1// dwarf_reader.cc -- parse dwarf2/3 debug information
2
3// Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <algorithm>
26#include <vector>
27
28#include "elfcpp_swap.h"
29#include "dwarf.h"
30#include "object.h"
31#include "parameters.h"
32#include "reloc.h"
33#include "dwarf_reader.h"
34#include "int_encoding.h"
35#include "compressed_output.h"
36
37namespace gold {
38
39struct LineStateMachine
40{
41  int file_num;
42  uint64_t address;
43  int line_num;
44  int column_num;
45  unsigned int shndx;    // the section address refers to
46  bool is_stmt;          // stmt means statement.
47  bool basic_block;
48  bool end_sequence;
49};
50
51static void
52ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
53{
54  lsm->file_num = 1;
55  lsm->address = 0;
56  lsm->line_num = 1;
57  lsm->column_num = 0;
58  lsm->shndx = -1U;
59  lsm->is_stmt = default_is_stmt;
60  lsm->basic_block = false;
61  lsm->end_sequence = false;
62}
63
64template<int size, bool big_endian>
65Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
66                                                               unsigned int read_shndx)
67  : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
68    directories_(), files_(), current_header_index_(-1)
69{
70  unsigned int debug_shndx;
71  for (debug_shndx = 0; debug_shndx < object->shnum(); ++debug_shndx)
72    // FIXME: do this more efficiently: section_name() isn't super-fast
73    if (object->section_name(debug_shndx) == ".debug_line")
74      {
75        section_size_type buffer_size;
76        this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
77						 false);
78        this->buffer_end_ = this->buffer_ + buffer_size;
79        break;
80      }
81  if (this->buffer_ == NULL)
82    return;
83
84  section_size_type uncompressed_size = 0;
85  unsigned char* uncompressed_data = NULL;
86  if (object->section_is_compressed(debug_shndx, &uncompressed_size))
87    {
88      uncompressed_data = new unsigned char[uncompressed_size];
89      if (!decompress_input_section(this->buffer_,
90				    this->buffer_end_ - this->buffer_,
91				    uncompressed_data,
92				    uncompressed_size))
93	object->error(_("could not decompress section %s"),
94		      object->section_name(debug_shndx).c_str());
95      this->buffer_ = uncompressed_data;
96      this->buffer_end_ = this->buffer_ + uncompressed_size;
97    }
98
99  // Find the relocation section for ".debug_line".
100  // We expect these for relobjs (.o's) but not dynobjs (.so's).
101  bool got_relocs = false;
102  for (unsigned int reloc_shndx = 0;
103       reloc_shndx < object->shnum();
104       ++reloc_shndx)
105    {
106      unsigned int reloc_sh_type = object->section_type(reloc_shndx);
107      if ((reloc_sh_type == elfcpp::SHT_REL
108	   || reloc_sh_type == elfcpp::SHT_RELA)
109	  && object->section_info(reloc_shndx) == debug_shndx)
110	{
111	  got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
112                                                      reloc_sh_type);
113	  break;
114	}
115    }
116
117  // Finally, we need the symtab section to interpret the relocs.
118  if (got_relocs)
119    {
120      unsigned int symtab_shndx;
121      for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
122        if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
123          {
124            this->symtab_buffer_ = object->section_contents(
125                symtab_shndx, &this->symtab_buffer_size_, false);
126            break;
127          }
128      if (this->symtab_buffer_ == NULL)
129        return;
130    }
131
132  // Now that we have successfully read all the data, parse the debug
133  // info.
134  this->data_valid_ = true;
135  this->read_line_mappings(object, read_shndx);
136}
137
138// Read the DWARF header.
139
140template<int size, bool big_endian>
141const unsigned char*
142Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
143    const unsigned char* lineptr)
144{
145  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
146  lineptr += 4;
147
148  // In DWARF2/3, if the initial length is all 1 bits, then the offset
149  // size is 8 and we need to read the next 8 bytes for the real length.
