1/* ELF linking support for BFD.
2   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3   2005, 2006, 2007, 2008, 2009, 2010, 2011
4   Free Software Foundation, Inc.
5
6   This file is part of BFD, the Binary File Descriptor library.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21   MA 02110-1301, USA.  */
22
23#include "sysdep.h"
24#include "bfd.h"
25#include "bfdlink.h"
26#include "libbfd.h"
27#define ARCH_SIZE 0
28#include "elf-bfd.h"
29#include "safe-ctype.h"
30#include "libiberty.h"
31#include "objalloc.h"
32
33/* This struct is used to pass information to routines called via
34   elf_link_hash_traverse which must return failure.  */
35
36struct elf_info_failed
37{
38  struct bfd_link_info *info;
39  struct bfd_elf_version_tree *verdefs;
40  bfd_boolean failed;
41};
42
43/* This structure is used to pass information to
44   _bfd_elf_link_find_version_dependencies.  */
45
46struct elf_find_verdep_info
47{
48  /* General link information.  */
49  struct bfd_link_info *info;
50  /* The number of dependencies.  */
51  unsigned int vers;
52  /* Whether we had a failure.  */
53  bfd_boolean failed;
54};
55
56static bfd_boolean _bfd_elf_fix_symbol_flags
57  (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59/* Define a symbol in a dynamic linkage section.  */
60
61struct elf_link_hash_entry *
62_bfd_elf_define_linkage_sym (bfd *abfd,
63			     struct bfd_link_info *info,
64			     asection *sec,
65			     const char *name)
66{
67  struct elf_link_hash_entry *h;
68  struct bfd_link_hash_entry *bh;
69  const struct elf_backend_data *bed;
70
71  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72  if (h != NULL)
73    {
74      /* Zap symbol defined in an as-needed lib that wasn't linked.
75	 This is a symptom of a larger problem:  Absolute symbols
76	 defined in shared libraries can't be overridden, because we
77	 lose the link to the bfd which is via the symbol section.  */
78      h->root.type = bfd_link_hash_new;
79    }
80
81  bh = &h->root;
82  if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83					 sec, 0, NULL, FALSE,
84					 get_elf_backend_data (abfd)->collect,
85					 &bh))
86    return NULL;
87  h = (struct elf_link_hash_entry *) bh;
88  h->def_regular = 1;
89  h->non_elf = 0;
90  h->type = STT_OBJECT;
91  h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93  bed = get_elf_backend_data (abfd);
94  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95  return h;
96}
97
98bfd_boolean
99_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100{
101  flagword flags;
102  asection *s;
103  struct elf_link_hash_entry *h;
104  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105  struct elf_link_hash_table *htab = elf_hash_table (info);
106
107  /* This function may be called more than once.  */
108  s = bfd_get_section_by_name (abfd, ".got");
109  if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110    return TRUE;
111
112  flags = bed->dynamic_sec_flags;
113
114  s = bfd_make_section_with_flags (abfd,
115				   (bed->rela_plts_and_copies_p
116				    ? ".rela.got" : ".rel.got"),
117				   (bed->dynamic_sec_flags
118				    | SEC_READONLY));
119  if (s == NULL
120      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121    return FALSE;
122  htab->srelgot = s;
123
124  s = bfd_make_section_with_flags (abfd, ".got", flags);
125  if (s == NULL
126      || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127    return FALSE;
128  htab->sgot = s;
129
130  if (bed->want_got_plt)
131    {
132      s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133      if (s == NULL
134	  || !bfd_set_section_alignment (abfd, s,
135					 bed->s->log_file_align))
136	return FALSE;
137      htab->sgotplt = s;
138    }
139
140  /* The first bit of the global offset table is the header.  */
141  s->size += bed->got_header_size;
142
143  if (bed->want_got_sym)
144    {
145      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146	 (or .got.plt) section.  We don't do this in the linker script
147	 because we don't want to define the symbol if we are not creating
148	 a global offset table.  */
149      h = _bfd_elf_define_linkage_sym (abfd, info, s,
150				       "_GLOBAL_OFFSET_TABLE_");
151      elf_hash_table (info)->hgot = h;
152      if (h == NULL)
153	return FALSE;
154    }
155
156  return TRUE;
157}
158
159/* Create a strtab to hold the dynamic symbol names.  */
160static bfd_boolean
161_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162{
163  struct elf_link_hash_table *hash_table;
164
165  hash_table = elf_hash_table (info);
166  if (hash_table->dynobj == NULL)
167    hash_table->dynobj = abfd;
168
169  if (hash_table->dynstr == NULL)
170    {
171      hash_table->dynstr = _bfd_elf_strtab_init ();
172      if (hash_table->dynstr == NULL)
173	return FALSE;
174    }
175  return TRUE;
176}
177
