1// dynobj.cc -- dynamic object support for gold
2
3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <vector>
26#include <cstring>
27
28#include "elfcpp.h"
29#include "parameters.h"
30#include "script.h"
31#include "symtab.h"
32#include "dynobj.h"
33
34namespace gold
35{
36
37// Class Dynobj.
38
39// Sets up the default soname_ to use, in the (rare) cases we never
40// see a DT_SONAME entry.
41
42Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43  : Object(name, input_file, true, offset),
44    needed_(),
45    unknown_needed_(UNKNOWN_NEEDED_UNSET)
46{
47  // This will be overridden by a DT_SONAME entry, hopefully.  But if
48  // we never see a DT_SONAME entry, our rule is to use the dynamic
49  // object's filename.  The only exception is when the dynamic object
50  // is part of an archive (so the filename is the archive's
51  // filename).  In that case, we use just the dynobj's name-in-archive.
52  this->soname_ = this->input_file()->found_name();
53  if (this->offset() != 0)
54    {
55      std::string::size_type open_paren = this->name().find('(');
56      std::string::size_type close_paren = this->name().find(')');
57      if (open_paren != std::string::npos && close_paren != std::string::npos)
58	{
59	  // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60	  this->soname_ = this->name().substr(open_paren + 1,
61					      close_paren - (open_paren + 1));
62	}
63    }
64}
65
66// Class Sized_dynobj.
67
68template<int size, bool big_endian>
69Sized_dynobj<size, big_endian>::Sized_dynobj(
70    const std::string& name,
71    Input_file* input_file,
72    off_t offset,
73    const elfcpp::Ehdr<size, big_endian>& ehdr)
74  : Dynobj(name, input_file, offset),
75    elf_file_(this, ehdr),
76    dynsym_shndx_(-1U),
77    symbols_(NULL),
78    defined_count_(0)
79{
80}
81
82// Set up the object.
83
84template<int size, bool big_endian>
85void
86Sized_dynobj<size, big_endian>::setup()
87{
88  const unsigned int shnum = this->elf_file_.shnum();
89  this->set_shnum(shnum);
90}
91
92// Find the SHT_DYNSYM section and the various version sections, and
93// the dynamic section, given the section headers.
94
95template<int size, bool big_endian>
96void
97Sized_dynobj<size, big_endian>::find_dynsym_sections(
98    const unsigned char* pshdrs,
99    unsigned int* pversym_shndx,
100    unsigned int* pverdef_shndx,
101    unsigned int* pverneed_shndx,
102    unsigned int* pdynamic_shndx)
103{
104  *pversym_shndx = -1U;
105  *pverdef_shndx = -1U;
106  *pverneed_shndx = -1U;
107  *pdynamic_shndx = -1U;
108
109  unsigned int symtab_shndx = 0;
110  unsigned int xindex_shndx = 0;
111  unsigned int xindex_link = 0;
112  const unsigned int shnum = this->shnum();
113  const unsigned char* p = pshdrs;
114  for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
115    {
116      typename This::Shdr shdr(p);
117
118      unsigned int* pi;
119      switch (shdr.get_sh_type())
120	{
121	case elfcpp::SHT_DYNSYM:
122	  this->dynsym_shndx_ = i;
123	  if (xindex_shndx > 0 && xindex_link == i)
124	    {
125	      Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
126	      xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
127							   pshdrs);
128	      this->set_xindex(xindex);
129	    }
130	  pi = NULL;
131	  break;
132	case elfcpp::SHT_SYMTAB:
133	  symtab_shndx = i;
134	  pi = NULL;
135	  break;
136	case elfcpp::SHT_GNU_versym:
137	  pi = pversym_shndx;
138	  break;
139	case elfcpp::SHT_GNU_verdef:
140	  pi = pverdef_shndx;
141	  break;
142	case elfcpp::SHT_GNU_verneed:
143	  pi = pverneed_shndx;
144	  break;
145	case elfcpp::SHT_DYNAMIC:
146	  pi = pdynamic_shndx;
147	  break;
148	case elfcpp::SHT_SYMTAB_SHNDX:
149	  xindex_shndx = i;
150	  xindex_link = this->adjust_shndx(shdr.get_sh_link());
151	  if (xindex_link == this->dynsym_shndx_)
152	    {
153	      Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
154	      xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
155							   pshdrs);
156	      this->set_xindex(xindex);
157	    }
158	  pi = NULL;
159	  break;
160	default:
161	  pi = NULL;
162	  break;
163	}
164
165      if (pi == NULL)
166	continue;
167
168      if (*pi != -1U)
169	this->error(_("unexpected duplicate type %u section: %u, %u"),
170		    shdr.get_sh_type(), *pi, i);
171
172      *pi = i;
173    }
174
175  // If there is no dynamic symbol table, use the normal symbol table.
176  // On some SVR4 systems, a shared library is stored in an archive.
177  // The version stored in the archive only has a normal symbol table.
178  // It has an SONAME entry which points to another copy in the file
179  // system which has a dynamic symbol table as usual.  This is way of
180  // addressing the issues which glibc addresses using GROUP with
181  // libc_nonshared.a.
182  if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
183    {
184      this->dynsym_shndx_ = symtab_shndx;
185      if (xindex_shndx > 0 && xindex_link == symtab_shndx)
186	{
187	  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
188	  xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
189						       pshdrs);
190	  this->set_xindex(xindex);
191	}
192    }
193}
194
195// Read the contents of section SHNDX.  PSHDRS points to the section
196// headers.  TYPE is the expected section type.  LINK is the expected
197// section link.  Store the data in *VIEW and *VIEW_SIZE.  The
198// section's sh_info field is stored in *VIEW_INFO.
199
200template<int size, bool big_endian>
201void
202Sized_dynobj<size, big_endian>::read_dynsym_section(
203    const unsigned char* pshdrs,
204    unsigned int shndx,
205    elfcpp::SHT type,
206    unsigned int link,
207    File_view** view,
208    section_size_type* view_size,
209    unsigned int* view_info)
210{
211  if (shndx == -1U)
212    {
213      *view = NULL;
214      *view_size = 0;
215      *view_info = 0;
216      return;
217    }
218
219  typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
220
221  gold_assert(shdr.get_sh_type() == type);
222
223  if (this->adjust_shndx(shdr.get_sh_link()) != link)
224    this->error(_("unexpected link in section %u header: %u != %u"),
225	        shndx, this->adjust_shndx(shdr.get_sh_link()), link);
226
227  *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
228				 true, false);
229  *view_size = convert_to_section_size_type(shdr.get_sh_size());
230  *view_info = shdr.get_sh_info();
231}
232
233// Read the dynamic tags.  Set the soname field if this shared object
234// has a DT_SONAME tag.  Record the DT_NEEDED tags.  PSHDRS points to
235// the section headers.  DYNAMIC_SHNDX is the section index of the
236// SHT_DYNAMIC section.  STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237// section index and contents of a string table which may be the one
238// associated with the SHT_DYNAMIC section.