150  if (initial_length == 0xffffffff)
151    {
152      header_.offset_size = 8;
153      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
154      lineptr += 8;
155    }
156  else
157    header_.offset_size = 4;
158
159  header_.total_length = initial_length;
160
161  gold_assert(lineptr + header_.total_length <= buffer_end_);
162
163  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
164  lineptr += 2;
165
166  if (header_.offset_size == 4)
167    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
168  else
169    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
170  lineptr += header_.offset_size;
171
172  header_.min_insn_length = *lineptr;
173  lineptr += 1;
174
175  header_.default_is_stmt = *lineptr;
176  lineptr += 1;
177
178  header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
179  lineptr += 1;
180
181  header_.line_range = *lineptr;
182  lineptr += 1;
183
184  header_.opcode_base = *lineptr;
185  lineptr += 1;
186
187  header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
188  header_.std_opcode_lengths[0] = 0;
189  for (int i = 1; i < header_.opcode_base; i++)
190    {
191      header_.std_opcode_lengths[i] = *lineptr;
192      lineptr += 1;
193    }
194
195  return lineptr;
196}
197
198// The header for a debug_line section is mildly complicated, because
199// the line info is very tightly encoded.
200
201template<int size, bool big_endian>
202const unsigned char*
203Sized_dwarf_line_info<size, big_endian>::read_header_tables(
204    const unsigned char* lineptr)
205{
206  ++this->current_header_index_;
207
208  // Create a new directories_ entry and a new files_ entry for our new
209  // header.  We initialize each with a single empty element, because
210  // dwarf indexes directory and filenames starting at 1.
211  gold_assert(static_cast<int>(this->directories_.size())
212	      == this->current_header_index_);
213  gold_assert(static_cast<int>(this->files_.size())
214	      == this->current_header_index_);
215  this->directories_.push_back(std::vector<std::string>(1));
216  this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
217
218  // It is legal for the directory entry table to be empty.
219  if (*lineptr)
220    {
221      int dirindex = 1;
222      while (*lineptr)
223        {
224	  const char* dirname = reinterpret_cast<const char*>(lineptr);
225          gold_assert(dirindex
226		      == static_cast<int>(this->directories_.back().size()));
227          this->directories_.back().push_back(dirname);
228          lineptr += this->directories_.back().back().size() + 1;
229          dirindex++;
230        }
231    }
232  lineptr++;
233
234  // It is also legal for the file entry table to be empty.
235  if (*lineptr)
236    {
237      int fileindex = 1;
238      size_t len;
239      while (*lineptr)
240        {
241          const char* filename = reinterpret_cast<const char*>(lineptr);
242          lineptr += strlen(filename) + 1;
243
244          uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
245          lineptr += len;
246
247          if (dirindex >= this->directories_.back().size())
248            dirindex = 0;
249	  int dirindexi = static_cast<int>(dirindex);
250
251          read_unsigned_LEB_128(lineptr, &len);   // mod_time
252          lineptr += len;
253
254          read_unsigned_LEB_128(lineptr, &len);   // filelength
255          lineptr += len;
256
257          gold_assert(fileindex
258		      == static_cast<int>(this->files_.back().size()));
259          this->files_.back().push_back(std::make_pair(dirindexi, filename));
260          fileindex++;
261        }
262    }
263  lineptr++;
264
265  return lineptr;
266}
267
268// Process a single opcode in the .debug.line structure.
269
270// Templating on size and big_endian would yield more efficient (and
271// simpler) code, but would bloat the binary.  Speed isn't important
272// here.
273
274template<int size, bool big_endian>
275bool
276Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
277    const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
278{
279  size_t oplen = 0;
280  size_t templen;
281  unsigned char opcode = *start;
282  oplen++;
283  start++;
284
285  // If the opcode is great than the opcode_base, it is a special
286  // opcode. Most line programs consist mainly of special opcodes.
