1// resolve.cc -- symbol resolution for gold
2
3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
29#include "plugin.h"
30
31namespace gold
32{
33
34// Symbol methods used in this file.
35
36// This symbol is being overridden by another symbol whose version is
37// VERSION.  Update the VERSION_ field accordingly.
38
39inline void
40Symbol::override_version(const char* version)
41{
42  if (version == NULL)
43    {
44      // This is the case where this symbol is NAME/VERSION, and the
45      // version was not marked as hidden.  That makes it the default
46      // version, so we create NAME/NULL.  Later we see another symbol
47      // NAME/NULL, and that symbol is overriding this one.  In this
48      // case, since NAME/VERSION is the default, we make NAME/NULL
49      // override NAME/VERSION as well.  They are already the same
50      // Symbol structure.  Setting the VERSION_ field to NULL ensures
51      // that it will be output with the correct, empty, version.
52      this->version_ = version;
53    }
54  else
55    {
56      // This is the case where this symbol is NAME/VERSION_ONE, and
57      // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58      // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59      // different, then this can only happen when VERSION_ONE is NULL
60      // and VERSION_TWO is not hidden.
61      gold_assert(this->version_ == version || this->version_ == NULL);
62      this->version_ = version;
63    }
64}
65
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68
69inline void
70Symbol::override_visibility(elfcpp::STV visibility)
71{
72  // The rule for combining visibility is that we always choose the
73  // most constrained visibility.  In order of increasing constraint,
74  // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75  // of the numeric values, so the effect is that we always want the
76  // smallest non-zero value.
77  if (visibility != elfcpp::STV_DEFAULT)
78    {
79      if (this->visibility_ == elfcpp::STV_DEFAULT)
80	this->visibility_ = visibility;
81      else if (this->visibility_ > visibility)
82	this->visibility_ = visibility;
83    }
84}
85
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91		      unsigned int st_shndx, bool is_ordinary,
92		      Object* object, const char* version)
93{
94  gold_assert(this->source_ == FROM_OBJECT);
95  this->u_.from_object.object = object;
96  this->override_version(version);
97  this->u_.from_object.shndx = st_shndx;
98  this->is_ordinary_shndx_ = is_ordinary;
99  this->type_ = sym.get_st_type();
100  this->binding_ = sym.get_st_bind();
101  this->override_visibility(sym.get_st_visibility());
102  this->nonvis_ = sym.get_st_nonvis();
103  if (object->is_dynamic())
104    this->in_dyn_ = true;
105  else
106    this->in_reg_ = true;
107}
108
109// Override the fields in Sized_symbol.
110
111template<int size>
112template<bool big_endian>
113void
114Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115			     unsigned st_shndx, bool is_ordinary,
116			     Object* object, const char* version)
117{
118  this->override_base(sym, st_shndx, is_ordinary, object, version);
119  this->value_ = sym.get_st_value();
120  this->symsize_ = sym.get_st_size();
121}
122
123// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124// VERSION.  This handles all aliases of TOSYM.
125
126template<int size, bool big_endian>
127void
128Symbol_table::override(Sized_symbol<size>* tosym,
129		       const elfcpp::Sym<size, big_endian>& fromsym,
130		       unsigned int st_shndx, bool is_ordinary,
131		       Object* object, const char* version)
132{
133  tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134  if (tosym->has_alias())
135    {
136      Symbol* sym = this->weak_aliases_[tosym];
137      gold_assert(sym != NULL);
138      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139      do
140	{
141	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142	  sym = this->weak_aliases_[ssym];
143	  gold_assert(sym != NULL);
144	  ssym = this->get_sized_symbol<size>(sym);
145	}
146      while (ssym != tosym);
147    }
148}
149
150// The resolve functions build a little code for each symbol.
151// Bit 0: 0 for global, 1 for weak.
152// Bit 1: 0 for regular object, 1 for shared object
153// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154// This gives us values from 0 to 11.
155
156static const int global_or_weak_shift = 0;
157static const unsigned int global_flag = 0 << global_or_weak_shift;
158static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160static const int regular_or_dynamic_shift = 1;
161static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164static const int def_undef_or_common_shift = 2;
165static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
169// This convenience function combines all the flags based on facts
170// about the symbol.
