1/* atof_generic.c - turn a string of digits into a Flonum
2   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
3   2001, 2003, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
4
5   This file is part of GAS, the GNU Assembler.
6
7   GAS is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3, or (at your option)
10   any later version.
11
12   GAS is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GAS; see the file COPYING.  If not, write to the Free
19   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20   02110-1301, USA.  */
21
22#include "as.h"
23#include "safe-ctype.h"
24
25#ifndef FALSE
26#define FALSE (0)
27#endif
28#ifndef TRUE
29#define TRUE  (1)
30#endif
31
32#ifdef TRACE
33static void flonum_print (const FLONUM_TYPE *);
34#endif
35
36#define ASSUME_DECIMAL_MARK_IS_DOT
37
38/***********************************************************************\
39 *									*
40 *	Given a string of decimal digits , with optional decimal	*
41 *	mark and optional decimal exponent (place value) of the		*
42 *	lowest_order decimal digit: produce a floating point		*
43 *	number. The number is 'generic' floating point: our		*
44 *	caller will encode it for a specific machine architecture.	*
45 *									*
46 *	Assumptions							*
47 *		uses base (radix) 2					*
48 *		this machine uses 2's complement binary integers	*
49 *		target flonums use "      "         "       "		*
50 *		target flonums exponents fit in a long			*
51 *									*
52 \***********************************************************************/
53
54/*
55
56  Syntax:
57
58  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
59  <optional-sign> ::= '+' | '-' | {empty}
60  <decimal-number> ::= <integer>
61  | <integer> <radix-character>
62  | <integer> <radix-character> <integer>
63  | <radix-character> <integer>
64
65  <optional-exponent> ::= {empty}
66  | <exponent-character> <optional-sign> <integer>
67
68  <integer> ::= <digit> | <digit> <integer>
69  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
70  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
71  <radix-character> ::= {one character from "string_of_decimal_marks"}
72
73  */
74
75int
76atof_generic (/* return pointer to just AFTER number we read.  */
77	      char **address_of_string_pointer,
78	      /* At most one per number.  */
79	      const char *string_of_decimal_marks,
80	      const char *string_of_decimal_exponent_marks,
81	      FLONUM_TYPE *address_of_generic_floating_point_number)
82{
83  int return_value;		/* 0 means OK.  */
84  char *first_digit;
85  unsigned int number_of_digits_before_decimal;
86  unsigned int number_of_digits_after_decimal;
87  long decimal_exponent;
88  unsigned int number_of_digits_available;
89  char digits_sign_char;
90
91  /*
92   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
93   * It would be simpler to modify the string, but we don't; just to be nice
94   * to caller.
95   * We need to know how many digits we have, so we can allocate space for
96   * the digits' value.
97   */
98
99  char *p;
100  char c;
101  int seen_significant_digit;
102
103#ifdef ASSUME_DECIMAL_MARK_IS_DOT
104  gas_assert (string_of_decimal_marks[0] == '.'
105	  && string_of_decimal_marks[1] == 0);
106#define IS_DECIMAL_MARK(c)	((c) == '.')
