1// target.h -- target support for gold   -*- C++ -*-
2
3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// The abstract class Target is the interface for target specific
24// support.  It defines abstract methods which each target must
25// implement.  Typically there will be one target per processor, but
26// in some cases it may be necessary to have subclasses.
27
28// For speed and consistency we want to use inline functions to handle
29// relocation processing.  So besides implementations of the abstract
30// methods, each target is expected to define a template
31// specialization of the relocation functions.
32
33#ifndef GOLD_TARGET_H
34#define GOLD_TARGET_H
35
36#include "elfcpp.h"
37#include "options.h"
38#include "parameters.h"
39#include "debug.h"
40
41namespace gold
42{
43
44class Object;
45class Relobj;
46template<int size, bool big_endian>
47class Sized_relobj;
48class Relocatable_relocs;
49template<int size, bool big_endian>
50class Relocate_info;
51class Reloc_symbol_changes;
52class Symbol;
53template<int size>
54class Sized_symbol;
55class Symbol_table;
56class Output_data;
57class Output_section;
58class Input_objects;
59
60// The abstract class for target specific handling.
61
62class Target
63{
64 public:
65  virtual ~Target()
66  { }
67
68  // Virtual function which is set to return true by a target if
69  // it can use relocation types to determine if a function's
70  // pointer is taken.
71  virtual bool
72  can_check_for_function_pointers() const
73  { return false; }
74
75  // This function is used in ICF (icf.cc).  This is set to true by
76  // the target if a relocation to a merged section can be processed
77  // to retrieve the contents of the merged section.
78  virtual bool
79  can_icf_inline_merge_sections () const
80  { return false; }
81
82  // Whether a section called SECTION_NAME may have function pointers to
83  // sections not eligible for safe ICF folding.
84  virtual bool
85  section_may_have_icf_unsafe_pointers(const char* section_name) const
86  {
87    // We recognize sections for normal vtables, construction vtables and
88    // EH frames.
89    return (!is_prefix_of(".rodata._ZTV", section_name)
90	    && !is_prefix_of(".data.rel.ro._ZTV", section_name)
91	    && !is_prefix_of(".rodata._ZTC", section_name)
92	    && !is_prefix_of(".data.rel.ro._ZTC", section_name)
93	    && !is_prefix_of(".eh_frame", section_name));
94  }
95
96  // Return the bit size that this target implements.  This should
97  // return 32 or 64.
98  int
99  get_size() const
100  { return this->pti_->size; }
101
102  // Return whether this target is big-endian.
103  bool
104  is_big_endian() const
105  { return this->pti_->is_big_endian; }
106
107  // Machine code to store in e_machine field of ELF header.
108  elfcpp::EM
109  machine_code() const
110  { return this->pti_->machine_code; }
111
112  // Processor specific flags to store in e_flags field of ELF header.
113  elfcpp::Elf_Word
114  processor_specific_flags() const
115  { return this->processor_specific_flags_; }
116
117  // Whether processor specific flags are set at least once.
118  bool
119  are_processor_specific_flags_set() const
120  { return this->are_processor_specific_flags_set_; }
121
122  // Whether this target has a specific make_symbol function.
123  bool
124  has_make_symbol() const
125  { return this->pti_->has_make_symbol; }
126
127  // Whether this target has a specific resolve function.
128  bool
129  has_resolve() const
130  { return this->pti_->has_resolve; }
131
132  // Whether this target has a specific code fill function.
133  bool
134  has_code_fill() const
135  { return this->pti_->has_code_fill; }
136
137  // Return the default name of the dynamic linker.
138  const char*
139  dynamic_linker() const
140  { return this->pti_->dynamic_linker; }
141
142  // Return the default address to use for the text segment.
143  uint64_t
144  default_text_segment_address() const
145  { return this->pti_->default_text_segment_address; }
146
147  // Return the ABI specified page size.
148  uint64_t
149  abi_pagesize() const
150  {
151    if (parameters->options().max_page_size() > 0)
152      return parameters->options().max_page_size();
153    else
154      return this->pti_->abi_pagesize;
155  }
156
157  // Return the common page size used on actual systems.
158  uint64_t
159  common_pagesize() const
160  {
161    if (parameters->options().common_page_size() > 0)
162      return std::min(parameters->options().common_page_size(),
163		      this->abi_pagesize());
164    else
165      return std::min(this->pti_->common_pagesize,
166		      this->abi_pagesize());
167  }
168
169  // If we see some object files with .note.GNU-stack sections, and
170  // some objects files without them, this returns whether we should
171  // consider the object files without them to imply that the stack
172  // should be executable.