239
240template<int size, bool big_endian>
241void
242Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
243					     unsigned int dynamic_shndx,
244					     unsigned int strtab_shndx,
245					     const unsigned char* strtabu,
246					     off_t strtab_size)
247{
248  typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
249  gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
250
251  const off_t dynamic_size = dynamicshdr.get_sh_size();
252  const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
253						 dynamic_size, true, false);
254
255  const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
256  if (link != strtab_shndx)
257    {
258      if (link >= this->shnum())
259	{
260	  this->error(_("DYNAMIC section %u link out of range: %u"),
261		      dynamic_shndx, link);
262	  return;
263	}
264
265      typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
266      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
267	{
268	  this->error(_("DYNAMIC section %u link %u is not a strtab"),
269		      dynamic_shndx, link);
270	  return;
271	}
272
273      strtab_size = strtabshdr.get_sh_size();
274      strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
275			       false);
276    }
277
278  const char* const strtab = reinterpret_cast<const char*>(strtabu);
279
280  for (const unsigned char* p = pdynamic;
281       p < pdynamic + dynamic_size;
282       p += This::dyn_size)
283    {
284      typename This::Dyn dyn(p);
285
286      switch (dyn.get_d_tag())
287	{
288	case elfcpp::DT_NULL:
289	  // We should always see DT_NULL at the end of the dynamic
290	  // tags.
291	  return;
292
293	case elfcpp::DT_SONAME:
294	  {
295	    off_t val = dyn.get_d_val();
296	    if (val >= strtab_size)
297	      this->error(_("DT_SONAME value out of range: %lld >= %lld"),
298			  static_cast<long long>(val),
299			  static_cast<long long>(strtab_size));
300	    else
301	      this->set_soname_string(strtab + val);
302	  }
303	  break;
304
305	case elfcpp::DT_NEEDED:
306	  {
307	    off_t val = dyn.get_d_val();
308	    if (val >= strtab_size)
309	      this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310			  static_cast<long long>(val),
311			  static_cast<long long>(strtab_size));
312	    else
313	      this->add_needed(strtab + val);
314	  }
315	  break;
316
317	default:
318	  break;
319	}
320    }
321
322  this->error(_("missing DT_NULL in dynamic segment"));
323}
324
325// Read the symbols and sections from a dynamic object.  We read the
326// dynamic symbols, not the normal symbols.
327
328template<int size, bool big_endian>
329void
330Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
331{
332  this->read_section_data(&this->elf_file_, sd);
333
334  const unsigned char* const pshdrs = sd->section_headers->data();
335
336  unsigned int versym_shndx;
337  unsigned int verdef_shndx;
338  unsigned int verneed_shndx;
339  unsigned int dynamic_shndx;
340  this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
341			     &verneed_shndx, &dynamic_shndx);
342
343  unsigned int strtab_shndx = -1U;
344
345  sd->symbols = NULL;
346  sd->symbols_size = 0;
347  sd->external_symbols_offset = 0;
348  sd->symbol_names = NULL;
349  sd->symbol_names_size = 0;
350  sd->versym = NULL;
351  sd->versym_size = 0;
352  sd->verdef = NULL;
353  sd->verdef_size = 0;
354  sd->verdef_info = 0;
355  sd->verneed = NULL;
356  sd->verneed_size = 0;
357  sd->verneed_info = 0;
358
359  if (this->dynsym_shndx_ != -1U)
360    {
361      // Get the dynamic symbols.
362      typename This::Shdr dynsymshdr(pshdrs
363				     + this->dynsym_shndx_ * This::shdr_size);
364
365      sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
366					   dynsymshdr.get_sh_size(), true,
367					   false);
368      sd->symbols_size =
369	convert_to_section_size_type(dynsymshdr.get_sh_size());
370
371      // Get the symbol names.
372      strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
373      if (strtab_shndx >= this->shnum())
374	{
375	  this->error(_("invalid dynamic symbol table name index: %u"),
376		      strtab_shndx);
377	  return;
378	}
379      typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
380      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
381	{
382	  this->error(_("dynamic symbol table name section "
383			"has wrong type: %u"),
384		      static_cast<unsigned int>(strtabshdr.get_sh_type()));
385	  return;
386	}
387
388      sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
389						strtabshdr.get_sh_size(),
390						false, false);
391      sd->symbol_names_size =
392	convert_to_section_size_type(strtabshdr.get_sh_size());
393
394      // Get the version information.
395
396      unsigned int dummy;
397      this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
398				this->dynsym_shndx_,
399				&sd->versym, &sd->versym_size, &dummy);
400
401      // We require that the version definition and need section link
402      // to the same string table as the dynamic symbol table.  This
403      // is not a technical requirement, but it always happens in
404      // practice.  We could change this if necessary.
405
406      this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
407				strtab_shndx, &sd->verdef, &sd->verdef_size,
408				&sd->verdef_info);
409
410      this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
411				strtab_shndx, &sd->verneed, &sd->verneed_size,
412				&sd->verneed_info);
413    }
414
415  // Read the SHT_DYNAMIC section to find whether this shared object
416  // has a DT_SONAME tag and to record any DT_NEEDED tags.  This
417  // doesn't really have anything to do with reading the symbols, but
418  // this is a convenient place to do it.
419  if (dynamic_shndx != -1U)
420    this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
421		       (sd->symbol_names == NULL
422			? NULL
423			: sd->symbol_names->data()),
424		       sd->symbol_names_size);
425}
426
427// Return the Xindex structure to use for object with lots of
428// sections.
429
430template<int size, bool big_endian>
431Xindex*
432Sized_dynobj<size, big_endian>::do_initialize_xindex()
433{
434  gold_assert(this->dynsym_shndx_ != -1U);
435  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
436  xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
437  return xindex;
438}
439
440// Lay out the input sections for a dynamic object.  We don't want to
441// include sections from a dynamic object, so all that we actually do
442// here is check for .gnu.warning and .note.GNU-split-stack sections.
443
444template<int size, bool big_endian>
445void
446Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
447					  Layout*,
448					  Read_symbols_data* sd)
449{
450  const unsigned int shnum = this->shnum();
451  if (shnum == 0)
452    return;
453
454  // Get the section headers.
455  const unsigned char* pshdrs = sd->section_headers->data();
456
457  // Get the section names.
458  const unsigned char* pnamesu = sd->section_names->data();
459  const char* pnames = reinterpret_cast<const char*>(pnamesu);
460
461  // Skip the first, dummy, section.
462  pshdrs += This::shdr_size;
463  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
464    {
465      typename This::Shdr shdr(pshdrs);
466
467      if (shdr.get_sh_name() >= sd->section_names_size)
468	{
469	  this->error(_("bad section name offset for section %u: %lu"),
470		      i, static_cast<unsigned long>(shdr.get_sh_name()));
471	  return;
472	}
473
474      const char* name = pnames + shdr.get_sh_name();
475
476      this->handle_gnu_warning_section(name, i, symtab);
477      this->handle_split_stack_section(name);
478    }
479
480  delete sd->section_headers;
481  sd->section_headers = NULL;
482  delete sd->section_names;
483  sd->section_names = NULL;
484}
485
486// Add an entry to the vector mapping version numbers to version
487// strings.
