1/* An expandable hash tables datatype.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB.  If
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* This package implements basic hash table functionality.  It is possible
23   to search for an entry, create an entry and destroy an entry.
24
25   Elements in the table are generic pointers.
26
27   The size of the table is not fixed; if the occupancy of the table
28   grows too high the hash table will be expanded.
29
30   The abstract data implementation is based on generalized Algorithm D
31   from Knuth's book "The art of computer programming".  Hash table is
32   expanded by creation of new hash table and transferring elements from
33   the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
59
60#include <stdio.h>
61
62#include "libiberty.h"
63#include "ansidecl.h"
64#include "hashtab.h"
65
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78
79/* At some point, we could make these be NULL, and modify the
80   hash-table routines to handle NULL specially; that would avoid
81   function-call overhead for the common case of hashing pointers.  */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
84
85/* Table of primes and multiplicative inverses.
86
87   Note that these are not minimally reduced inverses.  Unlike when generating
88   code to divide by a constant, we want to be able to use the same algorithm
89   all the time.  All of these inverses (are implied to) have bit 32 set.
90
91   For the record, here's the function that computed the table; it's a
92   vastly simplified version of the function of the same name from gcc.  */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98  int i;
99  for (i = 31; i >= 0 ; --i)
100    if (x > (1u << i))
101      return i+1;
102  abort ();
103}
104
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108  unsigned long long mhigh;
109  double nx;
110  int lgup, post_shift;
111  int pow, pow2;
112  int n = 32, precision = 32;
113
114  lgup = ceil_log2 (d);
115  pow = n + lgup;
116  pow2 = n + lgup - precision;
117
118  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119  mhigh = nx / d;
120
121  *shiftp = lgup - 1;
122  *mlp = mhigh;
123  return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129  hashval_t prime;
130  hashval_t inv;
131  hashval_t inv_m2;	/* inverse of prime-2 */
132  hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136  {          7, 0x24924925, 0x9999999b, 2 },
137  {         13, 0x3b13b13c, 0x745d1747, 3 },
138  {         31, 0x08421085, 0x1a7b9612, 4 },
139  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
140  {        127, 0x02040811, 0x0624dd30, 6 },
141  {        251, 0x05197f7e, 0x073260a5, 7 },
142  {        509, 0x01824366, 0x02864fc8, 8 },
143  {       1021, 0x00c0906d, 0x014191f7, 9 },
144  {       2039, 0x0121456f, 0x0161e69e, 10 },
145  {       4093, 0x00300902, 0x00501908, 11 },
146  {       8191, 0x00080041, 0x00180241, 12 },
147  {      16381, 0x000c0091, 0x00140191, 13 },
148  {      32749, 0x002605a5, 0x002a06e6, 14 },
149  {      65521, 0x000f00e2, 0x00110122, 15 },
150  {     131071, 0x00008001, 0x00018003, 16 },
151  {     262139, 0x00014002, 0x0001c004, 17 },
152  {     524287, 0x00002001, 0x00006001, 18 },
153  {    1048573, 0x00003001, 0x00005001, 19 },
154  {    2097143, 0x00004801, 0x00005801, 20 },
155  {    4194301, 0x00000c01, 0x00001401, 21 },
156  {    8388593, 0x00001e01, 0x00002201, 22 },
157  {   16777213, 0x00000301, 0x00000501, 23 },
158  {   33554393, 0x00001381, 0x00001481, 24 },
159  {   67108859, 0x00000141, 0x000001c1, 25 },
160  {  134217689, 0x000004e1, 0x00000521, 26 },
161  {  268435399, 0x00000391, 0x000003b1, 27 },
162  {  536870909, 0x00000019, 0x00000029, 28 },
163  { 1073741789, 0x0000008d, 0x00000095, 29 },
164  { 2147483647, 0x00000003, 0x00000007, 30 },
165  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
166  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170   nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
173higher_prime_index (unsigned long n)
174{
175  unsigned int low = 0;
176  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177
178  while (low != high)
179    {
180      unsigned int mid = low + (high - low) / 2;
181      if (n > prime_tab[mid].prime)
182	low = mid + 1;
183      else
184	high = mid;
185    }
186
187  /* If we've run out of primes, abort.  */
188  if (n > prime_tab[low].prime)
189    {
190      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191      abort ();
192    }
193
194  return low;
195}
196
197/* Returns a hash code for P.  */
198
199static hashval_t
200hash_pointer (const PTR p)
201{
202  return (hashval_t) ((intptr_t)p >> 3);
203}
204
205/* Returns non-zero if P1 and P2 are equal.  */
206
207static int
208eq_pointer (const PTR p1, const PTR p2)
209{
210  return p1 == p2;
211}
212
213
214/* The parens around the function names in the next two definitions
215   are essential in order to prevent macro expansions of the name.