107#else
108#define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
109#endif
110
111  first_digit = *address_of_string_pointer;
112  c = *first_digit;
113
114  if (c == '-' || c == '+')
115    {
116      digits_sign_char = c;
117      first_digit++;
118    }
119  else
120    digits_sign_char = '+';
121
122  switch (first_digit[0])
123    {
124    case 's':
125    case 'S':
126      if (!strncasecmp ("snan", first_digit, 4))
127	{
128	  address_of_generic_floating_point_number->sign = 0;
129	  address_of_generic_floating_point_number->exponent = 0;
130	  address_of_generic_floating_point_number->leader =
131	    address_of_generic_floating_point_number->low;
132	  *address_of_string_pointer = first_digit + 4;
133	  return 0;
134	}
135      break;
136
137    case 'q':
138    case 'Q':
139      if (!strncasecmp ("qnan", first_digit, 4))
140	{
141	  address_of_generic_floating_point_number->sign = 0;
142	  address_of_generic_floating_point_number->exponent = 0;
143	  address_of_generic_floating_point_number->leader =
144	    address_of_generic_floating_point_number->low;
145	  *address_of_string_pointer = first_digit + 4;
146	  return 0;
147	}
148      break;
149
150    case 'n':
151    case 'N':
152      if (!strncasecmp ("nan", first_digit, 3))
153	{
154	  address_of_generic_floating_point_number->sign = 0;
155	  address_of_generic_floating_point_number->exponent = 0;
156	  address_of_generic_floating_point_number->leader =
157	    address_of_generic_floating_point_number->low;
158	  *address_of_string_pointer = first_digit + 3;
159	  return 0;
160	}
161      break;
162
163    case 'i':
164    case 'I':
165      if (!strncasecmp ("inf", first_digit, 3))
166	{
167	  address_of_generic_floating_point_number->sign =
168	    digits_sign_char == '+' ? 'P' : 'N';
169	  address_of_generic_floating_point_number->exponent = 0;
170	  address_of_generic_floating_point_number->leader =
171	    address_of_generic_floating_point_number->low;
172
173	  first_digit += 3;
174	  if (!strncasecmp ("inity", first_digit, 5))
175	    first_digit += 5;
176
177	  *address_of_string_pointer = first_digit;
178
179	  return 0;
180	}
181      break;
182    }
183
184  number_of_digits_before_decimal = 0;
185  number_of_digits_after_decimal = 0;
186  decimal_exponent = 0;
187  seen_significant_digit = 0;
188  for (p = first_digit;
189       (((c = *p) != '\0')
190	&& (!c || !IS_DECIMAL_MARK (c))
191	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
192       p++)
193    {
194      if (ISDIGIT (c))
195	{
196	  if (seen_significant_digit || c > '0')
197	    {
198	      ++number_of_digits_before_decimal;
199	      seen_significant_digit = 1;
200	    }
201	  else
202	    {
203	      first_digit++;
204	    }
205	}
206      else
207	{
208	  break;		/* p -> char after pre-decimal digits.  */
209	}
210    }				/* For each digit before decimal mark.  */
211
212#ifndef OLD_FLOAT_READS
213  /* Ignore trailing 0's after the decimal point.  The original code here
214   * (ifdef'd out) does not do this, and numbers like
215   *	4.29496729600000000000e+09	(2**31)
216   * come out inexact for some reason related to length of the digit
217   * string.
218   */
219  if (c && IS_DECIMAL_MARK (c))
220    {
221      unsigned int zeros = 0;	/* Length of current string of zeros */
222
223      for (p++; (c = *p) && ISDIGIT (c); p++)
224	{
225	  if (c == '0')
226	    {
227	      zeros++;
228	    }
229	  else
230	    {
231	      number_of_digits_after_decimal += 1 + zeros;
232	      zeros = 0;
233	    }
234	}
235    }
236#else
237  if (c && IS_DECIMAL_MARK (c))
238    {
239      for (p++;
240	   (((c = *p) != '\0')
241	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
242	   p++)
243	{
244	  if (ISDIGIT (c))
245	    {
246	      /* This may be retracted below.  */
247	      number_of_digits_after_decimal++;
248
249	      if ( /* seen_significant_digit || */ c > '0')
250		{
251		  seen_significant_digit = TRUE;
252		}
253	    }
254	  else
255	    {
256	      if (!seen_significant_digit)
257		{
258		  number_of_digits_after_decimal = 0;
259		}
260	      break;
261	    }
262	}			/* For each digit after decimal mark.  */
263    }
264
265  while (number_of_digits_after_decimal
266	 && first_digit[number_of_digits_before_decimal
267			+ number_of_digits_after_decimal] == '0')
268    --number_of_digits_after_decimal;
269#endif
270
271  if (flag_m68k_mri)
272    {
273      while (c == '_')
274	c = *++p;
275    }
276  if (c && strchr (string_of_decimal_exponent_marks, c))
277    {
278      char digits_exponent_sign_char;
279
280      c = *++p;
281      if (flag_m68k_mri)
282	{
283	  while (c == '_')
284	    c = *++p;
285	}
286      if (c && strchr ("+-", c))
287	{
288	  digits_exponent_sign_char = c;
289	  c = *++p;
290	}
291      else
292	{
293	  digits_exponent_sign_char = '+';
294	}
295
296      for (; (c); c = *++p)
297	{
298	  if (ISDIGIT (c))
299	    {
300	      decimal_exponent = decimal_exponent * 10 + c - '0';
301	      /*
302	       * BUG! If we overflow here, we lose!