488
489template<int size, bool big_endian>
490void
491Sized_dynobj<size, big_endian>::set_version_map(
492    Version_map* version_map,
493    unsigned int ndx,
494    const char* name) const
495{
496  if (ndx >= version_map->size())
497    version_map->resize(ndx + 1);
498  if ((*version_map)[ndx] != NULL)
499    this->error(_("duplicate definition for version %u"), ndx);
500  (*version_map)[ndx] = name;
501}
502
503// Add mappings for the version definitions to VERSION_MAP.
504
505template<int size, bool big_endian>
506void
507Sized_dynobj<size, big_endian>::make_verdef_map(
508    Read_symbols_data* sd,
509    Version_map* version_map) const
510{
511  if (sd->verdef == NULL)
512    return;
513
514  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
515  section_size_type names_size = sd->symbol_names_size;
516
517  const unsigned char* pverdef = sd->verdef->data();
518  section_size_type verdef_size = sd->verdef_size;
519  const unsigned int count = sd->verdef_info;
520
521  const unsigned char* p = pverdef;
522  for (unsigned int i = 0; i < count; ++i)
523    {
524      elfcpp::Verdef<size, big_endian> verdef(p);
525
526      if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
527	{
528	  this->error(_("unexpected verdef version %u"),
529		      verdef.get_vd_version());
530	  return;
531	}
532
533      const section_size_type vd_ndx = verdef.get_vd_ndx();
534
535      // The GNU linker clears the VERSYM_HIDDEN bit.  I'm not
536      // sure why.
537
538      // The first Verdaux holds the name of this version.  Subsequent
539      // ones are versions that this one depends upon, which we don't
540      // care about here.
541      const section_size_type vd_cnt = verdef.get_vd_cnt();
542      if (vd_cnt < 1)
543	{
544	  this->error(_("verdef vd_cnt field too small: %u"),
545                      static_cast<unsigned int>(vd_cnt));
546	  return;
547	}
548
549      const section_size_type vd_aux = verdef.get_vd_aux();
550      if ((p - pverdef) + vd_aux >= verdef_size)
551	{
552	  this->error(_("verdef vd_aux field out of range: %u"),
553                      static_cast<unsigned int>(vd_aux));
554	  return;
555	}
556
557      const unsigned char* pvda = p + vd_aux;
558      elfcpp::Verdaux<size, big_endian> verdaux(pvda);
559
560      const section_size_type vda_name = verdaux.get_vda_name();
561      if (vda_name >= names_size)
562	{
563	  this->error(_("verdaux vda_name field out of range: %u"),
564                      static_cast<unsigned int>(vda_name));
565	  return;
566	}
567
568      this->set_version_map(version_map, vd_ndx, names + vda_name);
569
570      const section_size_type vd_next = verdef.get_vd_next();
571      if ((p - pverdef) + vd_next >= verdef_size)
572	{
573	  this->error(_("verdef vd_next field out of range: %u"),
574                      static_cast<unsigned int>(vd_next));
575	  return;
576	}
577
578      p += vd_next;
579    }
580}
581
582// Add mappings for the required versions to VERSION_MAP.
583
584template<int size, bool big_endian>
585void
586Sized_dynobj<size, big_endian>::make_verneed_map(
587    Read_symbols_data* sd,
588    Version_map* version_map) const
589{
590  if (sd->verneed == NULL)
591    return;
592
593  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
594  section_size_type names_size = sd->symbol_names_size;
595
596  const unsigned char* pverneed = sd->verneed->data();
597  const section_size_type verneed_size = sd->verneed_size;
598  const unsigned int count = sd->verneed_info;
599
600  const unsigned char* p = pverneed;
601  for (unsigned int i = 0; i < count; ++i)
602    {
603      elfcpp::Verneed<size, big_endian> verneed(p);
604
605      if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
606	{
607	  this->error(_("unexpected verneed version %u"),
608		      verneed.get_vn_version());
609	  return;
610	}
611
612      const section_size_type vn_aux = verneed.get_vn_aux();
613
614      if ((p - pverneed) + vn_aux >= verneed_size)
615	{
616	  this->error(_("verneed vn_aux field out of range: %u"),
617                      static_cast<unsigned int>(vn_aux));
618	  return;
619	}
620
621      const unsigned int vn_cnt = verneed.get_vn_cnt();
622      const unsigned char* pvna = p + vn_aux;
623      for (unsigned int j = 0; j < vn_cnt; ++j)
624	{
625	  elfcpp::Vernaux<size, big_endian> vernaux(pvna);
626
627	  const unsigned int vna_name = vernaux.get_vna_name();
628	  if (vna_name >= names_size)
629	    {
630	      this->error(_("vernaux vna_name field out of range: %u"),
631			  static_cast<unsigned int>(vna_name));
632	      return;
633	    }
634
635	  this->set_version_map(version_map, vernaux.get_vna_other(),
636				names + vna_name);
637
638	  const section_size_type vna_next = vernaux.get_vna_next();
639	  if ((pvna - pverneed) + vna_next >= verneed_size)
640	    {
641	      this->error(_("verneed vna_next field out of range: %u"),
642			  static_cast<unsigned int>(vna_next));
643	      return;
644	    }
645
646	  pvna += vna_next;
647	}
648
649      const section_size_type vn_next = verneed.get_vn_next();
650      if ((p - pverneed) + vn_next >= verneed_size)
651	{
652	  this->error(_("verneed vn_next field out of range: %u"),
653                      static_cast<unsigned int>(vn_next));
654	  return;
655	}
656
657      p += vn_next;
658    }
659}
660
661// Create a vector mapping version numbers to version strings.
662
663template<int size, bool big_endian>
664void
665Sized_dynobj<size, big_endian>::make_version_map(
666    Read_symbols_data* sd,
667    Version_map* version_map) const
668{
669  if (sd->verdef == NULL && sd->verneed == NULL)
670    return;
671
672  // A guess at the maximum version number we will see.  If this is
673  // wrong we will be less efficient but still correct.
674  version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
675
676  this->make_verdef_map(sd, version_map);
677  this->make_verneed_map(sd, version_map);
678}
679
680// Add the dynamic symbols to the symbol table.
681
682template<int size, bool big_endian>
683void
684Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
685					       Read_symbols_data* sd,
686					       Layout*)
687{
688  if (sd->symbols == NULL)
689    {
690      gold_assert(sd->symbol_names == NULL);
691      gold_assert(sd->versym == NULL && sd->verdef == NULL
692		  && sd->verneed == NULL);
693      return;
694    }
695
696  const int sym_size = This::sym_size;
697  const size_t symcount = sd->symbols_size / sym_size;
698  gold_assert(sd->external_symbols_offset == 0);
699  if (symcount * sym_size != sd->symbols_size)
700    {
701      this->error(_("size of dynamic symbols is not multiple of symbol size"));
702      return;
703    }
704
705  Version_map version_map;
706  this->make_version_map(sd, &version_map);
707
708  // If printing symbol counts or a cross reference table, we want to
709  // track symbols.
