1/* Subroutines for manipulating rtx's in semantically interesting ways.
2   Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "toplev.h"
28#include "rtl.h"
29#include "tree.h"
30#include "tm_p.h"
31#include "flags.h"
32#include "except.h"
33#include "function.h"
34#include "expr.h"
35#include "optabs.h"
36#include "hard-reg-set.h"
37#include "insn-config.h"
38#include "ggc.h"
39#include "recog.h"
40#include "langhooks.h"
41#include "target.h"
42#include "output.h"
43
44static rtx break_out_memory_refs (rtx);
45static void emit_stack_probe (rtx);
46
47
48/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
49
50HOST_WIDE_INT
51trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52{
53  int width = GET_MODE_BITSIZE (mode);
54
55  /* You want to truncate to a _what_?  */
56  gcc_assert (SCALAR_INT_MODE_P (mode));
57
58  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
59  if (mode == BImode)
60    return c & 1 ? STORE_FLAG_VALUE : 0;
61
62  /* Sign-extend for the requested mode.  */
63
64  if (width < HOST_BITS_PER_WIDE_INT)
65    {
66      HOST_WIDE_INT sign = 1;
67      sign <<= width - 1;
68      c &= (sign << 1) - 1;
69      c ^= sign;
70      c -= sign;
71    }
72
73  return c;
74}
75
76/* Return an rtx for the sum of X and the integer C.  */
77
78rtx
79plus_constant (rtx x, HOST_WIDE_INT c)
80{
81  RTX_CODE code;
82  rtx y;
83  enum machine_mode mode;
84  rtx tem;
85  int all_constant = 0;
86
87  if (c == 0)
88    return x;
89
90 restart:
91
92  code = GET_CODE (x);
93  mode = GET_MODE (x);
94  y = x;
95
96  switch (code)
97    {
98    case CONST_INT:
99      return GEN_INT (INTVAL (x) + c);
100
101    case CONST_DOUBLE:
102      {
103	unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104	HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105	unsigned HOST_WIDE_INT l2 = c;
106	HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107	unsigned HOST_WIDE_INT lv;
108	HOST_WIDE_INT hv;
109
110	add_double (l1, h1, l2, h2, &lv, &hv);
111
112	return immed_double_const (lv, hv, VOIDmode);
113      }
114
115    case MEM:
116      /* If this is a reference to the constant pool, try replacing it with
117	 a reference to a new constant.  If the resulting address isn't
118	 valid, don't return it because we have no way to validize it.  */
119      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121	{
122	  tem
123	    = force_const_mem (GET_MODE (x),
124			       plus_constant (get_pool_constant (XEXP (x, 0)),
125					      c));
126	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127	    return tem;
128	}
129      break;
130
131    case CONST:
132      /* If adding to something entirely constant, set a flag
133	 so that we can add a CONST around the result.  */
134      x = XEXP (x, 0);
135      all_constant = 1;
136      goto restart;
137
138    case SYMBOL_REF:
139    case LABEL_REF:
140      all_constant = 1;
141      break;
142
143    case PLUS:
144      /* The interesting case is adding the integer to a sum.
145	 Look for constant term in the sum and combine
146	 with C.  For an integer constant term, we make a combined
147	 integer.  For a constant term that is not an explicit integer,
148	 we cannot really combine, but group them together anyway.
149
150	 Restart or use a recursive call in case the remaining operand is
151	 something that we handle specially, such as a SYMBOL_REF.
152
153	 We may not immediately return from the recursive call here, lest
154	 all_constant gets lost.  */
155
156      if (CONST_INT_P (XEXP (x, 1)))
157	{
158	  c += INTVAL (XEXP (x, 1));
159
160	  if (GET_MODE (x) != VOIDmode)
161	    c = trunc_int_for_mode (c, GET_MODE (x));
162
163	  x = XEXP (x, 0);
164	  goto restart;
165	}
166      else if (CONSTANT_P (XEXP (x, 1)))
167	{
168	  x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169	  c = 0;
170	}
171      else if (find_constant_term_loc (&y))
172	{
173	  /* We need to be careful since X may be shared and we can't
174	     modify it in place.  */
175	  rtx copy = copy_rtx (x);
176	  rtx *const_loc = find_constant_term_loc (&copy);
177
178	  *const_loc = plus_constant (*const_loc, c);
179	  x = copy;
180	  c = 0;
181	}
182      break;
183
184    default:
185      break;
186    }
187
188  if (c != 0)
189    x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192    return x;
193  else if (all_constant)
194    return gen_rtx_CONST (mode, x);
195  else
196    return x;
197}
198
199/* If X is a sum, return a new sum like X but lacking any constant terms.
200   Add all the removed constant terms into *CONSTPTR.
201   X itself is not altered.  The result != X if and only if
202   it is not isomorphic to X.  */
203
204rtx
205eliminate_constant_term (rtx x, rtx *constptr)
206{
207  rtx x0, x1;
208  rtx tem;
209
210  if (GET_CODE (x) != PLUS)
211    return x;
212
213  /* First handle constants appearing at this level explicitly.  */
214  if (CONST_INT_P (XEXP (x, 1))
215      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216						XEXP (x, 1)))
217      && CONST_INT_P (tem))
218    {
219      *constptr = tem;
220      return eliminate_constant_term (XEXP (x, 0), constptr);
221    }
222
223  tem = const0_rtx;
224  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228						*constptr, tem))
229      && CONST_INT_P (tem))
230    {
231      *constptr = tem;
232      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233    }
234
235  return x;
236}
237
238/* Return an rtx for the size in bytes of the value of EXP.  */
239
240rtx
241expr_size (tree exp)
242{
243  tree size;
244
245  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246    size = TREE_OPERAND (exp, 1);
247  else
248    {
249      size = tree_expr_size (exp);
250      gcc_assert (size);
251      gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
252    }
253
254  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
255}
256
257/* Return a wide integer for the size in bytes of the value of EXP, or -1
258   if the size can vary or is larger than an integer.  */
259
260HOST_WIDE_INT
261int_expr_size (tree exp)
262{
263  tree size;
264
265  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266    size = TREE_OPERAND (exp, 1);
267  else
268    {
269      size = tree_expr_size (exp);
270      gcc_assert (size);
271    }
272
273  if (size == 0 || !host_integerp (size, 0))
274    return -1;
275
276  return tree_low_cst (size, 0);
277}
278
279/* Return a copy of X in which all memory references
280   and all constants that involve symbol refs
281   have been replaced with new temporary registers.
