1/* Target macros for the FRV port of GCC.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3   Free Software Foundation, Inc.
4   Contributed by Red Hat Inc.
5
6   This file is part of GCC.
7
8   GCC is free software; you can redistribute it and/or modify it
9   under the terms of the GNU General Public License as published
10   by the Free Software Foundation; either version 3, or (at your
11   option) any later version.
12
13   GCC is distributed in the hope that it will be useful, but WITHOUT
14   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16   License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GCC; see the file COPYING3.  If not see
20   <http://www.gnu.org/licenses/>.  */
21
22#ifndef __FRV_H__
23#define __FRV_H__
24
25/* Frv general purpose macros.  */
26/* Align an address.  */
27#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
28
29/* Return true if a value is inside a range.  */
30#define IN_RANGE_P(VALUE, LOW, HIGH)				\
31  (   (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW))	\
32   && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
33
34
35/* Driver configuration.  */
36
37/* A C expression which determines whether the option `-CHAR' takes arguments.
38   The value should be the number of arguments that option takes-zero, for many
39   options.
40
41   By default, this macro is defined to handle the standard options properly.
42   You need not define it unless you wish to add additional options which take
43   arguments.
44
45   Defined in svr4.h.  */
46#undef  SWITCH_TAKES_ARG
47#define SWITCH_TAKES_ARG(CHAR)                                          \
48  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
49
50/* A C expression which determines whether the option `-NAME' takes arguments.
51   The value should be the number of arguments that option takes-zero, for many
52   options.  This macro rather than `SWITCH_TAKES_ARG' is used for
53   multi-character option names.
54
55   By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
56   handles the standard options properly.  You need not define
57   `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
58   arguments.  Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
59   then check for additional options.
60
61   Defined in svr4.h.  */
62#undef WORD_SWITCH_TAKES_ARG
63
64/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
65    FDPIC which multilib to use depends on whether FDPIC is in use or
66    not.  The trick we use is to introduce -multilib-library-pic as a
67    pseudo-flag that selects the library-pic multilib, and map fpic
68    and fPIC to it only if fdpic is not selected.  Also, if fdpic is
69    selected and no PIC/PIE options are present, we imply -fPIE.
70    Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
71    speed, or if we have -On with n>=3, enable inlining of PLTs.  As
72    for -mgprel-ro, we want to enable it by default, but not for -fpic or
73    -fpie.  */
74
75#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
76"%{mno-pack:\
77   %{!mhard-float:-msoft-float}\
78   %{!mmedia:-mno-media}}\
79 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
80 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
81   	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
82	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
83                    %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
84	  %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
85"
86#ifndef SUBTARGET_DRIVER_SELF_SPECS
87# define SUBTARGET_DRIVER_SELF_SPECS
88#endif
89
90/* A C string constant that tells the GCC driver program options to pass to
91   the assembler.  It can also specify how to translate options you give to GNU
92   CC into options for GCC to pass to the assembler.  See the file `sun3.h'
93   for an example of this.
94
95   Do not define this macro if it does not need to do anything.
96
97   Defined in svr4.h.  */
98#undef  ASM_SPEC
99#define ASM_SPEC "\
100%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
101%{mtomcat-stats} \
102%{!mno-eflags: \
103    %{mcpu=*} \
104    %{mgpr-*} %{mfpr-*} \
105    %{msoft-float} %{mhard-float} \
106    %{mdword} %{mno-dword} \
107    %{mdouble} %{mno-double} \
108    %{mmedia} %{mno-media} \
109    %{mmuladd} %{mno-muladd} \
110    %{mpack} %{mno-pack} \
111    %{mno-fdpic:-mnopic} %{mfdpic} \
112    %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
113
114/* Another C string constant used much like `LINK_SPEC'.  The difference
115   between the two is that `STARTFILE_SPEC' is used at the very beginning of
116   the command given to the linker.
117
118   If this macro is not defined, a default is provided that loads the standard
119   C startup file from the usual place.  See `gcc.c'.
120
121   Defined in svr4.h.  */
122#undef  STARTFILE_SPEC
123#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
124
125/* Another C string constant used much like `LINK_SPEC'.  The difference
126   between the two is that `ENDFILE_SPEC' is used at the very end of the
127   command given to the linker.
128
129   Do not define this macro if it does not need to do anything.
130
131   Defined in svr4.h.  */
132#undef  ENDFILE_SPEC
133#define ENDFILE_SPEC "frvend%O%s"
134
135
136#define MASK_DEFAULT_FRV	\
137  (MASK_MEDIA			\
138   | MASK_DOUBLE		\
139   | MASK_MULADD		\
140   | MASK_DWORD			\
141   | MASK_PACK)
142
143#define MASK_DEFAULT_FR500 \
144  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
145
146#define MASK_DEFAULT_FR550 \
147  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
148
149#define MASK_DEFAULT_FR450	\
150  (MASK_GPR_32			\
151   | MASK_FPR_32		\
152   | MASK_MEDIA			\
153   | MASK_SOFT_FLOAT		\
154   | MASK_DWORD			\
155   | MASK_PACK)
156
157#define MASK_DEFAULT_FR400	\
158  (MASK_GPR_32			\
159   | MASK_FPR_32		\
160   | MASK_MEDIA			\
161   | MASK_ACC_4			\
162   | MASK_SOFT_FLOAT		\
163   | MASK_DWORD			\
164   | MASK_PACK)
165
166#define MASK_DEFAULT_SIMPLE \
167  (MASK_GPR_32 | MASK_SOFT_FLOAT)
168
169/* A C string constant that tells the GCC driver program options to pass to
170   `cc1'.  It can also specify how to translate options you give to GCC into
171   options for GCC to pass to the `cc1'.
172
173   Do not define this macro if it does not need to do anything.  */
174/* For ABI compliance, we need to put bss data into the normal data section.  */
175#define CC1_SPEC "%{G*}"
176
177/* A C string constant that tells the GCC driver program options to pass to
178   the linker.  It can also specify how to translate options you give to GCC
179   into options for GCC to pass to the linker.
180
181   Do not define this macro if it does not need to do anything.
182
183   Defined in svr4.h.  */
184/* Override the svr4.h version with one that dispenses without the svr4
185   shared library options, notably -G.  */
186#undef	LINK_SPEC
187#define LINK_SPEC "\
188%{h*} %{v:-V} \
189%{b} \
190%{mfdpic:-melf32frvfd -z text} \
191%{static:-dn -Bstatic} \
192%{shared:-Bdynamic} \
193%{symbolic:-Bsymbolic} \
194%{G*} \
195%{YP,*} \
196%{Qy:} %{!Qn:-Qy}"
197
198/* Another C string constant used much like `LINK_SPEC'.  The difference
199   between the two is that `LIB_SPEC' is used at the end of the command given
200   to the linker.
201
202   If this macro is not defined, a default is provided that loads the standard
203   C library from the usual place.  See `gcc.c'.
204
205   Defined in svr4.h.  */
206
207#undef  LIB_SPEC
208#define LIB_SPEC "--start-group -lc -lsim --end-group"
209
210#ifndef CPU_TYPE
211#define CPU_TYPE		FRV_CPU_FR500
212#endif
213
214/* Run-time target specifications */
215
216#define TARGET_CPU_CPP_BUILTINS()					\
217  do									\
218    {									\
219      int issue_rate;							\
220									\
221      builtin_define ("__frv__");					\
222      builtin_assert ("machine=frv");					\
223									\
224      issue_rate = frv_issue_rate ();					\
225      if (issue_rate > 1)						\
226	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
227      builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
228      builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
229      builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
230									\
231      switch (frv_cpu_type)						\
232	{								\
233	case FRV_CPU_GENERIC:						\
234	  builtin_define ("__CPU_GENERIC__");				\
235	  break;							\
236	case FRV_CPU_FR550:						\
237	  builtin_define ("__CPU_FR550__");				\
238	  break;							\
239	case FRV_CPU_FR500:						\
240	case FRV_CPU_TOMCAT:						\
241	  builtin_define ("__CPU_FR500__");				\
242	  break;							\
243	case FRV_CPU_FR450:						\
244	  builtin_define ("__CPU_FR450__");				\
245	  break;							\
246	case FRV_CPU_FR405:						\
247	  builtin_define ("__CPU_FR405__");				\
248	  break;							\
249	case FRV_CPU_FR400:						\
250	  builtin_define ("__CPU_FR400__");				\
251	  break;							\
252	case FRV_CPU_FR300:						\
253	case FRV_CPU_SIMPLE:						\
254	  builtin_define ("__CPU_FR300__");				\
255	  break;							\
256	}								\
257									\
258      if (TARGET_HARD_FLOAT)						\
259	builtin_define ("__FRV_HARD_FLOAT__");				\
260      if (TARGET_DWORD)							\
261	builtin_define ("__FRV_DWORD__");				\
262      if (TARGET_FDPIC)							\
263	builtin_define ("__FRV_FDPIC__");				\
264      if (flag_leading_underscore > 0)					\
265	builtin_define ("__FRV_UNDERSCORE__");				\
266    }									\
267  while (0)
268
269
270#define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
271
272#define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
273#define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
274#define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
275
276/* X is a valid accumulator number if (X & ACC_MASK) == X.  */
277#define ACC_MASK						\
278  (!TARGET_MEDIA ? 0						\
279   : TARGET_ACC_4 ? 3						\
280   : frv_cpu_type == FRV_CPU_FR450 ? 11				\
281   : 7)
282
283/* Macros to identify the blend of media instructions available.  Revision 1
284   is the one found on the FR500.  Revision 2 includes the changes made for
285   the FR400.
286
287   Treat the generic processor as a revision 1 machine for now, for
288   compatibility with earlier releases.  */
289
290#define TARGET_MEDIA_REV1					\
291  (TARGET_MEDIA							\
292   && (frv_cpu_type == FRV_CPU_GENERIC				\
293       || frv_cpu_type == FRV_CPU_FR500))
294
295#define TARGET_MEDIA_REV2					\
296  (TARGET_MEDIA							\
297   && (frv_cpu_type == FRV_CPU_FR400				\
298       || frv_cpu_type == FRV_CPU_FR405				\
299       || frv_cpu_type == FRV_CPU_FR450				\
300       || frv_cpu_type == FRV_CPU_FR550))
301
302#define TARGET_MEDIA_FR450					\
303  (frv_cpu_type == FRV_CPU_FR450)
304
305#define TARGET_FR500_FR550_BUILTINS				\
306   (frv_cpu_type == FRV_CPU_FR500				\
307    || frv_cpu_type == FRV_CPU_FR550)
308
309#define TARGET_FR405_BUILTINS					\
310  (frv_cpu_type == FRV_CPU_FR405				\
311   || frv_cpu_type == FRV_CPU_FR450)
312
313#ifndef HAVE_AS_TLS
314#define HAVE_AS_TLS 0
315#endif
316
317/* This macro is a C statement to print on `stderr' a string describing the
318   particular machine description choice.  Every machine description should
319   define `TARGET_VERSION'.  For example:
320
321        #ifdef MOTOROLA
322        #define TARGET_VERSION \
323          fprintf (stderr, " (68k, Motorola syntax)");
324        #else
325        #define TARGET_VERSION \
326          fprintf (stderr, " (68k, MIT syntax)");
327        #endif  */
328#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
329
330/* Sometimes certain combinations of command options do not make sense on a
331   particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
332   take account of this.  This macro, if defined, is executed once just after
333   all the command options have been parsed.
334
335   Don't use this macro to turn on various extra optimizations for `-O'.  That
336   is what `OPTIMIZATION_OPTIONS' is for.  */
337
338#define OVERRIDE_OPTIONS frv_override_options ()
339
340/* Some machines may desire to change what optimizations are performed for
341   various optimization levels.  This macro, if defined, is executed once just
342   after the optimization level is determined and before the remainder of the
343   command options have been parsed.  Values set in this macro are used as the
344   default values for the other command line options.
345
346   LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
347   `-O' is specified, and 0 if neither is specified.
348
349   SIZE is nonzero if `-Os' is specified, 0 otherwise.
350
351   You should not use this macro to change options that are not
352   machine-specific.  These should uniformly selected by the same optimization
353   level on all supported machines.  Use this macro to enable machine-specific
354   optimizations.