216   The bodies, however, are expanded as expected, so they are not
217   recursive definitions.  */
218
219/* Return the current size of given hash table.  */
220
221#define htab_size(htab)  ((htab)->size)
222
223size_t
224(htab_size) (htab_t htab)
225{
226  return htab_size (htab);
227}
228
229/* Return the current number of elements in given hash table. */
230
231#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
232
233size_t
234(htab_elements) (htab_t htab)
235{
236  return htab_elements (htab);
237}
238
239/* Return X % Y.  */
240
241static inline hashval_t
242htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
243{
244  /* The multiplicative inverses computed above are for 32-bit types, and
245     requires that we be able to compute a highpart multiply.  */
246#ifdef UNSIGNED_64BIT_TYPE
247  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248  if (sizeof (hashval_t) * CHAR_BIT <= 32)
249    {
250      hashval_t t1, t2, t3, t4, q, r;
251
252      t1 = ((ull)x * inv) >> 32;
253      t2 = x - t1;
254      t3 = t2 >> 1;
255      t4 = t1 + t3;
256      q  = t4 >> shift;
257      r  = x - (q * y);
258
259      return r;
260    }
261#endif
262
263  /* Otherwise just use the native division routines.  */
264  return x % y;
265}
266
267/* Compute the primary hash for HASH given HTAB's current size.  */
268
269static inline hashval_t
270htab_mod (hashval_t hash, htab_t htab)
271{
272  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
274}
275
276/* Compute the secondary hash for HASH given HTAB's current size.  */
277
278static inline hashval_t
279htab_mod_m2 (hashval_t hash, htab_t htab)
280{
281  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
283}
284
285/* This function creates table with length slightly longer than given
286   source length.  Created hash table is initiated as empty (all the
287   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
288   created hash table, or NULL if memory allocation fails.  */
289
290htab_t
291htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
293{
294  return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
295				  free_f);
296}
297
298/* As above, but uses the variants of ALLOC_F and FREE_F which accept
299   an extra argument.  */
300
301htab_t
302htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
303		      htab_del del_f, void *alloc_arg,
304		      htab_alloc_with_arg alloc_f,
305		      htab_free_with_arg free_f)
306{
307  htab_t result;
308  unsigned int size_prime_index;
309
310  size_prime_index = higher_prime_index (size);
311  size = prime_tab[size_prime_index].prime;
312
313  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
314  if (result == NULL)
315    return NULL;
316  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
317  if (result->entries == NULL)
318    {
319      if (free_f != NULL)
320	(*free_f) (alloc_arg, result);
321      return NULL;
322    }
323  result->size = size;
324  result->size_prime_index = size_prime_index;
325  result->hash_f = hash_f;
326  result->eq_f = eq_f;
327  result->del_f = del_f;
328  result->alloc_arg = alloc_arg;
329  result->alloc_with_arg_f = alloc_f;
330  result->free_with_arg_f = free_f;
331  return result;
332}
333
334/*
335
336@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size},
337htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f},
338htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f},
339htab_free @var{free_f})
340
341This function creates a hash table that uses two different allocators
342@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
343and its entries respectively.  This is useful when variables of different
344types need to be allocated with different allocators.
345
346The created hash table is slightly larger than @var{size} and it is
347initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
348The function returns the created hash table, or @code{NULL} if memory
349allocation fails.