173  bool
174  is_default_stack_executable() const
175  { return this->pti_->is_default_stack_executable; }
176
177  // Return a character which may appear as a prefix for a wrap
178  // symbol.  If this character appears, we strip it when checking for
179  // wrapping and add it back when forming the final symbol name.
180  // This should be '\0' if not special prefix is required, which is
181  // the normal case.
182  char
183  wrap_char() const
184  { return this->pti_->wrap_char; }
185
186  // Return the special section index which indicates a small common
187  // symbol.  This will return SHN_UNDEF if there are no small common
188  // symbols.
189  elfcpp::Elf_Half
190  small_common_shndx() const
191  { return this->pti_->small_common_shndx; }
192
193  // Return values to add to the section flags for the section holding
194  // small common symbols.
195  elfcpp::Elf_Xword
196  small_common_section_flags() const
197  {
198    gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
199    return this->pti_->small_common_section_flags;
200  }
201
202  // Return the special section index which indicates a large common
203  // symbol.  This will return SHN_UNDEF if there are no large common
204  // symbols.
205  elfcpp::Elf_Half
206  large_common_shndx() const
207  { return this->pti_->large_common_shndx; }
208
209  // Return values to add to the section flags for the section holding
210  // large common symbols.
211  elfcpp::Elf_Xword
212  large_common_section_flags() const
213  {
214    gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
215    return this->pti_->large_common_section_flags;
216  }
217
218  // This hook is called when an output section is created.
219  void
220  new_output_section(Output_section* os) const
221  { this->do_new_output_section(os); }
222
223  // This is called to tell the target to complete any sections it is
224  // handling.  After this all sections must have their final size.
225  void
226  finalize_sections(Layout* layout, const Input_objects* input_objects,
227		    Symbol_table* symtab)
228  { return this->do_finalize_sections(layout, input_objects, symtab); }
229
230  // Return the value to use for a global symbol which needs a special
231  // value in the dynamic symbol table.  This will only be called if
232  // the backend first calls symbol->set_needs_dynsym_value().
233  uint64_t
234  dynsym_value(const Symbol* sym) const
235  { return this->do_dynsym_value(sym); }
236
237  // Return a string to use to fill out a code section.  This is
238  // basically one or more NOPS which must fill out the specified
239  // length in bytes.
240  std::string
241  code_fill(section_size_type length) const
242  { return this->do_code_fill(length); }
243
244  // Return whether SYM is known to be defined by the ABI.  This is
245  // used to avoid inappropriate warnings about undefined symbols.
246  bool
247  is_defined_by_abi(const Symbol* sym) const
248  { return this->do_is_defined_by_abi(sym); }
249
250  // Adjust the output file header before it is written out.  VIEW
251  // points to the header in external form.  LEN is the length.
252  void
253  adjust_elf_header(unsigned char* view, int len) const
254  { return this->do_adjust_elf_header(view, len); }
255
256  // Return whether NAME is a local label name.  This is used to implement the
257  // --discard-locals options.
258  bool
259  is_local_label_name(const char* name) const
260  { return this->do_is_local_label_name(name); }
261
262  // Get the symbol index to use for a target specific reloc.
263  unsigned int
264  reloc_symbol_index(void* arg, unsigned int type) const
265  { return this->do_reloc_symbol_index(arg, type); }
266
267  // Get the addend to use for a target specific reloc.
268  uint64_t
269  reloc_addend(void* arg, unsigned int type, uint64_t addend) const
270  { return this->do_reloc_addend(arg, type, addend); }
271
272  // Return the PLT section to use for a global symbol.  This is used
273  // for STT_GNU_IFUNC symbols.
274  Output_data*
275  plt_section_for_global(const Symbol* sym) const
276  { return this->do_plt_section_for_global(sym); }
277
278  // Return the PLT section to use for a local symbol.  This is used
279  // for STT_GNU_IFUNC symbols.
280  Output_data*
281  plt_section_for_local(const Relobj* object, unsigned int symndx) const
282  { return this->do_plt_section_for_local(object, symndx); }
283
284  // Return true if a reference to SYM from a reloc of type R_TYPE
285  // means that the current function may call an object compiled
286  // without -fsplit-stack.  SYM is known to be defined in an object
287  // compiled without -fsplit-stack.