287  if (opcode >= header_.opcode_base)
288    {
289      opcode -= header_.opcode_base;
290      const int advance_address = ((opcode / header_.line_range)
291                                   * header_.min_insn_length);
292      lsm->address += advance_address;
293
294      const int advance_line = ((opcode % header_.line_range)
295                                + header_.line_base);
296      lsm->line_num += advance_line;
297      lsm->basic_block = true;
298      *len = oplen;
299      return true;
300    }
301
302  // Otherwise, we have the regular opcodes
303  switch (opcode)
304    {
305    case elfcpp::DW_LNS_copy:
306      lsm->basic_block = false;
307      *len = oplen;
308      return true;
309
310    case elfcpp::DW_LNS_advance_pc:
311      {
312        const uint64_t advance_address
313            = read_unsigned_LEB_128(start, &templen);
314        oplen += templen;
315        lsm->address += header_.min_insn_length * advance_address;
316      }
317      break;
318
319    case elfcpp::DW_LNS_advance_line:
320      {
321        const uint64_t advance_line = read_signed_LEB_128(start, &templen);
322        oplen += templen;
323        lsm->line_num += advance_line;
324      }
325      break;
326
327    case elfcpp::DW_LNS_set_file:
328      {
329        const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
330        oplen += templen;
331        lsm->file_num = fileno;
332      }
333      break;
334
335    case elfcpp::DW_LNS_set_column:
336      {
337        const uint64_t colno = read_unsigned_LEB_128(start, &templen);
338        oplen += templen;
339        lsm->column_num = colno;
340      }
341      break;
342
343    case elfcpp::DW_LNS_negate_stmt:
344      lsm->is_stmt = !lsm->is_stmt;
345      break;
346
347    case elfcpp::DW_LNS_set_basic_block:
348      lsm->basic_block = true;
349      break;
350
351    case elfcpp::DW_LNS_fixed_advance_pc:
352      {
353        int advance_address;
354        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
355        oplen += 2;
356        lsm->address += advance_address;
357      }
358      break;
359
360    case elfcpp::DW_LNS_const_add_pc:
361      {
362        const int advance_address = (header_.min_insn_length
363                                     * ((255 - header_.opcode_base)
364                                        / header_.line_range));
365        lsm->address += advance_address;
366      }
367      break;
368
369    case elfcpp::DW_LNS_extended_op:
370      {
371        const uint64_t extended_op_len
372            = read_unsigned_LEB_128(start, &templen);
373        start += templen;
374        oplen += templen + extended_op_len;
375
376        const unsigned char extended_op = *start;
377        start++;
378
379        switch (extended_op)
380          {
381          case elfcpp::DW_LNE_end_sequence:
382            // This means that the current byte is the one immediately
383            // after a set of instructions.  Record the current line
384            // for up to one less than the current address.
385            lsm->line_num = -1;
386            lsm->end_sequence = true;
387            *len = oplen;
388            return true;
389
390          case elfcpp::DW_LNE_set_address:
391            {
392              lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
393              typename Reloc_map::const_iterator it
394                  = reloc_map_.find(start - this->buffer_);
395              if (it != reloc_map_.end())
396                {
397                  // value + addend.
398                  lsm->address += it->second.second;
399                  lsm->shndx = it->second.first;
400                }
401              else
402                {
403                  // If we're a normal .o file, with relocs, every
404                  // set_address should have an associated relocation.
405		  if (this->input_is_relobj())
406                    this->data_valid_ = false;
407                }
408              break;
409            }
410          case elfcpp::DW_LNE_define_file:
411            {
412              const char* filename  = reinterpret_cast<const char*>(start);
413              templen = strlen(filename) + 1;
414              start += templen;
415
416              uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
417              oplen += templen;
418
419              if (dirindex >= this->directories_.back().size())
420                dirindex = 0;
421	      int dirindexi = static_cast<int>(dirindex);
422
423              read_unsigned_LEB_128(start, &templen);   // mod_time
424              oplen += templen;
425
426              read_unsigned_LEB_128(start, &templen);   // filelength
427              oplen += templen;
428
429              this->files_.back().push_back(std::make_pair(dirindexi,
430							   filename));
431            }
432            break;
433          }
434      }
435      break;
436
437    default:
438      {
439        // Ignore unknown opcode  silently
440        for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
441          {
442            size_t templen;
443            read_unsigned_LEB_128(start, &templen);
444            start += templen;
445            oplen += templen;
446          }
447      }
448      break;
449  }
450  *len = oplen;
451  return false;
452}
453
454// Read the debug information at LINEPTR and store it in the line
455// number map.