350
351@end deftypefn
352
353*/
354
355htab_t
356htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
357			 htab_del del_f, htab_alloc alloc_tab_f,
358			 htab_alloc alloc_f, htab_free free_f)
359{
360  htab_t result;
361  unsigned int size_prime_index;
362
363  size_prime_index = higher_prime_index (size);
364  size = prime_tab[size_prime_index].prime;
365
366  result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
367  if (result == NULL)
368    return NULL;
369  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
370  if (result->entries == NULL)
371    {
372      if (free_f != NULL)
373	(*free_f) (result);
374      return NULL;
375    }
376  result->size = size;
377  result->size_prime_index = size_prime_index;
378  result->hash_f = hash_f;
379  result->eq_f = eq_f;
380  result->del_f = del_f;
381  result->alloc_f = alloc_f;
382  result->free_f = free_f;
383  return result;
384}
385
386
387/* Update the function pointers and allocation parameter in the htab_t.  */
388
389void
390htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
391                       htab_del del_f, PTR alloc_arg,
392                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
393{
394  htab->hash_f = hash_f;
395  htab->eq_f = eq_f;
396  htab->del_f = del_f;
397  htab->alloc_arg = alloc_arg;
398  htab->alloc_with_arg_f = alloc_f;
399  htab->free_with_arg_f = free_f;
400}
401
402/* These functions exist solely for backward compatibility.  */
403
404#undef htab_create
405htab_t
406htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
407{
408  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
409}
410
411htab_t
412htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
413{
414  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
415}
416
417/* This function frees all memory allocated for given hash table.
418   Naturally the hash table must already exist. */
419
420void
421htab_delete (htab_t htab)
422{
423  size_t size = htab_size (htab);
424  PTR *entries = htab->entries;
425  int i;
426
427  if (htab->del_f)
428    for (i = size - 1; i >= 0; i--)
429      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
430	(*htab->del_f) (entries[i]);
431
432  if (htab->free_f != NULL)
433    {
434      (*htab->free_f) (entries);
435      (*htab->free_f) (htab);
436    }
437  else if (htab->free_with_arg_f != NULL)
438    {
439      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
440      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
441    }
442}
443
444/* This function clears all entries in the given hash table.  */
445
446void
447htab_empty (htab_t htab)
448{
449  size_t size = htab_size (htab);
450  PTR *entries = htab->entries;
451  int i;
452
453  if (htab->del_f)
454    for (i = size - 1; i >= 0; i--)
455      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
456	(*htab->del_f) (entries[i]);
457
458  /* Instead of clearing megabyte, downsize the table.  */
459  if (size > 1024*1024 / sizeof (PTR))
460    {
461      int nindex = higher_prime_index (1024 / sizeof (PTR));
462      int nsize = prime_tab[nindex].prime;
463
464      if (htab->free_f != NULL)
465	(*htab->free_f) (htab->entries);
466      else if (htab->free_with_arg_f != NULL)
467	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
468      if (htab->alloc_with_arg_f != NULL)
469	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
470						           sizeof (PTR *));
471      else
472	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
473     htab->size = nsize;
474     htab->size_prime_index = nindex;
475    }
476  else
477    memset (entries, 0, size * sizeof (PTR));
478  htab->n_deleted = 0;
479  htab->n_elements = 0;
480}
481
482/* Similar to htab_find_slot, but without several unwanted side effects:
483    - Does not call htab->eq_f when it finds an existing entry.
484    - Does not change the count of elements/searches/collisions in the
485      hash table.
486   This function also assumes there are no deleted entries in the table.
487   HASH is the hash value for the element to be inserted.  */
488
489static PTR *
490find_empty_slot_for_expand (htab_t htab, hashval_t hash)
491{
492  hashval_t index = htab_mod (hash, htab);
493  size_t size = htab_size (htab);
494  PTR *slot = htab->entries + index;
495  hashval_t hash2;
496
497  if (*slot == HTAB_EMPTY_ENTRY)
498    return slot;
499  else if (*slot == HTAB_DELETED_ENTRY)
500    abort ();
501
502  hash2 = htab_mod_m2 (hash, htab);
503  for (;;)
504    {
505      index += hash2;
506      if (index >= size)
507	index -= size;
508
509      slot = htab->entries + index;
510      if (*slot == HTAB_EMPTY_ENTRY)
511	return slot;
512      else if (*slot == HTAB_DELETED_ENTRY)
513	abort ();
514    }
515}
516
517/* The following function changes size of memory allocated for the
518   entries and repeatedly inserts the table elements.  The occupancy
519   of the table after the call will be about 50%.  Naturally the hash
520   table must already exist.  Remember also that the place of the
521   table entries is changed.  If memory allocation failures are allowed,