282   Also emit code to load the memory locations and constants
283   into those registers.
284
285   If X contains no such constants or memory references,
286   X itself (not a copy) is returned.
287
288   If a constant is found in the address that is not a legitimate constant
289   in an insn, it is left alone in the hope that it might be valid in the
290   address.
291
292   X may contain no arithmetic except addition, subtraction and multiplication.
293   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
294
295static rtx
296break_out_memory_refs (rtx x)
297{
298  if (MEM_P (x)
299      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300	  && GET_MODE (x) != VOIDmode))
301    x = force_reg (GET_MODE (x), x);
302  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303	   || GET_CODE (x) == MULT)
304    {
305      rtx op0 = break_out_memory_refs (XEXP (x, 0));
306      rtx op1 = break_out_memory_refs (XEXP (x, 1));
307
308      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
310    }
311
312  return x;
313}
314
315/* Given X, a memory address in address space AS' pointer mode, convert it to
316   an address in the address space's address mode, or vice versa (TO_MODE says
317   which way).  We take advantage of the fact that pointers are not allowed to
318   overflow by commuting arithmetic operations over conversions so that address
319   arithmetic insns can be used.  */
320
321rtx
322convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323				   rtx x, addr_space_t as ATTRIBUTE_UNUSED)
324{
325#ifndef POINTERS_EXTEND_UNSIGNED
326  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327  return x;
328#else /* defined(POINTERS_EXTEND_UNSIGNED) */
329  enum machine_mode pointer_mode, address_mode, from_mode;
330  rtx temp;
331  enum rtx_code code;
332
333  /* If X already has the right mode, just return it.  */
334  if (GET_MODE (x) == to_mode)
335    return x;
336
337  pointer_mode = targetm.addr_space.pointer_mode (as);
338  address_mode = targetm.addr_space.address_mode (as);
339  from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
340
341  /* Here we handle some special cases.  If none of them apply, fall through
342     to the default case.  */
343  switch (GET_CODE (x))
344    {
345    case CONST_INT:
346    case CONST_DOUBLE:
347      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
348	code = TRUNCATE;
349      else if (POINTERS_EXTEND_UNSIGNED < 0)
350	break;
351      else if (POINTERS_EXTEND_UNSIGNED > 0)
352	code = ZERO_EXTEND;
353      else
354	code = SIGN_EXTEND;
355      temp = simplify_unary_operation (code, to_mode, x, from_mode);
356      if (temp)
357	return temp;
358      break;
359
360    case SUBREG:
361      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
362	  && GET_MODE (SUBREG_REG (x)) == to_mode)
363	return SUBREG_REG (x);
364      break;
365
366    case LABEL_REF:
367      temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
368      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
369      return temp;
370      break;
371
372    case SYMBOL_REF:
373      temp = shallow_copy_rtx (x);
374      PUT_MODE (temp, to_mode);
375      return temp;
376      break;
377
378    case CONST:
379      return gen_rtx_CONST (to_mode,
380			    convert_memory_address_addr_space
381			      (to_mode, XEXP (x, 0), as));
382      break;
383
384    case PLUS:
385    case MULT:
386      /* For addition we can safely permute the conversion and addition
387	 operation if one operand is a constant and converting the constant
388	 does not change it or if one operand is a constant and we are
389	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
390	 We can always safely permute them if we are making the address
391	 narrower.  */
392      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
393	  || (GET_CODE (x) == PLUS
394	      && CONST_INT_P (XEXP (x, 1))
395	      && (XEXP (x, 1) == convert_memory_address_addr_space
396				   (to_mode, XEXP (x, 1), as)
397                 || POINTERS_EXTEND_UNSIGNED < 0)))
398	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
399			       convert_memory_address_addr_space
400				 (to_mode, XEXP (x, 0), as),
401			       XEXP (x, 1));
402      break;
403
404    default:
405      break;
406    }
407
408  return convert_modes (to_mode, from_mode,
409			x, POINTERS_EXTEND_UNSIGNED);
410#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
411}
412
413/* Return something equivalent to X but valid as a memory address for something
414   of mode MODE in the named address space AS.  When X is not itself valid,
415   this works by copying X or subexpressions of it into registers.  */
416
417rtx
418memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
419{
420  rtx oldx = x;
421  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
422
423  x = convert_memory_address_addr_space (address_mode, x, as);
424
425  /* By passing constant addresses through registers
426     we get a chance to cse them.  */
427  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428    x = force_reg (address_mode, x);
429
430  /* We get better cse by rejecting indirect addressing at this stage.
431     Let the combiner create indirect addresses where appropriate.
432     For now, generate the code so that the subexpressions useful to share
433     are visible.  But not if cse won't be done!  */
434  else
435    {
436      if (! cse_not_expected && !REG_P (x))
437	x = break_out_memory_refs (x);
438
439      /* At this point, any valid address is accepted.  */
440      if (memory_address_addr_space_p (mode, x, as))
441	goto done;
442
443      /* If it was valid before but breaking out memory refs invalidated it,
444	 use it the old way.  */
445      if (memory_address_addr_space_p (mode, oldx, as))
446	{
447	  x = oldx;
448	  goto done;
449	}
450
451      /* Perform machine-dependent transformations on X
452	 in certain cases.  This is not necessary since the code
453	 below can handle all possible cases, but machine-dependent
454	 transformations can make better code.  */
455      {
456	rtx orig_x = x;
457	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
458	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
459	  goto done;
460      }
461
462      /* PLUS and MULT can appear in special ways
463	 as the result of attempts to make an address usable for indexing.
