1/* Define control and data flow tables, and regsets.
2   Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3   2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#ifndef GCC_BASIC_BLOCK_H
22#define GCC_BASIC_BLOCK_H
23
24#include "bitmap.h"
25#include "sbitmap.h"
26#include "varray.h"
27#include "partition.h"
28#include "hard-reg-set.h"
29#include "predict.h"
30#include "vec.h"
31#include "function.h"
32
33/* Head of register set linked list.  */
34typedef bitmap_head regset_head;
35
36/* A pointer to a regset_head.  */
37typedef bitmap regset;
38
39/* Allocate a register set with oballoc.  */
40#define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
41
42/* Do any cleanup needed on a regset when it is no longer used.  */
43#define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
44
45/* Initialize a new regset.  */
46#define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
47
48/* Clear a register set by freeing up the linked list.  */
49#define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
50
51/* Copy a register set to another register set.  */
52#define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
53
54/* Compare two register sets.  */
55#define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
56
57/* `and' a register set with a second register set.  */
58#define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
59
60/* `and' the complement of a register set with a register set.  */
61#define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
62
63/* Inclusive or a register set with a second register set.  */
64#define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
65
66/* Exclusive or a register set with a second register set.  */
67#define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
68
69/* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
70#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71  bitmap_ior_and_compl_into (TO, FROM1, FROM2)
72
73/* Clear a single register in a register set.  */
74#define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
75
76/* Set a single register in a register set.  */
77#define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
78
79/* Return true if a register is set in a register set.  */
80#define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
81
82/* Copy the hard registers in a register set to the hard register set.  */
83extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84#define REG_SET_TO_HARD_REG_SET(TO, FROM)				\
85do {									\
86  CLEAR_HARD_REG_SET (TO);						\
87  reg_set_to_hard_reg_set (&TO, FROM);					\
88} while (0)
89
90typedef bitmap_iterator reg_set_iterator;
91
92/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93   register number and executing CODE for all registers that are set.  */
94#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)	\
95  EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
96
97/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98   REGNUM to the register number and executing CODE for all registers that are
99   set in the first regset and not set in the second.  */
100#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101  EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
102
103/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104   REGNUM to the register number and executing CODE for all registers that are
105   set in both regsets.  */
106#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107  EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)	\
108
109/* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
110   in dataflow more conveniently.  */
111
112extern regset regs_invalidated_by_call_regset;
113
114/* Type we use to hold basic block counters.  Should be at least
115   64bit.  Although a counter cannot be negative, we use a signed
116   type, because erroneous negative counts can be generated when the
117   flow graph is manipulated by various optimizations.  A signed type
118   makes those easy to detect.  */
119typedef HOST_WIDEST_INT gcov_type;
120
121/* Control flow edge information.  */
122struct GTY(()) edge_def {
123  /* The two blocks at the ends of the edge.  */
124  struct basic_block_def *src;
125  struct basic_block_def *dest;
126
127  /* Instructions queued on the edge.  */
128  union edge_def_insns {
129    gimple_seq GTY ((tag ("true"))) g;
130    rtx GTY ((tag ("false"))) r;
131  } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
132
133  /* Auxiliary info specific to a pass.  */
134  PTR GTY ((skip (""))) aux;
135
136  /* Location of any goto implicit in the edge and associated BLOCK.  */
137  tree goto_block;
138  location_t goto_locus;
139
140  /* The index number corresponding to this edge in the edge vector
141     dest->preds.  */
142  unsigned int dest_idx;
143
144  int flags;			/* see EDGE_* below  */
145  int probability;		/* biased by REG_BR_PROB_BASE */
146  gcov_type count;		/* Expected number of executions calculated