303	       */
304	    }
305	  else
306	    {
307	      break;
308	    }
309	}
310
311      if (digits_exponent_sign_char == '-')
312	{
313	  decimal_exponent = -decimal_exponent;
314	}
315    }
316
317  *address_of_string_pointer = p;
318
319  number_of_digits_available =
320    number_of_digits_before_decimal + number_of_digits_after_decimal;
321  return_value = 0;
322  if (number_of_digits_available == 0)
323    {
324      address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
325      address_of_generic_floating_point_number->leader
326	= -1 + address_of_generic_floating_point_number->low;
327      address_of_generic_floating_point_number->sign = digits_sign_char;
328      /* We have just concocted (+/-)0.0E0 */
329
330    }
331  else
332    {
333      int count;		/* Number of useful digits left to scan.  */
334
335      LITTLENUM_TYPE *digits_binary_low;
336      unsigned int precision;
337      unsigned int maximum_useful_digits;
338      unsigned int number_of_digits_to_use;
339      unsigned int more_than_enough_bits_for_digits;
340      unsigned int more_than_enough_littlenums_for_digits;
341      unsigned int size_of_digits_in_littlenums;
342      unsigned int size_of_digits_in_chars;
343      FLONUM_TYPE power_of_10_flonum;
344      FLONUM_TYPE digits_flonum;
345
346      precision = (address_of_generic_floating_point_number->high
347		   - address_of_generic_floating_point_number->low
348		   + 1);	/* Number of destination littlenums.  */
349
350      /* Includes guard bits (two littlenums worth) */
351      maximum_useful_digits = (((precision - 2))
352			       * ( (LITTLENUM_NUMBER_OF_BITS))
353			       * 1000000 / 3321928)
354	+ 2;			/* 2 :: guard digits.  */
355
356      if (number_of_digits_available > maximum_useful_digits)
357	{
358	  number_of_digits_to_use = maximum_useful_digits;
359	}
360      else
361	{
362	  number_of_digits_to_use = number_of_digits_available;
363	}
364
365      /* Cast these to SIGNED LONG first, otherwise, on systems with
366	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
367	 cause unexpected results.  */
368      decimal_exponent += ((long) number_of_digits_before_decimal
369			   - (long) number_of_digits_to_use);
370
371      more_than_enough_bits_for_digits
372	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
373
374      more_than_enough_littlenums_for_digits
375	= (more_than_enough_bits_for_digits
376	   / LITTLENUM_NUMBER_OF_BITS)
377	+ 2;
378
379      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
380	 Arithmetic is exact here. If no digits are supplied then this
381	 part is a 0 valued binary integer.  Allocate room to build up
382	 the binary number as littlenums.  We want this memory to
383	 disappear when we leave this function.  Assume no alignment
384	 problems => (room for n objects) == n * (room for 1
385	 object).  */
386
387      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
388      size_of_digits_in_chars = size_of_digits_in_littlenums
389	* sizeof (LITTLENUM_TYPE);
390
391      digits_binary_low = (LITTLENUM_TYPE *)
392	alloca (size_of_digits_in_chars);
393
394      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
395
396      /* Digits_binary_low[] is allocated and zeroed.  */
397
398      /*
399       * Parse the decimal digits as if * digits_low was in the units position.