464	 Usually they are dealt with by calling force_operand, below.
465	 But a sum containing constant terms is special
466	 if removing them makes the sum a valid address:
467	 then we generate that address in a register
468	 and index off of it.  We do this because it often makes
469	 shorter code, and because the addresses thus generated
470	 in registers often become common subexpressions.  */
471      if (GET_CODE (x) == PLUS)
472	{
473	  rtx constant_term = const0_rtx;
474	  rtx y = eliminate_constant_term (x, &constant_term);
475	  if (constant_term == const0_rtx
476	      || ! memory_address_addr_space_p (mode, y, as))
477	    x = force_operand (x, NULL_RTX);
478	  else
479	    {
480	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
481	      if (! memory_address_addr_space_p (mode, y, as))
482		x = force_operand (x, NULL_RTX);
483	      else
484		x = y;
485	    }
486	}
487
488      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489	x = force_operand (x, NULL_RTX);
490
491      /* If we have a register that's an invalid address,
492	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
493      else if (REG_P (x))
494	x = copy_to_reg (x);
495
496      /* Last resort: copy the value to a register, since
497	 the register is a valid address.  */
498      else
499	x = force_reg (address_mode, x);
500    }
501
502 done:
503
504  gcc_assert (memory_address_addr_space_p (mode, x, as));
505  /* If we didn't change the address, we are done.  Otherwise, mark
506     a reg as a pointer if we have REG or REG + CONST_INT.  */
507  if (oldx == x)
508    return x;
509  else if (REG_P (x))
510    mark_reg_pointer (x, BITS_PER_UNIT);
511  else if (GET_CODE (x) == PLUS
512	   && REG_P (XEXP (x, 0))
513	   && CONST_INT_P (XEXP (x, 1)))
514    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
515
516  /* OLDX may have been the address on a temporary.  Update the address
517     to indicate that X is now used.  */
518  update_temp_slot_address (oldx, x);
519
520  return x;
521}
522
523/* Convert a mem ref into one with a valid memory address.
524   Pass through anything else unchanged.  */
525
526rtx
527validize_mem (rtx ref)
528{
529  if (!MEM_P (ref))
530    return ref;
531  ref = use_anchored_address (ref);
532  if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
533				   MEM_ADDR_SPACE (ref)))
534    return ref;
535
536  /* Don't alter REF itself, since that is probably a stack slot.  */
537  return replace_equiv_address (ref, XEXP (ref, 0));
538}
539
540/* If X is a memory reference to a member of an object block, try rewriting
541   it to use an anchor instead.  Return the new memory reference on success
542   and the old one on failure.  */
543
544rtx
545use_anchored_address (rtx x)
546{
547  rtx base;
548  HOST_WIDE_INT offset;
549
550  if (!flag_section_anchors)
551    return x;
552
553  if (!MEM_P (x))
554    return x;
555
556  /* Split the address into a base and offset.  */
557  base = XEXP (x, 0);
558  offset = 0;
559  if (GET_CODE (base) == CONST
560      && GET_CODE (XEXP (base, 0)) == PLUS
561      && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
562    {
563      offset += INTVAL (XEXP (XEXP (base, 0), 1));
564      base = XEXP (XEXP (base, 0), 0);
565    }
566
567  /* Check whether BASE is suitable for anchors.  */
568  if (GET_CODE (base) != SYMBOL_REF
569      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570      || SYMBOL_REF_ANCHOR_P (base)
571      || SYMBOL_REF_BLOCK (base) == NULL
572      || !targetm.use_anchors_for_symbol_p (base))
573    return x;
574
575  /* Decide where BASE is going to be.  */
576  place_block_symbol (base);
577
578  /* Get the anchor we need to use.  */
579  offset += SYMBOL_REF_BLOCK_OFFSET (base);
580  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581			     SYMBOL_REF_TLS_MODEL (base));
582
583  /* Work out the offset from the anchor.  */
584  offset -= SYMBOL_REF_BLOCK_OFFSET (base);
585
586  /* If we're going to run a CSE pass, force the anchor into a register.
587     We will then be able to reuse registers for several accesses, if the
588     target costs say that that's worthwhile.  */
589  if (!cse_not_expected)
590    base = force_reg (GET_MODE (base), base);
591
592  return replace_equiv_address (x, plus_constant (base, offset));
593}
594
595/* Copy the value or contents of X to a new temp reg and return that reg.  */
596
597rtx
598copy_to_reg (rtx x)
599{
600  rtx temp = gen_reg_rtx (GET_MODE (x));
601
602  /* If not an operand, must be an address with PLUS and MULT so
603     do the computation.  */
604  if (! general_operand (x, VOIDmode))
605    x = force_operand (x, temp);
606
607  if (x != temp)
608    emit_move_insn (temp, x);
609
610  return temp;
611}
612
613/* Like copy_to_reg but always give the new register mode Pmode
614   in case X is a constant.  */
615
616rtx
617copy_addr_to_reg (rtx x)
618{
619  return copy_to_mode_reg (Pmode, x);
620}
621
622/* Like copy_to_reg but always give the new register mode MODE
623   in case X is a constant.  */
624
625rtx
626copy_to_mode_reg (enum machine_mode mode, rtx x)
627{
628  rtx temp = gen_reg_rtx (mode);
629
630  /* If not an operand, must be an address with PLUS and MULT so
631     do the computation.  */
632  if (! general_operand (x, VOIDmode))
633    x = force_operand (x, temp);
634
635  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636  if (x != temp)
637    emit_move_insn (temp, x);
638  return temp;
639}
640
641/* Load X into a register if it is not already one.
642   Use mode MODE for the register.
643   X should be valid for mode MODE, but it may be a constant which
644   is valid for all integer modes; that's why caller must specify MODE.
645
646   The caller must not alter the value in the register we return,
647   since we mark it as a "constant" register.  */
648
649rtx
650force_reg (enum machine_mode mode, rtx x)
651{
652  rtx temp, insn, set;
653
654  if (REG_P (x))
655    return x;
656
657  if (general_operand (x, mode))
658    {
659      temp = gen_reg_rtx (mode);
660      insn = emit_move_insn (temp, x);
661    }
662  else
663    {
664      temp = force_operand (x, NULL_RTX);
665      if (REG_P (temp))
666	insn = get_last_insn ();
667      else
668	{
669	  rtx temp2 = gen_reg_rtx (mode);
670	  insn = emit_move_insn (temp2, temp);
671	  temp = temp2;
672	}
673    }
674
675  /* Let optimizers know that TEMP's value never changes
676     and that X can be substituted for it.  Don't get confused
677     if INSN set something else (such as a SUBREG of TEMP).  */
678  if (CONSTANT_P (x)
679      && (set = single_set (insn)) != 0
680      && SET_DEST (set) == temp
681      && ! rtx_equal_p (x, SET_SRC (set)))
682    set_unique_reg_note (insn, REG_EQUAL, x);
683
684  /* Let optimizers know that TEMP is a pointer, and if so, the
685     known alignment of that pointer.  */
686  {
687    unsigned align = 0;
688    if (GET_CODE (x) == SYMBOL_REF)
689      {
690        align = BITS_PER_UNIT;
691	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
693      }
694    else if (GET_CODE (x) == LABEL_REF)
695      align = BITS_PER_UNIT;
696    else if (GET_CODE (x) == CONST
697	     && GET_CODE (XEXP (x, 0)) == PLUS
698	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
700      {
701	rtx s = XEXP (XEXP (x, 0), 0);
702	rtx c = XEXP (XEXP (x, 0), 1);
703	unsigned sa, ca;
704
705	sa = BITS_PER_UNIT;
706	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
708
709	ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
710
711	align = MIN (sa, ca);
712      }
713
714    if (align || (MEM_P (x) && MEM_POINTER (x)))
715      mark_reg_pointer (temp, align);
716  }
717
718  return temp;
719}
720
721/* If X is a memory ref, copy its contents to a new temp reg and return
722   that reg.  Otherwise, return X.  */
723
724rtx
725force_not_mem (rtx x)
726{
727  rtx temp;
728
729  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730    return x;
731
732  temp = gen_reg_rtx (GET_MODE (x));
733
734  if (MEM_POINTER (x))
735    REG_POINTER (temp) = 1;
736
737  emit_move_insn (temp, x);
738  return temp;
739}
740
741/* Copy X to TARGET (if it's nonzero and a reg)
742   or to a new temp reg and return that reg.