147				   in profile.c  */
148};
149
150DEF_VEC_P(edge);
151DEF_VEC_ALLOC_P(edge,gc);
152DEF_VEC_ALLOC_P(edge,heap);
153
154#define EDGE_FALLTHRU		1	/* 'Straight line' flow */
155#define EDGE_ABNORMAL		2	/* Strange flow, like computed
156					   label, or eh */
157#define EDGE_ABNORMAL_CALL	4	/* Call with abnormal exit
158					   like an exception, or sibcall */
159#define EDGE_EH			8	/* Exception throw */
160#define EDGE_FAKE		16	/* Not a real edge (profile.c) */
161#define EDGE_DFS_BACK		32	/* A backwards edge */
162#define EDGE_CAN_FALLTHRU	64	/* Candidate for straight line
163					   flow.  */
164#define EDGE_IRREDUCIBLE_LOOP	128	/* Part of irreducible loop.  */
165#define EDGE_SIBCALL		256	/* Edge from sibcall to exit.  */
166#define EDGE_LOOP_EXIT		512	/* Exit of a loop.  */
167#define EDGE_TRUE_VALUE		1024	/* Edge taken when controlling
168					   predicate is nonzero.  */
169#define EDGE_FALSE_VALUE	2048	/* Edge taken when controlling
170					   predicate is zero.  */
171#define EDGE_EXECUTABLE		4096	/* Edge is executable.  Only
172					   valid during SSA-CCP.  */
173#define EDGE_CROSSING		8192    /* Edge crosses between hot
174					   and cold sections, when we
175					   do partitioning.  */
176#define EDGE_ALL_FLAGS	       16383
177
178#define EDGE_COMPLEX	(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
179
180/* Counter summary from the last set of coverage counts read by
181   profile.c.  */
182extern const struct gcov_ctr_summary *profile_info;
183
184/* Declared in cfgloop.h.  */
185struct loop;
186
187/* Declared in tree-flow.h.  */
188struct edge_prediction;
189struct rtl_bb_info;
190
191/* A basic block is a sequence of instructions with only entry and
192   only one exit.  If any one of the instructions are executed, they
193   will all be executed, and in sequence from first to last.
194
195   There may be COND_EXEC instructions in the basic block.  The
196   COND_EXEC *instructions* will be executed -- but if the condition
197   is false the conditionally executed *expressions* will of course
198   not be executed.  We don't consider the conditionally executed
199   expression (which might have side-effects) to be in a separate
200   basic block because the program counter will always be at the same
201   location after the COND_EXEC instruction, regardless of whether the
202   condition is true or not.
203
204   Basic blocks need not start with a label nor end with a jump insn.
205   For example, a previous basic block may just "conditionally fall"
206   into the succeeding basic block, and the last basic block need not
207   end with a jump insn.  Block 0 is a descendant of the entry block.
208
209   A basic block beginning with two labels cannot have notes between
210   the labels.
211
212   Data for jump tables are stored in jump_insns that occur in no
213   basic block even though these insns can follow or precede insns in
214   basic blocks.  */
215
216/* Basic block information indexed by block number.  */
217struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
218  /* The edges into and out of the block.  */
219  VEC(edge,gc) *preds;
220  VEC(edge,gc) *succs;
221
222  /* Auxiliary info specific to a pass.  */
223  PTR GTY ((skip (""))) aux;
224
225  /* Innermost loop containing the block.  */
226  struct loop *loop_father;
227
228  /* The dominance and postdominance information node.  */
229  struct et_node * GTY ((skip (""))) dom[2];
230
231  /* Previous and next blocks in the chain.  */
232  struct basic_block_def *prev_bb;
233  struct basic_block_def *next_bb;
234
235  union basic_block_il_dependent {
236      struct gimple_bb_info * GTY ((tag ("0"))) gimple;
237      struct rtl_bb_info * GTY ((tag ("1"))) rtl;
238    } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
239
240  /* Expected number of executions: calculated in profile.c.  */
241  gcov_type count;
242
243  /* The index of this block.  */
244  int index;
245
246  /* The loop depth of this block.  */
247  int loop_depth;
248
249  /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
250  int frequency;
251
252  /* The discriminator for this block.  */
253  int discriminator;
254
255  /* Various flags.  See BB_* below.  */
256  int flags;
257};
258
259struct GTY(()) rtl_bb_info {
260  /* The first and last insns of the block.  */
261  rtx head_;
262  rtx end_;
263
264  /* In CFGlayout mode points to insn notes/jumptables to be placed just before
265     and after the block.   */
266  rtx header;
267  rtx footer;
268
269  /* This field is used by the bb-reorder and tracer passes.  */
270  int visited;
271};
272
273struct GTY(()) gimple_bb_info {
274  /* Sequence of statements in this block.  */
275  gimple_seq seq;
276
277  /* PHI nodes for this block.  */
278  gimple_seq phi_nodes;
279};
280
281DEF_VEC_P(basic_block);
282DEF_VEC_ALLOC_P(basic_block,gc);
283DEF_VEC_ALLOC_P(basic_block,heap);
284
285#define BB_FREQ_MAX 10000
286
287/* Masks for basic_block.flags.
