1/* Target Definitions for R8C/M16C/M32C
2   Copyright (C) 2005, 2007, 2008, 2009
3   Free Software Foundation, Inc.
4   Contributed by Red Hat.
5
6   This file is part of GCC.
7
8   GCC is free software; you can redistribute it and/or modify it
9   under the terms of the GNU General Public License as published
10   by the Free Software Foundation; either version 3, or (at your
11   option) any later version.
12
13   GCC is distributed in the hope that it will be useful, but WITHOUT
14   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16   License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GCC; see the file COPYING3.  If not see
20   <http://www.gnu.org/licenses/>.  */
21
22#ifndef GCC_M32C_H
23#define GCC_M32C_H
24
25/* Controlling the Compilation Driver, `gcc'.  */
26
27#undef  STARTFILE_SPEC
28#define STARTFILE_SPEC "crt0.o%s crtbegin.o%s"
29
30/* There are four CPU series we support, but they basically break down
31   into two families - the R8C/M16C families, with 16-bit address
32   registers and one set of opcodes, and the M32CM/M32C group, with
33   24-bit address registers and a different set of opcodes.  The
34   assembler doesn't care except for which opcode set is needed; the
35   big difference is in the memory maps, which we cover in
36   LIB_SPEC.  */
37
38#undef  ASM_SPEC
39#define ASM_SPEC "\
40%{mcpu=r8c:--m16c} \
41%{mcpu=m16c:--m16c} \
42%{mcpu=m32cm:--m32c} \
43%{mcpu=m32c:--m32c} "
44
45/* The default is R8C hardware.  We support a simulator, which has its
46   own libgloss and link map, plus one default link map for each chip
47   family.  Most of the logic here is making sure we do the right
48   thing when no CPU is specified, which defaults to R8C.  */
49#undef  LIB_SPEC
50#define LIB_SPEC "-( -lc %{msim*:-lsim}%{!msim*:-lnosys} -) \
51%{msim*:%{!T*: %{mcpu=m32cm:%Tsim24.ld}%{mcpu=m32c:%Tsim24.ld} \
52	%{!mcpu=m32cm:%{!mcpu=m32c:%Tsim16.ld}}}} \
53%{!T*:%{!msim*: %{mcpu=m16c:%Tm16c.ld} \
54		%{mcpu=m32cm:%Tm32cm.ld} \
55		%{mcpu=m32c:%Tm32c.ld} \
56		%{!mcpu=m16c:%{!mcpu=m32cm:%{!mcpu=m32c:%Tr8c.ld}}}}} \
57"
58
59/* Run-time Target Specification */
60
61/* Nothing unusual here.  */
62#define TARGET_CPU_CPP_BUILTINS() \
63  { \
64    builtin_assert ("cpu=m32c"); \
65    builtin_assert ("machine=m32c"); \
66    builtin_define ("__m32c__=1"); \
67    if (TARGET_R8C) \
68      builtin_define ("__r8c_cpu__=1"); \
69    if (TARGET_M16C) \
70      builtin_define ("__m16c_cpu__=1"); \
71    if (TARGET_M32CM) \
72      builtin_define ("__m32cm_cpu__=1"); \
73    if (TARGET_M32C) \
74      builtin_define ("__m32c_cpu__=1"); \
75  }
76
77/* The pragma handlers need to know if we've started processing
78   functions yet, as the memregs pragma should only be given at the
79   beginning of the file.  This variable starts off TRUE and later
80   becomes FALSE.  */
81extern int ok_to_change_target_memregs;
82extern int target_memregs;
83
84/* TARGET_CPU is a multi-way option set in m32c.opt.  While we could
85   use enums or defines for this, this and m32c.opt are the only
86   places that know (or care) what values are being used.  */
87#define TARGET_R8C	(target_cpu == 'r')
88#define TARGET_M16C	(target_cpu == '6')
89#define TARGET_M32CM	(target_cpu == 'm')
90#define TARGET_M32C	(target_cpu == '3')
91
92/* Address register sizes.  Warning: these are used all over the place
93   to select between the two CPU families in general.  */
94#define TARGET_A16	(TARGET_R8C || TARGET_M16C)
95#define TARGET_A24	(TARGET_M32CM || TARGET_M32C)
96
97#define TARGET_VERSION fprintf (stderr, " (m32c)");
98
99#define OVERRIDE_OPTIONS m32c_override_options ()
100
101/* Defining data structures for per-function information */
102
103typedef struct GTY (()) machine_function
104{
105  /* How much we adjust the stack when returning from an exception
106     handler.  */
107  rtx eh_stack_adjust;
108