288  bool
289  is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
290  { return this->do_is_call_to_non_split(sym, r_type); }
291
292  // A function starts at OFFSET in section SHNDX in OBJECT.  That
293  // function was compiled with -fsplit-stack, but it refers to a
294  // function which was compiled without -fsplit-stack.  VIEW is a
295  // modifiable view of the section; VIEW_SIZE is the size of the
296  // view.  The target has to adjust the function so that it allocates
297  // enough stack.
298  void
299  calls_non_split(Relobj* object, unsigned int shndx,
300		  section_offset_type fnoffset, section_size_type fnsize,
301		  unsigned char* view, section_size_type view_size,
302		  std::string* from, std::string* to) const
303  {
304    this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
305			     from, to);
306  }
307
308  // Make an ELF object.
309  template<int size, bool big_endian>
310  Object*
311  make_elf_object(const std::string& name, Input_file* input_file,
312		  off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
313  { return this->do_make_elf_object(name, input_file, offset, ehdr); }
314
315  // Make an output section.
316  Output_section*
317  make_output_section(const char* name, elfcpp::Elf_Word type,
318		      elfcpp::Elf_Xword flags)
319  { return this->do_make_output_section(name, type, flags); }
320
321  // Return true if target wants to perform relaxation.
322  bool
323  may_relax() const
324  {
325    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
326    if (is_debugging_enabled(DEBUG_RELAXATION))
327      return true;
328
329     return this->do_may_relax();
330  }
331
332  // Perform a relaxation pass.  Return true if layout may be changed.
333  bool
334  relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
335	Layout* layout)
336  {
337    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
338    if (is_debugging_enabled(DEBUG_RELAXATION))
339      return pass < 2;
340
341    return this->do_relax(pass, input_objects, symtab, layout);
342  }
343
344  // Return the target-specific name of attributes section.  This is
345  // NULL if a target does not use attributes section or if it uses
346  // the default section name ".gnu.attributes".
347  const char*
348  attributes_section() const
349  { return this->pti_->attributes_section; }
350
351  // Return the vendor name of vendor attributes.
352  const char*
353  attributes_vendor() const
354  { return this->pti_->attributes_vendor; }
355
356  // Whether a section called NAME is an attribute section.
357  bool
358  is_attributes_section(const char* name) const
359  {
360    return ((this->pti_->attributes_section != NULL
361	     && strcmp(name, this->pti_->attributes_section) == 0)
362	    || strcmp(name, ".gnu.attributes") == 0);
363  }
364
365  // Return a bit mask of argument types for attribute with TAG.
366  int
367  attribute_arg_type(int tag) const
368  { return this->do_attribute_arg_type(tag); }
369
370  // Return the attribute tag of the position NUM in the list of fixed
371  // attributes.  Normally there is no reordering and
372  // attributes_order(NUM) == NUM.
373  int
374  attributes_order(int num) const
375  { return this->do_attributes_order(num); }
376
377  // When a target is selected as the default target, we call this method,
378  // which may be used for expensive, target-specific initialization.
379  void
380  select_as_default_target()
381  { this->do_select_as_default_target(); }
382
383 protected:
384  // This struct holds the constant information for a child class.  We
385  // use a struct to avoid the overhead of virtual function calls for
386  // simple information.
387  struct Target_info
388  {
389    // Address size (32 or 64).
390    int size;
391    // Whether the target is big endian.
392    bool is_big_endian;
393    // The code to store in the e_machine field of the ELF header.
394    elfcpp::EM machine_code;
395    // Whether this target has a specific make_symbol function.
396    bool has_make_symbol;
397    // Whether this target has a specific resolve function.
398    bool has_resolve;
399    // Whether this target has a specific code fill function.
400    bool has_code_fill;
401    // Whether an object file with no .note.GNU-stack sections implies
402    // that the stack should be executable.
403    bool is_default_stack_executable;
404    // Prefix character to strip when checking for wrapping.
405    char wrap_char;
406    // The default dynamic linker name.
407    const char* dynamic_linker;
408    // The default text segment address.
409    uint64_t default_text_segment_address;
410    // The ABI specified page size.
411    uint64_t abi_pagesize;
412    // The common page size used by actual implementations.
413    uint64_t common_pagesize;
414    // The special section index for small common symbols; SHN_UNDEF
415    // if none.
416    elfcpp::Elf_Half small_common_shndx;
417    // The special section index for large common symbols; SHN_UNDEF
418    // if none.
419    elfcpp::Elf_Half large_common_shndx;
420    // Section flags for small common section.
421    elfcpp::Elf_Xword small_common_section_flags;
422    // Section flags for large common section.