171
172static unsigned int
173symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175{
176  unsigned int bits;
177
178  switch (binding)
179    {
180    case elfcpp::STB_GLOBAL:
181    case elfcpp::STB_GNU_UNIQUE:
182      bits = global_flag;
183      break;
184
185    case elfcpp::STB_WEAK:
186      bits = weak_flag;
187      break;
188
189    case elfcpp::STB_LOCAL:
190      // We should only see externally visible symbols in the symbol
191      // table.
192      gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193      bits = global_flag;
194
195    default:
196      // Any target which wants to handle STB_LOOS, etc., needs to
197      // define a resolve method.
198      gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199      bits = global_flag;
200    }
201
202  if (is_dynamic)
203    bits |= dynamic_flag;
204  else
205    bits |= regular_flag;
206
207  switch (shndx)
208    {
209    case elfcpp::SHN_UNDEF:
210      bits |= undef_flag;
211      break;
212
213    case elfcpp::SHN_COMMON:
214      if (!is_ordinary)
215	bits |= common_flag;
216      break;
217
218    default:
219      if (type == elfcpp::STT_COMMON)
220	bits |= common_flag;
221      else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222	bits |= common_flag;
223      else
224        bits |= def_flag;
225      break;
226    }
227
228  return bits;
229}
230
231// Resolve a symbol.  This is called the second and subsequent times
232// we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
233// section index for SYM, possibly adjusted for many sections.
234// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235// than a special code.  ORIG_ST_SHNDX is the original section index,
236// before any munging because of discarded sections, except that all
237// non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
238// the version of SYM.
239
240template<int size, bool big_endian>
241void
242Symbol_table::resolve(Sized_symbol<size>* to,
243		      const elfcpp::Sym<size, big_endian>& sym,
244		      unsigned int st_shndx, bool is_ordinary,
245		      unsigned int orig_st_shndx,
246		      Object* object, const char* version)
247{
248  if (parameters->target().has_resolve())
249    {
250      Sized_target<size, big_endian>* sized_target;
251      sized_target = parameters->sized_target<size, big_endian>();
252      sized_target->resolve(to, sym, object, version);
253      return;
254    }
255
256  if (!object->is_dynamic())
257    {
258      // Record that we've seen this symbol in a regular object.
259      to->set_in_reg();
260    }
261  else if (st_shndx == elfcpp::SHN_UNDEF
262           && (to->visibility() == elfcpp::STV_HIDDEN
263               || to->visibility() == elfcpp::STV_INTERNAL))
264    {
265      // A dynamic object cannot reference a hidden or internal symbol
266      // defined in another object.
267      gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
268                   (to->visibility() == elfcpp::STV_HIDDEN
269                    ? "hidden"
270                    : "internal"),
271                   to->demangled_name().c_str(),
272                   to->object()->name().c_str(),
273                   object->name().c_str());
274      return;
275    }
276  else
277    {
278      // Record that we've seen this symbol in a dynamic object.
279      to->set_in_dyn();
280    }
281
282  // Record if we've seen this symbol in a real ELF object (i.e., the
283  // symbol is referenced from outside the world known to the plugin).
284  if (object->pluginobj() == NULL)
285    to->set_in_real_elf();
286
287  // If we're processing replacement files, allow new symbols to override
288  // the placeholders from the plugin objects.
289  if (to->source() == Symbol::FROM_OBJECT)
290    {
291      Pluginobj* obj = to->object()->pluginobj();
292      if (obj != NULL
293          && parameters->options().plugins()->in_replacement_phase())
294        {
295          this->override(to, sym, st_shndx, is_ordinary, object, version);
296          return;
297        }
298    }
299
300  // A new weak undefined reference, merging with an old weak
301  // reference, could be a One Definition Rule (ODR) violation --
302  // especially if the types or sizes of the references differ.  We'll
303  // store such pairs and look them up later to make sure they
304  // actually refer to the same lines of code.  We also check
305  // combinations of weak and strong, which might occur if one case is
306  // inline and the other is not.  (Note: not all ODR violations can
307  // be found this way, and not everything this finds is an ODR
308  // violation.  But it's helpful to warn about.)