109  /* TRUE if the current function is an interrupt handler.  */
110  int is_interrupt;
111
112  /* TRUE if the current function is a leaf function.  Currently, this
113     only affects saving $a0 in interrupt functions.  */
114  int is_leaf;
115
116  /* Bitmask that keeps track of which registers are used in an
117     interrupt function, so we know which ones need to be saved and
118     restored.  */
119  int intr_pushm;
120  /* Likewise, one element for each memreg that needs to be saved.  */
121  char intr_pushmem[16];
122
123  /* TRUE if the current function can use a simple RTS to return, instead
124     of the longer ENTER/EXIT pair.  */
125  int use_rts;
126}
127machine_function;
128
129#define INIT_EXPANDERS m32c_init_expanders ()
130
131/* Storage Layout */
132
133#define BITS_BIG_ENDIAN 0
134#define BYTES_BIG_ENDIAN 0
135#define WORDS_BIG_ENDIAN 0
136
137/* We can do QI, HI, and SI operations pretty much equally well, but
138   GCC expects us to have a "native" format, so we pick the one that
139   matches "int".  Pointers are 16 bits for R8C/M16C (when TARGET_A16
140   is true) and 24 bits for M32CM/M32C (when TARGET_A24 is true), but
141   24-bit pointers are stored in 32-bit words.  */
142#define BITS_PER_UNIT 8
143#define UNITS_PER_WORD 2
144#define POINTER_SIZE (TARGET_A16 ? 16 : 32)
145#define POINTERS_EXTEND_UNSIGNED 1
146/* We have a problem with libgcc2.  It only defines two versions of
147   each function, one for "int" and one for "long long".  Ie it assumes
148   that "sizeof (int) == sizeof (long)".  For the M32C this is not true
149   and we need a third set of functions.  We explicitly define
150   LIBGCC2_UNITS_PER_WORD here so that it is clear that we are expecting
151   to get the SI and DI versions from the libgcc2.c sources, and we
152   provide our own set of HI functions in m32c-lib2.c, which is why this
153   definition is surrounded by #ifndef..#endif.  */
154#ifndef LIBGCC2_UNITS_PER_WORD
155#define LIBGCC2_UNITS_PER_WORD 4
156#endif
157
158/* These match the alignment enforced by the two types of stack operations.  */
159#define PARM_BOUNDARY (TARGET_A16 ? 8 : 16)
160#define STACK_BOUNDARY (TARGET_A16 ? 8 : 16)
161
162/* We do this because we care more about space than about speed.  For
163   the chips with 16-bit busses, we could set these to 16 if
164   desired.  */
165#define FUNCTION_BOUNDARY 8
166#define BIGGEST_ALIGNMENT 8
167
168/* Since we have a maximum structure alignment of 8 there
169   is no need to enforce any alignment of bitfield types.  */
170#undef  PCC_BITFIELD_TYPE_MATTERS
171#define PCC_BITFIELD_TYPE_MATTERS 0
172
173#define STRICT_ALIGNMENT 0
174#define SLOW_BYTE_ACCESS 1
175
176/* Layout of Source Language Data Types */
177
178#define INT_TYPE_SIZE 16
179#define SHORT_TYPE_SIZE 16
180#define LONG_TYPE_SIZE 32
181#define LONG_LONG_TYPE_SIZE 64
182
183#define FLOAT_TYPE_SIZE 32
184#define DOUBLE_TYPE_SIZE 64
185#define LONG_DOUBLE_TYPE_SIZE 64
186
187#define DEFAULT_SIGNED_CHAR 1
188
189#undef PTRDIFF_TYPE
190#define PTRDIFF_TYPE (TARGET_A16 ? "int" : "long int")
191
192#undef UINTPTR_TYPE
193#define UINTPTR_TYPE (TARGET_A16 ? "unsigned int" : "long unsigned int")
194
195/* REGISTER USAGE */
196
197/* Register Basics */
198
199/* Register layout:
200
201        [r0h][r0l]  $r0  (16 bits, or two 8-bit halves)
202        [--------]  $r2  (16 bits)
203        [r1h][r1l]  $r1  (16 bits, or two 8-bit halves)
204        [--------]  $r3  (16 bits)
205   [---][--------]  $a0  (might be 24 bits)
206   [---][--------]  $a1  (might be 24 bits)
207   [---][--------]  $sb  (might be 24 bits)
208   [---][--------]  $fb  (might be 24 bits)
209   [---][--------]  $sp  (might be 24 bits)
210   [-------------]  $pc  (20 or 24 bits)
211             [---]  $flg (CPU flags)
212   [---][--------]  $argp (virtual)
213        [--------]  $mem0 (all 16 bits)
214          . . .