423    elfcpp::Elf_Xword large_common_section_flags;
424    // Name of attributes section if it is not ".gnu.attributes".
425    const char* attributes_section;
426    // Vendor name of vendor attributes.
427    const char* attributes_vendor;
428  };
429
430  Target(const Target_info* pti)
431    : pti_(pti), processor_specific_flags_(0),
432      are_processor_specific_flags_set_(false)
433  { }
434
435  // Virtual function which may be implemented by the child class.
436  virtual void
437  do_new_output_section(Output_section*) const
438  { }
439
440  // Virtual function which may be implemented by the child class.
441  virtual void
442  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
443  { }
444
445  // Virtual function which may be implemented by the child class.
446  virtual uint64_t
447  do_dynsym_value(const Symbol*) const
448  { gold_unreachable(); }
449
450  // Virtual function which must be implemented by the child class if
451  // needed.
452  virtual std::string
453  do_code_fill(section_size_type) const
454  { gold_unreachable(); }
455
456  // Virtual function which may be implemented by the child class.
457  virtual bool
458  do_is_defined_by_abi(const Symbol*) const
459  { return false; }
460
461  // Adjust the output file header before it is written out.  VIEW
462  // points to the header in external form.  LEN is the length, and
463  // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
464  // By default, we do nothing.
465  virtual void
466  do_adjust_elf_header(unsigned char*, int) const
467  { }
468
469  // Virtual function which may be overriden by the child class.
470  virtual bool
471  do_is_local_label_name(const char*) const;
472
473  // Virtual function that must be overridden by a target which uses
474  // target specific relocations.
475  virtual unsigned int
476  do_reloc_symbol_index(void*, unsigned int) const
477  { gold_unreachable(); }
478
479  // Virtual function that must be overidden by a target which uses
480  // target specific relocations.
481  virtual uint64_t
482  do_reloc_addend(void*, unsigned int, uint64_t) const
483  { gold_unreachable(); }
484
485  // Virtual functions that must be overridden by a target that uses
486  // STT_GNU_IFUNC symbols.
487  virtual Output_data*
488  do_plt_section_for_global(const Symbol*) const
489  { gold_unreachable(); }
490
491  virtual Output_data*
492  do_plt_section_for_local(const Relobj*, unsigned int) const
493  { gold_unreachable(); }
494
495  // Virtual function which may be overridden by the child class.  The
496  // default implementation is that any function not defined by the
497  // ABI is a call to a non-split function.
498  virtual bool
499  do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
500
501  // Virtual function which may be overridden by the child class.
502  virtual void
503  do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
504		     section_size_type, unsigned char*, section_size_type,
505		     std::string*, std::string*) const;
506
507  // make_elf_object hooks.  There are four versions of these for
508  // different address sizes and endianness.
509
510  // Set processor specific flags.
511  void
512  set_processor_specific_flags(elfcpp::Elf_Word flags)
513  {
514    this->processor_specific_flags_ = flags;
515    this->are_processor_specific_flags_set_ = true;
516  }
517
518#ifdef HAVE_TARGET_32_LITTLE
519  // Virtual functions which may be overriden by the child class.
520  virtual Object*
521  do_make_elf_object(const std::string&, Input_file*, off_t,
522		     const elfcpp::Ehdr<32, false>&);
523#endif
524
525#ifdef HAVE_TARGET_32_BIG
526  // Virtual functions which may be overriden by the child class.
527  virtual Object*
528  do_make_elf_object(const std::string&, Input_file*, off_t,
529		     const elfcpp::Ehdr<32, true>&);
530#endif
531
532#ifdef HAVE_TARGET_64_LITTLE
533  // Virtual functions which may be overriden by the child class.
534  virtual Object*
535  do_make_elf_object(const std::string&, Input_file*, off_t,
536		     const elfcpp::Ehdr<64, false>& ehdr);
537#endif
538
539#ifdef HAVE_TARGET_64_BIG
540  // Virtual functions which may be overriden by the child class.
541  virtual Object*
542  do_make_elf_object(const std::string& name, Input_file* input_file,
543		     off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
544#endif
545
546  // Virtual functions which may be overriden by the child class.
547  virtual Output_section*
548  do_make_output_section(const char* name, elfcpp::Elf_Word type,
549			 elfcpp::Elf_Xword flags);
550
551  // Virtual function which may be overriden by the child class.
552  virtual bool
553  do_may_relax() const
554  { return parameters->options().relax(); }
555
556  // Virtual function which may be overriden by the child class.