309  bool to_is_ordinary;
310  if (parameters->options().detect_odr_violations()
311      && (sym.get_st_bind() == elfcpp::STB_WEAK
312	  || to->binding() == elfcpp::STB_WEAK)
313      && orig_st_shndx != elfcpp::SHN_UNDEF
314      && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
315      && to_is_ordinary
316      && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
317      && to->symsize() != 0
318      && (sym.get_st_type() != to->type()
319          || sym.get_st_size() != to->symsize())
320      // C does not have a concept of ODR, so we only need to do this
321      // on C++ symbols.  These have (mangled) names starting with _Z.
322      && to->name()[0] == '_' && to->name()[1] == 'Z')
323    {
324      Symbol_location fromloc
325          = { object, orig_st_shndx, sym.get_st_value() };
326      Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
327				to->value() };
328      this->candidate_odr_violations_[to->name()].insert(fromloc);
329      this->candidate_odr_violations_[to->name()].insert(toloc);
330    }
331
332  unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
333                                         object->is_dynamic(),
334					 st_shndx, is_ordinary,
335                                         sym.get_st_type());
336
337  bool adjust_common_sizes;
338  bool adjust_dyndef;
339  typename Sized_symbol<size>::Size_type tosize = to->symsize();
340  if (Symbol_table::should_override(to, frombits, OBJECT, object,
341				    &adjust_common_sizes,
342				    &adjust_dyndef))
343    {
344      elfcpp::STB tobinding = to->binding();
345      this->override(to, sym, st_shndx, is_ordinary, object, version);
346      if (adjust_common_sizes && tosize > to->symsize())
347        to->set_symsize(tosize);
348      if (adjust_dyndef)
349	{
350	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
351	  // Remember which kind of UNDEF it was for future reference.
352	  to->set_undef_binding(tobinding);
353	}
354    }
355  else
356    {
357      if (adjust_common_sizes && sym.get_st_size() > tosize)
358        to->set_symsize(sym.get_st_size());
359      if (adjust_dyndef)
360	{
361	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
362	  // Remember which kind of UNDEF it was.
363	  to->set_undef_binding(sym.get_st_bind());
364	}
365      // The ELF ABI says that even for a reference to a symbol we
366      // merge the visibility.
367      to->override_visibility(sym.get_st_visibility());
368    }
369
370  if (adjust_common_sizes && parameters->options().warn_common())
371    {
372      if (tosize > sym.get_st_size())
373	Symbol_table::report_resolve_problem(false,
374					     _("common of '%s' overriding "
375					       "smaller common"),
376					     to, OBJECT, object);
377      else if (tosize < sym.get_st_size())
378	Symbol_table::report_resolve_problem(false,
379					     _("common of '%s' overidden by "
380					       "larger common"),
381					     to, OBJECT, object);
382      else
383	Symbol_table::report_resolve_problem(false,
384					     _("multiple common of '%s'"),
385					     to, OBJECT, object);
386    }
387}
388
389// Handle the core of symbol resolution.  This is called with the
390// existing symbol, TO, and a bitflag describing the new symbol.  This
391// returns true if we should override the existing symbol with the new
392// one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
393// true if we should set the symbol size to the maximum of the TO and
394// FROM sizes.  It handles error conditions.
395
396bool
397Symbol_table::should_override(const Symbol* to, unsigned int frombits,
398                              Defined defined, Object* object,
399			      bool* adjust_common_sizes,
400			      bool* adjust_dyndef)
401{
402  *adjust_common_sizes = false;
403  *adjust_dyndef = false;
404
405  unsigned int tobits;
406  if (to->source() == Symbol::IS_UNDEFINED)
407    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
408			    to->type());
409  else if (to->source() != Symbol::FROM_OBJECT)
410    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
411			    to->type());
412  else
413    {
414      bool is_ordinary;
415      unsigned int shndx = to->shndx(&is_ordinary);
416      tobits = symbol_to_bits(to->binding(),
417			      to->object()->is_dynamic(),
418			      shndx,
419			      is_ordinary,
420			      to->type());
421    }
422
423  // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
424
425  // We use a giant switch table for symbol resolution.  This code is
426  // unwieldy, but: 1) it is efficient; 2) we definitely handle all
427  // cases; 3) it is easy to change the handling of a particular case.
428  // The alternative would be a series of conditionals, but it is easy
429  // to get the ordering wrong.  This could also be done as a table,
430  // but that is no easier to understand than this large switch
431  // statement.