355
356   *Do not examine `write_symbols' in this macro!* The debugging options are
357   *not supposed to alter the generated code.  */
358#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
359
360
361/* Define this macro if debugging can be performed even without a frame
362   pointer.  If this macro is defined, GCC will turn on the
363   `-fomit-frame-pointer' option whenever `-O' is specified.  */
364/* Frv needs a specific frame layout that includes the frame pointer.  */
365
366#define CAN_DEBUG_WITHOUT_FP
367
368#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
369
370/* Small Data Area Support.  */
371/* Maximum size of variables that go in .sdata/.sbss.
372   The -msdata=foo switch also controls how small variables are handled.  */
373#ifndef SDATA_DEFAULT_SIZE
374#define SDATA_DEFAULT_SIZE 8
375#endif
376
377
378/* Storage Layout */
379
380/* Define this macro to have the value 1 if the most significant bit in a byte
381   has the lowest number; otherwise define it to have the value zero.  This
382   means that bit-field instructions count from the most significant bit.  If
383   the machine has no bit-field instructions, then this must still be defined,
384   but it doesn't matter which value it is defined to.  This macro need not be
385   a constant.
386
387   This macro does not affect the way structure fields are packed into bytes or
388   words; that is controlled by `BYTES_BIG_ENDIAN'.  */
389#define BITS_BIG_ENDIAN 1
390
391/* Define this macro to have the value 1 if the most significant byte in a word
392   has the lowest number.  This macro need not be a constant.  */
393#define BYTES_BIG_ENDIAN 1
394
395/* Define this macro to have the value 1 if, in a multiword object, the most
396   significant word has the lowest number.  This applies to both memory
397   locations and registers; GCC fundamentally assumes that the order of
398   words in memory is the same as the order in registers.  This macro need not
399   be a constant.  */
400#define WORDS_BIG_ENDIAN 1
401
402/* Number of storage units in a word; normally 4.  */
403#define UNITS_PER_WORD 4
404
405/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
406   which has the specified mode and signedness is to be stored in a register.
407   This macro is only called when TYPE is a scalar type.
408
409   On most RISC machines, which only have operations that operate on a full
410   register, define this macro to set M to `word_mode' if M is an integer mode
411   narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
412   widened because wider-precision floating-point operations are usually more
413   expensive than their narrower counterparts.
414
415   For most machines, the macro definition does not change UNSIGNEDP.  However,
416   some machines, have instructions that preferentially handle either signed or
417   unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
418   loads from memory and 32-bit add instructions sign-extend the result to 64
419   bits.  On such machines, set UNSIGNEDP according to which kind of extension
420   is more efficient.
421
422   Do not define this macro if it would never modify MODE.  */
423#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
424  do						\
425    {						\
426      if (GET_MODE_CLASS (MODE) == MODE_INT	\
427	  && GET_MODE_SIZE (MODE) < 4)		\
428	(MODE) = SImode;			\
429    }						\
430  while (0)
431
432/* Normal alignment required for function parameters on the stack, in bits.
433   All stack parameters receive at least this much alignment regardless of data
434   type.  On most machines, this is the same as the size of an integer.  */
435#define PARM_BOUNDARY 32
436
437/* Define this macro if you wish to preserve a certain alignment for the stack
438   pointer.  The definition is a C expression for the desired alignment
439   (measured in bits).
440
441   If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
442   specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
443   strict alignment than `STACK_BOUNDARY', the stack may be momentarily
444   unaligned while pushing arguments.  */
445#define STACK_BOUNDARY 64
446
447/* Alignment required for a function entry point, in bits.  */
448#define FUNCTION_BOUNDARY 128
449
450/* Biggest alignment that any data type can require on this machine,
451   in bits.  */
452#define BIGGEST_ALIGNMENT 64
453
454/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
455   some reason.  */
456#ifdef IN_TARGET_LIBS
457#define BIGGEST_FIELD_ALIGNMENT 64
458#else
459/* An expression for the alignment of a structure field FIELD if the
460   alignment computed in the usual way is COMPUTED.  GCC uses this
461   value instead of the value in `BIGGEST_ALIGNMENT' or
462   `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
463#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) 				\
464  frv_adjust_field_align (FIELD, COMPUTED)
465#endif
466
467/* If defined, a C expression to compute the alignment for a static variable.
468   TYPE is the data type, and ALIGN is the alignment that the object
469   would ordinarily have.  The value of this macro is used instead of that
470   alignment to align the object.
471
472   If this macro is not defined, then ALIGN is used.
473
474   One use of this macro is to increase alignment of medium-size data to make
475   it all fit in fewer cache lines.  Another is to cause character arrays to be
476   word-aligned so that `strcpy' calls that copy constants to character arrays
477   can be done inline.  */
478#define DATA_ALIGNMENT(TYPE, ALIGN)		\
479  (TREE_CODE (TYPE) == ARRAY_TYPE		\
480   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
481   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
482
483/* If defined, a C expression to compute the alignment given to a constant that
484   is being placed in memory.  CONSTANT is the constant and ALIGN is the
485   alignment that the object would ordinarily have.  The value of this macro is
486   used instead of that alignment to align the object.
487
488   If this macro is not defined, then ALIGN is used.
489
490   The typical use of this macro is to increase alignment for string constants
491   to be word aligned so that `strcpy' calls that copy constants can be done
492   inline.  */
493#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
494  (TREE_CODE (EXP) == STRING_CST	\
495   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
496
497/* Define this macro to be the value 1 if instructions will fail to work if
498   given data not on the nominal alignment.  If instructions will merely go
499   slower in that case, define this macro as 0.  */
500#define STRICT_ALIGNMENT 1
501
502/* Define this if you wish to imitate the way many other C compilers handle
503   alignment of bitfields and the structures that contain them.
504
505   The behavior is that the type written for a bit-field (`int', `short', or
506   other integer type) imposes an alignment for the entire structure, as if the
507   structure really did contain an ordinary field of that type.  In addition,
508   the bit-field is placed within the structure so that it would fit within such
509   a field, not crossing a boundary for it.
510
511   Thus, on most machines, a bit-field whose type is written as `int' would not
512   cross a four-byte boundary, and would force four-byte alignment for the
513   whole structure.  (The alignment used may not be four bytes; it is
514   controlled by the other alignment parameters.)
515
516   If the macro is defined, its definition should be a C expression; a nonzero
517   value for the expression enables this behavior.
518
519   Note that if this macro is not defined, or its value is zero, some bitfields
520   may cross more than one alignment boundary.  The compiler can support such
521   references if there are `insv', `extv', and `extzv' insns that can directly
522   reference memory.
523
524   The other known way of making bitfields work is to define
525   `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'.  Then every
526   structure can be accessed with fullwords.
527
528   Unless the machine has bit-field instructions or you define
529   `STRUCTURE_SIZE_BOUNDARY' that way, you must define
530   `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
531
532   If your aim is to make GCC use the same conventions for laying out
533   bitfields as are used by another compiler, here is how to investigate what
534   the other compiler does.  Compile and run this program:
535
536        struct foo1
537        {
538          char x;
539          char :0;
540          char y;
541        };
542
543        struct foo2
544        {
545          char x;
546          int :0;
547          char y;
548        };
549
550        main ()
551        {
552          printf ("Size of foo1 is %d\n",
553                  sizeof (struct foo1));
554          printf ("Size of foo2 is %d\n",
555                  sizeof (struct foo2));
556          exit (0);
557        }
558
559   If this prints 2 and 5, then the compiler's behavior is what you would get
560   from `PCC_BITFIELD_TYPE_MATTERS'.
561
562   Defined in svr4.h.  */
563#define PCC_BITFIELD_TYPE_MATTERS 1
564
565
566/* Layout of Source Language Data Types.  */
567
568#define CHAR_TYPE_SIZE         8
569#define SHORT_TYPE_SIZE       16
570#define INT_TYPE_SIZE         32
571#define LONG_TYPE_SIZE        32
572#define LONG_LONG_TYPE_SIZE   64
573#define FLOAT_TYPE_SIZE       32
574#define DOUBLE_TYPE_SIZE      64
575#define LONG_DOUBLE_TYPE_SIZE 64
576
577/* An expression whose value is 1 or 0, according to whether the type `char'
578   should be signed or unsigned by default.  The user can always override this
579   default with the options `-fsigned-char' and `-funsigned-char'.  */
580#define DEFAULT_SIGNED_CHAR 1
581
582
583/* General purpose registers.  */
584#define GPR_FIRST       0                       /* First gpr */
585#define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
586#define GPR_R0          GPR_FIRST               /* R0, constant 0 */
587#define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
588#define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
589						/* small data register */
590#define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
591#define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
592#define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
593#define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
594
595#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
596
597#define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
598
599#define FPR_FIRST       64			/* First FP reg */
600#define FPR_LAST        127			/* Last  FP reg */
601
602#define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
603
604/* We reserve the last CR and CCR in each category to be used as a reload
605   register to reload the CR/CCR registers.  This is a kludge.  */
606#define CC_FIRST	128			/* First ICC/FCC reg */
607#define CC_LAST		135			/* Last  ICC/FCC reg */
608#define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
609#define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
610#define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
611#define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
612#define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
613
614/* Amount to shift a value to locate a ICC or FCC register in the CCR
615   register and shift it to the bottom 4 bits.  */
616#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
617
618/* Mask to isolate a single ICC/FCC value.  */
619#define CC_MASK		0xf
620
621/* Masks to isolate the various bits in an ICC field.  */
622#define ICC_MASK_N	0x8	/* negative */
623#define ICC_MASK_Z	0x4	/* zero */
624#define ICC_MASK_V	0x2	/* overflow */
625#define ICC_MASK_C	0x1	/* carry */
626
627/* Mask to isolate the N/Z flags in an ICC.  */
628#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
629
630/* Mask to isolate the Z/C flags in an ICC.  */
631#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
632
633/* Masks to isolate the various bits in a FCC field.  */
634#define FCC_MASK_E	0x8	/* equal */
635#define FCC_MASK_L	0x4	/* less than */
636#define FCC_MASK_G	0x2	/* greater than */
637#define FCC_MASK_U	0x1	/* unordered */
638
639/* For CCR registers, the machine wants CR4..CR7 to be used for integer
640   code and CR0..CR3 to be used for floating point.  */
641#define CR_FIRST	136			/* First CCR */
642#define CR_LAST		143			/* Last  CCR */
643#define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
644#define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
645#define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
646#define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
647#define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
648#define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
649
650/* Amount to shift a value to locate a CR register in the CCCR special purpose
651   register and shift it to the bottom 2 bits.  */
652#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
653
654/* Mask to isolate a single CR value.  */
655#define CR_MASK		0x3
656
657#define ACC_FIRST	144			/* First acc register */
658#define ACC_LAST	155			/* Last  acc register */
659
660#define ACCG_FIRST	156			/* First accg register */
661#define ACCG_LAST	167			/* Last  accg register */
662
663#define AP_FIRST	168			/* fake argument pointer */
664
665#define SPR_FIRST	169
666#define SPR_LAST	172
667#define LR_REGNO	(SPR_FIRST)
668#define LCR_REGNO	(SPR_FIRST + 1)
669#define IACC_FIRST	(SPR_FIRST + 2)
670#define IACC_LAST	(SPR_FIRST + 3)
671
672#define GPR_P(R)	IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
673#define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
674#define FPR_P(R)	IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
675#define CC_P(R)		IN_RANGE_P (R, CC_FIRST, CC_LAST)
676#define ICC_P(R)	IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
677#define FCC_P(R)	IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
678#define CR_P(R)		IN_RANGE_P (R, CR_FIRST, CR_LAST)
679#define ICR_P(R)	IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
680#define FCR_P(R)	IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
681#define ACC_P(R)	IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
682#define ACCG_P(R)	IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
683#define SPR_P(R)	IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
684
685#define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686#define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687#define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
688#define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
689#define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
690#define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
691#define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
692#define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
693#define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
694#define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
695#define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
696
697#define MAX_STACK_IMMEDIATE_OFFSET 2047
698
699
700/* Register Basics.  */
701
702/* Number of hardware registers known to the compiler.  They receive numbers 0
703   through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
704   really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
705#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
706
707/* The first/last register that can contain the arguments to a function.  */
708#define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
709#define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
710
711/* Registers used by the exception handling functions.  These should be
712   registers that are not otherwise used by the calling sequence.  */
713#define FIRST_EH_REGNUM		14
714#define LAST_EH_REGNUM		15
715
716/* Scratch registers used in the prologue, epilogue and thunks.