743   MODE is the mode to use for X in case it is a constant.  */
744
745rtx
746copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
747{
748  rtx temp;
749
750  if (target && REG_P (target))
751    temp = target;
752  else
753    temp = gen_reg_rtx (mode);
754
755  emit_move_insn (temp, x);
756  return temp;
757}
758
759/* Return the mode to use to pass or return a scalar of TYPE and MODE.
760   PUNSIGNEDP points to the signedness of the type and may be adjusted
761   to show what signedness to use on extension operations.
762
763   FOR_RETURN is nonzero if the caller is promoting the return value
764   of FNDECL, else it is for promoting args.  */
765
766enum machine_mode
767promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
768		       const_tree funtype, int for_return)
769{
770  switch (TREE_CODE (type))
771    {
772    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
773    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
774    case POINTER_TYPE:   case REFERENCE_TYPE:
775      return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
776						  for_return);
777
778    default:
779      return mode;
780    }
781}
782/* Return the mode to use to store a scalar of TYPE and MODE.
783   PUNSIGNEDP points to the signedness of the type and may be adjusted
784   to show what signedness to use on extension operations.  */
785
786enum machine_mode
787promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
788	      int *punsignedp ATTRIBUTE_UNUSED)
789{
790  /* FIXME: this is the same logic that was there until GCC 4.4, but we
791     probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
792     is not defined.  The affected targets are M32C, S390, SPARC.  */
793#ifdef PROMOTE_MODE
794  const enum tree_code code = TREE_CODE (type);
795  int unsignedp = *punsignedp;
796
797  switch (code)
798    {
799    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
800    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
801      PROMOTE_MODE (mode, unsignedp, type);
802      *punsignedp = unsignedp;
803      return mode;
804      break;
805
806#ifdef POINTERS_EXTEND_UNSIGNED
807    case REFERENCE_TYPE:
808    case POINTER_TYPE:
809      *punsignedp = POINTERS_EXTEND_UNSIGNED;
810      return targetm.addr_space.address_mode
811	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
812      break;
813#endif
814
815    default:
816      return mode;
817    }
818#else
819  return mode;
820#endif
821}
822
823
824/* Use one of promote_mode or promote_function_mode to find the promoted
825   mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
826   of DECL after promotion.  */
827
828enum machine_mode
829promote_decl_mode (const_tree decl, int *punsignedp)
830{
831  tree type = TREE_TYPE (decl);
832  int unsignedp = TYPE_UNSIGNED (type);
833  enum machine_mode mode = DECL_MODE (decl);
834  enum machine_mode pmode;
835
836  if (TREE_CODE (decl) == RESULT_DECL
837      || TREE_CODE (decl) == PARM_DECL)
838    pmode = promote_function_mode (type, mode, &unsignedp,
839                                   TREE_TYPE (current_function_decl), 2);
840  else
841    pmode = promote_mode (type, mode, &unsignedp);
842
843  if (punsignedp)
844    *punsignedp = unsignedp;
845  return pmode;
846}
847
848
849/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
850   This pops when ADJUST is positive.  ADJUST need not be constant.  */
851
852void
853adjust_stack (rtx adjust)
854{
855  rtx temp;
856
857  if (adjust == const0_rtx)
858    return;
859
860  /* We expect all variable sized adjustments to be multiple of
861     PREFERRED_STACK_BOUNDARY.  */
862  if (CONST_INT_P (adjust))
863    stack_pointer_delta -= INTVAL (adjust);
864
865  temp = expand_binop (Pmode,
866#ifdef STACK_GROWS_DOWNWARD
867		       add_optab,
868#else
869		       sub_optab,
870#endif
871		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
872		       OPTAB_LIB_WIDEN);
873
874  if (temp != stack_pointer_rtx)
875    emit_move_insn (stack_pointer_rtx, temp);
876}
877
878/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
879   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
880
881void
882anti_adjust_stack (rtx adjust)
883{
884  rtx temp;
885
886  if (adjust == const0_rtx)
887    return;
888
889  /* We expect all variable sized adjustments to be multiple of
890     PREFERRED_STACK_BOUNDARY.  */
891  if (CONST_INT_P (adjust))
892    stack_pointer_delta += INTVAL (adjust);
893
894  temp = expand_binop (Pmode,
895#ifdef STACK_GROWS_DOWNWARD
896		       sub_optab,
897#else
898		       add_optab,
899#endif
900		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
901		       OPTAB_LIB_WIDEN);
902
903  if (temp != stack_pointer_rtx)
904    emit_move_insn (stack_pointer_rtx, temp);
905}
906
907/* Round the size of a block to be pushed up to the boundary required
908   by this machine.  SIZE is the desired size, which need not be constant.  */
909
910static rtx
911round_push (rtx size)
912{
913  int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
914
915  if (align == 1)
916    return size;
917
918  if (CONST_INT_P (size))
919    {
920      HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
921
922      if (INTVAL (size) != new_size)
923	size = GEN_INT (new_size);
924    }
925  else
926    {
927      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
928	 but we know it can't.  So add ourselves and then do
929	 TRUNC_DIV_EXPR.  */
930      size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
931			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
932      size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
933			    NULL_RTX, 1);
934      size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
935    }
936
937  return size;
938}
939
940/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
941   to a previously-created save area.  If no save area has been allocated,
942   this function will allocate one.  If a save area is specified, it
943   must be of the proper mode.