710  if (parameters->options().user_set_print_symbol_counts()
711      || parameters->options().cref())
712    {
713      this->symbols_ = new Symbols();
714      this->symbols_->resize(symcount);
715    }
716
717  const char* sym_names =
718    reinterpret_cast<const char*>(sd->symbol_names->data());
719  symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
720			  sym_names, sd->symbol_names_size,
721			  (sd->versym == NULL
722			   ? NULL
723			   : sd->versym->data()),
724			  sd->versym_size,
725			  &version_map,
726			  this->symbols_,
727			  &this->defined_count_);
728
729  delete sd->symbols;
730  sd->symbols = NULL;
731  delete sd->symbol_names;
732  sd->symbol_names = NULL;
733  if (sd->versym != NULL)
734    {
735      delete sd->versym;
736      sd->versym = NULL;
737    }
738  if (sd->verdef != NULL)
739    {
740      delete sd->verdef;
741      sd->verdef = NULL;
742    }
743  if (sd->verneed != NULL)
744    {
745      delete sd->verneed;
746      sd->verneed = NULL;
747    }
748
749  // This is normally the last time we will read any data from this
750  // file.
751  this->clear_view_cache_marks();
752}
753
754template<int size, bool big_endian>
755Archive::Should_include
756Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
757							 Layout*,
758							 Read_symbols_data*,
759							 std::string*)
760{
761  return Archive::SHOULD_INCLUDE_YES;
762}
763
764// Get symbol counts.
765
766template<int size, bool big_endian>
767void
768Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
769    const Symbol_table*,
770    size_t* defined,
771    size_t* used) const
772{
773  *defined = this->defined_count_;
774  size_t count = 0;
775  for (typename Symbols::const_iterator p = this->symbols_->begin();
776       p != this->symbols_->end();
777       ++p)
778    if (*p != NULL
779	&& (*p)->source() == Symbol::FROM_OBJECT
780	&& (*p)->object() == this
781	&& (*p)->is_defined()
782	&& (*p)->dynsym_index() != -1U)
783      ++count;
784  *used = count;
785}
786
787// Given a vector of hash codes, compute the number of hash buckets to
788// use.
789
790unsigned int
791Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
792			     bool for_gnu_hash_table)
793{
794  // FIXME: Implement optional hash table optimization.
795
796  // Array used to determine the number of hash table buckets to use
797  // based on the number of symbols there are.  If there are fewer
798  // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
799  // buckets, fewer than 37 we use 17 buckets, and so forth.  We never
800  // use more than 262147 buckets.  This is straight from the old GNU
801  // linker.
802  static const unsigned int buckets[] =
803  {
804    1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
805    16411, 32771, 65537, 131101, 262147
806  };
807  const int buckets_count = sizeof buckets / sizeof buckets[0];
808
809  unsigned int symcount = hashcodes.size();
810  unsigned int ret = 1;
811  const double full_fraction
812    = 1.0 - parameters->options().hash_bucket_empty_fraction();
813  for (int i = 0; i < buckets_count; ++i)
814    {
815      if (symcount < buckets[i] * full_fraction)
816	break;
817      ret = buckets[i];
818    }
819
820  if (for_gnu_hash_table && ret < 2)
821    ret = 2;
822
823  return ret;
824}
825
826// The standard ELF hash function.  This hash function must not
827// change, as the dynamic linker uses it also.
828
829uint32_t
830Dynobj::elf_hash(const char* name)
831{
832  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
833  uint32_t h = 0;
834  unsigned char c;
835  while ((c = *nameu++) != '\0')
836    {
837      h = (h << 4) + c;
838      uint32_t g = h & 0xf0000000;
839      if (g != 0)
840	{
841	  h ^= g >> 24;
842	  // The ELF ABI says h &= ~g, but using xor is equivalent in
843	  // this case (since g was set from h) and may save one
844	  // instruction.
845	  h ^= g;
846	}
847    }
848  return h;
849}
850
851// Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
852// DYNSYMS is a vector with all the global dynamic symbols.
853// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
854// symbol table.
855
856void
857Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
858			      unsigned int local_dynsym_count,
859			      unsigned char** pphash,
860			      unsigned int* phashlen)
861{
862  unsigned int dynsym_count = dynsyms.size();
863
864  // Get the hash values for all the symbols.
865  std::vector<uint32_t> dynsym_hashvals(dynsym_count);
866  for (unsigned int i = 0; i < dynsym_count; ++i)
867    dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
868
869  const unsigned int bucketcount =
870    Dynobj::compute_bucket_count(dynsym_hashvals, false);
871
872  std::vector<uint32_t> bucket(bucketcount);
873  std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
874
875  for (unsigned int i = 0; i < dynsym_count; ++i)
876    {
877      unsigned int dynsym_index = dynsyms[i]->dynsym_index();
878      unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
879      chain[dynsym_index] = bucket[bucketpos];
880      bucket[bucketpos] = dynsym_index;
881    }
882
883  unsigned int hashlen = ((2
884			   + bucketcount
885			   + local_dynsym_count
886			   + dynsym_count)
887			  * 4);
888  unsigned char* phash = new unsigned char[hashlen];
889
890  if (parameters->target().is_big_endian())
891    {
892#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
893      Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
894						hashlen);
895#else
896      gold_unreachable();
897#endif
898    }
899  else
900    {
901#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
902      Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
903						 hashlen);
904#else
905      gold_unreachable();
906#endif
907    }
908
909  *pphash = phash;
910  *phashlen = hashlen;
911}
912
913// Fill in an ELF hash table.
914
915template<bool big_endian>
916void
917Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
918				    const std::vector<uint32_t>& chain,
919				    unsigned char* phash,
920				    unsigned int hashlen)
921{
922  unsigned char* p = phash;
923
924  const unsigned int bucketcount = bucket.size();
925  const unsigned int chaincount = chain.size();
926
927  elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
928  p += 4;
929  elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
930  p += 4;
931
932  for (unsigned int i = 0; i < bucketcount; ++i)
933    {
934      elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
935      p += 4;
936    }
937
938  for (unsigned int i = 0; i < chaincount; ++i)
939    {
940      elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
941      p += 4;
942    }
943
944  gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
945}
946
947// The hash function used for the GNU hash table.  This hash function
948// must not change, as the dynamic linker uses it also.
949
950uint32_t
951Dynobj::gnu_hash(const char* name)
952{
953  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
954  uint32_t h = 5381;
955  unsigned char c;
956  while ((c = *nameu++) != '\0')
957    h = (h << 5) + h + c;
958  return h;
959}
960
961// Create a GNU hash table, setting *PPHASH and *PHASHLEN.  GNU hash
962// tables are an extension to ELF which are recognized by the GNU
963// dynamic linker.  They are referenced using dynamic tag DT_GNU_HASH.
964// TARGET is the target.  DYNSYMS is a vector with all the global
965// symbols which will be going into the dynamic symbol table.
966// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
967// symbol table.
968
969void
970Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
971			      unsigned int local_dynsym_count,
972			      unsigned char** pphash,
973			      unsigned int* phashlen)
974{
975  const unsigned int count = dynsyms.size();
976
977  // Sort the dynamic symbols into two vectors.  Symbols which we do
978  // not want to put into the hash table we store into
979  // UNHASHED_DYNSYMS.  Symbols which we do want to store we put into
980  // HASHED_DYNSYMS.  DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
981  // and records the hash codes.