215        [--------]  $mem14
216*/
217
218#define FIRST_PSEUDO_REGISTER   20
219
220/* Note that these two tables are modified based on which CPU family
221   you select; see m32c_conditional_register_usage for details.  */
222
223/* r0 r2 r1 r3 - a0 a1 sb fb - sp pc flg argp - mem0..mem14 */
224#define FIXED_REGISTERS     { 0, 0, 0, 0, \
225			      0, 0, 1, 0, \
226			      1, 1, 0, 1, \
227			      0, 0, 0, 0, 0, 0, 0, 0 }
228#define CALL_USED_REGISTERS { 1, 1, 1, 1, \
229			      1, 1, 1, 0, \
230			      1, 1, 1, 1, \
231			      1, 1, 1, 1, 1, 1, 1, 1 }
232
233#define CONDITIONAL_REGISTER_USAGE m32c_conditional_register_usage ();
234
235/* The *_REGNO theme matches m32c.md and most register number
236   arguments; the PC_REGNUM is the odd one out.  */
237#ifndef PC_REGNO
238#define PC_REGNO 9
239#endif
240#define PC_REGNUM PC_REGNO
241
242/* Order of Allocation of Registers */
243
244#define REG_ALLOC_ORDER { \
245	0, 1, 2, 3, 4, 5, /* r0..r3, a0, a1 */ \
246        12, 13, 14, 15, 16, 17, 18, 19, /* mem0..mem7 */	\
247	6, 7, 8, 9, 10, 11 /* sb, fb, sp, pc, flg, ap */ }
248
249/* How Values Fit in Registers */
250
251#define HARD_REGNO_NREGS(R,M) m32c_hard_regno_nregs (R, M)
252#define HARD_REGNO_MODE_OK(R,M) m32c_hard_regno_ok (R, M)
253#define MODES_TIEABLE_P(M1,M2) m32c_modes_tieable_p (M1, M2)
254#define AVOID_CCMODE_COPIES
255
256/* Register Classes */
257
258/* Most registers are special purpose in some form or another, so this
259   table is pretty big.  Class names are used for constraints also;
260   for example the HL_REGS class (HL below) is "Rhl" in the md files.
261   See m32c_reg_class_from_constraint for the mapping.  There's some
262   duplication so that we can better isolate the reason for using
263   constraints in the md files from the actual registers used; for
264   example we may want to exclude a1a0 from SI_REGS in the future,
265   without precluding their use as HImode registers.  */
266
267/* m7654 - m3210 - argp flg pc sp - fb sb a1 a0 - r3 r1 r2 r0 */
268/*       mmPAR */
269#define REG_CLASS_CONTENTS \
270{ { 0x00000000 }, /* NO */\
271  { 0x00000100 }, /* SP  - sp */\
272  { 0x00000080 }, /* FB  - fb */\
273  { 0x00000040 }, /* SB  - sb */\
274  { 0x000001c0 }, /* CR  - sb fb sp */\
275  { 0x00000001 }, /* R0  - r0 */\
276  { 0x00000004 }, /* R1  - r1 */\
277  { 0x00000002 }, /* R2  - r2 */\
278  { 0x00000008 }, /* R3  - r3 */\
279  { 0x00000003 }, /* R02 - r0r2 */\
280  { 0x0000000c }, /* R13 - r1r3 */\
281  { 0x00000005 }, /* HL  - r0 r1 */\
282  { 0x00000005 }, /* QI  - r0 r1 */\
283  { 0x0000000a }, /* R23 - r2 r3 */\
284  { 0x0000000f }, /* R03 - r0r2 r1r3 */\
285  { 0x0000000f }, /* DI  - r0r2r1r3 + mems */\
286  { 0x00000010 }, /* A0  - a0 */\
287  { 0x00000020 }, /* A1  - a1 */\
288  { 0x00000030 }, /* A   - a0 a1 */\
289  { 0x000000f0 }, /* AD  - a0 a1 sb fp */\