178/* Create some sections which will be filled in with dynamic linking
179   information.  ABFD is an input file which requires dynamic sections
180   to be created.  The dynamic sections take up virtual memory space
181   when the final executable is run, so we need to create them before
182   addresses are assigned to the output sections.  We work out the
183   actual contents and size of these sections later.  */
184
185bfd_boolean
186_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187{
188  flagword flags;
189  asection *s;
190  const struct elf_backend_data *bed;
191
192  if (! is_elf_hash_table (info->hash))
193    return FALSE;
194
195  if (elf_hash_table (info)->dynamic_sections_created)
196    return TRUE;
197
198  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199    return FALSE;
200
201  abfd = elf_hash_table (info)->dynobj;
202  bed = get_elf_backend_data (abfd);
203
204  flags = bed->dynamic_sec_flags;
205
206  /* A dynamically linked executable has a .interp section, but a
207     shared library does not.  */
208  if (info->executable)
209    {
210      s = bfd_make_section_with_flags (abfd, ".interp",
211				       flags | SEC_READONLY);
212      if (s == NULL)
213	return FALSE;
214    }
215
216  /* Create sections to hold version informations.  These are removed
217     if they are not needed.  */
218  s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219				   flags | SEC_READONLY);
220  if (s == NULL
221      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222    return FALSE;
223
224  s = bfd_make_section_with_flags (abfd, ".gnu.version",
225				   flags | SEC_READONLY);
226  if (s == NULL
227      || ! bfd_set_section_alignment (abfd, s, 1))
228    return FALSE;
229
230  s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231				   flags | SEC_READONLY);
232  if (s == NULL
233      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234    return FALSE;
235
236  s = bfd_make_section_with_flags (abfd, ".dynsym",
237				   flags | SEC_READONLY);
238  if (s == NULL
239      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240    return FALSE;
241
242  s = bfd_make_section_with_flags (abfd, ".dynstr",
243				   flags | SEC_READONLY);
244  if (s == NULL)
245    return FALSE;
246
247  s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248  if (s == NULL
249      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250    return FALSE;
251
252  /* The special symbol _DYNAMIC is always set to the start of the
253     .dynamic section.  We could set _DYNAMIC in a linker script, but we
254     only want to define it if we are, in fact, creating a .dynamic
255     section.  We don't want to define it if there is no .dynamic
256     section, since on some ELF platforms the start up code examines it
257     to decide how to initialize the process.  */
258  if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259    return FALSE;
260
261  if (info->emit_hash)
262    {
263      s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264      if (s == NULL
265	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266	return FALSE;
267      elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268    }
269
270  if (info->emit_gnu_hash)
271    {
272      s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273				       flags | SEC_READONLY);
274      if (s == NULL
275	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276	return FALSE;
277      /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278	 4 32-bit words followed by variable count of 64-bit words, then
279	 variable count of 32-bit words.  */
280      if (bed->s->arch_size == 64)
281	elf_section_data (s)->this_hdr.sh_entsize = 0;
282      else
283	elf_section_data (s)->this_hdr.sh_entsize = 4;
284    }
285
286  /* Let the backend create the rest of the sections.  This lets the
287     backend set the right flags.  The backend will normally create
288     the .got and .plt sections.  */
289  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290    return FALSE;
291
292  elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294  return TRUE;
295}
296
297/* Create dynamic sections when linking against a dynamic object.  */
298
299bfd_boolean
300_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301{
302  flagword flags, pltflags;
303  struct elf_link_hash_entry *h;
304  asection *s;
305  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306  struct elf_link_hash_table *htab = elf_hash_table (info);
307
308  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309     .rel[a].bss sections.  */
310  flags = bed->dynamic_sec_flags;
311
312  pltflags = flags;
313  if (bed->plt_not_loaded)
314    /* We do not clear SEC_ALLOC here because we still want the OS to
315       allocate space for the section; it's just that there's nothing
316       to read in from the object file.  */