522   this function will return zero, indicating that the table could not be
523   expanded.  If all goes well, it will return a non-zero value.  */
524
525static int
526htab_expand (htab_t htab)
527{
528  PTR *oentries;
529  PTR *olimit;
530  PTR *p;
531  PTR *nentries;
532  size_t nsize, osize, elts;
533  unsigned int oindex, nindex;
534
535  oentries = htab->entries;
536  oindex = htab->size_prime_index;
537  osize = htab->size;
538  olimit = oentries + osize;
539  elts = htab_elements (htab);
540
541  /* Resize only when table after removal of unused elements is either
542     too full or too empty.  */
543  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
544    {
545      nindex = higher_prime_index (elts * 2);
546      nsize = prime_tab[nindex].prime;
547    }
548  else
549    {
550      nindex = oindex;
551      nsize = osize;
552    }
553
554  if (htab->alloc_with_arg_f != NULL)
555    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
556						  sizeof (PTR *));
557  else
558    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
559  if (nentries == NULL)
560    return 0;
561  htab->entries = nentries;
562  htab->size = nsize;
563  htab->size_prime_index = nindex;
564  htab->n_elements -= htab->n_deleted;
565  htab->n_deleted = 0;
566
567  p = oentries;
568  do
569    {
570      PTR x = *p;
571
572      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
573	{
574	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
575
576	  *q = x;
577	}
578
579      p++;
580    }
581  while (p < olimit);
582
583  if (htab->free_f != NULL)
584    (*htab->free_f) (oentries);
585  else if (htab->free_with_arg_f != NULL)
586    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
587  return 1;
588}
589
590/* This function searches for a hash table entry equal to the given
591   element.  It cannot be used to insert or delete an element.  */
592
593PTR
594htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
595{
596  hashval_t index, hash2;
597  size_t size;
598  PTR entry;
599
600  htab->searches++;
601  size = htab_size (htab);
602  index = htab_mod (hash, htab);
603
604  entry = htab->entries[index];
605  if (entry == HTAB_EMPTY_ENTRY
606      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
607    return entry;
608
609  hash2 = htab_mod_m2 (hash, htab);
610  for (;;)
611    {
612      htab->collisions++;
613      index += hash2;
614      if (index >= size)
615	index -= size;
616
617      entry = htab->entries[index];
618      if (entry == HTAB_EMPTY_ENTRY
619	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
620	return entry;
621    }
622}
623
624/* Like htab_find_slot_with_hash, but compute the hash value from the
625   element.  */
626
627PTR
628htab_find (htab_t htab, const PTR element)
629{
630  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
631}
632
633/* This function searches for a hash table slot containing an entry
634   equal to the given element.  To delete an entry, call this with
635   insert=NO_INSERT, then call htab_clear_slot on the slot returned
636   (possibly after doing some checks).  To insert an entry, call this
637   with insert=INSERT, then write the value you want into the returned
638   slot.  When inserting an entry, NULL may be returned if memory
639   allocation fails.  */
640
641PTR *
642htab_find_slot_with_hash (htab_t htab, const PTR element,
643                          hashval_t hash, enum insert_option insert)
644{
645  PTR *first_deleted_slot;
646  hashval_t index, hash2;
647  size_t size;
648  PTR entry;
649
650  size = htab_size (htab);
651  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
652    {
653      if (htab_expand (htab) == 0)
654	return NULL;
655      size = htab_size (htab);
656    }
657
658  index = htab_mod (hash, htab);
659
660  htab->searches++;
661  first_deleted_slot = NULL;
662
663  entry = htab->entries[index];
664  if (entry == HTAB_EMPTY_ENTRY)
665    goto empty_entry;
666  else if (entry == HTAB_DELETED_ENTRY)
667    first_deleted_slot = &htab->entries[index];
668  else if ((*htab->eq_f) (entry, element))
669    return &htab->entries[index];
670
671  hash2 = htab_mod_m2 (hash, htab);
672  for (;;)
673    {
674      htab->collisions++;
675      index += hash2;
676      if (index >= size)
677	index -= size;
678
679      entry = htab->entries[index];
680      if (entry == HTAB_EMPTY_ENTRY)
681	goto empty_entry;
682      else if (entry == HTAB_DELETED_ENTRY)
683	{
684	  if (!first_deleted_slot)
685	    first_deleted_slot = &htab->entries[index];
686	}
687      else if ((*htab->eq_f) (entry, element))
688	return &htab->entries[index];
689    }
690
691 empty_entry:
692  if (insert == NO_INSERT)
693    return NULL;
694
695  if (first_deleted_slot)
696    {
697      htab->n_deleted--;
698      *first_deleted_slot = HTAB_EMPTY_ENTRY;
699      return first_deleted_slot;
700    }
701
702  htab->n_elements++;
703  return &htab->entries[index];
704}
705
706/* Like htab_find_slot_with_hash, but compute the hash value from the
707   element.  */
708
709PTR *
710htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
711{
712  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
713				   insert);
714}
715
716/* This function deletes an element with the given value from hash
717   table (the hash is computed from the element).  If there is no matching
718   element in the hash table, this function does nothing.  */
719
720void
721htab_remove_elt (htab_t htab, PTR element)
722{
723  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
724}
725
726
727/* This function deletes an element with the given value from hash
728   table.  If there is no matching element in the hash table, this
729   function does nothing.  */
730
731void
732htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
733{
734  PTR *slot;
735
736  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
737  if (*slot == HTAB_EMPTY_ENTRY)
738    return;
739
740  if (htab->del_f)
741    (*htab->del_f) (*slot);
742
743  *slot = HTAB_DELETED_ENTRY;
744  htab->n_deleted++;
745}
746
747/* This function clears a specified slot in a hash table.  It is
748   useful when you've already done the lookup and don't want to do it
749   again.  */
750
751void
752htab_clear_slot (htab_t htab, PTR *slot)
753{
754  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
755      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
756    abort ();
757
758  if (htab->del_f)
759    (*htab->del_f) (*slot);
760
761  *slot = HTAB_DELETED_ENTRY;
762  htab->n_deleted++;
763}
764
765/* This function scans over the entire hash table calling
766   CALLBACK for each live entry.  If CALLBACK returns false,
767   the iteration stops.  INFO is passed as CALLBACK's second
768   argument.  */
769
770void
771htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
772{
773  PTR *slot;
774  PTR *limit;
775
776  slot = htab->entries;
777  limit = slot + htab_size (htab);
778
779  do
780    {
781      PTR x = *slot;
782
783      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
784	if (!(*callback) (slot, info))
785	  break;
786    }
787  while (++slot < limit);
788}
789
790/* Like htab_traverse_noresize, but does resize the table when it is
791   too empty to improve effectivity of subsequent calls.  */
792
793void
794htab_traverse (htab_t htab, htab_trav callback, PTR info)
795{
796  size_t size = htab_size (htab);
797  if (htab_elements (htab) * 8 < size && size > 32)
798    htab_expand (htab);
799
800  htab_traverse_noresize (htab, callback, info);
801}
802
803/* Return the fraction of fixed collisions during all work with given
804   hash table. */
805
806double
807htab_collisions (htab_t htab)
808{
809  if (htab->searches == 0)
810    return 0.0;
811
812  return (double) htab->collisions / (double) htab->searches;
813}
814
815/* Hash P as a null-terminated string.
816
817   Copied from gcc/hashtable.c.  Zack had the following to say with respect
818   to applicability, though note that unlike hashtable.c, this hash table
819   implementation re-hashes rather than chain buckets.
820
821   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
822   From: Zack Weinberg <zackw@panix.com>
823   Date: Fri, 17 Aug 2001 02:15:56 -0400
824
825   I got it by extracting all the identifiers from all the source code
826   I had lying around in mid-1999, and testing many recurrences of
827   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
828   prime numbers or the appropriate identity.  This was the best one.
829   I don't remember exactly what constituted "best", except I was
830   looking at bucket-length distributions mostly.
831
832   So it should be very good at hashing identifiers, but might not be
833   as good at arbitrary strings.
834
835   I'll add that it thoroughly trounces the hash functions recommended
836   for this use at http://burtleburtle.net/bob/hash/index.html, both
837   on speed and bucket distribution.  I haven't tried it against the
838   function they just started using for Perl's hashes.  */
839
840hashval_t
841htab_hash_string (const PTR p)
842{
843  const unsigned char *str = (const unsigned char *) p;
844  hashval_t r = 0;
845  unsigned char c;
846
847  while ((c = *str++) != 0)
848    r = r * 67 + c - 113;
849
850  return r;
851}
852
853/* DERIVED FROM:
854--------------------------------------------------------------------
855lookup2.c, by Bob Jenkins, December 1996, Public Domain.
856hash(), hash2(), hash3, and mix() are externally useful functions.
857Routines to test the hash are included if SELF_TEST is defined.
858You can use this free for any purpose.  It has no warranty.
859--------------------------------------------------------------------
860*/
861
862/*
863--------------------------------------------------------------------
864mix -- mix 3 32-bit values reversibly.
865For every delta with one or two bit set, and the deltas of all three
866  high bits or all three low bits, whether the original value of a,b,c
867  is almost all zero or is uniformly distributed,
868* If mix() is run forward or backward, at least 32 bits in a,b,c
869  have at least 1/4 probability of changing.
