhs (stmt, uboundvar);
2495
2496  if (insert_after)
2497    gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
2498  else
2499    gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
2500  update_stmt (stmt);
2501  gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
2502  update_stmt (exit_condition);
2503  replacements = htab_create_ggc (20, tree_map_hash,
2504				  tree_map_eq, NULL);
2505  bbs = get_loop_body_in_dom_order (loop);
2506  /* Now move the statements, and replace the induction variable in the moved
2507     statements with the correct loop induction variable.  */
2508  oldivvar = VEC_index (tree, loopivs, 0);
2509  firstbsi = gsi_start_bb (bodybb);
2510  for (i = loop->num_nodes - 1; i >= 0 ; i--)
2511    {
2512      gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
2513      if (bbs[i]->loop_father == loop)
2514	{
2515	  /* If this is true, we are *before* the inner loop.
2516	     If this isn't true, we are *after* it.
2517
2518	     The only time can_convert_to_perfect_nest returns true when we
2519	     have statements before the inner loop is if they can be moved
2520	     into the inner loop.
2521
2522	     The only time can_convert_to_perfect_nest returns true when we
2523	     have statements after the inner loop is if they can be moved into
2524	     the new split loop.  */
2525
2526	  if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2527	    {
2528	      gimple_stmt_iterator header_bsi
2529		= gsi_after_labels (loop->inner->header);
2530
2531	      for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
2532		{
2533		  gimple stmt = gsi_stmt (bsi);
2534
2535		  if (stmt == exit_condition
2536		      || not_interesting_stmt (stmt)
2537		      || stmt_is_bumper_for_loop (loop, stmt))
2538		    {
2539		      gsi_next (&bsi);
2540		      continue;
2541		    }
2542
2543		  gsi_move_before (&bsi, &header_bsi);
2544		}
2545	    }
2546	  else
2547	    {
2548	      /* Note that the bsi only needs to be explicitly incremented
2549		 when we don't move something, since it is automatically
2550		 incremented when we do.  */
2551	      for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
2552		{
2553		  gimple stmt = gsi_stmt (bsi);
2554
2555		  if (stmt == exit_condition
2556		      || not_interesting_stmt (stmt)
2557		      || stmt_is_bumper_for_loop (loop, stmt))
2558		    {
2559		      gsi_next (&bsi);
2560		      continue;
2561		    }
2562
2563		  replace_uses_equiv_to_x_with_y
2564		    (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2565		     VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2566
2567		  gsi_move_before (&bsi, &tobsi);
2568
2569		  /* If the statement has any virtual operands, they may
2570		     need to be rewired because the original loop may
2571		     still reference them.  */
2572		  if (gimple_vuse (stmt))
2573		    mark_sym_for_renaming (gimple_vop (cfun));
2574		}
2575	    }
2576
2577	}
2578    }
2579
2580  free (bbs);
2581  htab_delete (replacements);
2582  return perfect_nest_p (loop);
2583}
2584
2585/* Return true if TRANS is a legal transformation matrix that respects
2586   the dependence vectors in DISTS and DIRS.  The conservative answer
2587   is false.
2588
2589   "Wolfe proves that a unimodular transformation represented by the
2590   matrix T is legal when applied to a loop nest with a set of
2591   lexicographically non-negative distance vectors RDG if and only if
2592   for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2593   i.e.: if and only if it transforms the lexicographically positive
2594   distance vectors to lexicographically positive vectors.  Note that
2595   a unimodular matrix must transform the zero vector (and only it) to
2596   the zero vector." S.Muchnick.  */
2597
2598bool
2599lambda_transform_legal_p (lambda_trans_matrix trans,
2600			  int nb_loops,
2601			  VEC (ddr_p, heap) *dependence_relations)
2602{
2603  unsigned int i, j;
2604  lambda_vector distres;
2605  struct data_dependence_relation *ddr;
2606
2607  gcc_assert (LTM_COLSIZE (trans) == nb_loops
2608	      && LTM_ROWSIZE (trans) == nb_loops);
2609
2610  /* When there are no dependences, the transformation is correct.  */
2611  if (VEC_length (ddr_p, dependence_relations) == 0)
2612    return true;
2613
2614  ddr = VEC_index (ddr_p, dependence_relations, 0);
2615  if (ddr == NULL)
2616    return true;
2617
2618  /* When there is an unknown relation in the dependence_relations, we
2619     know that it is no worth looking at this loop nest: give up.  */
2620  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2621    return false;
2622
2623  distres = lambda_vector_new (nb_loops);
2624
2625  /* For each distance vector in the dependence graph.  */
2626  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2627    {
2628      /* Don't care about relations for which we know that there is no
2629	 dependence, nor about read-read (aka. output-dependences):
2630	 these data accesses can happen in any order.  */
2631      if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2632	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2633	continue;
2634
2635      /* Conservatively answer: "this transformation is not valid".  */
2636      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2637	return false;
2638
2639      /* If the dependence could not be captured by a distance vector,
2640	 conservatively answer that the transform is not valid.  */
2641      if (DDR_NUM_DIST_VECTS (ddr) == 0)
2642	return false;
2643
2644      /* Compute trans.dist_vect */
2645      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2646	{
2647	  lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2648				     DDR_DIST_VECT (ddr, j), distres);
2649
2650	  if (!lambda_vector_lexico_pos (distres, nb_loops))
2651	    return false;