456
457template<int size, bool big_endian>
458unsigned const char*
459Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
460                                                    unsigned int shndx)
461{
462  struct LineStateMachine lsm;
463
464  // LENGTHSTART is the place the length field is based on.  It is the
465  // point in the header after the initial length field.
466  const unsigned char* lengthstart = buffer_;
467
468  // In 64 bit dwarf, the initial length is 12 bytes, because of the
469  // 0xffffffff at the start.
470  if (header_.offset_size == 8)
471    lengthstart += 12;
472  else
473    lengthstart += 4;
474
475  while (lineptr < lengthstart + header_.total_length)
476    {
477      ResetLineStateMachine(&lsm, header_.default_is_stmt);
478      while (!lsm.end_sequence)
479        {
480          size_t oplength;
481          bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
482          if (add_line
483              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
484            {
485              Offset_to_lineno_entry entry
486                  = { lsm.address, this->current_header_index_,
487                      lsm.file_num, lsm.line_num };
488              line_number_map_[lsm.shndx].push_back(entry);
489            }
490          lineptr += oplength;
491        }
492    }
493
494  return lengthstart + header_.total_length;
495}
496
497// Looks in the symtab to see what section a symbol is in.
498
499template<int size, bool big_endian>
500unsigned int
501Sized_dwarf_line_info<size, big_endian>::symbol_section(
502    Object* object,
503    unsigned int sym,
504    typename elfcpp::Elf_types<size>::Elf_Addr* value,
505    bool* is_ordinary)
506{
507  const int symsize = elfcpp::Elf_sizes<size>::sym_size;
508  gold_assert(sym * symsize < this->symtab_buffer_size_);
509  elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
510  *value = elfsym.get_st_value();
511  return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
512}
513
514// Read the relocations into a Reloc_map.
515
516template<int size, bool big_endian>
517void
518Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
519{
520  if (this->symtab_buffer_ == NULL)
521    return;
522
523  typename elfcpp::Elf_types<size>::Elf_Addr value;
524  off_t reloc_offset;
525  while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
526    {
527      const unsigned int sym = this->track_relocs_.next_symndx();
528
529      bool is_ordinary;
530      const unsigned int shndx = this->symbol_section(object, sym, &value,
531						      &is_ordinary);
532
533      // There is no reason to record non-ordinary section indexes, or
534      // SHN_UNDEF, because they will never match the real section.
535      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
536	this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
537
538      this->track_relocs_.advance(reloc_offset + 1);
539    }
540}
541
542// Read the line number info.
543
544template<int size, bool big_endian>
545void
546Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
547							    unsigned int shndx)
548{
549  gold_assert(this->data_valid_ == true);
550
551  this->read_relocs(object);
552  while (this->buffer_ < this->buffer_end_)
553    {
554      const unsigned char* lineptr = this->buffer_;
555      lineptr = this->read_header_prolog(lineptr);
556      lineptr = this->read_header_tables(lineptr);
557      lineptr = this->read_lines(lineptr, shndx);
558      this->buffer_ = lineptr;
559    }
560
561  // Sort the lines numbers, so addr2line can use binary search.
562  for (typename Lineno_map::iterator it = line_number_map_.begin();
563       it != line_number_map_.end();
564       ++it)
565    // Each vector needs to be sorted by offset.
566    std::sort(it->second.begin(), it->second.end());
567}
568
569// Some processing depends on whether the input is a .o file or not.
570// For instance, .o files have relocs, and have .debug_lines
571// information on a per section basis.  .so files, on the other hand,
572// lack relocs, and offsets are unique, so we can ignore the section
573// information.