982
983  std::vector<Symbol*> unhashed_dynsyms;
984  unhashed_dynsyms.reserve(count);
985
986  std::vector<Symbol*> hashed_dynsyms;
987  hashed_dynsyms.reserve(count);
988
989  std::vector<uint32_t> dynsym_hashvals;
990  dynsym_hashvals.reserve(count);
991
992  for (unsigned int i = 0; i < count; ++i)
993    {
994      Symbol* sym = dynsyms[i];
995
996      if (!sym->needs_dynsym_value()
997	  && (sym->is_undefined()
998	      || sym->is_from_dynobj()
999	      || sym->is_forced_local()))
1000	unhashed_dynsyms.push_back(sym);
1001      else
1002	{
1003	  hashed_dynsyms.push_back(sym);
1004	  dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1005	}
1006    }
1007
1008  // Put the unhashed symbols at the start of the global portion of
1009  // the dynamic symbol table.
1010  const unsigned int unhashed_count = unhashed_dynsyms.size();
1011  unsigned int unhashed_dynsym_index = local_dynsym_count;
1012  for (unsigned int i = 0; i < unhashed_count; ++i)
1013    {
1014      unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1015      ++unhashed_dynsym_index;
1016    }
1017
1018  // For the actual data generation we call out to a templatized
1019  // function.
1020  int size = parameters->target().get_size();
1021  bool big_endian = parameters->target().is_big_endian();
1022  if (size == 32)
1023    {
1024      if (big_endian)
1025	{
1026#ifdef HAVE_TARGET_32_BIG
1027	  Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1028							dynsym_hashvals,
1029							unhashed_dynsym_index,
1030							pphash,
1031							phashlen);
1032#else
1033	  gold_unreachable();
1034#endif
1035	}
1036      else
1037	{
1038#ifdef HAVE_TARGET_32_LITTLE
1039	  Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1040							 dynsym_hashvals,
1041							 unhashed_dynsym_index,
1042							 pphash,
1043							 phashlen);
1044#else
1045	  gold_unreachable();
1046#endif
1047	}
1048    }
1049  else if (size == 64)
1050    {
1051      if (big_endian)
1052	{
1053#ifdef HAVE_TARGET_64_BIG
1054	  Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1055							dynsym_hashvals,
1056							unhashed_dynsym_index,
1057							pphash,
1058							phashlen);
1059#else
1060	  gold_unreachable();
1061#endif
1062	}
1063      else
1064	{
1065#ifdef HAVE_TARGET_64_LITTLE
1066	  Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1067							 dynsym_hashvals,
1068							 unhashed_dynsym_index,
1069							 pphash,
1070							 phashlen);
1071#else
1072	  gold_unreachable();
1073#endif
1074	}
1075    }
1076  else
1077    gold_unreachable();
1078}
1079
1080// Create the actual data for a GNU hash table.  This is just a copy
1081// of the code from the old GNU linker.
1082
1083template<int size, bool big_endian>
1084void
1085Dynobj::sized_create_gnu_hash_table(
1086    const std::vector<Symbol*>& hashed_dynsyms,
1087    const std::vector<uint32_t>& dynsym_hashvals,
1088    unsigned int unhashed_dynsym_count,
1089    unsigned char** pphash,
1090    unsigned int* phashlen)
1091{
1092  if (hashed_dynsyms.empty())
1093    {
1094      // Special case for the empty hash table.
1095      unsigned int hashlen = 5 * 4 + size / 8;
1096      unsigned char* phash = new unsigned char[hashlen];
1097      // One empty bucket.
1098      elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1099      // Symbol index above unhashed symbols.
1100      elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1101      // One word for bitmask.
1102      elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1103      // Only bloom filter.
1104      elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1105      // No valid hashes.
1106      elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1107      // No hashes in only bucket.
1108      elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1109
1110      *phashlen = hashlen;
1111      *pphash = phash;
1112
1113      return;
1114    }
1115
1116  const unsigned int bucketcount =
1117    Dynobj::compute_bucket_count(dynsym_hashvals, true);
1118
1119  const unsigned int nsyms = hashed_dynsyms.size();
1120
1121  uint32_t maskbitslog2 = 1;
1122  uint32_t x = nsyms >> 1;
1123  while (x != 0)
1124    {
1125      ++maskbitslog2;
1126      x >>= 1;
1127    }
1128  if (maskbitslog2 < 3)
1129    maskbitslog2 = 5;
1130  else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1131    maskbitslog2 += 3;
1132  else
1133    maskbitslog2 += 2;
1134
1135  uint32_t shift1;
1136  if (size == 32)
1137    shift1 = 5;
1138  else
1139    {
1140      if (maskbitslog2 == 5)
1141	maskbitslog2 = 6;
1142      shift1 = 6;
1143    }
1144  uint32_t mask = (1U << shift1) - 1U;
1145  uint32_t shift2 = maskbitslog2;
1146  uint32_t maskbits = 1U << maskbitslog2;
1147  uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1148
1149  typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1150  std::vector<Word> bitmask(maskwords);
1151  std::vector<uint32_t> counts(bucketcount);
1152  std::vector<uint32_t> indx(bucketcount);
1153  uint32_t symindx = unhashed_dynsym_count;
1154
1155  // Count the number of times each hash bucket is used.
1156  for (unsigned int i = 0; i < nsyms; ++i)
1157    ++counts[dynsym_hashvals[i] % bucketcount];
1158
1159  unsigned int cnt = symindx;
1160  for (unsigned int i = 0; i < bucketcount; ++i)
1161    {
1162      indx[i] = cnt;
1163      cnt += counts[i];
1164    }
1165
1166  unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1167  hashlen += maskbits / 8;
1168  unsigned char* phash = new unsigned char[hashlen];
1169
1170  elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1171  elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1172  elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1173  elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1174
1175  unsigned char* p = phash + 16 + maskbits / 8;
1176  for (unsigned int i = 0; i < bucketcount; ++i)
1177    {
1178      if (counts[i] == 0)
1179	elfcpp::Swap<32, big_endian>::writeval(p, 0);
1180      else
1181	elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1182      p += 4;
1183    }
1184
1185  for (unsigned int i = 0; i < nsyms; ++i)
1186    {
1187      Symbol* sym = hashed_dynsyms[i];
1188      uint32_t hashval = dynsym_hashvals[i];
1189
1190      unsigned int bucket = hashval % bucketcount;
1191      unsigned int val = ((hashval >> shift1)
1192			  & ((maskbits >> shift1) - 1));
1193      bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1194      bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1195      val = hashval & ~ 1U;
1196      if (counts[bucket] == 1)
1197	{
1198	  // Last element terminates the chain.
1199	  val |= 1;
1200	}
1201      elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1202					     val);
1203      --counts[bucket];
1204
1205      sym->set_dynsym_index(indx[bucket]);
1206      ++indx[bucket];
1207    }
1208
1209  p = phash + 16;
1210  for (unsigned int i = 0; i < maskwords; ++i)
1211    {
1212      elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1213      p += size / 8;
1214    }
1215
1216  *phashlen = hashlen;
1217  *pphash = phash;
1218}
1219
1220// Verdef methods.