317    pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318  else
319    pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320  if (bed->plt_readonly)
321    pltflags |= SEC_READONLY;
322
323  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324  if (s == NULL
325      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326    return FALSE;
327  htab->splt = s;
328
329  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330     .plt section.  */
331  if (bed->want_plt_sym)
332    {
333      h = _bfd_elf_define_linkage_sym (abfd, info, s,
334				       "_PROCEDURE_LINKAGE_TABLE_");
335      elf_hash_table (info)->hplt = h;
336      if (h == NULL)
337	return FALSE;
338    }
339
340  s = bfd_make_section_with_flags (abfd,
341				   (bed->rela_plts_and_copies_p
342				    ? ".rela.plt" : ".rel.plt"),
343				   flags | SEC_READONLY);
344  if (s == NULL
345      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346    return FALSE;
347  htab->srelplt = s;
348
349  if (! _bfd_elf_create_got_section (abfd, info))
350    return FALSE;
351
352  if (bed->want_dynbss)
353    {
354      /* The .dynbss section is a place to put symbols which are defined
355	 by dynamic objects, are referenced by regular objects, and are
356	 not functions.  We must allocate space for them in the process
357	 image and use a R_*_COPY reloc to tell the dynamic linker to
358	 initialize them at run time.  The linker script puts the .dynbss
359	 section into the .bss section of the final image.  */
360      s = bfd_make_section_with_flags (abfd, ".dynbss",
361				       (SEC_ALLOC
362					| SEC_LINKER_CREATED));
363      if (s == NULL)
364	return FALSE;
365
366      /* The .rel[a].bss section holds copy relocs.  This section is not
367	 normally needed.  We need to create it here, though, so that the
368	 linker will map it to an output section.  We can't just create it
369	 only if we need it, because we will not know whether we need it
370	 until we have seen all the input files, and the first time the
371	 main linker code calls BFD after examining all the input files
372	 (size_dynamic_sections) the input sections have already been
373	 mapped to the output sections.  If the section turns out not to
374	 be needed, we can discard it later.  We will never need this
375	 section when generating a shared object, since they do not use
376	 copy relocs.  */
377      if (! info->shared)
378	{
379	  s = bfd_make_section_with_flags (abfd,
380					   (bed->rela_plts_and_copies_p
381					    ? ".rela.bss" : ".rel.bss"),
382					   flags | SEC_READONLY);
383	  if (s == NULL
384	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385	    return FALSE;
386	}
387    }
388
389  return TRUE;
390}
391
392/* Record a new dynamic symbol.  We record the dynamic symbols as we
393   read the input files, since we need to have a list of all of them
394   before we can determine the final sizes of the output sections.
395   Note that we may actually call this function even though we are not
396   going to output any dynamic symbols; in some cases we know that a
397   symbol should be in the dynamic symbol table, but only if there is
398   one.  */
399
400bfd_boolean
401bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402				    struct elf_link_hash_entry *h)
403{
404  if (h->dynindx == -1)
405    {
406      struct elf_strtab_hash *dynstr;
407      char *p;
408      const char *name;
409      bfd_size_type indx;
410
411      /* XXX: The ABI draft says the linker must turn hidden and
412	 internal symbols into STB_LOCAL symbols when producing the
413	 DSO. However, if ld.so honors st_other in the dynamic table,
414	 this would not be necessary.  */
415      switch (ELF_ST_VISIBILITY (h->other))
416	{
417	case STV_INTERNAL:
418	case STV_HIDDEN:
419	  if (h->root.type != bfd_link_hash_undefined
420	      && h->root.type != bfd_link_hash_undefweak)
421	    {
422	      h->forced_local = 1;
423	      if (!elf_hash_table (info)->is_relocatable_executable)
424		return TRUE;
425	    }
426
427	default:
428	  break;
429	}
430
431      h->dynindx = elf_hash_table (info)->dynsymcount;
432      ++elf_hash_table (info)->dynsymcount;
433
434      dynstr = elf_hash_table (info)->dynstr;
435      if (dynstr == NULL)
436	{
437	  /* Create a strtab to hold the dynamic symbol names.  */
438	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439	  if (dynstr == NULL)
440	    return FALSE;
441	}
442
443      /* We don't put any version information in the dynamic string
444	 table.  */
445      name = h->root.root.string;
446      p = strchr (name, ELF_VER_CHR);
447      if (p != NULL)
448	/* We know that the p points into writable memory.  In fact,
449	   there are only a few symbols that have read-only names, being
450	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
451	   by the backends.  Most symbols will have names pointing into