557  virtual bool
558  do_relax(int, const Input_objects*, Symbol_table*, Layout*)
559  { return false; }
560
561  // A function for targets to call.  Return whether BYTES/LEN matches
562  // VIEW/VIEW_SIZE at OFFSET.
563  bool
564  match_view(const unsigned char* view, section_size_type view_size,
565	     section_offset_type offset, const char* bytes, size_t len) const;
566
567  // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
568  // for LEN bytes.
569  void
570  set_view_to_nop(unsigned char* view, section_size_type view_size,
571		  section_offset_type offset, size_t len) const;
572
573  // This must be overriden by the child class if it has target-specific
574  // attributes subsection in the attribute section.
575  virtual int
576  do_attribute_arg_type(int) const
577  { gold_unreachable(); }
578
579  // This may be overridden by the child class.
580  virtual int
581  do_attributes_order(int num) const
582  { return num; }
583
584  // This may be overridden by the child class.
585  virtual void
586  do_select_as_default_target()
587  { }
588
589 private:
590  // The implementations of the four do_make_elf_object virtual functions are
591  // almost identical except for their sizes and endianness.  We use a template.
592  // for their implementations.
593  template<int size, bool big_endian>
594  inline Object*
595  do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
596				    const elfcpp::Ehdr<size, big_endian>&);
597
598  Target(const Target&);
599  Target& operator=(const Target&);
600
601  // The target information.
602  const Target_info* pti_;
603  // Processor-specific flags.
604  elfcpp::Elf_Word processor_specific_flags_;
605  // Whether the processor-specific flags are set at least once.
606  bool are_processor_specific_flags_set_;
607};
608
609// The abstract class for a specific size and endianness of target.
610// Each actual target implementation class should derive from an
611// instantiation of Sized_target.
612
613template<int size, bool big_endian>
614class Sized_target : public Target
615{
616 public:
617  // Make a new symbol table entry for the target.  This should be
618  // overridden by a target which needs additional information in the
619  // symbol table.  This will only be called if has_make_symbol()
620  // returns true.
621  virtual Sized_symbol<size>*
622  make_symbol() const
623  { gold_unreachable(); }
624
625  // Resolve a symbol for the target.  This should be overridden by a
626  // target which needs to take special action.  TO is the
627  // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
628  // VERSION is the version of SYM.  This will only be called if
629  // has_resolve() returns true.
630  virtual void
631  resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
632	  const char*)
633  { gold_unreachable(); }
634
635  // Process the relocs for a section, and record information of the
636  // mapping from source to destination sections. This mapping is later
637  // used to determine unreferenced garbage sections. This procedure is
638  // only called during garbage collection.
639  virtual void
640  gc_process_relocs(Symbol_table* symtab,
641		    Layout* layout,
642		    Sized_relobj<size, big_endian>* object,
643		    unsigned int data_shndx,
644		    unsigned int sh_type,
645		    const unsigned char* prelocs,
646		    size_t reloc_count,
647		    Output_section* output_section,
648		    bool needs_special_offset_handling,
649		    size_t local_symbol_count,
650		    const unsigned char* plocal_symbols) = 0;
651
652  // Scan the relocs for a section, and record any information
653  // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
654  // the object in which the section appears.  DATA_SHNDX is the
655  // section index that these relocs apply to.  SH_TYPE is the type of
656  // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
657  // the relocation data.  RELOC_COUNT is the number of relocs.
658  // LOCAL_SYMBOL_COUNT is the number of local symbols.
659  // OUTPUT_SECTION is the output section.
660  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
661  // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
662  // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
663  // pointers to the global symbol table from OBJECT.
664  virtual void
665  scan_relocs(Symbol_table* symtab,
666	      Layout* layout,
667	      Sized_relobj<size, big_endian>* object,
668	      unsigned int data_shndx,
669	      unsigned int sh_type,
670	      const unsigned char* prelocs,
671	      size_t reloc_count,
672	      Output_section* output_section,
673	      bool needs_special_offset_handling,
674	      size_t local_symbol_count,
675	      const unsigned char* plocal_symbols) = 0;
676
677  // Relocate section data.  SH_TYPE is the type of the relocation
678  // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
679  // information.  RELOC_COUNT is the number of relocs.
680  // OUTPUT_SECTION is the output section.
681  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
682  // to correspond to the output section.  VIEW is a view into the
683  // output file holding the section contents, VIEW_ADDRESS is the
684  // virtual address of the view, and VIEW_SIZE is the size of the
685  // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
686  // parameters refer to the complete output section data, not just
687  // the input section data.