432
433  // These are the values generated by the bit codes.
434  enum
435  {
436    DEF =              global_flag | regular_flag | def_flag,
437    WEAK_DEF =         weak_flag   | regular_flag | def_flag,
438    DYN_DEF =          global_flag | dynamic_flag | def_flag,
439    DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
440    UNDEF =            global_flag | regular_flag | undef_flag,
441    WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
442    DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
443    DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
444    COMMON =           global_flag | regular_flag | common_flag,
445    WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
446    DYN_COMMON =       global_flag | dynamic_flag | common_flag,
447    DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
448  };
449
450  switch (tobits * 16 + frombits)
451    {
452    case DEF * 16 + DEF:
453      // Two definitions of the same symbol.
454
455      // If either symbol is defined by an object included using
456      // --just-symbols, then don't warn.  This is for compatibility
457      // with the GNU linker.  FIXME: This is a hack.
458      if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
459          || (object != NULL && object->just_symbols()))
460        return false;
461
462      if (!parameters->options().muldefs())
463	Symbol_table::report_resolve_problem(true,
464					     _("multiple definition of '%s'"),
465					     to, defined, object);
466      return false;
467
468    case WEAK_DEF * 16 + DEF:
469      // We've seen a weak definition, and now we see a strong
470      // definition.  In the original SVR4 linker, this was treated as
471      // a multiple definition error.  In the Solaris linker and the
472      // GNU linker, a weak definition followed by a regular
473      // definition causes the weak definition to be overridden.  We
474      // are currently compatible with the GNU linker.  In the future
475      // we should add a target specific option to change this.
476      // FIXME.
477      return true;
478
479    case DYN_DEF * 16 + DEF:
480    case DYN_WEAK_DEF * 16 + DEF:
481      // We've seen a definition in a dynamic object, and now we see a
482      // definition in a regular object.  The definition in the
483      // regular object overrides the definition in the dynamic
484      // object.
485      return true;
486
487    case UNDEF * 16 + DEF:
488    case WEAK_UNDEF * 16 + DEF:
489    case DYN_UNDEF * 16 + DEF:
490    case DYN_WEAK_UNDEF * 16 + DEF:
491      // We've seen an undefined reference, and now we see a
492      // definition.  We use the definition.
493      return true;
494
495    case COMMON * 16 + DEF:
496    case WEAK_COMMON * 16 + DEF:
497    case DYN_COMMON * 16 + DEF:
498    case DYN_WEAK_COMMON * 16 + DEF:
499      // We've seen a common symbol and now we see a definition.  The
500      // definition overrides.
501      if (parameters->options().warn_common())
502	Symbol_table::report_resolve_problem(false,
503					     _("definition of '%s' overriding "
504					       "common"),
505					     to, defined, object);
506      return true;
507
508    case DEF * 16 + WEAK_DEF:
509    case WEAK_DEF * 16 + WEAK_DEF:
510      // We've seen a definition and now we see a weak definition.  We
511      // ignore the new weak definition.
512      return false;
513
514    case DYN_DEF * 16 + WEAK_DEF:
515    case DYN_WEAK_DEF * 16 + WEAK_DEF:
516      // We've seen a dynamic definition and now we see a regular weak
517      // definition.  The regular weak definition overrides.
518      return true;
519
520    case UNDEF * 16 + WEAK_DEF:
521    case WEAK_UNDEF * 16 + WEAK_DEF:
522    case DYN_UNDEF * 16 + WEAK_DEF:
523    case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
524      // A weak definition of a currently undefined symbol.
525      return true;
526
527    case COMMON * 16 + WEAK_DEF:
528    case WEAK_COMMON * 16 + WEAK_DEF:
529      // A weak definition does not override a common definition.
530      return false;
531
532    case DYN_COMMON * 16 + WEAK_DEF:
533    case DYN_WEAK_COMMON * 16 + WEAK_DEF:
534      // A weak definition does override a definition in a dynamic
535      // object.
536      if (parameters->options().warn_common())
537	Symbol_table::report_resolve_problem(false,
538					     _("definition of '%s' overriding "
539					       "dynamic common definition"),
540					     to, defined, object);
541      return true;
542
543    case DEF * 16 + DYN_DEF:
544    case WEAK_DEF * 16 + DYN_DEF:
545    case DYN_DEF * 16 + DYN_DEF:
546    case DYN_WEAK_DEF * 16 + DYN_DEF:
547      // Ignore a dynamic definition if we already have a definition.