288
289   BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290   the compilation, so they are never cleared.
291
292   All other flags may be cleared by clear_bb_flags().  It is generally
293   a bad idea to rely on any flags being up-to-date.  */
294
295enum bb_flags
296{
297  /* Only set on blocks that have just been created by create_bb.  */
298  BB_NEW = 1 << 0,
299
300  /* Set by find_unreachable_blocks.  Do not rely on this being set in any
301     pass.  */
302  BB_REACHABLE = 1 << 1,
303
304  /* Set for blocks in an irreducible loop by loop analysis.  */
305  BB_IRREDUCIBLE_LOOP = 1 << 2,
306
307  /* Set on blocks that may actually not be single-entry single-exit block.  */
308  BB_SUPERBLOCK = 1 << 3,
309
310  /* Set on basic blocks that the scheduler should not touch.  This is used
311     by SMS to prevent other schedulers from messing with the loop schedule.  */
312  BB_DISABLE_SCHEDULE = 1 << 4,
313
314  /* Set on blocks that should be put in a hot section.  */
315  BB_HOT_PARTITION = 1 << 5,
316
317  /* Set on blocks that should be put in a cold section.  */
318  BB_COLD_PARTITION = 1 << 6,
319
320  /* Set on block that was duplicated.  */
321  BB_DUPLICATED = 1 << 7,
322
323  /* Set if the label at the top of this block is the target of a non-local goto.  */
324  BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
325
326  /* Set on blocks that are in RTL format.  */
327  BB_RTL = 1 << 9 ,
328
329  /* Set on blocks that are forwarder blocks.
330     Only used in cfgcleanup.c.  */
331  BB_FORWARDER_BLOCK = 1 << 10,
332
333  /* Set on blocks that cannot be threaded through.
334     Only used in cfgcleanup.c.  */
335  BB_NONTHREADABLE_BLOCK = 1 << 11
336};
337
338/* Dummy flag for convenience in the hot/cold partitioning code.  */
339#define BB_UNPARTITIONED	0
340
341/* Partitions, to be used when partitioning hot and cold basic blocks into
342   separate sections.  */
343#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344#define BB_SET_PARTITION(bb, part) do {					\
345  basic_block bb_ = (bb);						\
346  bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
347		| (part));						\
348} while (0)
349
350#define BB_COPY_PARTITION(dstbb, srcbb) \
351  BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
352
353/* State of dominance information.  */
354
355enum dom_state
356{
357  DOM_NONE,		/* Not computed at all.  */
358  DOM_NO_FAST_QUERY,	/* The data is OK, but the fast query data are not usable.  */
359  DOM_OK		/* Everything is ok.  */
360};
361
362/* What sort of profiling information we have.  */
363enum profile_status_d
364{
365  PROFILE_ABSENT,
366  PROFILE_GUESSED,
367  PROFILE_READ
368};
369
370/* A structure to group all the per-function control flow graph data.
371   The x_* prefixing is necessary because otherwise references to the
372   fields of this struct are interpreted as the defines for backward
373   source compatibility following the definition of this struct.  */
374struct GTY(()) control_flow_graph {
375  /* Block pointers for the exit and entry of a function.