944
945   The insns are emitted after insn AFTER, if nonzero, otherwise the insns
946   are emitted at the current position.  */
947
948void
949emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
950{
951  rtx sa = *psave;
952  /* The default is that we use a move insn and save in a Pmode object.  */
953  rtx (*fcn) (rtx, rtx) = gen_move_insn;
954  enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
955
956  /* See if this machine has anything special to do for this kind of save.  */
957  switch (save_level)
958    {
959#ifdef HAVE_save_stack_block
960    case SAVE_BLOCK:
961      if (HAVE_save_stack_block)
962	fcn = gen_save_stack_block;
963      break;
964#endif
965#ifdef HAVE_save_stack_function
966    case SAVE_FUNCTION:
967      if (HAVE_save_stack_function)
968	fcn = gen_save_stack_function;
969      break;
970#endif
971#ifdef HAVE_save_stack_nonlocal
972    case SAVE_NONLOCAL:
973      if (HAVE_save_stack_nonlocal)
974	fcn = gen_save_stack_nonlocal;
975      break;
976#endif
977    default:
978      break;
979    }
980
981  /* If there is no save area and we have to allocate one, do so.  Otherwise
982     verify the save area is the proper mode.  */
983
984  if (sa == 0)
985    {
986      if (mode != VOIDmode)
987	{
988	  if (save_level == SAVE_NONLOCAL)
989	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
990	  else
991	    *psave = sa = gen_reg_rtx (mode);
992	}
993    }
994
995  if (after)
996    {
997      rtx seq;
998
999      start_sequence ();
1000      do_pending_stack_adjust ();
1001      /* We must validize inside the sequence, to ensure that any instructions
1002	 created by the validize call also get moved to the right place.  */
1003      if (sa != 0)
1004	sa = validize_mem (sa);
1005      emit_insn (fcn (sa, stack_pointer_rtx));
1006      seq = get_insns ();
1007      end_sequence ();
1008      emit_insn_after (seq, after);
1009    }
1010  else
1011    {
1012      do_pending_stack_adjust ();
1013      if (sa != 0)
1014	sa = validize_mem (sa);
1015      emit_insn (fcn (sa, stack_pointer_rtx));
1016    }
1017}
1018
1019/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1020   area made by emit_stack_save.  If it is zero, we have nothing to do.
1021
1022   Put any emitted insns after insn AFTER, if nonzero, otherwise at
1023   current position.  */
1024
1025void
1026emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1027{
1028  /* The default is that we use a move insn.  */
1029  rtx (*fcn) (rtx, rtx) = gen_move_insn;
1030
1031  /* See if this machine has anything special to do for this kind of save.  */
1032  switch (save_level)
1033    {
1034#ifdef HAVE_restore_stack_block
1035    case SAVE_BLOCK:
1036      if (HAVE_restore_stack_block)
1037	fcn = gen_restore_stack_block;
1038      break;
1039#endif
1040#ifdef HAVE_restore_stack_function
1041    case SAVE_FUNCTION:
1042      if (HAVE_restore_stack_function)
1043	fcn = gen_restore_stack_function;
1044      break;
1045#endif
1046#ifdef HAVE_restore_stack_nonlocal
1047    case SAVE_NONLOCAL:
1048      if (HAVE_restore_stack_nonlocal)
1049	fcn = gen_restore_stack_nonlocal;
1050      break;
1051#endif
1052    default:
1053      break;
1054    }
1055
1056  if (sa != 0)
1057    {
1058      sa = validize_mem (sa);
1059      /* These clobbers prevent the scheduler from moving
1060	 references to variable arrays below the code
1061	 that deletes (pops) the arrays.  */
1062      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1063      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1064    }
1065
1066  discard_pending_stack_adjust ();
1067
1068  if (after)
1069    {
1070      rtx seq;
1071
1072      start_sequence ();
1073      emit_insn (fcn (stack_pointer_rtx, sa));
1074      seq = get_insns ();
1075      end_sequence ();
1076      emit_insn_after (seq, after);
1077    }
1078  else
1079    emit_insn (fcn (stack_pointer_rtx, sa));
1080}
1081
1082/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1083   function.  This function should be called whenever we allocate or
1084   deallocate dynamic stack space.  */
1085
1086void
1087update_nonlocal_goto_save_area (void)
1088{
1089  tree t_save;
1090  rtx r_save;
1091
1092  /* The nonlocal_goto_save_area object is an array of N pointers.  The
1093     first one is used for the frame pointer save; the rest are sized by
1094     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1095     of the stack save area slots.  */
1096  t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1097		   integer_one_node, NULL_TREE, NULL_TREE);
1098  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1099
1100  emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1101}
1102
1103/* Return an rtx representing the address of an area of memory dynamically
1104   pushed on the stack.  This region of memory is always aligned to
1105   a multiple of BIGGEST_ALIGNMENT.
1106
1107   Any required stack pointer alignment is preserved.
1108
1109   SIZE is an rtx representing the size of the area.
1110   TARGET is a place in which the address can be placed.
1111
1112   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
1113
1114rtx
1115allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1116{
1117  /* If we're asking for zero bytes, it doesn't matter what we point
1118     to since we can't dereference it.  But return a reasonable
1119     address anyway.  */
1120  if (size == const0_rtx)
1121    return virtual_stack_dynamic_rtx;
1122
1123  /* Otherwise, show we're calling alloca or equivalent.  */
1124  cfun->calls_alloca = 1;
1125
1126  /* Ensure the size is in the proper mode.  */
1127  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1128    size = convert_to_mode (Pmode, size, 1);
1129
1130  /* We can't attempt to minimize alignment necessary, because we don't
1131     know the final value of preferred_stack_boundary yet while executing
1132     this code.  */
1133  crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1134
1135  /* We will need to ensure that the address we return is aligned to
1136     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
1137     always know its final value at this point in the compilation (it
1138     might depend on the size of the outgoing parameter lists, for
1139     example), so we must align the value to be returned in that case.