1221
1222// Write this definition to a buffer for the output section.
1223
1224template<int size, bool big_endian>
1225unsigned char*
1226Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1227{
1228  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1229  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1230
1231  elfcpp::Verdef_write<size, big_endian> vd(pb);
1232  vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1233  vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1234		  | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1235		  | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1236  vd.set_vd_ndx(this->index());
1237  vd.set_vd_cnt(1 + this->deps_.size());
1238  vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1239  vd.set_vd_aux(verdef_size);
1240  vd.set_vd_next(is_last
1241		 ? 0
1242		 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1243  pb += verdef_size;
1244
1245  elfcpp::Verdaux_write<size, big_endian> vda(pb);
1246  vda.set_vda_name(dynpool->get_offset(this->name()));
1247  vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1248  pb += verdaux_size;
1249
1250  Deps::const_iterator p;
1251  unsigned int i;
1252  for (p = this->deps_.begin(), i = 0;
1253       p != this->deps_.end();
1254       ++p, ++i)
1255    {
1256      elfcpp::Verdaux_write<size, big_endian> vda(pb);
1257      vda.set_vda_name(dynpool->get_offset(*p));
1258      vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1259      pb += verdaux_size;
1260    }
1261
1262  return pb;
1263}
1264
1265// Verneed methods.
1266
1267Verneed::~Verneed()
1268{
1269  for (Need_versions::iterator p = this->need_versions_.begin();
1270       p != this->need_versions_.end();
1271       ++p)
1272    delete *p;
1273}
1274
1275// Add a new version to this file reference.
1276
1277Verneed_version*
1278Verneed::add_name(const char* name)
1279{
1280  Verneed_version* vv = new Verneed_version(name);
1281  this->need_versions_.push_back(vv);
1282  return vv;
1283}
1284
1285// Set the version indexes starting at INDEX.
1286
1287unsigned int
1288Verneed::finalize(unsigned int index)
1289{
1290  for (Need_versions::iterator p = this->need_versions_.begin();
1291       p != this->need_versions_.end();
1292       ++p)
1293    {
1294      (*p)->set_index(index);
1295      ++index;
1296    }
1297  return index;
1298}
1299
1300// Write this list of referenced versions to a buffer for the output
1301// section.
1302
1303template<int size, bool big_endian>
1304unsigned char*
1305Verneed::write(const Stringpool* dynpool, bool is_last,
1306	       unsigned char* pb) const
1307{
1308  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1309  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1310
1311  elfcpp::Verneed_write<size, big_endian> vn(pb);
1312  vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1313  vn.set_vn_cnt(this->need_versions_.size());
1314  vn.set_vn_file(dynpool->get_offset(this->filename()));
1315  vn.set_vn_aux(verneed_size);
1316  vn.set_vn_next(is_last
1317		 ? 0
1318		 : verneed_size + this->need_versions_.size() * vernaux_size);
1319  pb += verneed_size;
1320
1321  Need_versions::const_iterator p;
1322  unsigned int i;
1323  for (p = this->need_versions_.begin(), i = 0;
1324       p != this->need_versions_.end();
1325       ++p, ++i)
1326    {
1327      elfcpp::Vernaux_write<size, big_endian> vna(pb);
1328      vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1329      // FIXME: We need to sometimes set VER_FLG_WEAK here.
1330      vna.set_vna_flags(0);
1331      vna.set_vna_other((*p)->index());
1332      vna.set_vna_name(dynpool->get_offset((*p)->version()));
1333      vna.set_vna_next(i + 1 >= this->need_versions_.size()
1334		       ? 0
1335		       : vernaux_size);
1336      pb += vernaux_size;
1337    }
1338
1339  return pb;
1340}
1341
1342// Versions methods.
1343
1344Versions::Versions(const Version_script_info& version_script,
1345                   Stringpool* dynpool)
1346  : defs_(), needs_(), version_table_(),
1347    is_finalized_(false), version_script_(version_script),
1348    needs_base_version_(parameters->options().shared())
1349{
1350  if (!this->version_script_.empty())
1351    {
1352      // Parse the version script, and insert each declared version into
1353      // defs_ and version_table_.
1354      std::vector<std::string> versions = this->version_script_.get_versions();
1355
1356      if (this->needs_base_version_ && !versions.empty())
1357	this->define_base_version(dynpool);
1358
1359      for (size_t k = 0; k < versions.size(); ++k)
1360        {
1361          Stringpool::Key version_key;
1362          const char* version = dynpool->add(versions[k].c_str(),
1363                                             true, &version_key);
1364          Verdef* const vd = new Verdef(
1365              version,
1366              this->version_script_.get_dependencies(version),
1367              false, false, false, false);
1368          this->defs_.push_back(vd);
1369          Key key(version_key, 0);
1370          this->version_table_.insert(std::make_pair(key, vd));
1371        }
1372    }
1373}
1374
1375Versions::~Versions()
1376{
1377  for (Defs::iterator p = this->defs_.begin();
1378       p != this->defs_.end();
1379       ++p)
1380    delete *p;
1381
1382  for (Needs::iterator p = this->needs_.begin();
1383       p != this->needs_.end();
1384       ++p)
1385    delete *p;
1386}
1387
1388// Define the base version of a shared library.  The base version definition
1389// must be the first entry in defs_.  We insert it lazily so that defs_ is
1390// empty if no symbol versioning is used.  Then layout can just drop the
1391// version sections.
1392
1393void
1394Versions::define_base_version(Stringpool* dynpool)
1395{
1396  // If we do any versioning at all,  we always need a base version, so
1397  // define that first.  Nothing explicitly declares itself as part of base,
1398  // so it doesn't need to be in version_table_.
1399  gold_assert(this->defs_.empty());
1400  const char* name = parameters->options().soname();
1401  if (name == NULL)
1402    name = parameters->options().output_file_name();
1403  name = dynpool->add(name, false, NULL);
1404  Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1405                              true, false, false, true);
1406  this->defs_.push_back(vdbase);
1407  this->needs_base_version_ = false;
1408}
1409
1410// Return the dynamic object which a symbol refers to.
1411
1412Dynobj*
1413Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1414			     const Symbol* sym) const
1415{
1416  if (sym->is_copied_from_dynobj())
1417    return symtab->get_copy_source(sym);
1418  else
1419    {
1420      Object* object = sym->object();
1421      gold_assert(object->is_dynamic());
1422      return static_cast<Dynobj*>(object);
1423    }
1424}
1425
1426// Record version information for a symbol going into the dynamic
1427// symbol table.
1428
1429void
1430Versions::record_version(const Symbol_table* symtab,
1431			 Stringpool* dynpool, const Symbol* sym)
1432{
1433  gold_assert(!this->is_finalized_);
1434  gold_assert(sym->version() != NULL);
1435
1436  Stringpool::Key version_key;
1437  const char* version = dynpool->add(sym->version(), false, &version_key);
1438
1439  if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1440    {
1441      if (parameters->options().shared())
1442        this->add_def(sym, version, version_key);
1443    }
1444  else
1445    {
1446      // This is a version reference.