376     These are always the head and tail of the basic block list.  */
377  basic_block x_entry_block_ptr;
378  basic_block x_exit_block_ptr;
379
380  /* Index by basic block number, get basic block struct info.  */
381  VEC(basic_block,gc) *x_basic_block_info;
382
383  /* Number of basic blocks in this flow graph.  */
384  int x_n_basic_blocks;
385
386  /* Number of edges in this flow graph.  */
387  int x_n_edges;
388
389  /* The first free basic block number.  */
390  int x_last_basic_block;
391
392  /* Mapping of labels to their associated blocks.  At present
393     only used for the gimple CFG.  */
394  VEC(basic_block,gc) *x_label_to_block_map;
395
396  enum profile_status_d x_profile_status;
397
398  /* Whether the dominators and the postdominators are available.  */
399  enum dom_state x_dom_computed[2];
400
401  /* Number of basic blocks in the dominance tree.  */
402  unsigned x_n_bbs_in_dom_tree[2];
403
404  /* Maximal number of entities in the single jumptable.  Used to estimate
405     final flowgraph size.  */
406  int max_jumptable_ents;
407
408  /* UIDs for LABEL_DECLs.  */
409  int last_label_uid;
410};
411
412/* Defines for accessing the fields of the CFG structure for function FN.  */
413#define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
414#define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)	     ((FN)->cfg->x_exit_block_ptr)
415#define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
416#define n_basic_blocks_for_function(FN)	     ((FN)->cfg->x_n_basic_blocks)
417#define n_edges_for_function(FN)	     ((FN)->cfg->x_n_edges)
418#define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
419#define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
420#define profile_status_for_function(FN)	     ((FN)->cfg->x_profile_status)
421
422#define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
423  (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
424#define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
425  (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
426
427/* Defines for textual backward source compatibility.  */
428#define ENTRY_BLOCK_PTR		(cfun->cfg->x_entry_block_ptr)
429#define EXIT_BLOCK_PTR		(cfun->cfg->x_exit_block_ptr)
430#define basic_block_info	(cfun->cfg->x_basic_block_info)
431#define n_basic_blocks		(cfun->cfg->x_n_basic_blocks)
432#define n_edges			(cfun->cfg->x_n_edges)
433#define last_basic_block	(cfun->cfg->x_last_basic_block)
434#define label_to_block_map	(cfun->cfg->x_label_to_block_map)
435#define profile_status		(cfun->cfg->x_profile_status)
436
437#define BASIC_BLOCK(N)		(VEC_index (basic_block, basic_block_info, (N)))
438#define SET_BASIC_BLOCK(N,BB)	(VEC_replace (basic_block, basic_block_info, (N), (BB)))
439
440/* For iterating over basic blocks.  */
441#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
442  for (BB = FROM; BB != TO; BB = BB->DIR)
443
444#define FOR_EACH_BB_FN(BB, FN) \
445  FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
446
447#define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
448
449#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
450  FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
451
452#define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
453
454/* For iterating over insns in basic block.  */
455#define FOR_BB_INSNS(BB, INSN)			\
456  for ((INSN) = BB_HEAD (BB);			\
457       (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
458       (INSN) = NEXT_INSN (INSN))
459
460/* For iterating over insns in basic block when we might remove the
461   current insn.  */
462#define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
463  for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
464       (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
465       (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
466
467#define FOR_BB_INSNS_REVERSE(BB, INSN)		\
468  for ((INSN) = BB_END (BB);			\
469       (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
470       (INSN) = PREV_INSN (INSN))
471
472#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
473  for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
474       (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
475       (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
476
477/* Cycles through _all_ basic blocks, even the fake ones (entry and
478   exit block).  */
479
480#define FOR_ALL_BB(BB) \
481  for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
482
483#define FOR_ALL_BB_FN(BB, FN) \
484  for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
485
486extern bitmap_obstack reg_obstack;
487
488
489/* Stuff for recording basic block info.  */
490
491#define BB_HEAD(B)      (B)->il.rtl->head_
492#define BB_END(B)       (B)->il.rtl->end_
493
494/* Special block numbers [markers] for entry and exit.