717   OFFSET_REGNO is for loading constant addends that are too big for a
718   single instruction.  TEMP_REGNO is used for transferring SPRs to and from
719   the stack, and various other activities.  */
720#define OFFSET_REGNO		4
721#define TEMP_REGNO		5
722
723/* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
724   which is sometimes used to set up the frame pointer.  */
725#define OLD_SP_REGNO		6
726
727/* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
728   handler's stack adjustment.  */
729#define STACKADJ_REGNO		6
730
731/* Registers used in thunks.  JMP_REGNO is used for loading the target
732   address.  */
733#define JUMP_REGNO		6
734
735#define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
736				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
737#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
738#define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
739
740#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
741
742/* An initializer that says which registers are used for fixed purposes all
743   throughout the compiled code and are therefore not available for general
744   allocation.  These would include the stack pointer, the frame pointer
745   (except on machines where that can be used as a general register when no
746   frame pointer is needed), the program counter on machines where that is
747   considered one of the addressable registers, and any other numbered register
748   with a standard use.
749
750   This information is expressed as a sequence of numbers, separated by commas
751   and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
752   otherwise.
753
754   The table initialized from this macro, and the table initialized by the
755   following one, may be overridden at run time either automatically, by the
756   actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
757   command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
758
759/* gr0  -- Hard Zero
760   gr1  -- Stack Pointer
761   gr2  -- Frame Pointer
762   gr3  -- Hidden Parameter
763   gr16 -- Small Data reserved
764   gr17 -- Pic reserved
765   gr28 -- OS reserved
766   gr29 -- OS reserved
767   gr30 -- OS reserved
768   gr31 -- OS reserved
769   cr3  -- reserved to reload FCC registers.
770   cr7  -- reserved to reload ICC registers.  */
771#define FIXED_REGISTERS							\
772{	/* Integer Registers */						\
773	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
774	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
775	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
776	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
777	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
778	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
779	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
780	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
781	/* Float Registers */						\
782	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
783	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
784	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
785	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
786	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
787	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
788	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
789	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
790	/* Condition Code Registers */					\
791	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
792	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
793	/* Conditional execution Registers (CCR) */			\
794	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
795	/* Accumulators */						\
796	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
797	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
798	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
799	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
800	/* Other registers */						\
801	1,				/* 168, AP   - fake arg ptr */	\
802	1,				/* 169, LR   - Link register*/	\
803	0,				/* 170, LCR  - Loop count reg*/	\
804	1, 1				/* 171-172, iacc0 */		\
805}
806
807/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
808   general) by function calls as well as for fixed registers.  This macro
809   therefore identifies the registers that are not available for general
810   allocation of values that must live across function calls.
811
812   If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
813   saves it on function entry and restores it on function exit, if the register
814   is used within the function.  */
815#define CALL_USED_REGISTERS						\
816{	/* Integer Registers */						\
817	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
818	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
819	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
820	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
821	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
822	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
823	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
824	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
825	/* Float Registers */						\
826	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
827	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
828	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
829	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
830	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
831	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
832	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
833	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
834	/* Condition Code Registers */					\
835	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
836	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
837	/* Conditional execution Registers (CCR) */			\
838	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
839	/* Accumulators */						\
840	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
841	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
842	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
843	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
844	/* Other registers */						\
845	1,				/* 168, AP  - fake arg ptr */	\
846	1,				/* 169, LR  - Link register*/	\
847	1,				/* 170, LCR - Loop count reg */	\
848	1, 1				/* 171-172, iacc0 */		\
849}
850
851/* Zero or more C statements that may conditionally modify two variables
852   `fixed_regs' and `call_used_regs' (both of type `char []') after they have
853   been initialized from the two preceding macros.
854
855   This is necessary in case the fixed or call-clobbered registers depend on
856   target flags.
857
858   You need not define this macro if it has no work to do.
859
860   If the usage of an entire class of registers depends on the target flags,
861   you may indicate this to GCC by using this macro to modify `fixed_regs' and
862   `call_used_regs' to 1 for each of the registers in the classes which should
863   not be used by GCC.  Also define the macro `REG_CLASS_FROM_LETTER' to return
864   `NO_REGS' if it is called with a letter for a class that shouldn't be used.
865
866   (However, if this class is not included in `GENERAL_REGS' and all of the
867   insn patterns whose constraints permit this class are controlled by target
868   switches, then GCC will automatically avoid using these registers when the
869   target switches are opposed to them.)  */
870
871#define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
872
873
874/* Order of allocation of registers.  */
875
876/* If defined, an initializer for a vector of integers, containing the numbers
877   of hard registers in the order in which GCC should prefer to use them
878   (from most preferred to least).
879
880   If this macro is not defined, registers are used lowest numbered first (all
881   else being equal).
882
883   One use of this macro is on machines where the highest numbered registers
884   must always be saved and the save-multiple-registers instruction supports
885   only sequences of consecutive registers.  On such machines, define
886   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
887   allocatable register first.  */
888
889/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
890   have a better chance of allocating 2 registers at a time and can use the
891   double word load/store instructions in the prologue.  */
892#define REG_ALLOC_ORDER							\
893{									\
894  /* volatile registers */						\
895  GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
896  GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
897  GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
898  GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
899  GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
900  GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
901  GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
902									\
903  FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
904  FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
905  FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
906  FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
907  FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
908  FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
909  FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
910  FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
911									\
912  ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
913  FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
914  CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
915  CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
916									\
917  /* saved registers */							\
918  GPR_FIRST  + 18, GPR_FIRST  + 19,					\
919  GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
920  GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
921  GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
922  GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
923  GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
924  GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
925  GPR_FIRST  + 16, GPR_FIRST  + 17,					\
926									\
927  FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
928  FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
929  FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
930  FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
931  FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
932  FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
933  FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
934  FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
935									\
936  /* special or fixed registers */					\
937  GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
938  GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
939  ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
940  ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
941  ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
942  ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
943  ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
944  ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
945  AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
946  IACC_FIRST +  0, IACC_FIRST +  1					\
947}
948
949
950/* How Values Fit in Registers.  */
951
952/* A C expression for the number of consecutive hard registers, starting at
953   register number REGNO, required to hold a value of mode MODE.
954
955   On a machine where all registers are exactly one word, a suitable definition
956   of this macro is
957
958        #define HARD_REGNO_NREGS(REGNO, MODE)            \
959           ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
960            / UNITS_PER_WORD))  */
961
962/* On the FRV, make the CC modes take 3 words in the integer registers, so that
963   we can build the appropriate instructions to properly reload the values.  */
964#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
965
966/* A C expression that is nonzero if it is permissible to store a value of mode
967   MODE in hard register number REGNO (or in several registers starting with
968   that one).  For a machine where all registers are equivalent, a suitable
969   definition is
970
971        #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
972
973   It is not necessary for this macro to check for the numbers of fixed
974   registers, because the allocation mechanism considers them to be always
975   occupied.
976
977   On some machines, double-precision values must be kept in even/odd register
978   pairs.  The way to implement that is to define this macro to reject odd
979   register numbers for such modes.
980
981   The minimum requirement for a mode to be OK in a register is that the
982   `movMODE' instruction pattern support moves between the register and any
983   other hard register for which the mode is OK; and that moving a value into
984   the register and back out not alter it.
985
986   Since the same instruction used to move `SImode' will work for all narrower
987   integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
988   to distinguish between these modes, provided you define patterns `movhi',
989   etc., to take advantage of this.  This is useful because of the interaction
990   between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
991   all integer modes to be tieable.
992
993   Many machines have special registers for floating point arithmetic.  Often
994   people assume that floating point machine modes are allowed only in floating
995   point registers.  This is not true.  Any registers that can hold integers
996   can safely *hold* a floating point machine mode, whether or not floating
997   arithmetic can be done on it in those registers.  Integer move instructions
998   can be used to move the values.
999
1000   On some machines, though, the converse is true: fixed-point machine modes
1001   may not go in floating registers.  This is true if the floating registers
1002   normalize any value stored in them, because storing a non-floating value
1003   there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
1004   fixed-point machine modes in floating registers.  But if the floating
1005   registers do not automatically normalize, if you can store any bit pattern
1006   in one and retrieve it unchanged without a trap, then any machine mode may
1007   go in a floating register, so you can define this macro to say so.
1008
1009   The primary significance of special floating registers is rather that they
1010   are the registers acceptable in floating point arithmetic instructions.
1011   However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
1012   writing the proper constraints for those instructions.
1013
1014   On some machines, the floating registers are especially slow to access, so
1015   that it is better to store a value in a stack frame than in such a register
1016   if floating point arithmetic is not being done.  As long as the floating
1017   registers are not in class `GENERAL_REGS', they will not be used unless some
1018   pattern's constraint asks for one.  */
1019#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1020
1021/* A C expression that is nonzero if it is desirable to choose register
1022   allocation so as to avoid move instructions between a value of mode MODE1
1023   and a value of mode MODE2.
1024
1025   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1026   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1027   zero.  */
1028#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1029
1030/* Define this macro if the compiler should avoid copies to/from CCmode
1031   registers.  You should only define this macro if support fo copying to/from
1032   CCmode is incomplete.  */
1033#define AVOID_CCMODE_COPIES
1034
1035
1036/* Register Classes.  */
1037
1038/* An enumeral type that must be defined with all the register class names as
1039   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
1040   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1041   which is not a register class but rather tells how many classes there are.
1042
1043   Each register class has a number, which is the value of casting the class
1044   name to type `int'.  The number serves as an index in many of the tables
1045   described below.  */
1046enum reg_class
1047{
1048  NO_REGS,
1049  ICC_REGS,
1050  FCC_REGS,
1051  CC_REGS,
1052  ICR_REGS,
1053  FCR_REGS,
1054  CR_REGS,
1055  LCR_REG,
1056  LR_REG,
1057  GR8_REGS,
1058  GR9_REGS,
1059  GR89_REGS,
1060  FDPIC_REGS,
1061  FDPIC_FPTR_REGS,
1062  FDPIC_CALL_REGS,
1063  SPR_REGS,
1064  QUAD_ACC_REGS,
1065  EVEN_ACC_REGS,
1066  ACC_REGS,
1067  ACCG_REGS,
1068  QUAD_FPR_REGS,
1069  FEVEN_REGS,
1070  FPR_REGS,
1071  QUAD_REGS,
1072  EVEN_REGS,
1073  GPR_REGS,
1074  ALL_REGS,
1075  LIM_REG_CLASSES
1076};
1077
1078#define GENERAL_REGS GPR_REGS
1079
1080/* The number of distinct register classes, defined as follows:
1081
1082        #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
1083#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1084
1085/* An initializer containing the names of the register classes as C string
1086   constants.  These names are used in writing some of the debugging dumps.  */
1087#define REG_CLASS_NAMES {						\
1088   "NO_REGS",								\
1089   "ICC_REGS",								\
1090   "FCC_REGS",								\
1091   "CC_REGS",								\
1092   "ICR_REGS",								\
1093   "FCR_REGS",								\
1094   "CR_REGS",								\
1095   "LCR_REG",								\
1096   "LR_REG",								\
1097   "GR8_REGS",                                                          \
1098   "GR9_REGS",                                                          \
1099   "GR89_REGS",                                                         \
1100   "FDPIC_REGS",							\
1101   "FDPIC_FPTR_REGS",							\
1102   "FDPIC_CALL_REGS",							\
1103   "SPR_REGS",								\
1104   "QUAD_ACC_REGS",							\
1105   "EVEN_ACC_REGS",							\
1106   "ACC_REGS",								\
1107   "ACCG_REGS",								\
1108   "QUAD_FPR_REGS",							\
1109   "FEVEN_REGS",							\
1110   "FPR_REGS",								\
1111   "QUAD_REGS",								\
1112   "EVEN_REGS",								\
1113   "GPR_REGS",								\
1114   "ALL_REGS"								\
1115}
1116
1117/* An initializer containing the contents of the register classes, as integers
1118   which are bit masks.  The Nth integer specifies the contents of class N.
1119   The way the integer MASK is interpreted is that register R is in the class
1120   if `MASK & (1 << R)' is 1.