290  { 0x000001f0 }, /* PS  - a0 a1 sb fp sp */\
291  { 0x0000000f }, /* SI  - r0r2 r1r3 a0a1 */\
292  { 0x0000003f }, /* HI  - r0 r1 r2 r3 a0 a1 */\
293  { 0x00000033 }, /* R02A  - r0r2 a0 a1 */ \
294  { 0x0000003f }, /* RA  - r0..r3 a0 a1 */\
295  { 0x0000007f }, /* GENERAL */\
296  { 0x00000400 }, /* FLG */\
297  { 0x000001ff }, /* HC  - r0l r1 r2 r3 a0 a1 sb fb sp */\
298  { 0x000ff000 }, /* MEM */\
299  { 0x000ff003 }, /* R02_A_MEM */\
300  { 0x000ff005 }, /* A_HL_MEM */\
301  { 0x000ff00c }, /* R1_R3_A_MEM */\
302  { 0x000ff00f }, /* R03_MEM */\
303  { 0x000ff03f }, /* A_HI_MEM */\
304  { 0x000ff0ff }, /* A_AD_CR_MEM_SI */\
305  { 0x000ff1ff }, /* ALL */\
306}
307
308enum reg_class
309{
310  NO_REGS,
311  SP_REGS,
312  FB_REGS,
313  SB_REGS,
314  CR_REGS,
315  R0_REGS,
316  R1_REGS,
317  R2_REGS,
318  R3_REGS,
319  R02_REGS,
320  R13_REGS,
321  HL_REGS,
322  QI_REGS,
323  R23_REGS,
324  R03_REGS,
325  DI_REGS,
326  A0_REGS,
327  A1_REGS,
328  A_REGS,
329  AD_REGS,
330  PS_REGS,
331  SI_REGS,
332  HI_REGS,
333  R02A_REGS,
334  RA_REGS,
335  GENERAL_REGS,
336  FLG_REGS,
337  HC_REGS,
338  MEM_REGS,
339  R02_A_MEM_REGS,
340  A_HL_MEM_REGS,
341  R1_R3_A_MEM_REGS,
342  R03_MEM_REGS,
343  A_HI_MEM_REGS,
344  A_AD_CR_MEM_SI_REGS,
345  ALL_REGS,
346  LIM_REG_CLASSES
347};
348
349#define N_REG_CLASSES LIM_REG_CLASSES
350
351#define REG_CLASS_NAMES {\
352"NO_REGS", \
353"SP_REGS", \
354"FB_REGS", \
355"SB_REGS", \
356"CR_REGS", \
357"R0_REGS", \
358"R1_REGS", \
359"R2_REGS", \
360"R3_REGS", \
361"R02_REGS", \
362"R13_REGS", \
363"HL_REGS", \
364"QI_REGS", \
365"R23_REGS", \
366"R03_REGS", \
367"DI_REGS", \
368"A0_REGS", \
369"A1_REGS", \
370"A_REGS", \
371"AD_REGS", \
372"PS_REGS", \
373"SI_REGS", \
374"HI_REGS", \
375"R02A_REGS", \
376"RA_REGS", \
377"GENERAL_REGS", \
378"FLG_REGS", \
379"HC_REGS", \
380"MEM_REGS", \
381"R02_A_MEM_REGS", \
382"A_HL_MEM_REGS", \
383"R1_R3_A_MEM_REGS", \
384"R03_MEM_REGS", \
385"A_HI_MEM_REGS", \
386"A_AD_CR_MEM_SI_REGS", \
387"ALL_REGS", \
388}
389
390#define REGNO_REG_CLASS(R) m32c_regno_reg_class (R)
391
392/* We support simple displacements off address registers, nothing else.  */
393#define BASE_REG_CLASS A_REGS
394#define INDEX_REG_CLASS NO_REGS
395
396/* We primarily use the new "long" constraint names, with the initial
397   letter classifying the constraint type and following letters
398   specifying which.  The types are:
399
400   I - integer values
401   R - register classes
402   S - memory references (M was used)
403   A - addresses (currently unused)
404*/
405
406#define CONSTRAINT_LEN(CHAR,STR) \
407	((CHAR) == 'I' ? 3 \
408	 : (CHAR) == 'R' ? 3 \
409	 : (CHAR) == 'S' ? 2 \
410	 : (CHAR) == 'A' ? 2 \
411	 : DEFAULT_CONSTRAINT_LEN(CHAR,STR))
412#define REG_CLASS_FROM_CONSTRAINT(CHAR,STR) \
413	m32c_reg_class_from_constraint (CHAR, STR)
414
415#define REGNO_OK_FOR_BASE_P(NUM) m32c_regno_ok_for_base_p (NUM)