495   Neither of them is supposed to hold actual statements.  */
496#define ENTRY_BLOCK (0)
497#define EXIT_BLOCK (1)
498
499/* The two blocks that are always in the cfg.  */
500#define NUM_FIXED_BLOCKS (2)
501
502#define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
503
504extern void compute_bb_for_insn (void);
505extern unsigned int free_bb_for_insn (void);
506extern void update_bb_for_insn (basic_block);
507
508extern void insert_insn_on_edge (rtx, edge);
509basic_block split_edge_and_insert (edge, rtx);
510
511extern void commit_one_edge_insertion (edge e);
512extern void commit_edge_insertions (void);
513
514extern void remove_fake_edges (void);
515extern void remove_fake_exit_edges (void);
516extern void add_noreturn_fake_exit_edges (void);
517extern void connect_infinite_loops_to_exit (void);
518extern edge unchecked_make_edge (basic_block, basic_block, int);
519extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
520extern edge make_edge (basic_block, basic_block, int);
521extern edge make_single_succ_edge (basic_block, basic_block, int);
522extern void remove_edge_raw (edge);
523extern void redirect_edge_succ (edge, basic_block);
524extern edge redirect_edge_succ_nodup (edge, basic_block);
525extern void redirect_edge_pred (edge, basic_block);
526extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
527extern void clear_bb_flags (void);
528extern int post_order_compute (int *, bool, bool);
529extern int inverted_post_order_compute (int *);
530extern int pre_and_rev_post_order_compute (int *, int *, bool);
531extern int dfs_enumerate_from (basic_block, int,
532			       bool (*)(const_basic_block, const void *),
533			       basic_block *, int, const void *);
534extern void compute_dominance_frontiers (bitmap *);
535extern bitmap compute_idf (bitmap, bitmap *);
536extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
537extern void dump_edge_info (FILE *, edge, int);
538extern void brief_dump_cfg (FILE *);
539extern void clear_edges (void);
540extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
541extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
542					     gcov_type);
543
544/* Structure to group all of the information to process IF-THEN and
545   IF-THEN-ELSE blocks for the conditional execution support.  This
546   needs to be in a public file in case the IFCVT macros call
547   functions passing the ce_if_block data structure.  */
548
549typedef struct ce_if_block
550{
551  basic_block test_bb;			/* First test block.  */
552  basic_block then_bb;			/* THEN block.  */
553  basic_block else_bb;			/* ELSE block or NULL.  */
554  basic_block join_bb;			/* Join THEN/ELSE blocks.  */
555  basic_block last_test_bb;		/* Last bb to hold && or || tests.  */
556  int num_multiple_test_blocks;		/* # of && and || basic blocks.  */
557  int num_and_and_blocks;		/* # of && blocks.  */
558  int num_or_or_blocks;			/* # of || blocks.  */
559  int num_multiple_test_insns;		/* # of insns in && and || blocks.  */
560  int and_and_p;			/* Complex test is &&.  */
561  int num_then_insns;			/* # of insns in THEN block.  */
562  int num_else_insns;			/* # of insns in ELSE block.  */
563  int pass;				/* Pass number.  */
564
565#ifdef IFCVT_EXTRA_FIELDS
566  IFCVT_EXTRA_FIELDS			/* Any machine dependent fields.  */
567#endif
568
569} ce_if_block_t;
570
571/* This structure maintains an edge list vector.  */
572struct edge_list
573{
574  int num_blocks;
575  int num_edges;
576  edge *index_to_edge;
577};
578
579/* The base value for branch probability notes and edge probabilities.  */
580#define REG_BR_PROB_BASE  10000
581
582/* This is the value which indicates no edge is present.  */
583#define EDGE_INDEX_NO_EDGE	-1
584
585/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
586   if there is no edge between the 2 basic blocks.  */
587#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
588
589/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
590   block which is either the pred or succ end of the indexed edge.  */
591#define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
592#define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
593
594/* INDEX_EDGE returns a pointer to the edge.  */
595#define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
596
597/* Number of edges in the compressed edge list.  */
598#define NUM_EDGES(el)			((el)->num_edges)
599
600/* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
601#define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