1447      Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1448      this->add_need(dynpool, dynobj->soname(), version, version_key);
1449    }
1450}
1451
1452// We've found a symbol SYM defined in version VERSION.
1453
1454void
1455Versions::add_def(const Symbol* sym, const char* version,
1456		  Stringpool::Key version_key)
1457{
1458  Key k(version_key, 0);
1459  Version_base* const vbnull = NULL;
1460  std::pair<Version_table::iterator, bool> ins =
1461    this->version_table_.insert(std::make_pair(k, vbnull));
1462
1463  if (!ins.second)
1464    {
1465      // We already have an entry for this version.
1466      Version_base* vb = ins.first->second;
1467
1468      // We have now seen a symbol in this version, so it is not
1469      // weak.
1470      gold_assert(vb != NULL);
1471      vb->clear_weak();
1472    }
1473  else
1474    {
1475      // If we are creating a shared object, it is an error to
1476      // find a definition of a symbol with a version which is not
1477      // in the version script.
1478      if (parameters->options().shared())
1479	gold_error(_("symbol %s has undefined version %s"),
1480		   sym->demangled_name().c_str(), version);
1481      else
1482	// We only insert a base version for shared library.
1483	gold_assert(!this->needs_base_version_);
1484
1485      // When creating a regular executable, automatically define
1486      // a new version.
1487      Verdef* vd = new Verdef(version, std::vector<std::string>(),
1488                              false, false, false, false);
1489      this->defs_.push_back(vd);
1490      ins.first->second = vd;
1491    }
1492}
1493
1494// Add a reference to version NAME in file FILENAME.
1495
1496void
1497Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1498		   Stringpool::Key name_key)
1499{
1500  Stringpool::Key filename_key;
1501  filename = dynpool->add(filename, true, &filename_key);
1502
1503  Key k(name_key, filename_key);
1504  Version_base* const vbnull = NULL;
1505  std::pair<Version_table::iterator, bool> ins =
1506    this->version_table_.insert(std::make_pair(k, vbnull));
1507
1508  if (!ins.second)
1509    {
1510      // We already have an entry for this filename/version.
1511      return;
1512    }
1513
1514  // See whether we already have this filename.  We don't expect many
1515  // version references, so we just do a linear search.  This could be
1516  // replaced by a hash table.
1517  Verneed* vn = NULL;
1518  for (Needs::iterator p = this->needs_.begin();
1519       p != this->needs_.end();
1520       ++p)
1521    {
1522      if ((*p)->filename() == filename)
1523	{
1524	  vn = *p;
1525	  break;
1526	}
1527    }
1528
1529  if (vn == NULL)
1530    {
1531      // Create base version definition lazily for shared library.
1532      if (this->needs_base_version_)
1533	this->define_base_version(dynpool);
1534
1535      // We have a new filename.
1536      vn = new Verneed(filename);
1537      this->needs_.push_back(vn);
1538    }
1539
1540  ins.first->second = vn->add_name(name);
1541}
1542
1543// Set the version indexes.  Create a new dynamic version symbol for
1544// each new version definition.
1545
1546unsigned int
1547Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1548		   std::vector<Symbol*>* syms)
1549{
1550  gold_assert(!this->is_finalized_);
1551
1552  unsigned int vi = 1;
1553
1554  for (Defs::iterator p = this->defs_.begin();
1555       p != this->defs_.end();
1556       ++p)
1557    {
1558      (*p)->set_index(vi);
1559      ++vi;
1560
1561      // Create a version symbol if necessary.
1562      if (!(*p)->is_symbol_created())
1563	{
1564	  Symbol* vsym = symtab->define_as_constant((*p)->name(),
1565						    (*p)->name(),
1566						    Symbol_table::PREDEFINED,
1567						    0, 0,
1568						    elfcpp::STT_OBJECT,
1569						    elfcpp::STB_GLOBAL,
1570						    elfcpp::STV_DEFAULT, 0,
1571						    false, false);
1572	  vsym->set_needs_dynsym_entry();
1573          vsym->set_dynsym_index(dynsym_index);
1574	  vsym->set_is_default();
1575	  ++dynsym_index;
1576	  syms->push_back(vsym);
1577	  // The name is already in the dynamic pool.
1578	}
1579    }
1580
1581  // Index 1 is used for global symbols.
1582  if (vi == 1)
1583    {
1584      gold_assert(this->defs_.empty());
1585      vi = 2;
1586    }
1587
1588  for (Needs::iterator p = this->needs_.begin();
1589       p != this->needs_.end();
1590       ++p)
1591    vi = (*p)->finalize(vi);
1592
1593  this->is_finalized_ = true;
1594
1595  return dynsym_index;
1596}
1597
1598// Return the version index to use for a symbol.  This does two hash
1599// table lookups: one in DYNPOOL and one in this->version_table_.
1600// Another approach alternative would be store a pointer in SYM, which
1601// would increase the size of the symbol table.  Or perhaps we could
1602// use a hash table from dynamic symbol pointer values to Version_base
1603// pointers.
1604
1605unsigned int
1606Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1607			const Symbol* sym) const
1608{
1609  Stringpool::Key version_key;
1610  const char* version = dynpool->find(sym->version(), &version_key);
1611  gold_assert(version != NULL);
1612
1613  Key k;
1614  if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1615    {
1616      if (!parameters->options().shared())
1617        return elfcpp::VER_NDX_GLOBAL;
1618      k = Key(version_key, 0);
1619    }
1620  else
1621    {
1622      Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1623
1624      Stringpool::Key filename_key;
1625      const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1626      gold_assert(filename != NULL);
1627
1628      k = Key(version_key, filename_key);
1629    }
1630
1631  Version_table::const_iterator p = this->version_table_.find(k);
1632  gold_assert(p != this->version_table_.end());
1633
1634  return p->second->index();
1635}
1636
1637// Return an allocated buffer holding the contents of the symbol
1638// version section.
1639
1640template<int size, bool big_endian>
1641void
1642Versions::symbol_section_contents(const Symbol_table* symtab,
1643				  const Stringpool* dynpool,
1644				  unsigned int local_symcount,
1645				  const std::vector<Symbol*>& syms,
1646				  unsigned char** pp,
1647				  unsigned int* psize) const
1648{
1649  gold_assert(this->is_finalized_);
1650
1651  unsigned int sz = (local_symcount + syms.size()) * 2;
1652  unsigned char* pbuf = new unsigned char[sz];
1653
1654  for (unsigned int i = 0; i < local_symcount; ++i)
1655    elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1656					   elfcpp::VER_NDX_LOCAL);
1657
1658  for (std::vector<Symbol*>::const_iterator p = syms.begin();
1659       p != syms.end();
1660       ++p)
1661    {
1662      unsigned int version_index;
1663      const char* version = (*p)->version();
1664      if (version != NULL)
1665	version_index = this->version_index(symtab, dynpool, *p);
1666      else
1667	{
1668	  if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1669	    version_index = elfcpp::VER_NDX_GLOBAL;
1670	  else
1671	    version_index = elfcpp::VER_NDX_LOCAL;
1672	}
1673      // If the symbol was defined as foo@V1 instead of foo@@V1, add
1674      // the hidden bit.