452	   an ELF string table read from a file, or to objalloc memory.  */
453	*p = 0;
454
455      indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457      if (p != NULL)
458	*p = ELF_VER_CHR;
459
460      if (indx == (bfd_size_type) -1)
461	return FALSE;
462      h->dynstr_index = indx;
463    }
464
465  return TRUE;
466}
467
468/* Mark a symbol dynamic.  */
469
470static void
471bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472				  struct elf_link_hash_entry *h,
473				  Elf_Internal_Sym *sym)
474{
475  struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477  /* It may be called more than once on the same H.  */
478  if(h->dynamic || info->relocatable)
479    return;
480
481  if ((info->dynamic_data
482       && (h->type == STT_OBJECT
483	   || (sym != NULL
484	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485      || (d != NULL
486	  && h->root.type == bfd_link_hash_new
487	  && (*d->match) (&d->head, NULL, h->root.root.string)))
488    h->dynamic = 1;
489}
490
491/* Record an assignment to a symbol made by a linker script.  We need
492   this in case some dynamic object refers to this symbol.  */
493
494bfd_boolean
495bfd_elf_record_link_assignment (bfd *output_bfd,
496				struct bfd_link_info *info,
497				const char *name,
498				bfd_boolean provide,
499				bfd_boolean hidden)
500{
501  struct elf_link_hash_entry *h, *hv;
502  struct elf_link_hash_table *htab;
503  const struct elf_backend_data *bed;
504
505  if (!is_elf_hash_table (info->hash))
506    return TRUE;
507
508  htab = elf_hash_table (info);
509  h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510  if (h == NULL)
511    return provide;
512
513  switch (h->root.type)
514    {
515    case bfd_link_hash_defined:
516    case bfd_link_hash_defweak:
517    case bfd_link_hash_common:
518      break;
519    case bfd_link_hash_undefweak:
520    case bfd_link_hash_undefined:
521      /* Since we're defining the symbol, don't let it seem to have not
522	 been defined.  record_dynamic_symbol and size_dynamic_sections
523	 may depend on this.  */
524      h->root.type = bfd_link_hash_new;
525      if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526	bfd_link_repair_undef_list (&htab->root);
527      break;
528    case bfd_link_hash_new:
529      bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530      h->non_elf = 0;
531      break;
532    case bfd_link_hash_indirect:
533      /* We had a versioned symbol in a dynamic library.  We make the
534	 the versioned symbol point to this one.  */
535      bed = get_elf_backend_data (output_bfd);
536      hv = h;
537      while (hv->root.type == bfd_link_hash_indirect
538	     || hv->root.type == bfd_link_hash_warning)
539	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540      /* We don't need to update h->root.u since linker will set them
541	 later.  */
542      h->root.type = bfd_link_hash_undefined;
543      hv->root.type = bfd_link_hash_indirect;
544      hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545      (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546      break;
547    case bfd_link_hash_warning:
548      abort ();
549      break;
550    }
551
552  /* If this symbol is being provided by the linker script, and it is
553     currently defined by a dynamic object, but not by a regular
554     object, then mark it as undefined so that the generic linker will
555     force the correct value.  */
556  if (provide
557      && h->def_dynamic
558      && !h->def_regular)
559    h->root.type = bfd_link_hash_undefined;
560
561  /* If this symbol is not being provided by the linker script, and it is
562     currently defined by a dynamic object, but not by a regular object,
563     then clear out any version information because the symbol will not be
564     associated with the dynamic object any more.  */
565  if (!provide
566      && h->def_dynamic
567      && !h->def_regular)
568    h->verinfo.verdef = NULL;
569
570  h->def_regular = 1;
571
572  if (provide && hidden)
573    {
574      bed = get_elf_backend_data (output_bfd);
575      h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577    }
578
579  /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580     and executables.  */
581  if (!info->relocatable
582      && h->dynindx != -1
583      && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585    h->forced_local = 1;
586
587  if ((h->def_dynamic
588       || h->ref_dynamic
589       || info->shared
590       || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591      && h->dynindx == -1)
592    {
593      if (! bfd_elf_link_record_dynamic_symbol (info, h))
594	return FALSE;
595
596      /* If this is a weak defined symbol, and we know a corresponding
597	 real symbol from the same dynamic object, make sure the real
598	 symbol is also made into a dynamic symbol.  */
599      if (h->u.weakdef != NULL