688  virtual void
689  relocate_section(const Relocate_info<size, big_endian>*,
690		   unsigned int sh_type,
691		   const unsigned char* prelocs,
692		   size_t reloc_count,
693		   Output_section* output_section,
694		   bool needs_special_offset_handling,
695		   unsigned char* view,
696		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
697		   section_size_type view_size,
698		   const Reloc_symbol_changes*) = 0;
699
700  // Scan the relocs during a relocatable link.  The parameters are
701  // like scan_relocs, with an additional Relocatable_relocs
702  // parameter, used to record the disposition of the relocs.
703  virtual void
704  scan_relocatable_relocs(Symbol_table* symtab,
705			  Layout* layout,
706			  Sized_relobj<size, big_endian>* object,
707			  unsigned int data_shndx,
708			  unsigned int sh_type,
709			  const unsigned char* prelocs,
710			  size_t reloc_count,
711			  Output_section* output_section,
712			  bool needs_special_offset_handling,
713			  size_t local_symbol_count,
714			  const unsigned char* plocal_symbols,
715			  Relocatable_relocs*) = 0;
716
717  // Relocate a section during a relocatable link.  The parameters are
718  // like relocate_section, with additional parameters for the view of
719  // the output reloc section.
720  virtual void
721  relocate_for_relocatable(const Relocate_info<size, big_endian>*,
722			   unsigned int sh_type,
723			   const unsigned char* prelocs,
724			   size_t reloc_count,
725			   Output_section* output_section,
726			   off_t offset_in_output_section,
727			   const Relocatable_relocs*,
728			   unsigned char* view,
729			   typename elfcpp::Elf_types<size>::Elf_Addr
730			     view_address,
731			   section_size_type view_size,
732			   unsigned char* reloc_view,
733			   section_size_type reloc_view_size) = 0;
734
735  // Perform target-specific processing in a relocatable link.  This is
736  // only used if we use the relocation strategy RELOC_SPECIAL.
737  // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
738  // section type. PRELOC_IN points to the original relocation.  RELNUM is
739  // the index number of the relocation in the relocation section.
740  // OUTPUT_SECTION is the output section to which the relocation is applied.
741  // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
742  // within the output section.  VIEW points to the output view of the
743  // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
744  // is the size of the output view and PRELOC_OUT points to the new
745  // relocation in the output object.
746  //
747  // A target only needs to override this if the generic code in
748  // target-reloc.h cannot handle some relocation types.
749
750  virtual void
751  relocate_special_relocatable(const Relocate_info<size, big_endian>*
752				/*relinfo */,
753			       unsigned int /* sh_type */,
754			       const unsigned char* /* preloc_in */,
755			       size_t /* relnum */,
756			       Output_section* /* output_section */,
757			       off_t /* offset_in_output_section */,
758			       unsigned char* /* view */,
759			       typename elfcpp::Elf_types<size>::Elf_Addr
760				 /* view_address */,
761			       section_size_type /* view_size */,
762			       unsigned char* /* preloc_out*/)
763  { gold_unreachable(); }
764
765  // Return the number of entries in the GOT.  This is only used for
766  // laying out the incremental link info sections.  A target needs
767  // to implement this to support incremental linking.
768
769  virtual unsigned int
770  got_entry_count() const
771  { gold_unreachable(); }
772
773  // Return the number of entries in the PLT.  This is only used for
774  // laying out the incremental link info sections.  A target needs
775  // to implement this to support incremental linking.
776
777  virtual unsigned int
778  plt_entry_count() const
779  { gold_unreachable(); }
780
781  // Return the offset of the first non-reserved PLT entry.  This is
782  // only used for laying out the incremental link info sections.
783  // A target needs to implement this to support incremental linking.
784
785  virtual unsigned int
786  first_plt_entry_offset() const
787  { gold_unreachable(); }
788
789  // Return the size of each PLT entry.  This is only used for
790  // laying out the incremental link info sections.  A target needs
791  // to implement this to support incremental linking.
792
793  virtual unsigned int
794  plt_entry_size() const
795  { gold_unreachable(); }
796
797 protected:
798  Sized_target(const Target::Target_info* pti)
799    : Target(pti)
800  {
801    gold_assert(pti->size == size);
802    gold_assert(pti->is_big_endian ? big_endian : !big_endian);
803  }
804};
805
806} // End namespace gold.
807
808#endif // !defined(GOLD_TARGET_H)
809