574
575template<int size, bool big_endian>
576bool
577Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
578{
579  // Only .o files have relocs and the symtab buffer that goes with them.
580  return this->symtab_buffer_ != NULL;
581}
582
583// Given an Offset_to_lineno_entry vector, and an offset, figure out
584// if the offset points into a function according to the vector (see
585// comments below for the algorithm).  If it does, return an iterator
586// into the vector that points to the line-number that contains that
587// offset.  If not, it returns vector::end().
588
589static std::vector<Offset_to_lineno_entry>::const_iterator
590offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
591                   off_t offset)
592{
593  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
594
595  // lower_bound() returns the smallest offset which is >= lookup_key.
596  // If no offset in offsets is >= lookup_key, returns end().
597  std::vector<Offset_to_lineno_entry>::const_iterator it
598      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
599
600  // This code is easiest to understand with a concrete example.
601  // Here's a possible offsets array:
602  // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16},  // 0
603  //  {offset = 3224, header_num = 0, file_num = 1, line_num = 20},  // 1
604  //  {offset = 3226, header_num = 0, file_num = 1, line_num = 22},  // 2
605  //  {offset = 3231, header_num = 0, file_num = 1, line_num = 25},  // 3
606  //  {offset = 3232, header_num = 0, file_num = 1, line_num = -1},  // 4
607  //  {offset = 3232, header_num = 0, file_num = 1, line_num = 65},  // 5
608  //  {offset = 3235, header_num = 0, file_num = 1, line_num = 66},  // 6
609  //  {offset = 3236, header_num = 0, file_num = 1, line_num = -1},  // 7
610  //  {offset = 5764, header_num = 0, file_num = 1, line_num = 47},  // 8
611  //  {offset = 5765, header_num = 0, file_num = 1, line_num = 48},  // 9
612  //  {offset = 5767, header_num = 0, file_num = 1, line_num = 49},  // 10
613  //  {offset = 5768, header_num = 0, file_num = 1, line_num = 50},  // 11
614  //  {offset = 5773, header_num = 0, file_num = 1, line_num = -1},  // 12
615  //  {offset = 5787, header_num = 1, file_num = 1, line_num = 19},  // 13
616  //  {offset = 5790, header_num = 1, file_num = 1, line_num = 20},  // 14
617  //  {offset = 5793, header_num = 1, file_num = 1, line_num = 67},  // 15
618  //  {offset = 5793, header_num = 1, file_num = 1, line_num = -1},  // 16
619  //  {offset = 5795, header_num = 1, file_num = 1, line_num = 68},  // 17
620  //  {offset = 5798, header_num = 1, file_num = 1, line_num = -1},  // 18
621  // The entries with line_num == -1 mark the end of a function: the
622  // associated offset is one past the last instruction in the
623  // function.  This can correspond to the beginning of the next
624  // function (as is true for offset 3232); alternately, there can be
625  // a gap between the end of one function and the start of the next
626  // (as is true for some others, most obviously from 3236->5764).
627  //
628  // Case 1: lookup_key has offset == 10.  lower_bound returns
629  //         offsets[0].  Since it's not an exact match and we're
630  //         at the beginning of offsets, we return end() (invalid).
631  // Case 2: lookup_key has offset 10000.  lower_bound returns
632  //         offset[19] (end()).  We return end() (invalid).
633  // Case 3: lookup_key has offset == 3211.  lower_bound matches
634  //         offsets[0] exactly, and that's the entry we return.
635  // Case 4: lookup_key has offset == 3232.  lower_bound returns
636  //         offsets[4].  That's an exact match, but indicates
637  //         end-of-function.  We check if offsets[5] is also an
638  //         exact match but not end-of-function.  It is, so we
639  //         return offsets[5].
640  // Case 5: lookup_key has offset == 3214.  lower_bound returns
641  //         offsets[1].  Since it's not an exact match, we back
642  //         up to the offset that's < lookup_key, offsets[0].
643  //         We note offsets[0] is a valid entry (not end-of-function),
644  //         so that's the entry we return.