1121
1122   When the machine has more than 32 registers, an integer does not suffice.
1123   Then the integers are replaced by sub-initializers, braced groupings
1124   containing several integers.  Each sub-initializer must be suitable as an
1125   initializer for the type `HARD_REG_SET' which is defined in
1126   `hard-reg-set.h'.  */
1127#define REG_CLASS_CONTENTS						       \
1128{  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
1129  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
1130  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1131  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1132  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
1133  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1134  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1135  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
1136  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1137  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
1138  { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1139  { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1140  { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
1141  { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1142  { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1143  { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1144  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1145  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1146  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1147  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1148  { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1149  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1150  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1151  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1152  { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1153  { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1154  { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1155  { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1156}
1157
1158/* The following macro defines cover classes for Integrated Register
1159   Allocator.  Cover classes is a set of non-intersected register
1160   classes covering all hard registers used for register allocation
1161   purpose.  Any move between two registers of a cover class should be
1162   cheaper than load or store of the registers.  The macro value is
1163   array of register classes with LIM_REG_CLASSES used as the end
1164   marker.  */
1165
1166#define IRA_COVER_CLASSES						\
1167{									\
1168  GPR_REGS, FPR_REGS, ACC_REGS, ICR_REGS, FCR_REGS, ICC_REGS, FCC_REGS, \
1169  ACCG_REGS, SPR_REGS,							\
1170  LIM_REG_CLASSES							\
1171}
1172
1173/* A C expression whose value is a register class containing hard register
1174   REGNO.  In general there is more than one such class; choose a class which
1175   is "minimal", meaning that no smaller class also contains the register.  */
1176
1177extern enum reg_class regno_reg_class[];
1178#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1179
1180/* A macro whose definition is the name of the class to which a valid base
1181   register must belong.  A base register is one used in an address which is
1182   the register value plus a displacement.  */
1183#define BASE_REG_CLASS GPR_REGS
1184
1185/* A macro whose definition is the name of the class to which a valid index
1186   register must belong.  An index register is one used in an address where its
1187   value is either multiplied by a scale factor or added to another register
1188   (as well as added to a displacement).  */
1189#define INDEX_REG_CLASS GPR_REGS
1190
1191/* A C expression which defines the machine-dependent operand constraint
1192   letters for register classes.  If CHAR is such a letter, the value should be
1193   the register class corresponding to it.  Otherwise, the value should be
1194   `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
1195   will not be passed to this macro; you do not need to handle it.
1196
1197   The following letters are unavailable, due to being used as
1198   constraints:
1199	'0'..'9'
1200	'<', '>'
1201	'E', 'F', 'G', 'H'
1202	'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1203	'Q', 'R', 'S', 'T', 'U'
1204	'V', 'X'
1205	'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1206
1207extern enum reg_class reg_class_from_letter[];
1208#define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1209
1210/* A C expression which is nonzero if register number NUM is suitable for use
1211   as a base register in operand addresses.  It may be either a suitable hard
1212   register or a pseudo register that has been allocated such a hard register.  */
1213#define REGNO_OK_FOR_BASE_P(NUM)           \
1214  ((NUM) < FIRST_PSEUDO_REGISTER           \
1215   ? GPR_P (NUM)                           \
1216   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1217
1218/* A C expression which is nonzero if register number NUM is suitable for use
1219   as an index register in operand addresses.  It may be either a suitable hard
1220   register or a pseudo register that has been allocated such a hard register.
1221
1222   The difference between an index register and a base register is that the
1223   index register may be scaled.  If an address involves the sum of two
1224   registers, neither one of them scaled, then either one may be labeled the
1225   "base" and the other the "index"; but whichever labeling is used must fit
1226   the machine's constraints of which registers may serve in each capacity.
1227   The compiler will try both labelings, looking for one that is valid, and
1228   will reload one or both registers only if neither labeling works.  */
1229#define REGNO_OK_FOR_INDEX_P(NUM)                                       \
1230  ((NUM) < FIRST_PSEUDO_REGISTER                                        \
1231   ? GPR_P (NUM)                                                        \
1232   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1233
1234/* A C expression that places additional restrictions on the register class to
1235   use when it is necessary to copy value X into a register in class CLASS.
1236   The value is a register class; perhaps CLASS, or perhaps another, smaller
1237   class.  On many machines, the following definition is safe:
1238
1239        #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1240
1241   Sometimes returning a more restrictive class makes better code.  For
1242   example, on the 68000, when X is an integer constant that is in range for a
1243   `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1244   as CLASS includes the data registers.  Requiring a data register guarantees
1245   that a `moveq' will be used.
1246
1247   If X is a `const_double', by returning `NO_REGS' you can force X into a
1248   memory constant.  This is useful on certain machines where immediate
1249   floating values cannot be loaded into certain kinds of registers.
1250
1251   This declaration must be present.  */
1252#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1253
1254#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1255  frv_secondary_reload_class (CLASS, MODE, X)
1256
1257#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1258  frv_secondary_reload_class (CLASS, MODE, X)
1259
1260/* A C expression whose value is nonzero if pseudos that have been assigned to
1261   registers of class CLASS would likely be spilled because registers of CLASS
1262   are needed for spill registers.
1263
1264   The default value of this macro returns 1 if CLASS has exactly one register
1265   and zero otherwise.  On most machines, this default should be used.  Only
1266   define this macro to some other expression if pseudo allocated by
1267   `local-alloc.c' end up in memory because their hard registers were needed
1268   for spill registers.  If this macro returns nonzero for those classes, those
1269   pseudos will only be allocated by `global.c', which knows how to reallocate
1270   the pseudo to another register.  If there would not be another register
1271   available for reallocation, you should not change the definition of this
1272   macro since the only effect of such a definition would be to slow down
1273   register allocation.  */
1274#define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1275
1276/* A C expression for the maximum number of consecutive registers of
1277   class CLASS needed to hold a value of mode MODE.
1278
1279   This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
1280   of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1281   `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1282
1283   This macro helps control the handling of multiple-word values in
1284   the reload pass.
1285
1286   This declaration is required.  */
1287#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1288
1289#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1290
1291/* 6-bit signed immediate.  */
1292#define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1293/* 10-bit signed immediate.  */
1294#define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1295/* Unused */
1296#define CONST_OK_FOR_K(VALUE)  0
1297/* 16-bit signed immediate.  */
1298#define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1299/* 16-bit unsigned immediate.  */
1300#define CONST_OK_FOR_M(VALUE)  IN_RANGE_P (VALUE, 0, 65535)
1301/* 12-bit signed immediate that is negative.  */
1302#define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1303/* Zero */
1304#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1305/* 12-bit signed immediate that is negative.  */
1306#define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1307
1308/* A C expression that defines the machine-dependent operand constraint letters
1309   (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1310   If C is one of those letters, the expression should check that VALUE, an
1311   integer, is in the appropriate range and return 1 if so, 0 otherwise.  If C
1312   is not one of those letters, the value should be 0 regardless of VALUE.  */
1313#define CONST_OK_FOR_LETTER_P(VALUE, C)		\
1314  (  (C) == 'I' ? CONST_OK_FOR_I (VALUE)        \
1315   : (C) == 'J' ? CONST_OK_FOR_J (VALUE)        \
1316   : (C) == 'K' ? CONST_OK_FOR_K (VALUE)        \
1317   : (C) == 'L' ? CONST_OK_FOR_L (VALUE)        \
1318   : (C) == 'M' ? CONST_OK_FOR_M (VALUE)        \
1319   : (C) == 'N' ? CONST_OK_FOR_N (VALUE)        \
1320   : (C) == 'O' ? CONST_OK_FOR_O (VALUE)        \
1321   : (C) == 'P' ? CONST_OK_FOR_P (VALUE)        \
1322   : 0)
1323
1324
1325/* A C expression that defines the machine-dependent operand constraint letters
1326   (`G', `H') that specify particular ranges of `const_double' values.
1327
1328   If C is one of those letters, the expression should check that VALUE, an RTX
1329   of code `const_double', is in the appropriate range and return 1 if so, 0
1330   otherwise.  If C is not one of those letters, the value should be 0
1331   regardless of VALUE.
1332
1333   `const_double' is used for all floating-point constants and for `DImode'
1334   fixed-point constants.  A given letter can accept either or both kinds of
1335   values.  It can use `GET_MODE' to distinguish between these kinds.  */
1336
1337#define CONST_DOUBLE_OK_FOR_G(VALUE)					\
1338  ((GET_MODE (VALUE) == VOIDmode 					\
1339    && CONST_DOUBLE_LOW (VALUE) == 0					\
1340    && CONST_DOUBLE_HIGH (VALUE) == 0)					\
1341   || ((GET_MODE (VALUE) == SFmode					\
1342        || GET_MODE (VALUE) == DFmode)					\
1343       && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1344
1345#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1346
1347#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1348  (  (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE)				\
1349   : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)				\
1350   : 0)
1351
1352/* A C expression that defines the optional machine-dependent constraint
1353   letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1354   types of operands, usually memory references, for the target machine.
1355   Normally this macro will not be defined.  If it is required for a particular
1356   target machine, it should return 1 if VALUE corresponds to the operand type
1357   represented by the constraint letter C.  If C is not defined as an extra
1358   constraint, the value returned should be 0 regardless of VALUE.
1359
1360   For example, on the ROMP, load instructions cannot have their output in r0
1361   if the memory reference contains a symbolic address.  Constraint letter `Q'
1362   is defined as representing a memory address that does *not* contain a
1363   symbolic address.  An alternative is specified with a `Q' constraint on the
1364   input and `r' on the output.  The next alternative specifies `m' on the
1365   input and a register class that does not include r0 on the output.  */
1366
1367/* 12-bit relocations.  */
1368#define EXTRA_CONSTRAINT_FOR_Q(VALUE)					\
1369  (got12_operand (VALUE, GET_MODE (VALUE)))
1370
1371/* Double word memory ops that take one instruction.  */
1372#define EXTRA_CONSTRAINT_FOR_R(VALUE)					\
1373  (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1374
1375/* SYMBOL_REF */
1376#define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1377  (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1378
1379/* Double word memory ops that take two instructions.  */
1380#define EXTRA_CONSTRAINT_FOR_T(VALUE)					\
1381  (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1382
1383/* Memory operand for conditional execution.  */
1384#define EXTRA_CONSTRAINT_FOR_U(VALUE)					\
1385  (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1386
1387#define EXTRA_CONSTRAINT(VALUE, C)					\
1388  (  (C) == 'Q'   ? EXTRA_CONSTRAINT_FOR_Q (VALUE)			\
1389   : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE)			\
1390   : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE)			\
1391   : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE)			\
1392   : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE)			\
1393   : 0)
1394
1395#define EXTRA_MEMORY_CONSTRAINT(C,STR) \
1396  ((C) == 'U' || (C) == 'R' || (C) == 'T')
1397
1398#define CONSTRAINT_LEN(C, STR) \
1399  ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1400
1401#define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1402  (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1403   ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1404   ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1405   ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1406   ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1407   REG_CLASS_FROM_LETTER ((C)))
1408
1409
1410/* Basic Stack Layout.  */
1411
1412/* Structure to describe information about a saved range of registers */
1413
1414typedef struct frv_stack_regs {
1415  const char * name;		/* name of the register ranges */
1416  int first;			/* first register in the range */
1417  int last;			/* last register in the range */
1418  int size_1word;		/* # of bytes to be stored via 1 word stores */
1419  int size_2words;		/* # of bytes to be stored via 2 word stores */
1420  unsigned char field_p;	/* true if the registers are a single SPR */
1421  unsigned char dword_p;	/* true if we can do dword stores */
1422  unsigned char special_p;	/* true if the regs have a fixed save loc.  */
1423} frv_stack_regs_t;
1424
1425/* Register ranges to look into saving.  */
1426#define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
1427#define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
1428#define STACK_REGS_LR		2	/* LR register */
1429#define STACK_REGS_CC		3	/* CCrs (normally not saved) */
1430#define STACK_REGS_LCR		5	/* lcr register */
1431#define STACK_REGS_STDARG	6	/* stdarg registers */
1432#define STACK_REGS_STRUCT	7	/* structure return (gr3) */
1433#define STACK_REGS_FP		8	/* FP register */
1434#define STACK_REGS_MAX		9	/* # of register ranges */
1435
1436/* Values for save_p field.  */
1437#define REG_SAVE_NO_SAVE	0	/* register not saved */
1438#define REG_SAVE_1WORD		1	/* save the register */
1439#define REG_SAVE_2WORDS		2	/* save register and register+1 */
1440
1441/* Structure used to define the frv stack.  */
1442
1443typedef struct frv_stack {
1444  int total_size;		/* total bytes allocated for stack */
1445  int vars_size;		/* variable save area size */
1446  int parameter_size;		/* outgoing parameter size */
1447  int stdarg_size;		/* size of regs needed to be saved for stdarg */
1448  int regs_size;		/* size of the saved registers */
1449  int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
1450  int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
1451  int header_size;		/* size of the old FP, struct ret., LR save */
1452  int pretend_size;		/* size of pretend args */
1453  int vars_offset;		/* offset to save local variables from new SP*/
1454  int regs_offset;		/* offset to save registers from new SP */
1455				/* register range information */
1456  frv_stack_regs_t regs[STACK_REGS_MAX];
1457				/* offset to store each register */
1458  int reg_offset[FIRST_PSEUDO_REGISTER];
1459				/* whether to save register (& reg+1) */
1460  unsigned char save_p[FIRST_PSEUDO_REGISTER];
1461} frv_stack_t;
1462
1463/* Define this macro if pushing a word onto the stack moves the stack pointer
1464   to a smaller address.  */
1465#define STACK_GROWS_DOWNWARD 1
1466
1467/* Define this macro to nonzero if the addresses of local variable slots
1468   are at negative offsets from the frame pointer.  */
1469#define FRAME_GROWS_DOWNWARD 1
1470
1471/* Offset from the frame pointer to the first local variable slot to be
1472   allocated.