416#define REGNO_OK_FOR_INDEX_P(NUM) 0
417
418#define PREFERRED_RELOAD_CLASS(X,CLASS) m32c_preferred_reload_class (X, CLASS)
419#define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) m32c_preferred_output_reload_class (X, CLASS)
420#define LIMIT_RELOAD_CLASS(MODE,CLASS) m32c_limit_reload_class (MODE, CLASS)
421
422#define SECONDARY_RELOAD_CLASS(CLASS,MODE,X) m32c_secondary_reload_class (CLASS, MODE, X)
423
424#define SMALL_REGISTER_CLASSES 1
425
426#define CLASS_LIKELY_SPILLED_P(C) m32c_class_likely_spilled_p (C)
427
428#define CLASS_MAX_NREGS(C,M) m32c_class_max_nregs (C, M)
429
430#define CANNOT_CHANGE_MODE_CLASS(F,T,C) m32c_cannot_change_mode_class(F,T,C)
431
432#define CONST_OK_FOR_CONSTRAINT_P(VALUE,C,STR) \
433	m32c_const_ok_for_constraint_p (VALUE, C, STR)
434#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(VALUE,C,STR) 0
435#define EXTRA_CONSTRAINT_STR(VALUE,C,STR) \
436	m32c_extra_constraint_p (VALUE, C, STR)
437#define EXTRA_MEMORY_CONSTRAINT(C,STR) \
438	m32c_extra_memory_constraint (C, STR)
439#define EXTRA_ADDRESS_CONSTRAINT(C,STR) \
440	m32c_extra_address_constraint (C, STR)
441
442/* STACK AND CALLING */
443
444/* Frame Layout */
445
446/* Standard push/pop stack, no surprises here.  */
447
448#define STACK_GROWS_DOWNWARD 1
449#define STACK_PUSH_CODE PRE_DEC
450#define FRAME_GROWS_DOWNWARD 1
451
452#define STARTING_FRAME_OFFSET 0
453#define FIRST_PARM_OFFSET(F) 0
454
455#define RETURN_ADDR_RTX(COUNT,FA) m32c_return_addr_rtx (COUNT)
456
457#define INCOMING_RETURN_ADDR_RTX m32c_incoming_return_addr_rtx()
458#define INCOMING_FRAME_SP_OFFSET (TARGET_A24 ? 4 : 3)
459
460/* Exception Handling Support */
461
462#define EH_RETURN_DATA_REGNO(N) m32c_eh_return_data_regno (N)
463#define EH_RETURN_STACKADJ_RTX m32c_eh_return_stackadj_rtx ()
464
465/* Registers That Address the Stack Frame */
466
467#ifndef FP_REGNO
468#define FP_REGNO 7
469#endif
470#ifndef SP_REGNO
471#define SP_REGNO 8
472#endif
473#define AP_REGNO 11
474
475#define STACK_POINTER_REGNUM	SP_REGNO
476#define FRAME_POINTER_REGNUM	FP_REGNO
477#define ARG_POINTER_REGNUM	AP_REGNO
478
479/* The static chain must be pointer-capable.  */
480#define STATIC_CHAIN_REGNUM A0_REGNO
481
482#define DWARF_FRAME_REGISTERS 20
483#define DWARF_FRAME_REGNUM(N) m32c_dwarf_frame_regnum (N)
484#define DBX_REGISTER_NUMBER(N) m32c_dwarf_frame_regnum (N)
485
486#undef ASM_PREFERRED_EH_DATA_FORMAT
487/* This is the same as the default in practice, except that by making
488   it explicit we tell binutils what size pointers to use.  */
489#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
490  (TARGET_A16 ? DW_EH_PE_udata2 : DW_EH_PE_udata4)
491
492/* Eliminating Frame Pointer and Arg Pointer */
493
494#define ELIMINABLE_REGS \
495  {{AP_REGNO, SP_REGNO}, \
496   {AP_REGNO, FB_REGNO}, \
497   {FB_REGNO, SP_REGNO}}
498