602					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
603
604/* BB is assumed to contain conditional jump.  Return the branch edge.  */
605#define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
606					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
607
608/* Return expected execution frequency of the edge E.  */
609#define EDGE_FREQUENCY(e)		(((e)->src->frequency \
610					  * (e)->probability \
611					  + REG_BR_PROB_BASE / 2) \
612					 / REG_BR_PROB_BASE)
613
614/* Return nonzero if edge is critical.  */
615#define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
616					 && EDGE_COUNT ((e)->dest->preds) >= 2)
617
618#define EDGE_COUNT(ev)			VEC_length (edge, (ev))
619#define EDGE_I(ev,i)			VEC_index  (edge, (ev), (i))
620#define EDGE_PRED(bb,i)			VEC_index  (edge, (bb)->preds, (i))
621#define EDGE_SUCC(bb,i)			VEC_index  (edge, (bb)->succs, (i))
622
623/* Returns true if BB has precisely one successor.  */
624
625static inline bool
626single_succ_p (const_basic_block bb)
627{
628  return EDGE_COUNT (bb->succs) == 1;
629}
630
631/* Returns true if BB has precisely one predecessor.  */
632
633static inline bool
634single_pred_p (const_basic_block bb)
635{
636  return EDGE_COUNT (bb->preds) == 1;
637}
638
639/* Returns the single successor edge of basic block BB.  Aborts if
640   BB does not have exactly one successor.  */
641
642static inline edge
643single_succ_edge (const_basic_block bb)
644{
645  gcc_assert (single_succ_p (bb));
646  return EDGE_SUCC (bb, 0);
647}
648
649/* Returns the single predecessor edge of basic block BB.  Aborts
650   if BB does not have exactly one predecessor.  */
651
652static inline edge
653single_pred_edge (const_basic_block bb)
654{
655  gcc_assert (single_pred_p (bb));
656  return EDGE_PRED (bb, 0);
657}
658
659/* Returns the single successor block of basic block BB.  Aborts
660   if BB does not have exactly one successor.  */
661
662static inline basic_block
663single_succ (const_basic_block bb)
664{
665  return single_succ_edge (bb)->dest;
666}
667
668/* Returns the single predecessor block of basic block BB.  Aborts
669   if BB does not have exactly one predecessor.*/
670
671static inline basic_block
672single_pred (const_basic_block bb)
673{
674  return single_pred_edge (bb)->src;
675}
676
677/* Iterator object for edges.  */
678
679typedef struct {
680  unsigned index;
681  VEC(edge,gc) **container;
682} edge_iterator;
683
684static inline VEC(edge,gc) *
685ei_container (edge_iterator i)
686{
687  gcc_assert (i.container);
688  return *i.container;
689}
690
691#define ei_start(iter) ei_start_1 (&(iter))
692#define ei_last(iter) ei_last_1 (&(iter))
693
694/* Return an iterator pointing to the start of an edge vector.  */
695static inline edge_iterator
696ei_start_1 (VEC(edge,gc) **ev)
697{
698  edge_iterator i;
699
700  i.index = 0;
701  i.container = ev;
702
703  return i;
704}
705
706/* Return an iterator pointing to the last element of an edge
707   vector.  */
708static inline edge_iterator
709ei_last_1 (VEC(edge,gc) **ev)
710{
711  edge_iterator i;
712
713  i.index = EDGE_COUNT (*ev) - 1;
714  i.container = ev;
715
716  return i;
717}
718
719/* Is the iterator `i' at the end of the sequence?  */
720static inline bool
721ei_end_p (edge_iterator i)
722{
723  return (i.index == EDGE_COUNT (ei_container (i)));
724}
725
726/* Is the iterator `i' at one position before the end of the
727   sequence?  */
728static inline bool
729ei_one_before_end_p (edge_iterator i)
730{
731  return (i.index + 1 == EDGE_COUNT (ei_container (i)));
732}
733
734/* Advance the iterator to the next element.  */
735static inline void
736ei_next (edge_iterator *i)
737{
738  gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
739  i->index++;
740}
741
742/* Move the iterator to the previous element.  */
743static inline void
744ei_prev (edge_iterator *i)
745{
746  gcc_assert (i->index > 0);
747  i->index--;
748}
749
750/* Return the edge pointed to by the iterator `i'.  */
751static inline edge
752ei_edge (edge_iterator i)
753{
754  return EDGE_I (ei_container (i), i.index);
755}
756
757/* Return an edge pointed to by the iterator.  Do it safely so that
758   NULL is returned when the iterator is pointing at the end of the
759   sequence.  */
760static inline edge
761ei_safe_edge (edge_iterator i)
762{
763  return !ei_end_p (i) ? ei_edge (i) : NULL;
764}
765
766/* Return 1 if we should continue to iterate.  Return 0 otherwise.