1140     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1141     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1142     We must also do an alignment operation on the returned value if
1143     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1144
1145     If we have to align, we must leave space in SIZE for the hole
1146     that might result from the alignment operation.  */
1147
1148#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1149#define MUST_ALIGN 1
1150#else
1151#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1152#endif
1153
1154  if (MUST_ALIGN)
1155    size
1156      = force_operand (plus_constant (size,
1157				      BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1158		       NULL_RTX);
1159
1160#ifdef SETJMP_VIA_SAVE_AREA
1161  /* If setjmp restores regs from a save area in the stack frame,
1162     avoid clobbering the reg save area.  Note that the offset of
1163     virtual_incoming_args_rtx includes the preallocated stack args space.
1164     It would be no problem to clobber that, but it's on the wrong side
1165     of the old save area.
1166
1167     What used to happen is that, since we did not know for sure
1168     whether setjmp() was invoked until after RTL generation, we
1169     would use reg notes to store the "optimized" size and fix things
1170     up later.  These days we know this information before we ever
1171     start building RTL so the reg notes are unnecessary.  */
1172  if (!cfun->calls_setjmp)
1173    {
1174      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1175
1176      /* ??? Code below assumes that the save area needs maximal
1177	 alignment.  This constraint may be too strong.  */
1178      gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1179
1180      if (CONST_INT_P (size))
1181	{
1182	  HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1183
1184	  if (INTVAL (size) != new_size)
1185	    size = GEN_INT (new_size);
1186	}
1187      else
1188	{
1189	  /* Since we know overflow is not possible, we avoid using
1190	     CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead.  */
1191	  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1192				GEN_INT (align), NULL_RTX, 1);
1193	  size = expand_mult (Pmode, size,
1194			      GEN_INT (align), NULL_RTX, 1);
1195	}
1196    }
1197  else
1198    {
1199      rtx dynamic_offset
1200	= expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1201			stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1202
1203      size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1204			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
1205    }
1206#endif /* SETJMP_VIA_SAVE_AREA */
1207
1208  /* Round the size to a multiple of the required stack alignment.
1209     Since the stack if presumed to be rounded before this allocation,
1210     this will maintain the required alignment.
1211
1212     If the stack grows downward, we could save an insn by subtracting
1213     SIZE from the stack pointer and then aligning the stack pointer.
1214     The problem with this is that the stack pointer may be unaligned
1215     between the execution of the subtraction and alignment insns and
1216     some machines do not allow this.  Even on those that do, some
1217     signal handlers malfunction if a signal should occur between those
1218     insns.  Since this is an extremely rare event, we have no reliable
1219     way of knowing which systems have this problem.  So we avoid even
1220     momentarily mis-aligning the stack.  */
1221
1222  /* If we added a variable amount to SIZE,
1223     we can no longer assume it is aligned.  */
1224#if !defined (SETJMP_VIA_SAVE_AREA)
1225  if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1226#endif
1227    size = round_push (size);
1228
1229  do_pending_stack_adjust ();
1230
1231 /* We ought to be called always on the toplevel and stack ought to be aligned
1232    properly.  */
1233  gcc_assert (!(stack_pointer_delta
1234		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1235
1236  /* If needed, check that we have the required amount of stack.  Take into
1237     account what has already been checked.  */
1238  if (STACK_CHECK_MOVING_SP)
1239    ;
1240  else if (flag_stack_check == GENERIC_STACK_CHECK)
1241    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1242		       size);
1243  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1244    probe_stack_range (STACK_CHECK_PROTECT, size);
1245
1246  /* Don't use a TARGET that isn't a pseudo or is the wrong mode.  */
1247  if (target == 0 || !REG_P (target)
1248      || REGNO (target) < FIRST_PSEUDO_REGISTER
1249      || GET_MODE (target) != Pmode)
1250    target = gen_reg_rtx (Pmode);
1251
1252  mark_reg_pointer (target, known_align);
1253
1254  /* Perform the required allocation from the stack.  Some systems do
1255     this differently than simply incrementing/decrementing from the
1256     stack pointer, such as acquiring the space by calling malloc().  */
1257#ifdef HAVE_allocate_stack
1258  if (HAVE_allocate_stack)
1259    {
1260      enum machine_mode mode = STACK_SIZE_MODE;
1261      insn_operand_predicate_fn pred;
1262
1263      /* We don't have to check against the predicate for operand 0 since
1264	 TARGET is known to be a pseudo of the proper mode, which must
1265	 be valid for the operand.  For operand 1, convert to the
1266	 proper mode and validate.  */
1267      if (mode == VOIDmode)
1268	mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1269
1270      pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1271      if (pred && ! ((*pred) (size, mode)))
1272	size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1273
1274      emit_insn (gen_allocate_stack (target, size));
1275    }
1276  else
1277#endif
1278    {
1279#ifndef STACK_GROWS_DOWNWARD
1280      emit_move_insn (target, virtual_stack_dynamic_rtx);
1281#endif
1282
1283      /* Check stack bounds if necessary.  */
1284      if (crtl->limit_stack)
1285	{
1286	  rtx available;
1287	  rtx space_available = gen_label_rtx ();
1288#ifdef STACK_GROWS_DOWNWARD
1289	  available = expand_binop (Pmode, sub_optab,
1290				    stack_pointer_rtx, stack_limit_rtx,
1291				    NULL_RTX, 1, OPTAB_WIDEN);
1292#else
1293	  available = expand_binop (Pmode, sub_optab,
1294				    stack_limit_rtx, stack_pointer_rtx,
1295				    NULL_RTX, 1, OPTAB_WIDEN);
1296#endif
1297	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1298				   space_available);
1299#ifdef HAVE_trap
1300	  if (HAVE_trap)
1301	    emit_insn (gen_trap ());
1302	  else
1303#endif
1304	    error ("stack limits not supported on this target");
1305	  emit_barrier ();
1306	  emit_label (space_available);
1307	}
1308
1309      if (flag_stack_check && STACK_CHECK_MOVING_SP)
1310	anti_adjust_stack_and_probe (size, false);
1311      else
1312	anti_adjust_stack (size);
1313
1314#ifdef STACK_GROWS_DOWNWARD
1315      emit_move_insn (target, virtual_stack_dynamic_rtx);
1316#endif
1317    }
1318
1319  if (MUST_ALIGN)
1320    {
1321      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1322	 but we know it can't.  So add ourselves and then do
1323	 TRUNC_DIV_EXPR.  */
1324      target = expand_binop (Pmode, add_optab, target,