499#define INITIAL_ELIMINATION_OFFSET(FROM,TO,VAR) \
500	(VAR) = m32c_initial_elimination_offset(FROM,TO)
501
502/* Passing Function Arguments on the Stack */
503
504#define PUSH_ARGS 1
505#define PUSH_ROUNDING(N) m32c_push_rounding (N)
506#define RETURN_POPS_ARGS(D,T,S) 0
507#define CALL_POPS_ARGS(C) 0
508
509/* Passing Arguments in Registers */
510
511#define FUNCTION_ARG(CA,MODE,TYPE,NAMED) \
512	m32c_function_arg (&(CA),MODE,TYPE,NAMED)
513
514typedef struct m32c_cumulative_args
515{
516  /* For address of return value buffer (structures are returned by
517     passing the address of a buffer as an invisible first argument.
518     This identifies it).  If set, the current parameter will be put
519     on the stack, regardless of type.  */
520  int force_mem;
521  /* First parm is 1, parm 0 is hidden pointer for returning
522     aggregates.  */
523  int parm_num;
524} m32c_cumulative_args;
525
526#define CUMULATIVE_ARGS m32c_cumulative_args
527#define INIT_CUMULATIVE_ARGS(CA,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \
528	m32c_init_cumulative_args (&(CA),FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS)
529#define FUNCTION_ARG_ADVANCE(CA,MODE,TYPE,NAMED) \
530	m32c_function_arg_advance (&(CA),MODE,TYPE,NAMED)
531#define FUNCTION_ARG_BOUNDARY(MODE,TYPE) (TARGET_A16 ? 8 : 16)
532#define FUNCTION_ARG_REGNO_P(r) m32c_function_arg_regno_p (r)
533
534/* How Scalar Function Values Are Returned */
535
536#define FUNCTION_VALUE_REGNO_P(r) m32c_function_value_regno_p (r)
537
538/* How Large Values Are Returned */
539
540#define DEFAULT_PCC_STRUCT_RETURN 1
541
542/* Function Entry and Exit */
543
544#define EXIT_IGNORE_STACK 0
545#define EPILOGUE_USES(REGNO) m32c_epilogue_uses(REGNO)
546#define EH_USES(REGNO) 0	/* FIXME */
547
548/* Generating Code for Profiling */
549
550#define FUNCTION_PROFILER(FILE,LABELNO)
551
552/* Implementing the Varargs Macros */
553
554/* Trampolines for Nested Functions */
555
556#define TRAMPOLINE_SIZE m32c_trampoline_size ()
557#define TRAMPOLINE_ALIGNMENT m32c_trampoline_alignment ()
558
559/* Addressing Modes */
560
561#define HAVE_PRE_DECREMENT 1
562#define HAVE_POST_INCREMENT 1
563#define MAX_REGS_PER_ADDRESS 1
564
565/* This is passed to the macros below, so that they can be implemented
566   in m32c.c.  */
567#ifdef REG_OK_STRICT
568#define REG_OK_STRICT_V 1
569#else
570#define REG_OK_STRICT_V 0
571#endif
572
573#define REG_OK_FOR_BASE_P(X) m32c_reg_ok_for_base_p (X, REG_OK_STRICT_V)
574#define REG_OK_FOR_INDEX_P(X) 0
575
576/* #define FIND_BASE_TERM(X) when we do unspecs for symrefs */
577
578#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
579	if (m32c_legitimize_reload_address(&(X),MODE,OPNUM,TYPE,IND_LEVELS)) \
580	  goto WIN;
581
582#define LEGITIMATE_CONSTANT_P(X) m32c_legitimate_constant_p (X)
583
584/* Condition Code Status */
585
586#define REVERSIBLE_CC_MODE(MODE) 1
587