870* If mix() is run forward, every bit of c will change between 1/3 and
871  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
872mix() was built out of 36 single-cycle latency instructions in a
873  structure that could supported 2x parallelism, like so:
874      a -= b;
875      a -= c; x = (c>>13);
876      b -= c; a ^= x;
877      b -= a; x = (a<<8);
878      c -= a; b ^= x;
879      c -= b; x = (b>>13);
880      ...
881  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
882  of that parallelism.  They've also turned some of those single-cycle
883  latency instructions into multi-cycle latency instructions.  Still,
884  this is the fastest good hash I could find.  There were about 2^^68
885  to choose from.  I only looked at a billion or so.
886--------------------------------------------------------------------
887*/
888/* same, but slower, works on systems that might have 8 byte hashval_t's */
889#define mix(a,b,c) \
890{ \
891  a -= b; a -= c; a ^= (c>>13); \
892  b -= c; b -= a; b ^= (a<< 8); \
893  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
894  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
895  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
896  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
897  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
898  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
899  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
900}
901
902/*
903--------------------------------------------------------------------
904hash() -- hash a variable-length key into a 32-bit value
905  k     : the key (the unaligned variable-length array of bytes)
906  len   : the length of the key, counting by bytes
907  level : can be any 4-byte value
908Returns a 32-bit value.  Every bit of the key affects every bit of
909the return value.  Every 1-bit and 2-bit delta achieves avalanche.
910About 36+6len instructions.
911
912The best hash table sizes are powers of 2.  There is no need to do
913mod a prime (mod is sooo slow!).  If you need less than 32 bits,
914use a bitmask.  For example, if you need only 10 bits, do
915  h = (h & hashmask(10));
916In which case, the hash table should have hashsize(10) elements.
917
918If you are hashing n strings (ub1 **)k, do it like this:
919  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
920
921By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
922code any way you wish, private, educational, or commercial.  It's free.
923
924See http://burtleburtle.net/bob/hash/evahash.html
925Use for hash table lookup, or anything where one collision in 2^32 is
926acceptable.  Do NOT use for cryptographic purposes.
927--------------------------------------------------------------------
928*/
929
930hashval_t
931iterative_hash (const PTR k_in /* the key */,
932                register size_t  length /* the length of the key */,
933                register hashval_t initval /* the previous hash, or
934                                              an arbitrary value */)
935{
936  register const unsigned char *k = (const unsigned char *)k_in;
937  register hashval_t a,b,c,len;
938
939  /* Set up the internal state */
940  len = length;
941  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
942  c = initval;           /* the previous hash value */
943
944  /*---------------------------------------- handle most of the key */
945#ifndef WORDS_BIGENDIAN
946  /* On a little-endian machine, if the data is 4-byte aligned we can hash
947     by word for better speed.  This gives nondeterministic results on
948     big-endian machines.  */
949  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
950    while (len >= 12)    /* aligned */
951      {
952	a += *(hashval_t *)(k+0);
953	b += *(hashval_t *)(k+4);
954	c += *(hashval_t *)(k+8);
955	mix(a,b,c);
956	k += 12; len -= 12;
957      }
958  else /* unaligned */
959#endif
960    while (len >= 12)
961      {
962	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
963	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
964	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
965	mix(a,b,c);
966	k += 12; len -= 12;
967      }
968
969  /*------------------------------------- handle the last 11 bytes */
970  c += length;
971  switch(len)              /* all the case statements fall through */
972    {
973    case 11: c+=((hashval_t)k[10]<<24);
974    case 10: c+=((hashval_t)k[9]<<16);
975    case 9 : c+=((hashval_t)k[8]<<8);
976      /* the first byte of c is reserved for the length */
977    case 8 : b+=((hashval_t)k[7]<<24);
978    case 7 : b+=((hashval_t)k[6]<<16);
979    case 6 : b+=((hashval_t)k[5]<<8);
980    case 5 : b+=k[4];
981    case 4 : a+=((hashval_t)k[3]<<24);
982    case 3 : a+=((hashval_t)k[2]<<16);
983    case 2 : a+=((hashval_t)k[1]<<8);
984    case 1 : a+=k[0];
985      /* case 0: nothing left to add */
986    }
987  mix(a,b,c);
988  /*-------------------------------------------- report the result */
989  return c;
990}
991