1473
1474   If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1475   first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1476   adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1477#define STARTING_FRAME_OFFSET 0
1478
1479/* Offset from the stack pointer register to the first location at which
1480   outgoing arguments are placed.  If not specified, the default value of zero
1481   is used.  This is the proper value for most machines.
1482
1483   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1484   location at which outgoing arguments are placed.  */
1485#define STACK_POINTER_OFFSET 0
1486
1487/* Offset from the argument pointer register to the first argument's address.
1488   On some machines it may depend on the data type of the function.
1489
1490   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1491   argument's address.  */
1492#define FIRST_PARM_OFFSET(FUNDECL) 0
1493
1494/* A C expression whose value is RTL representing the address in a stack frame
1495   where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1496   an RTL expression for the address of the stack frame itself.
1497
1498   If you don't define this macro, the default is to return the value of
1499   FRAMEADDR--that is, the stack frame address is also the address of the stack
1500   word that points to the previous frame.  */
1501#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1502
1503/* A C expression whose value is RTL representing the value of the return
1504   address for the frame COUNT steps up from the current frame, after the
1505   prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1506   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1507   defined.
1508
1509   The value of the expression must always be the correct address when COUNT is
1510   zero, but may be `NULL_RTX' if there is not way to determine the return
1511   address of other frames.  */
1512#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1513
1514#define RETURN_POINTER_REGNUM LR_REGNO
1515
1516/* A C expression whose value is RTL representing the location of the incoming
1517   return address at the beginning of any function, before the prologue.  This
1518   RTL is either a `REG', indicating that the return value is saved in `REG',
1519   or a `MEM' representing a location in the stack.
1520
1521   You only need to define this macro if you want to support call frame
1522   debugging information like that provided by DWARF 2.  */
1523#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1524
1525
1526/* Register That Address the Stack Frame.  */
1527
1528/* The register number of the stack pointer register, which must also be a
1529   fixed register according to `FIXED_REGISTERS'.  On most machines, the
1530   hardware determines which register this is.  */
1531#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1532
1533/* The register number of the frame pointer register, which is used to access
1534   automatic variables in the stack frame.  On some machines, the hardware
1535   determines which register this is.  On other machines, you can choose any
1536   register you wish for this purpose.  */
1537#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1538
1539/* The register number of the arg pointer register, which is used to access the
1540   function's argument list.  On some machines, this is the same as the frame
1541   pointer register.  On some machines, the hardware determines which register
1542   this is.  On other machines, you can choose any register you wish for this
1543   purpose.  If this is not the same register as the frame pointer register,
1544   then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1545   arrange to be able to eliminate it.  */
1546
1547/* On frv this is a fake register that is eliminated in
1548   terms of either the frame pointer or stack pointer.  */
1549#define ARG_POINTER_REGNUM AP_FIRST
1550
1551/* Register numbers used for passing a function's static chain pointer.  If
1552   register windows are used, the register number as seen by the called
1553   function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1554   seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1555   are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1556
1557   The static chain register need not be a fixed register.
1558
1559   If the static chain is passed in memory, these macros should not be defined;
1560   instead, the next two macros should be defined.  */
1561#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1562#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1563
1564
1565/* Eliminating the Frame Pointer and the Arg Pointer.  */
1566
1567/* If defined, this macro specifies a table of register pairs used to eliminate
1568   unneeded registers that point into the stack frame.  If it is not defined,
1569   the only elimination attempted by the compiler is to replace references to
1570   the frame pointer with references to the stack pointer.
1571
1572   The definition of this macro is a list of structure initializations, each of
1573   which specifies an original and replacement register.
1574
1575   On some machines, the position of the argument pointer is not known until
1576   the compilation is completed.  In such a case, a separate hard register must
1577   be used for the argument pointer.  This register can be eliminated by
1578   replacing it with either the frame pointer or the argument pointer,
1579   depending on whether or not the frame pointer has been eliminated.
1580
1581   In this case, you might specify:
1582        #define ELIMINABLE_REGS  \
1583        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1584         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1585         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1586
1587   Note that the elimination of the argument pointer with the stack pointer is
1588   specified first since that is the preferred elimination.  */
1589
1590#define ELIMINABLE_REGS							\
1591{									\
1592  {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1593  {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1594  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1595}
1596
1597/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1598   initial difference between the specified pair of registers.  This macro must
1599   be defined if `ELIMINABLE_REGS' is defined.  */
1600
1601#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1602  (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1603
1604
1605/* Passing Function Arguments on the Stack.  */
1606
1607/* If defined, the maximum amount of space required for outgoing arguments will
1608   be computed and placed into the variable
1609   `crtl->outgoing_args_size'.  No space will be pushed onto the
1610   stack for each call; instead, the function prologue should increase the
1611   stack frame size by this amount.
1612
1613   Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1614   proper.  */
1615#define ACCUMULATE_OUTGOING_ARGS 1
1616
1617/* A C expression that should indicate the number of bytes of its own arguments
1618   that a function pops on returning, or 0 if the function pops no arguments
1619   and the caller must therefore pop them all after the function returns.
1620
1621   FUNDECL is a C variable whose value is a tree node that describes the
1622   function in question.  Normally it is a node of type `FUNCTION_DECL' that
1623   describes the declaration of the function.  From this it is possible to
1624   obtain the DECL_ATTRIBUTES of the function.
1625
1626   FUNTYPE is a C variable whose value is a tree node that describes the
1627   function in question.  Normally it is a node of type `FUNCTION_TYPE' that
1628   describes the data type of the function.  From this it is possible to obtain
1629   the data types of the value and arguments (if known).
1630
1631   When a call to a library function is being considered, FUNTYPE will contain
1632   an identifier node for the library function.  Thus, if you need to
1633   distinguish among various library functions, you can do so by their names.
1634   Note that "library function" in this context means a function used to
1635   perform arithmetic, whose name is known specially in the compiler and was
1636   not mentioned in the C code being compiled.
1637
1638   STACK-SIZE is the number of bytes of arguments passed on the stack.  If a
1639   variable number of bytes is passed, it is zero, and argument popping will
1640   always be the responsibility of the calling function.
1641
1642   On the VAX, all functions always pop their arguments, so the definition of
1643   this macro is STACK-SIZE.  On the 68000, using the standard calling
1644   convention, no functions pop their arguments, so the value of the macro is
1645   always 0 in this case.  But an alternative calling convention is available
1646   in which functions that take a fixed number of arguments pop them but other
1647   functions (such as `printf') pop nothing (the caller pops all).  When this
1648   convention is in use, FUNTYPE is examined to determine whether a function
1649   takes a fixed number of arguments.  */
1650#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1651
1652
1653/* The number of register assigned to holding function arguments.  */
1654
1655#define FRV_NUM_ARG_REGS        6
1656
1657#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)                    \
1658  frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1659
1660/* Define this macro if the target machine has "register windows", so that the
1661   register in which a function sees an arguments is not necessarily the same
1662   as the one in which the caller passed the argument.
1663
1664   For such machines, `FUNCTION_ARG' computes the register in which the caller
1665   passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1666   fashion to tell the function being called where the arguments will arrive.
1667
1668   If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1669   purposes.  */
1670
1671#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED)			\
1672  frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1673
1674/* A C type for declaring a variable that is used as the first argument of
1675   `FUNCTION_ARG' and other related values.  For some target machines, the type
1676   `int' suffices and can hold the number of bytes of argument so far.
1677
1678   There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1679   that have been passed on the stack.  The compiler has other variables to
1680   keep track of that.  For target machines on which all arguments are passed
1681   on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1682   however, the data structure must exist and should not be empty, so use
1683   `int'.  */
1684#define CUMULATIVE_ARGS int
1685
1686/* A C statement (sans semicolon) for initializing the variable CUM for the
1687   state at the beginning of the argument list.  The variable has type
1688   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1689   of the function which will receive the args, or 0 if the args are to a
1690   compiler support library function.  The value of INDIRECT is nonzero when
1691   processing an indirect call, for example a call through a function pointer.
1692   The value of INDIRECT is zero for a call to an explicitly named function, a
1693   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1694   arguments for the function being compiled.
1695
1696   When processing a call to a compiler support library function, LIBNAME
1697   identifies which one.  It is a `symbol_ref' rtx which contains the name of
1698   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1699   being processed.  Thus, each time this macro is called, either LIBNAME or
1700   FNTYPE is nonzero, but never both of them at once.  */
1701
1702#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1703  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1704
1705/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1706   arguments for the function being compiled.  If this macro is undefined,
1707   `INIT_CUMULATIVE_ARGS' is used instead.
1708
1709   The value passed for LIBNAME is always 0, since library routines with
1710   special calling conventions are never compiled with GCC.  The argument
1711   LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1712
1713#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1714  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1715
1716/* A C statement (sans semicolon) to update the summarizer variable CUM to
1717   advance past an argument in the argument list.  The values MODE, TYPE and
1718   NAMED describe that argument.  Once this is done, the variable CUM is
1719   suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1720
1721   This macro need not do anything if the argument in question was passed on
1722   the stack.  The compiler knows how to track the amount of stack space used
1723   for arguments without any special help.  */
1724#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1725  frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1726
1727/* If defined, a C expression that gives the alignment boundary, in bits, of an
1728   argument with the specified mode and type.  If it is not defined,
1729   `PARM_BOUNDARY' is used for all arguments.  */
1730
1731#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1732  frv_function_arg_boundary (MODE, TYPE)
1733
1734/* A C expression that is nonzero if REGNO is the number of a hard register in
1735   which function arguments are sometimes passed.  This does *not* include
1736   implicit arguments such as the static chain and the structure-value address.
1737   On many machines, no registers can be used for this purpose since all
1738   function arguments are pushed on the stack.  */
1739#define FUNCTION_ARG_REGNO_P(REGNO) \
1740  ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1741
1742
1743/* How Scalar Function Values are Returned.  */
1744
1745/* The number of the hard register that is used to return a scalar value from a
1746   function call.  */
1747#define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1748
1749#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1750
1751
1752/* How Large Values are Returned.  */
1753
1754/* The number of the register that is used to pass the structure
1755   value address.  */
1756#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1757
1758
1759/* Function Entry and Exit.  */
1760
1761/* Define this macro as a C expression that is nonzero if the return
1762   instruction or the function epilogue ignores the value of the stack pointer;
1763   in other words, if it is safe to delete an instruction to adjust the stack
1764   pointer before a return from the function.
1765
1766   Note that this macro's value is relevant only for functions for which frame
1767   pointers are maintained.  It is never safe to delete a final stack
1768   adjustment in a function that has no frame pointer, and the compiler knows
1769   this regardless of `EXIT_IGNORE_STACK'.  */
1770#define EXIT_IGNORE_STACK 1
1771
1772/* Generating Code for Profiling.  */
1773
1774/* A C statement or compound statement to output to FILE some assembler code to
1775   call the profiling subroutine `mcount'.  Before calling, the assembler code
1776   must load the address of a counter variable into a register where `mcount'
1777   expects to find the address.  The name of this variable is `LP' followed by
1778   the number LABELNO, so you would generate the name using `LP%d' in a
1779   `fprintf'.