548      return false;
549
550    case UNDEF * 16 + DYN_DEF:
551    case DYN_UNDEF * 16 + DYN_DEF:
552    case DYN_WEAK_UNDEF * 16 + DYN_DEF:
553      // Use a dynamic definition if we have a reference.
554      return true;
555
556    case WEAK_UNDEF * 16 + DYN_DEF:
557      // When overriding a weak undef by a dynamic definition,
558      // we need to remember that the original undef was weak.
559      *adjust_dyndef = true;
560      return true;
561
562    case COMMON * 16 + DYN_DEF:
563    case WEAK_COMMON * 16 + DYN_DEF:
564    case DYN_COMMON * 16 + DYN_DEF:
565    case DYN_WEAK_COMMON * 16 + DYN_DEF:
566      // Ignore a dynamic definition if we already have a common
567      // definition.
568      return false;
569
570    case DEF * 16 + DYN_WEAK_DEF:
571    case WEAK_DEF * 16 + DYN_WEAK_DEF:
572    case DYN_DEF * 16 + DYN_WEAK_DEF:
573    case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
574      // Ignore a weak dynamic definition if we already have a
575      // definition.
576      return false;
577
578    case UNDEF * 16 + DYN_WEAK_DEF:
579      // When overriding an undef by a dynamic weak definition,
580      // we need to remember that the original undef was not weak.
581      *adjust_dyndef = true;
582      return true;
583
584    case DYN_UNDEF * 16 + DYN_WEAK_DEF:
585    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
586      // Use a weak dynamic definition if we have a reference.
587      return true;
588
589    case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
590      // When overriding a weak undef by a dynamic definition,
591      // we need to remember that the original undef was weak.
592      *adjust_dyndef = true;
593      return true;
594
595    case COMMON * 16 + DYN_WEAK_DEF:
596    case WEAK_COMMON * 16 + DYN_WEAK_DEF:
597    case DYN_COMMON * 16 + DYN_WEAK_DEF:
598    case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
599      // Ignore a weak dynamic definition if we already have a common
600      // definition.
601      return false;
602
603    case DEF * 16 + UNDEF:
604    case WEAK_DEF * 16 + UNDEF:
605    case UNDEF * 16 + UNDEF:
606      // A new undefined reference tells us nothing.
607      return false;
608
609    case DYN_DEF * 16 + UNDEF:
610    case DYN_WEAK_DEF * 16 + UNDEF:
611      // For a dynamic def, we need to remember which kind of undef we see.
612      *adjust_dyndef = true;
613      return false;
614
615    case WEAK_UNDEF * 16 + UNDEF:
616    case DYN_UNDEF * 16 + UNDEF:
617    case DYN_WEAK_UNDEF * 16 + UNDEF:
618      // A strong undef overrides a dynamic or weak undef.
619      return true;
620
621    case COMMON * 16 + UNDEF:
622    case WEAK_COMMON * 16 + UNDEF:
623    case DYN_COMMON * 16 + UNDEF:
624    case DYN_WEAK_COMMON * 16 + UNDEF:
625      // A new undefined reference tells us nothing.
626      return false;
627
628    case DEF * 16 + WEAK_UNDEF:
629    case WEAK_DEF * 16 + WEAK_UNDEF:
630    case UNDEF * 16 + WEAK_UNDEF:
631    case WEAK_UNDEF * 16 + WEAK_UNDEF:
632    case DYN_UNDEF * 16 + WEAK_UNDEF:
633    case COMMON * 16 + WEAK_UNDEF:
634    case WEAK_COMMON * 16 + WEAK_UNDEF:
635    case DYN_COMMON * 16 + WEAK_UNDEF:
636    case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
637      // A new weak undefined reference tells us nothing unless the
638      // exisiting symbol is a dynamic weak reference.
639      return false;
640
641    case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
642      // A new weak reference overrides an existing dynamic weak reference.
643      // This is necessary because a dynamic weak reference remembers
644      // the old binding, which may not be weak.  If we keeps the existing
645      // dynamic weak reference, the weakness may be dropped in the output.