600	  && h->u.weakdef->dynindx == -1)
601	{
602	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603	    return FALSE;
604	}
605    }
606
607  return TRUE;
608}
609
610/* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
611   success, and 2 on a failure caused by attempting to record a symbol
612   in a discarded section, eg. a discarded link-once section symbol.  */
613
614int
615bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616					  bfd *input_bfd,
617					  long input_indx)
618{
619  bfd_size_type amt;
620  struct elf_link_local_dynamic_entry *entry;
621  struct elf_link_hash_table *eht;
622  struct elf_strtab_hash *dynstr;
623  unsigned long dynstr_index;
624  char *name;
625  Elf_External_Sym_Shndx eshndx;
626  char esym[sizeof (Elf64_External_Sym)];
627
628  if (! is_elf_hash_table (info->hash))
629    return 0;
630
631  /* See if the entry exists already.  */
632  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634      return 1;
635
636  amt = sizeof (*entry);
637  entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638  if (entry == NULL)
639    return 0;
640
641  /* Go find the symbol, so that we can find it's name.  */
642  if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643			     1, input_indx, &entry->isym, esym, &eshndx))
644    {
645      bfd_release (input_bfd, entry);
646      return 0;
647    }
648
649  if (entry->isym.st_shndx != SHN_UNDEF
650      && entry->isym.st_shndx < SHN_LORESERVE)
651    {
652      asection *s;
653
654      s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655      if (s == NULL || bfd_is_abs_section (s->output_section))
656	{
657	  /* We can still bfd_release here as nothing has done another
658	     bfd_alloc.  We can't do this later in this function.  */
659	  bfd_release (input_bfd, entry);
660	  return 2;
661	}
662    }
663
664  name = (bfd_elf_string_from_elf_section
665	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666	   entry->isym.st_name));
667
668  dynstr = elf_hash_table (info)->dynstr;
669  if (dynstr == NULL)
670    {
671      /* Create a strtab to hold the dynamic symbol names.  */
672      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673      if (dynstr == NULL)
674	return 0;
675    }
676
677  dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678  if (dynstr_index == (unsigned long) -1)
679    return 0;
680  entry->isym.st_name = dynstr_index;
681
682  eht = elf_hash_table (info);
683
684  entry->next = eht->dynlocal;
685  eht->dynlocal = entry;
686  entry->input_bfd = input_bfd;
687  entry->input_indx = input_indx;
688  eht->dynsymcount++;
689
690  /* Whatever binding the symbol had before, it's now local.  */
691  entry->isym.st_info
692    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694  /* The dynindx will be set at the end of size_dynamic_sections.  */
695
696  return 1;
697}
698
699/* Return the dynindex of a local dynamic symbol.  */
700
701long
702_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703				    bfd *input_bfd,
704				    long input_indx)
705{
706  struct elf_link_local_dynamic_entry *e;
707
708  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709    if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710      return e->dynindx;
711  return -1;
712}
713
714/* This function is used to renumber the dynamic symbols, if some of
715   them are removed because they are marked as local.  This is called
716   via elf_link_hash_traverse.  */
717
718static bfd_boolean
719elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720				      void *data)
721{
722  size_t *count = (size_t *) data;
723
724  if (h->root.type == bfd_link_hash_warning)
725    h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727  if (h->forced_local)
728    return TRUE;
729
730  if (h->dynindx != -1)
731    h->dynindx = ++(*count);
732
733  return TRUE;
734}
735
736
737/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738   STB_LOCAL binding.  */
739
740static bfd_boolean
741elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742					    void *data)
743{
744  size_t *count = (size_t *) data;
745
746  if (h->root.type == bfd_link_hash_warning)
747    h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749  if (!h->forced_local)
750    return TRUE;
751
752  if (h->dynindx != -1)
753    h->dynindx = ++(*count);
754
755  return TRUE;
756}
757
758/* Return true if the dynamic symbol for a given section should be
759   omitted when creating a shared library.  */
760bfd_boolean
761_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762				   struct bfd_link_info *info,
763				   asection *p)
764{
765  struct elf_link_hash_table *htab;
766
767  switch (elf_section_data (p)->this_hdr.sh_type)
768    {
769    case SHT_PROGBITS:
770    case SHT_NOBITS:
771      /* If sh_type is yet undecided, assume it could be
772	 SHT_PROGBITS/SHT_NOBITS.  */