1780
1781   The details of how the address should be passed to `mcount' are determined
1782   by your operating system environment, not by GCC.  To figure them out,
1783   compile a small program for profiling using the system's installed C
1784   compiler and look at the assembler code that results.
1785
1786   This declaration must be present, but it can be an abort if profiling is
1787   not implemented.  */
1788
1789#define FUNCTION_PROFILER(FILE, LABELNO)
1790
1791/* Trampolines for Nested Functions.  */
1792
1793/* A C expression for the size in bytes of the trampoline, as an integer.  */
1794#define TRAMPOLINE_SIZE frv_trampoline_size ()
1795
1796/* Alignment required for trampolines, in bits.
1797
1798   If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1799   aligning trampolines.  */
1800#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1801
1802/* Define this macro if trampolines need a special subroutine to do their work.
1803   The macro should expand to a series of `asm' statements which will be
1804   compiled with GCC.  They go in a library function named
1805   `__transfer_from_trampoline'.
1806
1807   If you need to avoid executing the ordinary prologue code of a compiled C
1808   function when you jump to the subroutine, you can do so by placing a special
1809   label of your own in the assembler code.  Use one `asm' statement to
1810   generate an assembler label, and another to make the label global.  Then
1811   trampolines can use that label to jump directly to your special assembler
1812   code.  */
1813
1814#ifdef __FRV_UNDERSCORE__
1815#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1816#else
1817#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1818#endif
1819
1820#define Twrite _write
1821
1822#if ! __FRV_FDPIC__
1823#define TRANSFER_FROM_TRAMPOLINE					\
1824extern int Twrite (int, const void *, unsigned);			\
1825									\
1826void									\
1827__trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1828{									\
1829  extern short __trampoline_template[];					\
1830  short * to = addr;							\
1831  short * from = &__trampoline_template[0];				\
1832  int i;								\
1833									\
1834  if (size < 20)							\
1835    {									\
1836      Twrite (2, "__trampoline_setup bad size\n",			\
1837	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1838      exit (-1);							\
1839    }									\
1840									\
1841  to[0] = from[0];							\
1842  to[1] = (short)(fnaddr);						\
1843  to[2] = from[2];							\
1844  to[3] = (short)(sc);							\
1845  to[4] = from[4];							\
1846  to[5] = (short)(fnaddr >> 16);					\
1847  to[6] = from[6];							\
1848  to[7] = (short)(sc >> 16);						\
1849  to[8] = from[8];							\
1850  to[9] = from[9];							\
1851									\
1852  for (i = 0; i < 20; i++)						\
1853    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1854}									\
1855									\
1856__asm__("\n"								\
1857	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1858	"\t.text\n"							\
1859	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1860	"\tsetlos #0, gr6\n"	/* jump register */			\
1861	"\tsetlos #0, gr7\n"	/* static chain */			\
1862	"\tsethi #0, gr6\n"						\
1863	"\tsethi #0, gr7\n"						\
1864	"\tjmpl @(gr0,gr6)\n");
1865#else
1866#define TRANSFER_FROM_TRAMPOLINE					\
1867extern int Twrite (int, const void *, unsigned);			\
1868									\
1869void									\
1870__trampoline_setup (addr, size, fnaddr, sc)				\
1871     short * addr;							\
1872     int size;								\
1873     int fnaddr;							\
1874     int sc;								\
1875{									\
1876  extern short __trampoline_template[];					\
1877  short * from = &__trampoline_template[0];				\
1878  int i;								\
1879  short **desc = (short **)addr;					\
1880  short * to = addr + 4;						\
1881									\
1882  if (size != 32)							\
1883    {									\
1884      Twrite (2, "__trampoline_setup bad size\n",			\
1885	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1886      exit (-1);							\
1887    }									\
1888									\
1889  /* Create a function descriptor with the address of the code below
1890     and NULL as the FDPIC value.  We don't need the real GOT value
1891     here, since we don't use it, so we use NULL, that is just as
1892     good.  */								\
1893  desc[0] = to;								\
1894  desc[1] = NULL;							\
1895  size -= 8;								\
1896									\
1897  to[0] = from[0];							\
1898  to[1] = (short)(fnaddr);						\
1899  to[2] = from[2];							\
1900  to[3] = (short)(sc);							\
1901  to[4] = from[4];							\
1902  to[5] = (short)(fnaddr >> 16);					\
1903  to[6] = from[6];							\
1904  to[7] = (short)(sc >> 16);						\
1905  to[8] = from[8];							\
1906  to[9] = from[9];							\
1907  to[10] = from[10];							\
1908  to[11] = from[11];							\
1909									\
1910  for (i = 0; i < size; i++)						\
1911    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1912}									\
1913									\
1914__asm__("\n"								\
1915	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1916	"\t.text\n"							\
1917	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1918	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1919	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1920	"\tsethi #0, gr6\n"						\
1921	"\tsethi #0, gr7\n"						\
1922	"\tldd @(gr6,gr0),gr14\n"					\
1923	"\tjmpl @(gr14,gr0)\n"						\
1924	);
1925#endif
1926
1927
1928/* Addressing Modes.  */
1929
1930/* A number, the maximum number of registers that can appear in a valid memory
1931   address.  Note that it is up to you to specify a value equal to the maximum
1932   number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1933#define MAX_REGS_PER_ADDRESS 2
1934
1935/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1936   use as a base register.  For hard registers, it should always accept those
1937   which the hardware permits and reject the others.  Whether the macro accepts
1938   or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1939   described above.  This usually requires two variant definitions, of which
1940   `REG_OK_STRICT' controls the one actually used.  */
1941#ifdef REG_OK_STRICT
1942#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1943#else
1944#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1945#endif
1946
1947/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1948   use as an index register.
1949
1950   The difference between an index register and a base register is that the
1951   index register may be scaled.  If an address involves the sum of two
1952   registers, neither one of them scaled, then either one may be labeled the
1953   "base" and the other the "index"; but whichever labeling is used must fit
1954   the machine's constraints of which registers may serve in each capacity.
1955   The compiler will try both labelings, looking for one that is valid, and
1956   will reload one or both registers only if neither labeling works.  */
1957#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1958
1959#define FIND_BASE_TERM frv_find_base_term
1960
1961/* A C expression that is nonzero if X is a legitimate constant for an
1962   immediate operand on the target machine.  You can assume that X satisfies
1963   `CONSTANT_P', so you need not check this.  In fact, `1' is a suitable
1964   definition for this macro on machines where anything `CONSTANT_P' is valid.  */
1965#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
1966
1967/* The load-and-update commands allow pre-modification in addresses.
1968   The index has to be in a register.  */
1969#define HAVE_PRE_MODIFY_REG 1
1970
1971
1972/* We define extra CC modes in frv-modes.def so we need a selector.  */
1973
1974#define SELECT_CC_MODE frv_select_cc_mode
1975
1976/* A C expression whose value is one if it is always safe to reverse a
1977   comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1978   a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1979   must be zero.
1980
1981   You need not define this macro if it would always returns zero or if the
1982   floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1983   example, here is the definition used on the SPARC, where floating-point
1984   inequality comparisons are always given `CCFPEmode':
1985
1986        #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1987
1988/* On frv, don't consider floating point comparisons to be reversible.  In
1989   theory, fp equality comparisons can be reversible.  */
1990#define REVERSIBLE_CC_MODE(MODE) \
1991  ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1992
1993/* Frv CCR_MODE's are not reversible.  */
1994#define REVERSE_CONDEXEC_PREDICATES_P(x,y)      0
1995
1996
1997/* Describing Relative Costs of Operations.  */
1998
1999/* A C expression for the cost of moving data from a register in class FROM to
2000   one in class TO.  The classes are expressed using the enumeration values
2001   such as `GENERAL_REGS'.  A value of 4 is the default; other values are
2002   interpreted relative to that.
2003
2004   It is not required that the cost always equal 2 when FROM is the same as TO;
2005   on some machines it is expensive to move between registers if they are not
2006   general registers.
2007
2008   If reload sees an insn consisting of a single `set' between two hard
2009   registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2010   value of 2, reload does not check to ensure that the constraints of the insn
2011   are met.  Setting a cost of other than 2 will allow reload to verify that
2012   the constraints are met.  You should do this if the `movM' pattern's
2013   constraints do not allow such copying.  */
2014#define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2015
2016/* A C expression for the cost of moving data of mode M between a register and
2017   memory.  A value of 2 is the default; this cost is relative to those in
2018   `REGISTER_MOVE_COST'.
2019
2020   If moving between registers and memory is more expensive than between two
2021   registers, you should define this macro to express the relative cost.  */
2022#define MEMORY_MOVE_COST(M,C,I) 4
2023
2024/* A C expression for the cost of a branch instruction.  A value of 1 is the
2025   default; other values are interpreted relative to that.  */
2026#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
2027
2028/* Define this macro as a C expression which is nonzero if accessing less than
2029   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2030   word of memory, i.e., if such access require more than one instruction or if
2031   there is no difference in cost between byte and (aligned) word loads.
2032
2033   When this macro is not defined, the compiler will access a field by finding
2034   the smallest containing object; when it is defined, a fullword load will be
2035   used if alignment permits.  Unless bytes accesses are faster than word
2036   accesses, using word accesses is preferable since it may eliminate
2037   subsequent memory access if subsequent accesses occur to other fields in the
2038   same word of the structure, but to different bytes.  */
2039#define SLOW_BYTE_ACCESS 1
2040
2041/* Define this macro if it is as good or better to call a constant function
2042   address than to call an address kept in a register.  */
2043#define NO_FUNCTION_CSE
2044
2045
2046/* Dividing the output into sections.  */
2047
2048/* A C expression whose value is a string containing the assembler operation
2049   that should precede instructions and read-only data.  Normally `".text"' is
2050   right.  */
2051#define TEXT_SECTION_ASM_OP "\t.text"
2052
2053/* A C expression whose value is a string containing the assembler operation to
2054   identify the following data as writable initialized data.  Normally
2055   `".data"' is right.  */
2056#define DATA_SECTION_ASM_OP "\t.data"
2057
2058/* If defined, a C expression whose value is a string containing the
2059   assembler operation to identify the following data as
2060   uninitialized global data.  If not defined, and neither
2061   `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2062   uninitialized global data will be output in the data section if
2063   `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2064   used.  */
2065#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2066
2067/* Short Data Support */
2068#define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
2069
2070/* On svr4, we *do* have support for the .init and .fini sections, and we
2071   can put stuff in there to be executed before and after `main'.  We let
2072   crtstuff.c and other files know this by defining the following symbols.
2073   The definitions say how to change sections to the .init and .fini
2074   sections.  This is the same for all known svr4 assemblers.