400       * Emit a binary number into digits_binary_low[].
401       *
402       * Use a large-precision version of:
403       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
404       */
405
406      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
407	{
408	  c = *p;
409	  if (ISDIGIT (c))
410	    {
411	      /*
412	       * Multiply by 10. Assume can never overflow.
413	       * Add this digit to digits_binary_low[].
414	       */
415
416	      long carry;
417	      LITTLENUM_TYPE *littlenum_pointer;
418	      LITTLENUM_TYPE *littlenum_limit;
419
420	      littlenum_limit = digits_binary_low
421		+ more_than_enough_littlenums_for_digits
422		- 1;
423
424	      carry = c - '0';	/* char -> binary */
425
426	      for (littlenum_pointer = digits_binary_low;
427		   littlenum_pointer <= littlenum_limit;
428		   littlenum_pointer++)
429		{
430		  long work;
431
432		  work = carry + 10 * (long) (*littlenum_pointer);
433		  *littlenum_pointer = work & LITTLENUM_MASK;
434		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
435		}
436
437	      if (carry != 0)
438		{
439		  /*
440		   * We have a GROSS internal error.
441		   * This should never happen.
442		   */
443		  as_fatal (_("failed sanity check"));
444		}
445	    }
446	  else
447	    {
448	      ++count;		/* '.' doesn't alter digits used count.  */
449	    }
450	}
451
452      /*
453       * Digits_binary_low[] properly encodes the value of the digits.
454       * Forget about any high-order littlenums that are 0.
455       */
456      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
457	     && size_of_digits_in_littlenums >= 2)
458	size_of_digits_in_littlenums--;
459
460      digits_flonum.low = digits_binary_low;
461      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
462      digits_flonum.leader = digits_flonum.high;
463      digits_flonum.exponent = 0;
464      /*
465       * The value of digits_flonum . sign should not be important.
466       * We have already decided the output's sign.
467       * We trust that the sign won't influence the other parts of the number!
468       * So we give it a value for these reasons:
469       * (1) courtesy to humans reading/debugging
470       *     these numbers so they don't get excited about strange values
471       * (2) in future there may be more meaning attached to sign,
472       *     and what was
473       *     harmless noise may become disruptive, ill-conditioned (or worse)
474       *     input.
475       */
476      digits_flonum.sign = '+';
477
478      {
479	/*
480	 * Compute the mantssa (& exponent) of the power of 10.
481	 * If successful, then multiply the power of 10 by the digits
482	 * giving return_binary_mantissa and return_binary_exponent.
483	 */
484
485	LITTLENUM_TYPE *power_binary_low;
486	int decimal_exponent_is_negative;
487	/* This refers to the "-56" in "12.34E-56".  */
488	/* FALSE: decimal_exponent is positive (or 0) */
489	/* TRUE:  decimal_exponent is negative */
490	FLONUM_TYPE temporary_flonum;
491	LITTLENUM_TYPE *temporary_binary_low;
492	unsigned int size_of_power_in_littlenums;
493	unsigned int size_of_power_in_chars;
494
495	size_of_power_in_littlenums = precision;
496	/* Precision has a built-in fudge factor so we get a few guard bits.  */
497
498	decimal_exponent_is_negative = decimal_exponent < 0;
499	if (decimal_exponent_is_negative)
500	  {
501	    decimal_exponent = -decimal_exponent;
502	  }
503
504	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
505
506	size_of_power_in_chars = size_of_power_in_littlenums
507	  * sizeof (LITTLENUM_TYPE) + 2;
508
509	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
510	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
511	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
512	*power_binary_low = 1;
513	power_of_10_flonum.exponent = 0;
514	power_of_10_flonum.low = power_binary_low;
515	power_of_10_flonum.leader = power_binary_low;
516	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
517	power_of_10_flonum.sign = '+';
518	temporary_flonum.low = temporary_binary_low;
519	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
520	/*
521	 * (power) == 1.