646      return true;
647
648    case DYN_DEF * 16 + WEAK_UNDEF:
649    case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
650      // For a dynamic def, we need to remember which kind of undef we see.
651      *adjust_dyndef = true;
652      return false;
653
654    case DEF * 16 + DYN_UNDEF:
655    case WEAK_DEF * 16 + DYN_UNDEF:
656    case DYN_DEF * 16 + DYN_UNDEF:
657    case DYN_WEAK_DEF * 16 + DYN_UNDEF:
658    case UNDEF * 16 + DYN_UNDEF:
659    case WEAK_UNDEF * 16 + DYN_UNDEF:
660    case DYN_UNDEF * 16 + DYN_UNDEF:
661    case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
662    case COMMON * 16 + DYN_UNDEF:
663    case WEAK_COMMON * 16 + DYN_UNDEF:
664    case DYN_COMMON * 16 + DYN_UNDEF:
665    case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
666      // A new dynamic undefined reference tells us nothing.
667      return false;
668
669    case DEF * 16 + DYN_WEAK_UNDEF:
670    case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
671    case DYN_DEF * 16 + DYN_WEAK_UNDEF:
672    case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
673    case UNDEF * 16 + DYN_WEAK_UNDEF:
674    case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
675    case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
676    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
677    case COMMON * 16 + DYN_WEAK_UNDEF:
678    case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
679    case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
680    case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
681      // A new weak dynamic undefined reference tells us nothing.
682      return false;
683
684    case DEF * 16 + COMMON:
685      // A common symbol does not override a definition.
686      if (parameters->options().warn_common())
687	Symbol_table::report_resolve_problem(false,
688					     _("common '%s' overridden by "
689					       "previous definition"),
690					     to, defined, object);
691      return false;
692
693    case WEAK_DEF * 16 + COMMON:
694    case DYN_DEF * 16 + COMMON:
695    case DYN_WEAK_DEF * 16 + COMMON:
696      // A common symbol does override a weak definition or a dynamic
697      // definition.
698      return true;
699
700    case UNDEF * 16 + COMMON:
701    case WEAK_UNDEF * 16 + COMMON:
702    case DYN_UNDEF * 16 + COMMON:
703    case DYN_WEAK_UNDEF * 16 + COMMON:
704      // A common symbol is a definition for a reference.
705      return true;
706
707    case COMMON * 16 + COMMON:
708      // Set the size to the maximum.
709      *adjust_common_sizes = true;
710      return false;
711
712    case WEAK_COMMON * 16 + COMMON:
713      // I'm not sure just what a weak common symbol means, but
714      // presumably it can be overridden by a regular common symbol.
715      return true;
716
717    case DYN_COMMON * 16 + COMMON:
718    case DYN_WEAK_COMMON * 16 + COMMON:
719      // Use the real common symbol, but adjust the size if necessary.
720      *adjust_common_sizes = true;
721      return true;
722
723    case DEF * 16 + WEAK_COMMON:
724    case WEAK_DEF * 16 + WEAK_COMMON:
725    case DYN_DEF * 16 + WEAK_COMMON:
726    case DYN_WEAK_DEF * 16 + WEAK_COMMON:
727      // Whatever a weak common symbol is, it won't override a
728      // definition.
729      return false;
730
731    case UNDEF * 16 + WEAK_COMMON:
732    case WEAK_UNDEF * 16 + WEAK_COMMON:
733    case DYN_UNDEF * 16 + WEAK_COMMON:
734    case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
735      // A weak common symbol is better than an undefined symbol.
736      return true;
737
738    case COMMON * 16 + WEAK_COMMON:
739    case WEAK_COMMON * 16 + WEAK_COMMON:
740    case DYN_COMMON * 16 + WEAK_COMMON:
741    case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
742      // Ignore a weak common symbol in the presence of a real common
743      // symbol.
744      return false;
745
746    case DEF * 16 + DYN_COMMON:
747    case WEAK_DEF * 16 + DYN_COMMON:
748    case DYN_DEF * 16 + DYN_COMMON:
749    case DYN_WEAK_DEF * 16 + DYN_COMMON:
750      // Ignore a dynamic common symbol in the presence of a
751      // definition.