1675      if ((*p)->version() != NULL && !(*p)->is_default())
1676        version_index |= elfcpp::VERSYM_HIDDEN;
1677      elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1678                                             version_index);
1679    }
1680
1681  *pp = pbuf;
1682  *psize = sz;
1683}
1684
1685// Return an allocated buffer holding the contents of the version
1686// definition section.
1687
1688template<int size, bool big_endian>
1689void
1690Versions::def_section_contents(const Stringpool* dynpool,
1691			       unsigned char** pp, unsigned int* psize,
1692			       unsigned int* pentries) const
1693{
1694  gold_assert(this->is_finalized_);
1695  gold_assert(!this->defs_.empty());
1696
1697  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1698  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1699
1700  unsigned int sz = 0;
1701  for (Defs::const_iterator p = this->defs_.begin();
1702       p != this->defs_.end();
1703       ++p)
1704    {
1705      sz += verdef_size + verdaux_size;
1706      sz += (*p)->count_dependencies() * verdaux_size;
1707    }
1708
1709  unsigned char* pbuf = new unsigned char[sz];
1710
1711  unsigned char* pb = pbuf;
1712  Defs::const_iterator p;
1713  unsigned int i;
1714  for (p = this->defs_.begin(), i = 0;
1715       p != this->defs_.end();
1716       ++p, ++i)
1717    pb = (*p)->write<size, big_endian>(dynpool,
1718				       i + 1 >= this->defs_.size(),
1719				       pb);
1720
1721  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1722
1723  *pp = pbuf;
1724  *psize = sz;
1725  *pentries = this->defs_.size();
1726}
1727
1728// Return an allocated buffer holding the contents of the version
1729// reference section.
1730
1731template<int size, bool big_endian>
1732void
1733Versions::need_section_contents(const Stringpool* dynpool,
1734				unsigned char** pp, unsigned int* psize,
1735				unsigned int* pentries) const
1736{
1737  gold_assert(this->is_finalized_);
1738  gold_assert(!this->needs_.empty());
1739
1740  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1741  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1742
1743  unsigned int sz = 0;
1744  for (Needs::const_iterator p = this->needs_.begin();
1745       p != this->needs_.end();
1746       ++p)
1747    {
1748      sz += verneed_size;
1749      sz += (*p)->count_versions() * vernaux_size;
1750    }
1751
1752  unsigned char* pbuf = new unsigned char[sz];
1753
1754  unsigned char* pb = pbuf;
1755  Needs::const_iterator p;
1756  unsigned int i;
1757  for (p = this->needs_.begin(), i = 0;
1758       p != this->needs_.end();
1759       ++p, ++i)
1760    pb = (*p)->write<size, big_endian>(dynpool,
1761				       i + 1 >= this->needs_.size(),
1762				       pb);
1763
1764  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1765
1766  *pp = pbuf;
1767  *psize = sz;
1768  *pentries = this->needs_.size();
1769}
1770
1771// Instantiate the templates we need.  We could use the configure
1772// script to restrict this to only the ones for implemented targets.
1773
1774#ifdef HAVE_TARGET_32_LITTLE
1775template
1776class Sized_dynobj<32, false>;
1777#endif
1778
1779#ifdef HAVE_TARGET_32_BIG
1780template
1781class Sized_dynobj<32, true>;
1782#endif
1783
1784#ifdef HAVE_TARGET_64_LITTLE
1785template
1786class Sized_dynobj<64, false>;
1787#endif
1788
1789#ifdef HAVE_TARGET_64_BIG
1790template
1791class Sized_dynobj<64, true>;
1792#endif
1793
1794#ifdef HAVE_TARGET_32_LITTLE
1795template
1796void
1797Versions::symbol_section_contents<32, false>(
1798    const Symbol_table*,
1799    const Stringpool*,
1800    unsigned int,
1801    const std::vector<Symbol*>&,
1802    unsigned char**,
1803    unsigned int*) const;
1804#endif
1805
1806#ifdef HAVE_TARGET_32_BIG
1807template
1808void
1809Versions::symbol_section_contents<32, true>(
1810    const Symbol_table*,
1811    const Stringpool*,
1812    unsigned int,
1813    const std::vector<Symbol*>&,
1814    unsigned char**,
1815    unsigned int*) const;
1816#endif
1817
1818#ifdef HAVE_TARGET_64_LITTLE
1819template
1820void
1821Versions::symbol_section_contents<64, false>(
1822    const Symbol_table*,
1823    const Stringpool*,
1824    unsigned int,
1825    const std::vector<Symbol*>&,
1826    unsigned char**,
1827    unsigned int*) const;
1828#endif
1829
1830#ifdef HAVE_TARGET_64_BIG
1831template
1832void
1833Versions::symbol_section_contents<64, true>(
1834    const Symbol_table*,
1835    const Stringpool*,
1836    unsigned int,
1837    const std::vector<Symbol*>&,
1838    unsigned char**,
1839    unsigned int*) const;
1840#endif
1841
1842#ifdef HAVE_TARGET_32_LITTLE
1843template
1844void
1845Versions::def_section_contents<32, false>(
1846    const Stringpool*,
1847    unsigned char**,
1848    unsigned int*,
1849    unsigned int*) const;
1850#endif
1851
1852#ifdef HAVE_TARGET_32_BIG
1853template
1854void
1855Versions::def_section_contents<32, true>(
1856    const Stringpool*,
1857    unsigned char**,
1858    unsigned int*,
1859    unsigned int*) const;
1860#endif
1861
1862#ifdef HAVE_TARGET_64_LITTLE
1863template
1864void
1865Versions::def_section_contents<64, false>(
1866    const Stringpool*,
1867    unsigned char**,
1868    unsigned int*,
1869    unsigned int*) const;
1870#endif
1871
1872#ifdef HAVE_TARGET_64_BIG
1873template
1874void
1875Versions::def_section_contents<64, true>(
1876    const Stringpool*,
1877    unsigned char**,
1878    unsigned int*,
1879    unsigned int*) const;
1880#endif
1881
1882#ifdef HAVE_TARGET_32_LITTLE
1883template
1884void
1885Versions::need_section_contents<32, false>(
1886    const Stringpool*,
1887    unsigned char**,
1888    unsigned int*,
1889    unsigned int*) const;
1890#endif
1891
1892#ifdef HAVE_TARGET_32_BIG
1893template
1894void
1895Versions::need_section_contents<32, true>(
1896    const Stringpool*,
1897    unsigned char**,
1898    unsigned int*,
1899    unsigned int*) const;
1900#endif
1901
1902#ifdef HAVE_TARGET_64_LITTLE
1903template
1904void
1905Versions::need_section_contents<64, false>(
1906    const Stringpool*,
1907    unsigned char**,
1908    unsigned int*,
1909    unsigned int*) const;
1910#endif
1911
1912#ifdef HAVE_TARGET_64_BIG
1913template
1914void
1915Versions::need_section_contents<64, true>(
1916    const Stringpool*,
1917    unsigned char**,
1918    unsigned int*,
1919    unsigned int*) const;
1920#endif
1921
1922} // End namespace gold.
1923