773    case SHT_NULL:
774      htab = elf_hash_table (info);
775      if (p == htab->tls_sec)
776	return FALSE;
777
778      if (htab->text_index_section != NULL)
779	return p != htab->text_index_section && p != htab->data_index_section;
780
781      if (strcmp (p->name, ".got") == 0
782	  || strcmp (p->name, ".got.plt") == 0
783	  || strcmp (p->name, ".plt") == 0)
784	{
785	  asection *ip;
786
787	  if (htab->dynobj != NULL
788	      && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789	      && (ip->flags & SEC_LINKER_CREATED)
790	      && ip->output_section == p)
791	    return TRUE;
792	}
793      return FALSE;
794
795      /* There shouldn't be section relative relocations
796	 against any other section.  */
797    default:
798      return TRUE;
799    }
800}
801
802/* Assign dynsym indices.  In a shared library we generate a section
803   symbol for each output section, which come first.  Next come symbols
804   which have been forced to local binding.  Then all of the back-end
805   allocated local dynamic syms, followed by the rest of the global
806   symbols.  */
807
808static unsigned long
809_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810				struct bfd_link_info *info,
811				unsigned long *section_sym_count)
812{
813  unsigned long dynsymcount = 0;
814
815  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816    {
817      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818      asection *p;
819      for (p = output_bfd->sections; p ; p = p->next)
820	if ((p->flags & SEC_EXCLUDE) == 0
821	    && (p->flags & SEC_ALLOC) != 0
822	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823	  elf_section_data (p)->dynindx = ++dynsymcount;
824	else
825	  elf_section_data (p)->dynindx = 0;
826    }
827  *section_sym_count = dynsymcount;
828
829  elf_link_hash_traverse (elf_hash_table (info),
830			  elf_link_renumber_local_hash_table_dynsyms,
831			  &dynsymcount);
832
833  if (elf_hash_table (info)->dynlocal)
834    {
835      struct elf_link_local_dynamic_entry *p;
836      for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837	p->dynindx = ++dynsymcount;
838    }
839
840  elf_link_hash_traverse (elf_hash_table (info),
841			  elf_link_renumber_hash_table_dynsyms,
842			  &dynsymcount);
843
844  /* There is an unused NULL entry at the head of the table which
845     we must account for in our count.  Unless there weren't any
846     symbols, which means we'll have no table at all.  */
847  if (dynsymcount != 0)
848    ++dynsymcount;
849
850  elf_hash_table (info)->dynsymcount = dynsymcount;
851  return dynsymcount;
852}
853
854/* Merge st_other field.  */
855
856static void
857elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858		    Elf_Internal_Sym *isym, bfd_boolean definition,
859		    bfd_boolean dynamic)
860{
861  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863  /* If st_other has a processor-specific meaning, specific
864     code might be needed here. We never merge the visibility
865     attribute with the one from a dynamic object.  */
866  if (bed->elf_backend_merge_symbol_attribute)
867    (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868						dynamic);
869
870  /* If this symbol has default visibility and the user has requested
871     we not re-export it, then mark it as hidden.  */
872  if (definition
873      && !dynamic
874      && (abfd->no_export
875	  || (abfd->my_archive && abfd->my_archive->no_export))
876      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877    isym->st_other = (STV_HIDDEN
878		      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880  if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881    {
882      unsigned char hvis, symvis, other, nvis;
883
884      /* Only merge the visibility. Leave the remainder of the
885	 st_other field to elf_backend_merge_symbol_attribute.  */
886      other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888      /* Combine visibilities, using the most constraining one.  */
889      hvis = ELF_ST_VISIBILITY (h->other);
890      symvis = ELF_ST_VISIBILITY (isym->st_other);
891      if (! hvis)
892	nvis = symvis;
893      else if (! symvis)
894	nvis = hvis;
895      else
896	nvis = hvis < symvis ? hvis : symvis;
897
898      h->other = other | nvis;
899    }
900}
901
902/* This function is called when we want to define a new symbol.  It
903   handles the various cases which arise when we find a definition in
904   a dynamic object, or when there is already a definition in a
905   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
906   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
907   OVERRIDE if the old symbol is overriding a new definition.  We set
908   TYPE_CHANGE_OK if it is OK for the type to change.  We set
909   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