645  // Case 6: lookup_key has offset == 4000.  lower_bound returns
646  //         offsets[8].  Since it's not an exact match, we back
647  //         up to offsets[7].  Since offsets[7] indicates
648  //         end-of-function, we know lookup_key is between
649  //         functions, so we return end() (not a valid offset).
650  // Case 7: lookup_key has offset == 5794.  lower_bound returns
651  //         offsets[17].  Since it's not an exact match, we back
652  //         up to offsets[15].  Note we back up to the *first*
653  //         entry with offset 5793, not just offsets[17-1].
654  //         We note offsets[15] is a valid entry, so we return it.
655  //         If offsets[15] had had line_num == -1, we would have
656  //         checked offsets[16].  The reason for this is that
657  //         15 and 16 can be in an arbitrary order, since we sort
658  //         only by offset.  (Note it doesn't help to use line_number
659  //         as a secondary sort key, since sometimes we want the -1
660  //         to be first and sometimes we want it to be last.)
661
662  // This deals with cases (1) and (2).
663  if ((it == offsets->begin() && offset < it->offset)
664      || it == offsets->end())
665    return offsets->end();
666
667  // This deals with cases (3) and (4).
668  if (offset == it->offset)
669    {
670      while (it != offsets->end()
671             && it->offset == offset
672             && it->line_num == -1)
673        ++it;
674      if (it == offsets->end() || it->offset != offset)
675        return offsets->end();
676      else
677        return it;
678    }
679
680  // This handles the first part of case (7) -- we back up to the
681  // *first* entry that has the offset that's behind us.
682  gold_assert(it != offsets->begin());
683  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
684  --it;
685  const off_t range_value = it->offset;
686  while (it != offsets->begin() && (it-1)->offset == range_value)
687    --it;
688
689  // This handles cases (5), (6), and (7): if any entry in the
690  // equal_range [it, range_end) has a line_num != -1, it's a valid
691  // match.  If not, we're not in a function.
692  for (; it != range_end; ++it)
693    if (it->line_num != -1)
694      return it;
695  return offsets->end();
696}
697
698// Return a string for a file name and line number.
699
700template<int size, bool big_endian>
701std::string
702Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
703                                                      off_t offset)
704{
705  if (this->data_valid_ == false)
706    return "";
707
708  const std::vector<Offset_to_lineno_entry>* offsets;
709  // If we do not have reloc information, then our input is a .so or
710  // some similar data structure where all the information is held in
711  // the offset.  In that case, we ignore the input shndx.
712  if (this->input_is_relobj())
713    offsets = &this->line_number_map_[shndx];
714  else
715    offsets = &this->line_number_map_[-1U];
716  if (offsets->empty())
717    return "";
718
719  typename std::vector<Offset_to_lineno_entry>::const_iterator it
720      = offset_to_iterator(offsets, offset);
721  if (it == offsets->end())
722    return "";
723
724  // Convert the file_num + line_num into a string.
725  std::string ret;
726
727  gold_assert(it->header_num < static_cast<int>(this->files_.size()));
728  gold_assert(it->file_num
729	      < static_cast<int>(this->files_[it->header_num].size()));
730  const std::pair<int, std::string>& filename_pair
731      = this->files_[it->header_num][it->file_num];
732  const std::string& filename = filename_pair.second;
733
734  gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
735  gold_assert(filename_pair.first
736              < static_cast<int>(this->directories_[it->header_num].size()));
737  const std::string& dirname
738      = this->directories_[it->header_num][filename_pair.first];
739
740  if (!dirname.empty())
741    {
742      ret += dirname;
743      ret += "/";
744    }
745  ret += filename;
746  if (ret.empty())
747    ret = "(unknown)";
748
749  char buffer[64];   // enough to hold a line number
750  snprintf(buffer, sizeof(buffer), "%d", it->line_num);
751  ret += ":";
752  ret += buffer;
753
754  return ret;
755}
756
757// Dwarf_line_info routines.