1325			     GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1326			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1327      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1328			      GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1329			      NULL_RTX, 1);
1330      target = expand_mult (Pmode, target,
1331			    GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1332			    NULL_RTX, 1);
1333    }
1334
1335  /* Record the new stack level for nonlocal gotos.  */
1336  if (cfun->nonlocal_goto_save_area != 0)
1337    update_nonlocal_goto_save_area ();
1338
1339  return target;
1340}
1341
1342/* A front end may want to override GCC's stack checking by providing a
1343   run-time routine to call to check the stack, so provide a mechanism for
1344   calling that routine.  */
1345
1346static GTY(()) rtx stack_check_libfunc;
1347
1348void
1349set_stack_check_libfunc (rtx libfunc)
1350{
1351  stack_check_libfunc = libfunc;
1352}
1353
1354/* Emit one stack probe at ADDRESS, an address within the stack.  */
1355
1356static void
1357emit_stack_probe (rtx address)
1358{
1359  rtx memref = gen_rtx_MEM (word_mode, address);
1360
1361  MEM_VOLATILE_P (memref) = 1;
1362
1363  /* See if we have an insn to probe the stack.  */
1364#ifdef HAVE_probe_stack
1365  if (HAVE_probe_stack)
1366    emit_insn (gen_probe_stack (memref));
1367  else
1368#endif
1369    emit_move_insn (memref, const0_rtx);
1370}
1371
1372/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1373   FIRST is a constant and size is a Pmode RTX.  These are offsets from
1374   the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1375   or subtract them from the stack pointer.  */
1376
1377#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1378
1379#ifdef STACK_GROWS_DOWNWARD
1380#define STACK_GROW_OP MINUS
1381#define STACK_GROW_OPTAB sub_optab
1382#define STACK_GROW_OFF(off) -(off)
1383#else
1384#define STACK_GROW_OP PLUS
1385#define STACK_GROW_OPTAB add_optab
1386#define STACK_GROW_OFF(off) (off)
1387#endif
1388
1389void
1390probe_stack_range (HOST_WIDE_INT first, rtx size)
1391{
1392  /* First ensure SIZE is Pmode.  */
1393  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1394    size = convert_to_mode (Pmode, size, 1);
1395
1396  /* Next see if we have a function to check the stack.  */
1397  if (stack_check_libfunc)
1398    {
1399      rtx addr = memory_address (Pmode,
1400				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1401					         stack_pointer_rtx,
1402					         plus_constant (size, first)));
1403      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1404			 Pmode);
1405    }
1406
1407  /* Next see if we have an insn to check the stack.  */
1408#ifdef HAVE_check_stack
1409  else if (HAVE_check_stack)
1410    {
1411      rtx addr = memory_address (Pmode,
1412				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1413					         stack_pointer_rtx,
1414					         plus_constant (size, first)));
1415      insn_operand_predicate_fn pred
1416	= insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1417      if (pred && !((*pred) (addr, Pmode)))
1418	addr = copy_to_mode_reg (Pmode, addr);
1419
1420      emit_insn (gen_check_stack (addr));
1421    }
1422#endif
1423
1424  /* Otherwise we have to generate explicit probes.  If we have a constant
1425     small number of them to generate, that's the easy case.  */
1426  else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1427    {
1428      HOST_WIDE_INT isize = INTVAL (size), i;
1429      rtx addr;
1430
1431      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1432	 it exceeds SIZE.  If only one probe is needed, this will not
1433	 generate any code.  Then probe at FIRST + SIZE.  */
1434      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1435	{
1436	  addr = memory_address (Pmode,
1437				 plus_constant (stack_pointer_rtx,
1438				 		STACK_GROW_OFF (first + i)));
1439	  emit_stack_probe (addr);
1440	}
1441
1442      addr = memory_address (Pmode,
1443			     plus_constant (stack_pointer_rtx,
1444					    STACK_GROW_OFF (first + isize)));
1445      emit_stack_probe (addr);
1446    }
1447
1448  /* In the variable case, do the same as above, but in a loop.  Note that we
1449     must be extra careful with variables wrapping around because we might be
1450     at the very top (or the very bottom) of the address space and we have to
1451     be able to handle this case properly; in particular, we use an equality
1452     test for the loop condition.  */
1453  else
1454    {
1455      rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1456      rtx loop_lab = gen_label_rtx ();
1457      rtx end_lab = gen_label_rtx ();
1458
1459
1460      /* Step 1: round SIZE to the previous multiple of the interval.  */
1461
1462      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1463      rounded_size
1464	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1465      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1466
1467
1468      /* Step 2: compute initial and final value of the loop counter.  */
1469
1470      /* TEST_ADDR = SP + FIRST.  */
1471      test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1472					 	 stack_pointer_rtx,
1473					 	 GEN_INT (first)), NULL_RTX);
1474
1475      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1476      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1477						 test_addr,
1478						 rounded_size_op), NULL_RTX);
1479
1480
1481      /* Step 3: the loop
1482
1483	 while (TEST_ADDR != LAST_ADDR)
1484	   {
1485	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1486	     probe at TEST_ADDR
1487	   }
1488
1489	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1490	 until it is equal to ROUNDED_SIZE.  */
1491
1492      emit_label (loop_lab);
1493
1494      /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1495      emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1496			       end_lab);
1497
1498      /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1499      temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1500			   GEN_INT (PROBE_INTERVAL), test_addr,
1501			   1, OPTAB_WIDEN);
1502
1503      gcc_assert (temp == test_addr);
1504
1505      /* Probe at TEST_ADDR.  */
1506      emit_stack_probe (test_addr);
1507
1508      emit_jump (loop_lab);
1509
1510      emit_label (end_lab);
1511
1512
1513      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1514	 that SIZE is equal to ROUNDED_SIZE.  */
1515
1516      /* TEMP = SIZE - ROUNDED_SIZE.  */
1517      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1518      if (temp != const0_rtx)
1519	{
1520	  rtx addr;
1521
1522	  if (GET_CODE (temp) == CONST_INT)
1523	    {
1524	      /* Use [base + disp} addressing mode if supported.  */
1525	      HOST_WIDE_INT offset = INTVAL (temp);
1526	      addr = memory_address (Pmode,
1527				     plus_constant (last_addr,
1528						    STACK_GROW_OFF (offset)));
1529	    }
1530	  else
1531	    {
1532	      /* Manual CSE if the difference is not known at compile-time.  */
1533	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1534	      addr = memory_address (Pmode,
1535				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1536						     last_addr, temp));
1537	    }
1538
1539	  emit_stack_probe (addr);