752      return false;
753
754    case UNDEF * 16 + DYN_COMMON:
755    case WEAK_UNDEF * 16 + DYN_COMMON:
756    case DYN_UNDEF * 16 + DYN_COMMON:
757    case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
758      // A dynamic common symbol is a definition of sorts.
759      return true;
760
761    case COMMON * 16 + DYN_COMMON:
762    case WEAK_COMMON * 16 + DYN_COMMON:
763    case DYN_COMMON * 16 + DYN_COMMON:
764    case DYN_WEAK_COMMON * 16 + DYN_COMMON:
765      // Set the size to the maximum.
766      *adjust_common_sizes = true;
767      return false;
768
769    case DEF * 16 + DYN_WEAK_COMMON:
770    case WEAK_DEF * 16 + DYN_WEAK_COMMON:
771    case DYN_DEF * 16 + DYN_WEAK_COMMON:
772    case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
773      // A common symbol is ignored in the face of a definition.
774      return false;
775
776    case UNDEF * 16 + DYN_WEAK_COMMON:
777    case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
778    case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
779    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
780      // I guess a weak common symbol is better than a definition.
781      return true;
782
783    case COMMON * 16 + DYN_WEAK_COMMON:
784    case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
785    case DYN_COMMON * 16 + DYN_WEAK_COMMON:
786    case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
787      // Set the size to the maximum.
788      *adjust_common_sizes = true;
789      return false;
790
791    default:
792      gold_unreachable();
793    }
794}
795
796// Issue an error or warning due to symbol resolution.  IS_ERROR
797// indicates an error rather than a warning.  MSG is the error
798// message; it is expected to have a %s for the symbol name.  TO is
799// the existing symbol.  DEFINED/OBJECT is where the new symbol was
800// found.
801
802// FIXME: We should have better location information here.  When the
803// symbol is defined, we should be able to pull the location from the
804// debug info if there is any.
805
806void
807Symbol_table::report_resolve_problem(bool is_error, const char* msg,
808				     const Symbol* to, Defined defined,
809				     Object* object)
810{
811  std::string demangled(to->demangled_name());
812  size_t len = strlen(msg) + demangled.length() + 10;
813  char* buf = new char[len];
814  snprintf(buf, len, msg, demangled.c_str());
815
816  const char* objname;
817  switch (defined)
818    {
819    case OBJECT:
820      objname = object->name().c_str();
821      break;
822    case COPY:
823      objname = _("COPY reloc");
824      break;
825    case DEFSYM:
826    case UNDEFINED:
827      objname = _("command line");
828      break;
829    case SCRIPT:
830      objname = _("linker script");
831      break;
832    case PREDEFINED:
833      objname = _("linker defined");
834      break;
835    default:
836      gold_unreachable();
837    }
838
839  if (is_error)
840    gold_error("%s: %s", objname, buf);
841  else
842    gold_warning("%s: %s", objname, buf);
843
844  delete[] buf;
845
846  if (to->source() == Symbol::FROM_OBJECT)
847    objname = to->object()->name().c_str();
848  else
849    objname = _("command line");
850  gold_info("%s: %s: previous definition here", program_name, objname);
851}
852
853// A special case of should_override which is only called for a strong
854// defined symbol from a regular object file.  This is used when
855// defining special symbols.
856
857bool
858Symbol_table::should_override_with_special(const Symbol* to, Defined defined)
859{
860  bool adjust_common_sizes;
861  bool adjust_dyn_def;
862  unsigned int frombits = global_flag | regular_flag | def_flag;
863  bool ret = Symbol_table::should_override(to, frombits, defined, NULL,
864					   &adjust_common_sizes,
865					   &adjust_dyn_def);
866  gold_assert(!adjust_common_sizes && !adjust_dyn_def);
867  return ret;
868}
869
870// Override symbol base with a special symbol.
871
872void
873Symbol::override_base_with_special(const Symbol* from)
874{
875  gold_assert(this->name_ == from->name_ || this->has_alias());
876
877  this->source_ = from->source_;
878  switch (from->source_)
879    {
880    case FROM_OBJECT:
881      this->u_.from_object = from->u_.from_object;
882      break;
883    case IN_OUTPUT_DATA:
884      this->u_.in_output_data = from->u_.in_output_data;
885      break;
886    case IN_OUTPUT_SEGMENT:
887      this->u_.in_output_segment = from->u_.in_output_segment;
888      break;
889    case IS_CONSTANT:
890    case IS_UNDEFINED:
891      break;
892    default:
893      gold_unreachable();
894      break;
895    }
896
897  this->override_version(from->version_);
898  this->type_ = from->type_;
899  this->binding_ = from->binding_;
900  this->override_visibility(from->visibility_);
901  this->nonvis_ = from->nonvis_;
902
903  // Special symbols are always considered to be regular symbols.