2075
2076   The standard System V.4 macros will work, but they look ugly in the
2077   assembly output, so redefine them.  */
2078
2079#undef	INIT_SECTION_ASM_OP
2080#undef	FINI_SECTION_ASM_OP
2081#define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
2082#define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
2083
2084#undef CTORS_SECTION_ASM_OP
2085#undef DTORS_SECTION_ASM_OP
2086#define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
2087#define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
2088
2089/* A C expression whose value is a string containing the assembler operation to
2090   switch to the fixup section that records all initialized pointers in a -fpic
2091   program so they can be changed program startup time if the program is loaded
2092   at a different address than linked for.  */
2093#define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
2094
2095/* Position Independent Code.  */
2096
2097/* A C expression that is nonzero if X is a legitimate immediate operand on the
2098   target machine when generating position independent code.  You can assume
2099   that X satisfies `CONSTANT_P', so you need not check this.  You can also
2100   assume FLAG_PIC is true, so you need not check it either.  You need not
2101   define this macro if all constants (including `SYMBOL_REF') can be immediate
2102   operands when generating position independent code.  */
2103#define LEGITIMATE_PIC_OPERAND_P(X)					\
2104  (   GET_CODE (X) == CONST_INT						\
2105   || GET_CODE (X) == CONST_DOUBLE					\
2106   || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
2107   || got12_operand (X, VOIDmode))					\
2108
2109
2110/* The Overall Framework of an Assembler File.  */
2111
2112/* A C string constant describing how to begin a comment in the target
2113   assembler language.  The compiler assumes that the comment will end at the
2114   end of the line.  */
2115#define ASM_COMMENT_START ";"
2116
2117/* A C string constant for text to be output before each `asm' statement or
2118   group of consecutive ones.  Normally this is `"#APP"', which is a comment
2119   that has no effect on most assemblers but tells the GNU assembler that it
2120   must check the lines that follow for all valid assembler constructs.  */
2121#define ASM_APP_ON "#APP\n"
2122
2123/* A C string constant for text to be output after each `asm' statement or
2124   group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
2125   GNU assembler to resume making the time-saving assumptions that are valid
2126   for ordinary compiler output.  */
2127#define ASM_APP_OFF "#NO_APP\n"
2128
2129
2130/* Output of Data.  */
2131
2132/* This is how to output a label to dwarf/dwarf2.  */
2133#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
2134do {									\
2135  fprintf (STREAM, "\t.picptr\t");					\
2136  assemble_name (STREAM, LABEL);					\
2137} while (0)
2138
2139/* Whether to emit the gas specific dwarf2 line number support.  */
2140#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2141
2142/* Output of Uninitialized Variables.  */
2143
2144/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2145   assembler definition of a local-common-label named NAME whose size is SIZE
2146   bytes.  The variable ROUNDED is the size rounded up to whatever alignment
2147   the caller wants.
2148
2149   Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2150   before and after that, output the additional assembler syntax for defining
2151   the name, and a newline.
2152
2153   This macro controls how the assembler definitions of uninitialized static
2154   variables are output.  */
2155#undef ASM_OUTPUT_LOCAL
2156
2157/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2158   explicit argument.  If you define this macro, it is used in place of
2159   `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2160   alignment of the variable.  The alignment is specified as the number of
2161   bits.
2162
2163   Defined in svr4.h.  */
2164#undef ASM_OUTPUT_ALIGNED_LOCAL
2165
2166/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
2167extern int size_directive_output;
2168
2169/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2170   parameter - the DECL of variable to be output, if there is one.
2171   This macro can be called with DECL == NULL_TREE.  If you define
2172   this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2173   `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2174   handling the destination of the variable.  */
2175#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2176#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
2177do {                                                                   	\
2178  if ((SIZE) > 0 && (SIZE) <= g_switch_value)				\
2179    switch_to_section (get_named_section (NULL, ".sbss", 0));           \
2180  else                                                                 	\
2181    switch_to_section (bss_section);                                  	\
2182  ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
2183  ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
2184  ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
2185} while (0)
2186
2187
2188/* Output and Generation of Labels.  */
2189
2190/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2191   assembler definition of a label named NAME.  Use the expression
2192   `assemble_name (STREAM, NAME)' to output the name itself; before and after
2193   that, output the additional assembler syntax for defining the name, and a
2194   newline.  */
2195#define ASM_OUTPUT_LABEL(STREAM, NAME)					\
2196do {									\
2197  assemble_name (STREAM, NAME);						\
2198  fputs (":\n", STREAM);						\
2199} while (0)
2200
2201/* Globalizing directive for a label.  */
2202#define GLOBAL_ASM_OP "\t.globl "
2203
2204/* A C statement to store into the string STRING a label whose name is made
2205   from the string PREFIX and the number NUM.
2206
2207   This string, when output subsequently by `assemble_name', should produce the
2208   output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2209   and NUM.
2210
2211   If the string begins with `*', then `assemble_name' will output the rest of
2212   the string unchanged.  It is often convenient for
2213   `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way.  If the string doesn't
2214   start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2215   may change it.  (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2216   machine description, so you should know what it does on your machine.)
2217
2218   Defined in svr4.h.  */
2219#undef ASM_GENERATE_INTERNAL_LABEL
2220#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
2221do {									\
2222  sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
2223} while (0)
2224
2225
2226/* Macros Controlling Initialization Routines.  */
2227
2228/* If defined, a C string constant for the assembler operation to identify the
2229   following data as initialization code.  If not defined, GCC will assume
2230   such a section does not exist.  When you are using special sections for
2231   initialization and termination functions, this macro also controls how
2232   `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2233
2234   Defined in svr4.h.  */
2235#undef INIT_SECTION_ASM_OP
2236
2237/* If defined, `main' will call `__main' despite the presence of
2238   `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
2239   init section is not actually run automatically, but is still useful for
2240   collecting the lists of constructors and destructors.  */
2241#define INVOKE__main
2242
2243/* Output of Assembler Instructions.  */
2244
2245/* A C initializer containing the assembler's names for the machine registers,
2246   each one as a C string constant.  This is what translates register numbers
2247   in the compiler into assembler language.  */
2248#define REGISTER_NAMES							\
2249{									\
2250 "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
2251  "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
2252  "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
2253  "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
2254  "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
2255  "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
2256  "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
2257  "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
2258									\
2259  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
2260  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
2261  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
2262  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
2263  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
2264  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
2265  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
2266  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
2267									\
2268  "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
2269  "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
2270  "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
2271  "acc8", "acc9", "acc10", "acc11",					\
2272  "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
2273  "accg8", "accg9", "accg10", "accg11",					\
2274  "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
2275}
2276
2277/* Define this macro if you are using an unusual assembler that
2278   requires different names for the machine instructions.
2279
2280   The definition is a C statement or statements which output an
2281   assembler instruction opcode to the stdio stream STREAM.  The
2282   macro-operand PTR is a variable of type `char *' which points to
2283   the opcode name in its "internal" form--the form that is written
2284   in the machine description.  The definition should output the
2285   opcode name to STREAM, performing any translation you desire, and
2286   increment the variable PTR to point at the end of the opcode so
2287   that it will not be output twice.
2288
2289   In fact, your macro definition may process less than the entire
2290   opcode name, or more than the opcode name; but if you want to
2291   process text that includes `%'-sequences to substitute operands,
2292   you must take care of the substitution yourself.  Just be sure to
2293   increment PTR over whatever text should not be output normally.
2294
2295   If you need to look at the operand values, they can be found as the
2296   elements of `recog_operand'.
2297
2298   If the macro definition does nothing, the instruction is output in
2299   the usual way.  */
2300
2301#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2302   (PTR) = frv_asm_output_opcode (STREAM, PTR)
2303
2304/* If defined, a C statement to be executed just prior to the output
2305   of assembler code for INSN, to modify the extracted operands so
2306   they will be output differently.
2307
2308   Here the argument OPVEC is the vector containing the operands
2309   extracted from INSN, and NOPERANDS is the number of elements of
2310   the vector which contain meaningful data for this insn.  The
2311   contents of this vector are what will be used to convert the insn
2312   template into assembler code, so you can change the assembler
2313   output by changing the contents of the vector.
2314
2315   This macro is useful when various assembler syntaxes share a single
2316   file of instruction patterns; by defining this macro differently,
2317   you can cause a large class of instructions to be output
2318   differently (such as with rearranged operands).  Naturally,
2319   variations in assembler syntax affecting individual insn patterns
2320   ought to be handled by writing conditional output routines in
2321   those patterns.
2322
2323   If this macro is not defined, it is equivalent to a null statement.  */
2324
2325#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2326  frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2327
2328
2329/* A C compound statement to output to stdio stream STREAM the assembler syntax
2330   for an instruction operand X.  X is an RTL expression.
2331
2332   CODE is a value that can be used to specify one of several ways of printing
2333   the operand.  It is used when identical operands must be printed differently
2334   depending on the context.  CODE comes from the `%' specification that was
2335   used to request printing of the operand.  If the specification was just
2336   `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2337   the ASCII code for LTR.
2338
2339   If X is a register, this macro should print the register's name.  The names
2340   can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
2341   is initialized from `REGISTER_NAMES'.
2342
2343   When the machine description has a specification `%PUNCT' (a `%' followed by
2344   a punctuation character), this macro is called with a null pointer for X and
2345   the punctuation character for CODE.  */
2346#define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2347
2348/* A C expression which evaluates to true if CODE is a valid punctuation
2349   character for use in the `PRINT_OPERAND' macro.  If
2350   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2351   characters (except for the standard one, `%') are used in this way.  */
2352/* . == gr0
2353   # == hint operand -- always zero for now
2354   @ == small data base register (gr16)
2355   ~ == pic register (gr17)
2356   * == temporary integer CCR register (cr3)
2357   & == temporary integer ICC register (icc3)  */
2358#define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
2359((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~'	\
2360 || (CODE) == '*' || (CODE) == '&')
2361
2362/* A C compound statement to output to stdio stream STREAM the assembler syntax
2363   for an instruction operand that is a memory reference whose address is X.  X
2364   is an RTL expression.
2365
2366   On some machines, the syntax for a symbolic address depends on the section
2367   that the address refers to.  On these machines, define the macro
2368   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2369   then check for it here.
2370
2371   This declaration must be present.  */
2372#define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2373
2374/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2375   `%I' options of `asm_fprintf' (see `final.c').  These are useful when a
2376   single `md' file must support multiple assembler formats.  In that case, the
2377   various `tm.h' files can define these macros differently.
2378
2379   USER_LABEL_PREFIX is defined in svr4.h.  */
2380#undef USER_LABEL_PREFIX
2381#define USER_LABEL_PREFIX ""
2382#define REGISTER_PREFIX ""
2383#define LOCAL_LABEL_PREFIX "."
2384#define IMMEDIATE_PREFIX "#"
2385
2386
2387/* Output of dispatch tables.  */
2388
2389/* This macro should be provided on machines where the addresses in a dispatch
2390   table are relative to the table's own address.
2391
2392   The definition should be a C statement to output to the stdio stream STREAM
2393   an assembler pseudo-instruction to generate a difference between two labels.
2394   VALUE and REL are the numbers of two internal labels.  The definitions of
2395   these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2396   printed in the same way here.  For example,
2397
2398        fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
2399#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2400fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2401
2402/* This macro should be provided on machines where the addresses in a dispatch
2403   table are absolute.
2404
2405   The definition should be a C statement to output to the stdio stream STREAM
2406   an assembler pseudo-instruction to generate a reference to a label.  VALUE
2407   is the number of an internal label whose definition is output using
2408   `(*targetm.asm_out.internal_label)'.  For example,
2409
2410        fprintf (STREAM, "\t.word L%d\n", VALUE)  */
2411#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2412fprintf (STREAM, "\t.word .L%d\n", VALUE)
2413
2414#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
2415
2416/* Assembler Commands for Exception Regions.  */
2417
2418/* Define this macro to 0 if your target supports DWARF 2 frame unwind
2419   information, but it does not yet work with exception handling.  Otherwise,
2420   if your target supports this information (if it defines
2421   `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2422   `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2423
2424   If this macro is defined to 1, the DWARF 2 unwinder will be the default
2425   exception handling mechanism; otherwise, setjmp/longjmp will be used by
2426   default.
2427
2428   If this macro is defined to anything, the DWARF 2 unwinder will be used
2429   instead of inline unwinders and __unwind_function in the non-setjmp case.  */
2430#define DWARF2_UNWIND_INFO 1
2431
2432#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2433
2434/* Assembler Commands for Alignment.  */
2435
2436/* A C statement to output to the stdio stream STREAM an assembler instruction
2437   to advance the location counter by NBYTES bytes.  Those bytes should be zero
2438   when loaded.  NBYTES will be a C expression of type `int'.
2439
2440   Defined in svr4.h.  */
2441#undef  ASM_OUTPUT_SKIP
2442#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2443  fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2444
2445/* A C statement to output to the stdio stream STREAM an assembler command to
2446   advance the location counter to a multiple of 2 to the POWER bytes.  POWER
2447   will be a C expression of type `int'.  */
2448#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2449  fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2450
2451/* Inside the text section, align with unpacked nops rather than zeros.  */
2452#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2453  fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2454
2455/* Macros Affecting all Debug Formats.  */
2456
2457/* A C expression that returns the DBX register number for the compiler
2458   register number REGNO.  In simple cases, the value of this expression may be
2459   REGNO itself.  But sometimes there are some registers that the compiler
2460   knows about and DBX does not, or vice versa.  In such cases, some register
2461   may need to have one number in the compiler and another for DBX.