758
759static unsigned int next_generation_count = 0;
760
761struct Addr2line_cache_entry
762{
763  Object* object;
764  unsigned int shndx;
765  Dwarf_line_info* dwarf_line_info;
766  unsigned int generation_count;
767  unsigned int access_count;
768
769  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
770      : object(o), shndx(s), dwarf_line_info(d),
771        generation_count(next_generation_count), access_count(0)
772  {
773    if (next_generation_count < (1U << 31))
774      ++next_generation_count;
775  }
776};
777// We expect this cache to be small, so don't bother with a hashtable
778// or priority queue or anything: just use a simple vector.
779static std::vector<Addr2line_cache_entry> addr2line_cache;
780
781std::string
782Dwarf_line_info::one_addr2line(Object* object,
783                               unsigned int shndx, off_t offset,
784                               size_t cache_size)
785{
786  Dwarf_line_info* lineinfo = NULL;
787  std::vector<Addr2line_cache_entry>::iterator it;
788
789  // First, check the cache.  If we hit, update the counts.
790  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
791    {
792      if (it->object == object && it->shndx == shndx)
793        {
794          lineinfo = it->dwarf_line_info;
795          it->generation_count = next_generation_count;
796          // We cap generation_count at 2^31 -1 to avoid overflow.
797          if (next_generation_count < (1U << 31))
798            ++next_generation_count;
799          // We cap access_count at 31 so 2^access_count doesn't overflow
800          if (it->access_count < 31)
801            ++it->access_count;
802          break;
803        }
804    }
805
806  // If we don't hit the cache, create a new object and insert into the
807  // cache.
808  if (lineinfo == NULL)
809  {
810    switch (parameters->size_and_endianness())
811      {
812#ifdef HAVE_TARGET_32_LITTLE
813        case Parameters::TARGET_32_LITTLE:
814          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
815#endif
816#ifdef HAVE_TARGET_32_BIG
817        case Parameters::TARGET_32_BIG:
818          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
819#endif
820#ifdef HAVE_TARGET_64_LITTLE
821        case Parameters::TARGET_64_LITTLE:
822          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
823#endif
824#ifdef HAVE_TARGET_64_BIG
825        case Parameters::TARGET_64_BIG:
826          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
827#endif
828        default:
829          gold_unreachable();
830      }
831    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
832  }
833
834  // Now that we have our object, figure out the answer
835  std::string retval = lineinfo->addr2line(shndx, offset);
836
837  // Finally, if our cache has grown too big, delete old objects.  We
838  // assume the common (probably only) case is deleting only one object.
839  // We use a pretty simple scheme to evict: function of LRU and MFU.
840  while (addr2line_cache.size() > cache_size)
841    {
842      unsigned int lowest_score = ~0U;
843      std::vector<Addr2line_cache_entry>::iterator lowest
844          = addr2line_cache.end();
845      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
846        {
847          const unsigned int score = (it->generation_count
848                                      + (1U << it->access_count));
849          if (score < lowest_score)
850            {
851              lowest_score = score;
852              lowest = it;
853            }
854        }
855      if (lowest != addr2line_cache.end())
856        {
857          delete lowest->dwarf_line_info;
858          addr2line_cache.erase(lowest);
859        }
860    }
861
862  return retval;
863}
864
865void
866Dwarf_line_info::clear_addr2line_cache()
867{
868  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
869       it != addr2line_cache.end();
870       ++it)
871    delete it->dwarf_line_info;
872  addr2line_cache.clear();
873}
874
875#ifdef HAVE_TARGET_32_LITTLE
876template
877class Sized_dwarf_line_info<32, false>;
878#endif
879
880#ifdef HAVE_TARGET_32_BIG
881template
882class Sized_dwarf_line_info<32, true>;
883#endif
884
885#ifdef HAVE_TARGET_64_LITTLE
886template
887class Sized_dwarf_line_info<64, false>;
888#endif
889
890#ifdef HAVE_TARGET_64_BIG
891template
892class Sized_dwarf_line_info<64, true>;
893#endif
894
895} // End namespace gold.
896