767   *Edge P is set to the next edge if we are to continue to iterate
768   and NULL otherwise.  */
769
770static inline bool
771ei_cond (edge_iterator ei, edge *p)
772{
773  if (!ei_end_p (ei))
774    {
775      *p = ei_edge (ei);
776      return 1;
777    }
778  else
779    {
780      *p = NULL;
781      return 0;
782    }
783}
784
785/* This macro serves as a convenient way to iterate each edge in a
786   vector of predecessor or successor edges.  It must not be used when
787   an element might be removed during the traversal, otherwise
788   elements will be missed.  Instead, use a for-loop like that shown
789   in the following pseudo-code:
790
791   FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
792     {
793	IF (e != taken_edge)
794	  remove_edge (e);
795	ELSE
796	  ei_next (&ei);
797     }
798*/
799
800#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
801  for ((ITER) = ei_start ((EDGE_VEC));		\
802       ei_cond ((ITER), &(EDGE));		\
803       ei_next (&(ITER)))
804
805struct edge_list * create_edge_list (void);
806void free_edge_list (struct edge_list *);
807void print_edge_list (FILE *, struct edge_list *);
808void verify_edge_list (FILE *, struct edge_list *);
809int find_edge_index (struct edge_list *, basic_block, basic_block);
810edge find_edge (basic_block, basic_block);
811
812#define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
813					   except for edge forwarding */
814#define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
815#define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
816					   to care REG_DEAD notes.  */
817#define CLEANUP_THREADING	8	/* Do jump threading.  */
818#define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
819					   insns.  */
820#define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
821
822/* In lcm.c */
823extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
824				       sbitmap *, sbitmap *, sbitmap **,
825				       sbitmap **);
826extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
827					   sbitmap *, sbitmap *,
828					   sbitmap *, sbitmap **,
829					   sbitmap **);
830extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
831
832/* In predict.c */
833extern bool maybe_hot_bb_p (const_basic_block);
834extern bool maybe_hot_edge_p (edge);
835extern bool probably_never_executed_bb_p (const_basic_block);
836extern bool optimize_bb_for_size_p (const_basic_block);
837extern bool optimize_bb_for_speed_p (const_basic_block);
838extern bool optimize_edge_for_size_p (edge);
839extern bool optimize_edge_for_speed_p (edge);
840extern bool optimize_function_for_size_p (struct function *);
841extern bool optimize_function_for_speed_p (struct function *);
842extern bool optimize_loop_for_size_p (struct loop *);
843extern bool optimize_loop_for_speed_p (struct loop *);
844extern bool optimize_loop_nest_for_size_p (struct loop *);
845extern bool optimize_loop_nest_for_speed_p (struct loop *);
846extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
847extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
848extern void gimple_predict_edge (edge, enum br_predictor, int);
849extern void rtl_predict_edge (edge, enum br_predictor, int);
850extern void predict_edge_def (edge, enum br_predictor, enum prediction);
851extern void guess_outgoing_edge_probabilities (basic_block);
852extern void remove_predictions_associated_with_edge (edge);
853extern bool edge_probability_reliable_p (const_edge);
854extern bool br_prob_note_reliable_p (const_rtx);
855extern bool predictable_edge_p (edge);
856
857/* In cfg.c  */
858extern void init_flow (struct function *);
859extern void debug_bb (basic_block);
860extern basic_block debug_bb_n (int);
861extern void dump_regset (regset, FILE *);
862extern void debug_regset (regset);
863extern void expunge_block (basic_block);
864extern void link_block (basic_block, basic_block);
865extern void unlink_block (basic_block);
866extern void compact_blocks (void);
867extern basic_block alloc_block (void);
868extern void alloc_aux_for_block (basic_block, int);
869extern void alloc_aux_for_blocks (int);
870extern void clear_aux_for_blocks (void);
871extern void free_aux_for_blocks (void);
872extern void alloc_aux_for_edge (edge, int);
873extern void alloc_aux_for_edges (int);
874extern void clear_aux_for_edges (void);
875extern void free_aux_for_edges (void);
876
877/* In cfganal.c  */
878extern void find_unreachable_blocks (void);
879extern bool forwarder_block_p (const_basic_block);
880extern bool can_fallthru (basic_block, basic_block);
881extern bool could_fall_through (basic_block, basic_block);
882extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
883extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
884
885/* In cfgrtl.c  */
886extern basic_block force_nonfallthru (edge);
887extern rtx block_label (basic_block);
888extern bool purge_all_dead_edges (void);
889extern bool purge_dead_edges (basic_block);
890
891/* In cfgbuild.c.  */
892extern void find_many_sub_basic_blocks (sbitmap);
893extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
894
895/* In cfgcleanup.c.  */
896extern bool cleanup_cfg (int);
897extern bool delete_unreachable_blocks (void);
898
899extern bool mark_dfs_back_edges (void);
900extern void set_edge_can_fallthru_flag (void);
901extern void update_br_prob_note (basic_block);
902extern void fixup_abnormal_edges (void);
903extern bool inside_basic_block_p (const_rtx);
904extern bool control_flow_insn_p (const_rtx);
905extern rtx get_last_bb_insn (basic_block);
906
907/* In bb-reorder.c */
908extern void reorder_basic_blocks (void);
909
910/* In dominance.c */
911
912enum cdi_direction
913{
914  CDI_DOMINATORS = 1,
915  CDI_POST_DOMINATORS = 2
916};
917
918extern enum dom_state dom_info_state (enum cdi_direction);
919extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
920extern bool dom_info_available_p (enum cdi_direction);
921extern void calculate_dominance_info (enum cdi_direction);
922extern void free_dominance_info (enum cdi_direction);
923extern basic_block nearest_common_dominator (enum cdi_direction,
924					     basic_block, basic_block);
925extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
926						     bitmap);
927extern void set_immediate_dominator (enum cdi_direction, basic_block,
928				     basic_block);
929extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
930extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
931extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
932extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
933							 basic_block *,
934							 unsigned);
935extern VEC (basic_block, heap) *get_all_dominated_blocks (enum cdi_direction,
936							  basic_block);
937extern void add_to_dominance_info (enum cdi_direction, basic_block);
938extern void delete_from_dominance_info (enum cdi_direction, basic_block);
939basic_block recompute_dominator (enum cdi_direction, basic_block);
940extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
941					   basic_block);
942extern void iterate_fix_dominators (enum cdi_direction,
943				    VEC (basic_block, heap) *, bool);
944extern void verify_dominators (enum cdi_direction);
945extern basic_block first_dom_son (enum cdi_direction, basic_block);
946extern basic_block next_dom_son (enum cdi_direction, basic_block);
947unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
948unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
949
950extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
951extern void break_superblocks (void);
952extern void relink_block_chain (bool);
953extern void check_bb_profile (basic_block, FILE *);
954extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
955extern void init_rtl_bb_info (basic_block);
956
957extern void initialize_original_copy_tables (void);
958extern void free_original_copy_tables (void);
959extern void set_bb_original (basic_block, basic_block);
960extern basic_block get_bb_original (basic_block);
961extern void set_bb_copy (basic_block, basic_block);
962extern basic_block get_bb_copy (basic_block);
963void set_loop_copy (struct loop *, struct loop *);
964struct loop *get_loop_copy (struct loop *);
965
966
967extern rtx insert_insn_end_bb_new (rtx, basic_block);
968
969#include "cfghooks.h"
970
971/* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
972static inline bool
973bb_has_eh_pred (basic_block bb)
974{
975  edge e;
976  edge_iterator ei;
977
978  FOR_EACH_EDGE (e, ei, bb->preds)
979    {
980      if (e->flags & EDGE_EH)
981	return true;
982    }
983  return false;
984}
985
986/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
987static inline bool
988bb_has_abnormal_pred (basic_block bb)
989{
990  edge e;
991  edge_iterator ei;
992
993  FOR_EACH_EDGE (e, ei, bb->preds)
994    {
995      if (e->flags & EDGE_ABNORMAL)
996	return true;
997    }
998  return false;
999}
1000
1001/* In cfgloopmanip.c.  */
1002extern edge mfb_kj_edge;
1003extern bool mfb_keep_just (edge);
1004
1005/* In cfgexpand.c.  */
1006extern void rtl_profile_for_bb (basic_block);
1007extern void rtl_profile_for_edge (edge);
1008extern void default_rtl_profile (void);
1009
1010#endif /* GCC_BASIC_BLOCK_H */
1011