522	 * Space for temporary_flonum allocated.
523	 */
524
525	/*
526	 * ...
527	 *
528	 * WHILE	more bits
529	 * DO	find next bit (with place value)
530	 *	multiply into power mantissa
531	 * OD
532	 */
533	{
534	  int place_number_limit;
535	  /* Any 10^(2^n) whose "n" exceeds this */
536	  /* value will fall off the end of */
537	  /* flonum_XXXX_powers_of_ten[].  */
538	  int place_number;
539	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
540
541	  place_number_limit = table_size_of_flonum_powers_of_ten;
542
543	  multiplicand = (decimal_exponent_is_negative
544			  ? flonum_negative_powers_of_ten
545			  : flonum_positive_powers_of_ten);
546
547	  for (place_number = 1;/* Place value of this bit of exponent.  */
548	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
549	       decimal_exponent >>= 1, place_number++)
550	    {
551	      if (decimal_exponent & 1)
552		{
553		  if (place_number > place_number_limit)
554		    {
555		      /* The decimal exponent has a magnitude so great
556			 that our tables can't help us fragment it.
557			 Although this routine is in error because it
558			 can't imagine a number that big, signal an
559			 error as if it is the user's fault for
560			 presenting such a big number.  */
561		      return_value = ERROR_EXPONENT_OVERFLOW;
562		      /* quit out of loop gracefully */
563		      decimal_exponent = 0;
564		    }
565		  else
566		    {
567#ifdef TRACE
568		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
569			      place_number);
570
571		      flonum_print (&power_of_10_flonum);
572		      (void) putchar ('\n');
573#endif
574#ifdef TRACE
575		      printf ("multiplier:\n");
576		      flonum_print (multiplicand + place_number);
577		      (void) putchar ('\n');
578#endif
579		      flonum_multip (multiplicand + place_number,
580				     &power_of_10_flonum, &temporary_flonum);
581#ifdef TRACE
582		      printf ("after multiply:\n");
583		      flonum_print (&temporary_flonum);
584		      (void) putchar ('\n');
585#endif
586		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
587#ifdef TRACE
588		      printf ("after copy:\n");
589		      flonum_print (&power_of_10_flonum);
590		      (void) putchar ('\n');
591#endif
592		    } /* If this bit of decimal_exponent was computable.*/
593		} /* If this bit of decimal_exponent was set.  */
594	    } /* For each bit of binary representation of exponent */
595#ifdef TRACE
596	  printf ("after computing power_of_10_flonum:\n");
597	  flonum_print (&power_of_10_flonum);
598	  (void) putchar ('\n');
599#endif
600	}
601
602      }
603
604      /*
605       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
606       * It may be the number 1, in which case we don't NEED to multiply.
607       *
608       * Multiply (decimal digits) by power_of_10_flonum.
609       */
610
611      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
612      /* Assert sign of the number we made is '+'.  */
613      address_of_generic_floating_point_number->sign = digits_sign_char;
614
615    }
616  return return_value;
617}
618
619#ifdef TRACE
620static void
621flonum_print (f)
622     const FLONUM_TYPE *f;
623{
624  LITTLENUM_TYPE *lp;
625  char littlenum_format[10];
626  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
627#define print_littlenum(LP)	(printf (littlenum_format, LP))
628  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
629  if (f->low < f->high)
630    for (lp = f->high; lp >= f->low; lp--)
631      print_littlenum (*lp);
632  else
633    for (lp = f->low; lp <= f->high; lp++)
634      print_littlenum (*lp);
635  printf ("\n");
636  fflush (stdout);
637}
638#endif
639
640/* end of atof_generic.c */
641