904  this->in_reg_ = true;
905
906  if (from->needs_dynsym_entry_)
907    this->needs_dynsym_entry_ = true;
908  if (from->needs_dynsym_value_)
909    this->needs_dynsym_value_ = true;
910
911  // We shouldn't see these flags.  If we do, we need to handle them
912  // somehow.
913  gold_assert(!from->is_forwarder_);
914  gold_assert(!from->has_plt_offset());
915  gold_assert(!from->has_warning_);
916  gold_assert(!from->is_copied_from_dynobj_);
917  gold_assert(!from->is_forced_local_);
918}
919
920// Override a symbol with a special symbol.
921
922template<int size>
923void
924Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
925{
926  this->override_base_with_special(from);
927  this->value_ = from->value_;
928  this->symsize_ = from->symsize_;
929}
930
931// Override TOSYM with the special symbol FROMSYM.  This handles all
932// aliases of TOSYM.
933
934template<int size>
935void
936Symbol_table::override_with_special(Sized_symbol<size>* tosym,
937				    const Sized_symbol<size>* fromsym)
938{
939  tosym->override_with_special(fromsym);
940  if (tosym->has_alias())
941    {
942      Symbol* sym = this->weak_aliases_[tosym];
943      gold_assert(sym != NULL);
944      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
945      do
946	{
947	  ssym->override_with_special(fromsym);
948	  sym = this->weak_aliases_[ssym];
949	  gold_assert(sym != NULL);
950	  ssym = this->get_sized_symbol<size>(sym);
951	}
952      while (ssym != tosym);
953    }
954  if (tosym->binding() == elfcpp::STB_LOCAL
955      || ((tosym->visibility() == elfcpp::STV_HIDDEN
956	   || tosym->visibility() == elfcpp::STV_INTERNAL)
957	  && (tosym->binding() == elfcpp::STB_GLOBAL
958	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
959	      || tosym->binding() == elfcpp::STB_WEAK)
960	  && !parameters->options().relocatable()))
961    this->force_local(tosym);
962}
963
964// Instantiate the templates we need.  We could use the configure
965// script to restrict this to only the ones needed for implemented
966// targets.
967
968// We have to instantiate both big and little endian versions because
969// these are used by other templates that depends on size only.
970
971#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
972template
973void
974Symbol_table::resolve<32, false>(
975    Sized_symbol<32>* to,
976    const elfcpp::Sym<32, false>& sym,
977    unsigned int st_shndx,
978    bool is_ordinary,
979    unsigned int orig_st_shndx,
980    Object* object,
981    const char* version);
982
983template
984void
985Symbol_table::resolve<32, true>(
986    Sized_symbol<32>* to,
987    const elfcpp::Sym<32, true>& sym,
988    unsigned int st_shndx,
989    bool is_ordinary,
990    unsigned int orig_st_shndx,
991    Object* object,
992    const char* version);
993#endif
994
995#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
996template
997void
998Symbol_table::resolve<64, false>(
999    Sized_symbol<64>* to,
1000    const elfcpp::Sym<64, false>& sym,
1001    unsigned int st_shndx,
1002    bool is_ordinary,
1003    unsigned int orig_st_shndx,
1004    Object* object,
1005    const char* version);
1006
1007template
1008void
1009Symbol_table::resolve<64, true>(
1010    Sized_symbol<64>* to,
1011    const elfcpp::Sym<64, true>& sym,
1012    unsigned int st_shndx,
1013    bool is_ordinary,
1014    unsigned int orig_st_shndx,
1015    Object* object,
1016    const char* version);
1017#endif
1018
1019#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1020template
1021void
1022Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1023					const Sized_symbol<32>*);
1024#endif
1025
1026#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1027template
1028void
1029Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1030					const Sized_symbol<64>*);
1031#endif
1032
1033} // End namespace gold.
1034