588/* Describing Relative Costs of Operations */
589
590#define REGISTER_MOVE_COST(MODE,FROM,TO) \
591	m32c_register_move_cost (MODE, FROM, TO)
592#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
593	m32c_memory_move_cost (MODE, CLASS, IN)
594
595/* Dividing the Output into Sections (Texts, Data, ...) */
596
597#define TEXT_SECTION_ASM_OP ".text"
598#define DATA_SECTION_ASM_OP ".data"
599#define BSS_SECTION_ASM_OP ".bss"
600
601#define CTOR_LIST_BEGIN
602#define CTOR_LIST_END
603#define DTOR_LIST_BEGIN
604#define DTOR_LIST_END
605#define CTORS_SECTION_ASM_OP "\t.section\t.init_array,\"aw\",%init_array"
606#define DTORS_SECTION_ASM_OP "\t.section\t.fini_array,\"aw\",%fini_array"
607#define INIT_ARRAY_SECTION_ASM_OP "\t.section\t.init_array,\"aw\",%init_array"
608#define FINI_ARRAY_SECTION_ASM_OP "\t.section\t.fini_array,\"aw\",%fini_array"
609
610/* The Overall Framework of an Assembler File */
611
612#define ASM_COMMENT_START ";"
613#define ASM_APP_ON ""
614#define ASM_APP_OFF ""
615
616/* Output and Generation of Labels */
617
618#define GLOBAL_ASM_OP "\t.global\t"
619
620/* Output of Assembler Instructions */
621
622#define REGISTER_NAMES {	\
623  "r0", "r2", "r1", "r3", \
624  "a0", "a1", "sb", "fb", "sp", \
625  "pc", "flg", "argp", \
626  "mem0",  "mem2",  "mem4",  "mem6",  "mem8",  "mem10",  "mem12",  "mem14", \
627}
628
629#define ADDITIONAL_REGISTER_NAMES { \
630  {"r0l", 0}, \
631  {"r1l", 2}, \
632  {"r0r2", 0}, \
633  {"r1r3", 2}, \
634  {"a0a1", 4}, \
635  {"r0r2r1r3", 0} }
636
637#define PRINT_OPERAND(S,X,C) m32c_print_operand (S, X, C)
638#define PRINT_OPERAND_PUNCT_VALID_P(C) m32c_print_operand_punct_valid_p (C)
639#define PRINT_OPERAND_ADDRESS(S,X) m32c_print_operand_address (S, X)
640
641#undef USER_LABEL_PREFIX
642#define USER_LABEL_PREFIX "_"
643
644#define ASM_OUTPUT_REG_PUSH(S,R) m32c_output_reg_push (S, R)
645#define ASM_OUTPUT_REG_POP(S,R) m32c_output_reg_pop (S, R)
646
647/* Output of Dispatch Tables */
648
649#define ASM_OUTPUT_ADDR_VEC_ELT(S,V) \
650	fprintf (S, "\t.word L%d\n", V)
651
652/* Assembler Commands for Exception Regions */
653
654#define DWARF_CIE_DATA_ALIGNMENT -1
655
656/* Assembler Commands for Alignment */
657
658#define ASM_OUTPUT_ALIGN(STREAM,POWER) \
659	fprintf (STREAM, "\t.p2align\t%d\n", POWER);
660
661/* Controlling Debugging Information Format */
662
663#define DWARF2_ADDR_SIZE	4
664
665/* Miscellaneous Parameters */
666
667#define HAS_LONG_COND_BRANCH false
668#define HAS_LONG_UNCOND_BRANCH true
669#define CASE_VECTOR_MODE SImode
670#define LOAD_EXTEND_OP(MEM) ZERO_EXTEND
671
672#define MOVE_MAX 4
673#define TRULY_NOOP_TRUNCATION(op,ip) 1
674
675#define STORE_FLAG_VALUE 1
676
677/* 16- or 24-bit pointers */
678#define Pmode (TARGET_A16 ? HImode : PSImode)
679#define FUNCTION_MODE QImode
680
681#define REGISTER_TARGET_PRAGMAS() m32c_register_pragmas()
682
683#endif
684