2462
2463   If two registers have consecutive numbers inside GCC, and they can be
2464   used as a pair to hold a multiword value, then they *must* have consecutive
2465   numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
2466   will be unable to access such a pair, because they expect register pairs to
2467   be consecutive in their own numbering scheme.
2468
2469   If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2470   preserve register pairs, then what you must do instead is redefine the
2471   actual register numbering scheme.
2472
2473   This declaration is required.  */
2474#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2475
2476/* A C expression that returns the type of debugging output GCC produces
2477   when the user specifies `-g' or `-ggdb'.  Define this if you have arranged
2478   for GCC to support more than one format of debugging output.  Currently,
2479   the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2480   `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2481
2482   The value of this macro only affects the default debugging output; the user
2483   can always get a specific type of output by using `-gstabs', `-gcoff',
2484   `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2485
2486   Defined in svr4.h.  */
2487#undef  PREFERRED_DEBUGGING_TYPE
2488#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2489
2490/* Miscellaneous Parameters.  */
2491
2492/* An alias for a machine mode name.  This is the machine mode that elements of
2493   a jump-table should have.  */
2494#define CASE_VECTOR_MODE SImode
2495
2496/* Define this macro if operations between registers with integral mode smaller
2497   than a word are always performed on the entire register.  Most RISC machines
2498   have this property and most CISC machines do not.  */
2499#define WORD_REGISTER_OPERATIONS
2500
2501/* Define this macro to be a C expression indicating when insns that read
2502   memory in MODE, an integral mode narrower than a word, set the bits outside
2503   of MODE to be either the sign-extension or the zero-extension of the data
2504   read.  Return `SIGN_EXTEND' for values of MODE for which the insn
2505   sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
2506   modes.
2507
2508   This macro is not called with MODE non-integral or with a width greater than
2509   or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
2510   not define this macro if it would always return `UNKNOWN'.  On machines where
2511   this macro is defined, you will normally define it as the constant
2512   `SIGN_EXTEND' or `ZERO_EXTEND'.  */
2513#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2514
2515/* Define if loading short immediate values into registers sign extends.  */
2516#define SHORT_IMMEDIATES_SIGN_EXTEND
2517
2518/* The maximum number of bytes that a single instruction can move quickly from
2519   memory to memory.  */
2520#define MOVE_MAX 8
2521
2522/* A C expression which is nonzero if on this machine it is safe to "convert"
2523   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2524   than INPREC) by merely operating on it as if it had only OUTPREC bits.
2525
2526   On many machines, this expression can be 1.
2527
2528   When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2529   which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
2530   case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2531   things.  */
2532#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2533
2534/* An alias for the machine mode for pointers.  On most machines, define this
2535   to be the integer mode corresponding to the width of a hardware pointer;
2536   `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
2537   you must define this to be one of the partial integer modes, such as
2538   `PSImode'.
2539
2540   The width of `Pmode' must be at least as large as the value of
2541   `POINTER_SIZE'.  If it is not equal, you must define the macro
2542   `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
2543#define Pmode SImode
2544
2545/* An alias for the machine mode used for memory references to functions being
2546   called, in `call' RTL expressions.  On most machines this should be
2547   `QImode'.  */
2548#define FUNCTION_MODE QImode
2549
2550/* Define this macro to handle System V style pragmas: #pragma pack and
2551   #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
2552   defined.
2553
2554   Defined in svr4.h.  */
2555#define HANDLE_SYSV_PRAGMA 1
2556
2557/* A C expression for the maximum number of instructions to execute via
2558   conditional execution instructions instead of a branch.  A value of
2559   BRANCH_COST+1 is the default if the machine does not use
2560   cc0, and 1 if it does use cc0.  */
2561#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2562
2563/* A C expression to modify the code described by the conditional if
2564   information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2565   FALSE_EXPR for converting if-then and if-then-else code to conditional
2566   instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2567   tests cannot be converted.  */
2568#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
2569frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2570
2571/* A C expression to modify the code described by the conditional if
2572   information CE_INFO, for the basic block BB, possibly updating the tests in
2573   TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2574   if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
2575   the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2576   the tests cannot be converted.  */
2577#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2578frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2579
2580/* A C expression to modify the code described by the conditional if
2581   information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
2582   pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2583   insn cannot be converted to be executed conditionally.  */
2584#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2585(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2586
2587/* A C expression to perform any final machine dependent modifications in
2588   converting code to conditional execution in the code described by the
2589   conditional if information CE_INFO.  */
2590#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2591
2592/* A C expression to cancel any machine dependent modifications in converting
2593   code to conditional execution in the code described by the conditional if
2594   information CE_INFO.  */
2595#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2596
2597/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS.  */
2598#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2599
2600/* The definition of the following macro results in that the 2nd jump
2601   optimization (after the 2nd insn scheduling) is minimal.  It is
2602   necessary to define when start cycle marks of insns (TImode is used
2603   for this) is used for VLIW insn packing.  Some jump optimizations
2604   make such marks invalid.  These marks are corrected for some
2605   (minimal) optimizations.  ??? Probably the macro is temporary.
2606   Final solution could making the 2nd jump optimizations before the
2607   2nd instruction scheduling or corrections of the marks for all jump
2608   optimizations.  Although some jump optimizations are actually
2609   deoptimizations for VLIW (super-scalar) processors.  */
2610
2611#define MINIMAL_SECOND_JUMP_OPTIMIZATION
2612
2613
2614/* If the following macro is defined and nonzero and deterministic
2615   finite state automata are used for pipeline hazard recognition, the
2616   code making resource-constrained software pipelining is on.  */
2617#define RCSP_SOFTWARE_PIPELINING 1
2618
2619/* If the following macro is defined and nonzero and deterministic
2620   finite state automata are used for pipeline hazard recognition, we
2621   will try to exchange insns in queue ready to improve the schedule.
2622   The more macro value, the more tries will be made.  */
2623#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2624
2625/* The following macro is used only when value of
2626   FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
2627   the more tries will be made to choose better schedule.  If the
2628   macro value is zero or negative there will be no multi-pass
2629   scheduling.  */
2630#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2631
2632enum frv_builtins
2633{
2634  FRV_BUILTIN_MAND,
2635  FRV_BUILTIN_MOR,
2636  FRV_BUILTIN_MXOR,
2637  FRV_BUILTIN_MNOT,
2638  FRV_BUILTIN_MAVEH,
2639  FRV_BUILTIN_MSATHS,
2640  FRV_BUILTIN_MSATHU,
2641  FRV_BUILTIN_MADDHSS,
2642  FRV_BUILTIN_MADDHUS,
2643  FRV_BUILTIN_MSUBHSS,
2644  FRV_BUILTIN_MSUBHUS,
2645  FRV_BUILTIN_MPACKH,
2646  FRV_BUILTIN_MQADDHSS,
2647  FRV_BUILTIN_MQADDHUS,
2648  FRV_BUILTIN_MQSUBHSS,
2649  FRV_BUILTIN_MQSUBHUS,
2650  FRV_BUILTIN_MUNPACKH,
2651  FRV_BUILTIN_MDPACKH,
2652  FRV_BUILTIN_MBTOH,
2653  FRV_BUILTIN_MHTOB,
2654  FRV_BUILTIN_MCOP1,
2655  FRV_BUILTIN_MCOP2,
2656  FRV_BUILTIN_MROTLI,
2657  FRV_BUILTIN_MROTRI,
2658  FRV_BUILTIN_MWCUT,
2659  FRV_BUILTIN_MSLLHI,
2660  FRV_BUILTIN_MSRLHI,
2661  FRV_BUILTIN_MSRAHI,
2662  FRV_BUILTIN_MEXPDHW,
2663  FRV_BUILTIN_MEXPDHD,
2664  FRV_BUILTIN_MMULHS,
2665  FRV_BUILTIN_MMULHU,
2666  FRV_BUILTIN_MMULXHS,
2667  FRV_BUILTIN_MMULXHU,
2668  FRV_BUILTIN_MMACHS,
2669  FRV_BUILTIN_MMACHU,
2670  FRV_BUILTIN_MMRDHS,
2671  FRV_BUILTIN_MMRDHU,
2672  FRV_BUILTIN_MQMULHS,
2673  FRV_BUILTIN_MQMULHU,
2674  FRV_BUILTIN_MQMULXHU,
2675  FRV_BUILTIN_MQMULXHS,
2676  FRV_BUILTIN_MQMACHS,
2677  FRV_BUILTIN_MQMACHU,
2678  FRV_BUILTIN_MCPXRS,
2679  FRV_BUILTIN_MCPXRU,
2680  FRV_BUILTIN_MCPXIS,
2681  FRV_BUILTIN_MCPXIU,
2682  FRV_BUILTIN_MQCPXRS,
2683  FRV_BUILTIN_MQCPXRU,
2684  FRV_BUILTIN_MQCPXIS,
2685  FRV_BUILTIN_MQCPXIU,
2686  FRV_BUILTIN_MCUT,
2687  FRV_BUILTIN_MCUTSS,
2688  FRV_BUILTIN_MWTACC,
2689  FRV_BUILTIN_MWTACCG,
2690  FRV_BUILTIN_MRDACC,
2691  FRV_BUILTIN_MRDACCG,
2692  FRV_BUILTIN_MTRAP,
2693  FRV_BUILTIN_MCLRACC,
2694  FRV_BUILTIN_MCLRACCA,
2695  FRV_BUILTIN_MDUNPACKH,
2696  FRV_BUILTIN_MBTOHE,
2697  FRV_BUILTIN_MQXMACHS,
2698  FRV_BUILTIN_MQXMACXHS,
2699  FRV_BUILTIN_MQMACXHS,
2700  FRV_BUILTIN_MADDACCS,
2701  FRV_BUILTIN_MSUBACCS,
2702  FRV_BUILTIN_MASACCS,
2703  FRV_BUILTIN_MDADDACCS,
2704  FRV_BUILTIN_MDSUBACCS,
2705  FRV_BUILTIN_MDASACCS,
2706  FRV_BUILTIN_MABSHS,
2707  FRV_BUILTIN_MDROTLI,
2708  FRV_BUILTIN_MCPLHI,
2709  FRV_BUILTIN_MCPLI,
2710  FRV_BUILTIN_MDCUTSSI,
2711  FRV_BUILTIN_MQSATHS,
2712  FRV_BUILTIN_MQLCLRHS,
2713  FRV_BUILTIN_MQLMTHS,
2714  FRV_BUILTIN_MQSLLHI,
2715  FRV_BUILTIN_MQSRAHI,
2716  FRV_BUILTIN_MHSETLOS,
2717  FRV_BUILTIN_MHSETLOH,
2718  FRV_BUILTIN_MHSETHIS,
2719  FRV_BUILTIN_MHSETHIH,
2720  FRV_BUILTIN_MHDSETS,
2721  FRV_BUILTIN_MHDSETH,
2722  FRV_BUILTIN_SMUL,
2723  FRV_BUILTIN_UMUL,
2724  FRV_BUILTIN_PREFETCH0,
2725  FRV_BUILTIN_PREFETCH,
2726  FRV_BUILTIN_SMASS,
2727  FRV_BUILTIN_SMSSS,
2728  FRV_BUILTIN_SMU,
2729  FRV_BUILTIN_SCUTSS,
2730  FRV_BUILTIN_ADDSS,
2731  FRV_BUILTIN_SUBSS,
2732  FRV_BUILTIN_SLASS,
2733  FRV_BUILTIN_IACCreadll,
2734  FRV_BUILTIN_IACCreadl,
2735  FRV_BUILTIN_IACCsetll,
2736  FRV_BUILTIN_IACCsetl,
2737  FRV_BUILTIN_SCAN,
2738  FRV_BUILTIN_READ8,
2739  FRV_BUILTIN_READ16,
2740  FRV_BUILTIN_READ32,
2741  FRV_BUILTIN_READ64,
2742  FRV_BUILTIN_WRITE8,
2743  FRV_BUILTIN_WRITE16,
2744  FRV_BUILTIN_WRITE32,
2745  FRV_BUILTIN_WRITE64
2746};
2747#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2748
2749/* Enable prototypes on the call rtl functions.  */
2750#define MD_CALL_PROTOTYPES 1
2751
2752#define CPU_UNITS_QUERY 1
2753
2754#ifdef __FRV_FDPIC__
2755#define CRT_GET_RFIB_DATA(dbase) \
2756  ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2757#endif
2758
2759#endif /* __FRV_H__ */
2760