2652	}
2653    }
2654  return true;
2655}
2656
2657
2658/* Collects parameters from affine function ACCESS_FUNCTION, and push
2659   them in PARAMETERS.  */
2660
2661static void
2662lambda_collect_parameters_from_af (tree access_function,
2663				   struct pointer_set_t *param_set,
2664				   VEC (tree, heap) **parameters)
2665{
2666  if (access_function == NULL)
2667    return;
2668
2669  if (TREE_CODE (access_function) == SSA_NAME
2670      && pointer_set_contains (param_set, access_function) == 0)
2671    {
2672      pointer_set_insert (param_set, access_function);
2673      VEC_safe_push (tree, heap, *parameters, access_function);
2674    }
2675  else
2676    {
2677      int i, num_operands = tree_operand_length (access_function);
2678
2679      for (i = 0; i < num_operands; i++)
2680	lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
2681					   param_set, parameters);
2682    }
2683}
2684
2685/* Collects parameters from DATAREFS, and push them in PARAMETERS.  */
2686
2687void
2688lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
2689			   VEC (tree, heap) **parameters)
2690{
2691  unsigned i, j;
2692  struct pointer_set_t *parameter_set = pointer_set_create ();
2693  data_reference_p data_reference;
2694
2695  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++)
2696    for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
2697      lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
2698					 parameter_set, parameters);
2699  pointer_set_destroy (parameter_set);
2700}
2701
2702/* Translates BASE_EXPR to vector CY.  AM is needed for inferring
2703   indexing positions in the data access vector.  CST is the analyzed
2704   integer constant.  */
2705
2706static bool
2707av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
2708		int cst)
2709{
2710  bool result = true;
2711
2712  switch (TREE_CODE (base_expr))
2713    {
2714    case INTEGER_CST:
2715      /* Constant part.  */
2716      cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
2717      return true;
2718
2719    case SSA_NAME:
2720      {
2721	int param_index =
2722	  access_matrix_get_index_for_parameter (base_expr, am);
2723
2724	if (param_index >= 0)
2725	  {
2726	    cy[param_index] = cst + cy[param_index];
2727	    return true;
2728	  }
2729
2730	return false;
2731      }
2732
2733    case PLUS_EXPR:
2734      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2735	&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
2736
2737    case MINUS_EXPR:
2738      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2739	&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
2740
2741    case MULT_EXPR:
2742      if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
2743	result = av_for_af_base (TREE_OPERAND (base_expr, 1),
2744				 cy, am, cst *
2745				 int_cst_value (TREE_OPERAND (base_expr, 0)));
2746      else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
2747	result = av_for_af_base (TREE_OPERAND (base_expr, 0),
2748				 cy, am, cst *
2749				 int_cst_value (TREE_OPERAND (base_expr, 1)));
2750      else
2751	result = false;
2752
2753      return result;
2754
2755    case NEGATE_EXPR:
2756      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
2757
2758    default:
2759      return false;
2760    }
2761
2762  return result;
2763}
2764
2765/* Translates ACCESS_FUN to vector CY.  AM is needed for inferring
2766   indexing positions in the data access vector.  */
2767
2768static bool
2769av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
2770{
2771  switch (TREE_CODE (access_fun))
2772    {
2773    case POLYNOMIAL_CHREC:
2774      {
2775	tree left = CHREC_LEFT (access_fun);
2776	tree right = CHREC_RIGHT (access_fun);
2777	unsigned var;
2778
2779	if (TREE_CODE (right) != INTEGER_CST)
2780	  return false;
2781
2782	var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
2783	cy[var] = int_cst_value (right);
2784
2785	if (TREE_CODE (left) == POLYNOMIAL_CHREC)
2786	  return av_for_af (left, cy, am);
2787	else
2788	  return av_for_af_base (left, cy, am, 1);
2789      }
2790
2791    case INTEGER_CST:
2792      /* Constant part.  */
2793      return av_for_af_base (access_fun, cy, am, 1);
2794
2795    default:
2796      return false;
2797    }
2798}
2799
2800/* Initializes the access matrix for DATA_REFERENCE.  */
2801
2802static bool
2803build_access_matrix (data_reference_p data_reference,
2804		     VEC (tree, heap) *parameters, VEC (loop_p, heap) *nest)
2805{
2806  struct access_matrix *am = GGC_NEW (struct access_matrix);
2807  unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
2808  unsigned nivs = VEC_length (loop_p, nest);
2809  unsigned lambda_nb_columns;
2810
2811  AM_LOOP_NEST (am) = nest;
2812  AM_NB_INDUCTION_VARS (am) = nivs;
2813  AM_PARAMETERS (am) = parameters;
2814
2815  lambda_nb_columns = AM_NB_COLUMNS (am);
2816  AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
2817
2818  for (i = 0; i < ndim; i++)
2819    {
2820      lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
2821      tree access_function = DR_ACCESS_FN (data_reference, i);
2822
2823      if (!av_for_af (access_function, access_vector, am))
2824	return false;
2825
2826      VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
2827    }
2828
2829  DR_ACCESS_MATRIX (data_reference) = am;
2830  return true;
2831}
2832
2833/* Returns false when one of the access matrices cannot be built.  */
2834
2835bool
2836lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
2837				VEC (tree, heap) *parameters,
2838				VEC (loop_p, heap) *nest)
2839{
2840  data_reference_p dataref;
2841  unsigned ix;
2842
2843  for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++)
2844    if (!build_access_matrix (dataref, parameters, nest))
2845      return false;
2846
2847  return true;
2848}
2849