1540	}
1541    }
1542}
1543
1544/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1545   while probing it.  This pushes when SIZE is positive.  SIZE need not
1546   be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1547   by plus SIZE at the end.  */
1548
1549void
1550anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1551{
1552  /* We skip the probe for the first interval + a small dope of 4 words and
1553     probe that many bytes past the specified size to maintain a protection
1554     area at the botton of the stack.  */
1555  const int dope = 4 * UNITS_PER_WORD;
1556
1557  /* First ensure SIZE is Pmode.  */
1558  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1559    size = convert_to_mode (Pmode, size, 1);
1560
1561  /* If we have a constant small number of probes to generate, that's the
1562     easy case.  */
1563  if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1564    {
1565      HOST_WIDE_INT isize = INTVAL (size), i;
1566      bool first_probe = true;
1567
1568      /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1569	 values of N from 1 until it exceeds SIZE.  If only one probe is
1570	 needed, this will not generate any code.  Then adjust and probe
1571	 to PROBE_INTERVAL + SIZE.  */
1572      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1573	{
1574	  if (first_probe)
1575	    {
1576	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1577	      first_probe = false;
1578	    }
1579	  else
1580	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1581	  emit_stack_probe (stack_pointer_rtx);
1582	}
1583
1584      if (first_probe)
1585	anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1586      else
1587	anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1588      emit_stack_probe (stack_pointer_rtx);
1589    }
1590
1591  /* In the variable case, do the same as above, but in a loop.  Note that we
1592     must be extra careful with variables wrapping around because we might be
1593     at the very top (or the very bottom) of the address space and we have to
1594     be able to handle this case properly; in particular, we use an equality
1595     test for the loop condition.  */
1596  else
1597    {
1598      rtx rounded_size, rounded_size_op, last_addr, temp;
1599      rtx loop_lab = gen_label_rtx ();
1600      rtx end_lab = gen_label_rtx ();
1601
1602
1603      /* Step 1: round SIZE to the previous multiple of the interval.  */
1604
1605      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1606      rounded_size
1607	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1608      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1609
1610
1611      /* Step 2: compute initial and final value of the loop counter.  */
1612
1613      /* SP = SP_0 + PROBE_INTERVAL.  */
1614      anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1615
1616      /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1617      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1618						 stack_pointer_rtx,
1619						 rounded_size_op), NULL_RTX);
1620
1621
1622      /* Step 3: the loop
1623
1624	  while (SP != LAST_ADDR)
1625	    {
1626	      SP = SP + PROBE_INTERVAL
1627	      probe at SP
1628	    }
1629
1630	 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1631	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1632
1633      emit_label (loop_lab);
1634
1635      /* Jump to END_LAB if SP == LAST_ADDR.  */
1636      emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1637			       Pmode, 1, end_lab);
1638
1639      /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1640      anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1641      emit_stack_probe (stack_pointer_rtx);
1642
1643      emit_jump (loop_lab);
1644
1645      emit_label (end_lab);
1646
1647
1648      /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1649	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1650
1651      /* TEMP = SIZE - ROUNDED_SIZE.  */
1652      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1653      if (temp != const0_rtx)
1654	{
1655	  /* Manual CSE if the difference is not known at compile-time.  */
1656	  if (GET_CODE (temp) != CONST_INT)
1657	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1658	  anti_adjust_stack (temp);
1659	  emit_stack_probe (stack_pointer_rtx);
1660	}
1661    }
1662
1663  /* Adjust back and account for the additional first interval.  */
1664  if (adjust_back)
1665    adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1666  else
1667    adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1668}
1669
1670/* Return an rtx representing the register or memory location
1671   in which a scalar value of data type VALTYPE
1672   was returned by a function call to function FUNC.
1673   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1674   function is known, otherwise 0.
1675   OUTGOING is 1 if on a machine with register windows this function
1676   should return the register in which the function will put its result
1677   and 0 otherwise.  */
1678
1679rtx
1680hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1681		     int outgoing ATTRIBUTE_UNUSED)
1682{
1683  rtx val;
1684
1685  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1686
1687  if (REG_P (val)
1688      && GET_MODE (val) == BLKmode)
1689    {
1690      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1691      enum machine_mode tmpmode;
1692
1693      /* int_size_in_bytes can return -1.  We don't need a check here
1694	 since the value of bytes will then be large enough that no
1695	 mode will match anyway.  */
1696
1697      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1698	   tmpmode != VOIDmode;
1699	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1700	{
1701	  /* Have we found a large enough mode?  */
1702	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1703	    break;
1704	}
1705
1706      /* No suitable mode found.  */
1707      gcc_assert (tmpmode != VOIDmode);
1708
1709      PUT_MODE (val, tmpmode);
1710    }
1711  return val;
1712}
1713
1714/* Return an rtx representing the register or memory location
1715   in which a scalar value of mode MODE was returned by a library call.  */
1716
1717rtx
1718hard_libcall_value (enum machine_mode mode, rtx fun)
1719{
1720  return targetm.calls.libcall_value (mode, fun);
1721}
1722
1723/* Look up the tree code for a given rtx code
1724   to provide the arithmetic operation for REAL_ARITHMETIC.
1725   The function returns an int because the caller may not know
1726   what `enum tree_code' means.  */
1727
1728int
1729rtx_to_tree_code (enum rtx_code code)
1730{
1731  enum tree_code tcode;
1732
1733  switch (code)
1734    {
1735    case PLUS:
1736      tcode = PLUS_EXPR;
1737      break;
1738    case MINUS:
1739      tcode = MINUS_EXPR;
1740      break;
1741    case MULT:
1742      tcode = MULT_EXPR;
1743      break;
1744    case DIV:
1745      tcode = RDIV_EXPR;
1746      break;
1747    case SMIN:
1748      tcode = MIN_EXPR;
1749      break;
1750    case SMAX:
1751      tcode = MAX_EXPR;
1752      break;
1753    default:
1754      tcode = LAST_AND_UNUSED_TREE_CODE;
1755      break;
1756    }
1757  return ((int) tcode);
1758}
1759
1760#include "gt-explow.h"
1761