910   change, we mean that we shouldn't warn if the type or size does
911   change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
912   object is overridden by a regular object.  */
913
914bfd_boolean
915_bfd_elf_merge_symbol (bfd *abfd,
916		       struct bfd_link_info *info,
917		       const char *name,
918		       Elf_Internal_Sym *sym,
919		       asection **psec,
920		       bfd_vma *pvalue,
921		       unsigned int *pold_alignment,
922		       struct elf_link_hash_entry **sym_hash,
923		       bfd_boolean *skip,
924		       bfd_boolean *override,
925		       bfd_boolean *type_change_ok,
926		       bfd_boolean *size_change_ok)
927{
928  asection *sec, *oldsec;
929  struct elf_link_hash_entry *h;
930  struct elf_link_hash_entry *flip;
931  int bind;
932  bfd *oldbfd;
933  bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934  bfd_boolean newweak, oldweak, newfunc, oldfunc;
935  const struct elf_backend_data *bed;
936
937  *skip = FALSE;
938  *override = FALSE;
939
940  sec = *psec;
941  bind = ELF_ST_BIND (sym->st_info);
942
943  /* Silently discard TLS symbols from --just-syms.  There's no way to
944     combine a static TLS block with a new TLS block for this executable.  */
945  if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946      && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947    {
948      *skip = TRUE;
949      return TRUE;
950    }
951
952  if (! bfd_is_und_section (sec))
953    h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954  else
955    h = ((struct elf_link_hash_entry *)
956	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957  if (h == NULL)
958    return FALSE;
959  *sym_hash = h;
960
961  bed = get_elf_backend_data (abfd);
962
963  /* This code is for coping with dynamic objects, and is only useful
964     if we are doing an ELF link.  */
965  if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966    return TRUE;
967
968  /* For merging, we only care about real symbols.  */
969
970  while (h->root.type == bfd_link_hash_indirect
971	 || h->root.type == bfd_link_hash_warning)
972    h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974  /* We have to check it for every instance since the first few may be
975     refereences and not all compilers emit symbol type for undefined
976     symbols.  */
977  bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979  /* If we just created the symbol, mark it as being an ELF symbol.
980     Other than that, there is nothing to do--there is no merge issue
981     with a newly defined symbol--so we just return.  */
982
983  if (h->root.type == bfd_link_hash_new)
984    {
985      h->non_elf = 0;
986      return TRUE;
987    }
988
989  /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990     existing symbol.  */
991
992  switch (h->root.type)
993    {
994    default:
995      oldbfd = NULL;
996      oldsec = NULL;
997      break;
998
999    case bfd_link_hash_undefined:
1000    case bfd_link_hash_undefweak:
1001      oldbfd = h->root.u.undef.abfd;
1002      oldsec = NULL;
1003      break;
1004
1005    case bfd_link_hash_defined:
1006    case bfd_link_hash_defweak:
1007      oldbfd = h->root.u.def.section->owner;
1008      oldsec = h->root.u.def.section;
1009      break;
1010
1011    case bfd_link_hash_common:
1012      oldbfd = h->root.u.c.p->section->owner;
1013      oldsec = h->root.u.c.p->section;
1014      break;
1015    }
1016
1017  /* Differentiate strong and weak symbols.  */
1018  newweak = bind == STB_WEAK;
1019  oldweak = (h->root.type == bfd_link_hash_defweak
1020	     || h->root.type == bfd_link_hash_undefweak);
1021
1022  /* In cases involving weak versioned symbols, we may wind up trying
1023     to merge a symbol with itself.  Catch that here, to avoid the
1024     confusion that results if we try to override a symbol with
1025     itself.  The additional tests catch cases like
1026     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027     dynamic object, which we do want to handle here.  */
1028  if (abfd == oldbfd
1029      && (newweak || oldweak)
1030      && ((abfd->flags & DYNAMIC) == 0
1031	  || !h->def_regular))
1032    return TRUE;
1033
1034  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035     respectively, is from a dynamic object.  */
1036
1037  newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039  olddyn = FALSE;
1040  if (oldbfd != NULL)
1041    olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042  else if (oldsec != NULL)
1043    {
1044      /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045	 indices used by MIPS ELF.  */
1046      olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047    }
1048
1049  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050     respectively, appear to be a definition rather than reference.  */
1051
1052  newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054  olddef = (h->root.type != bfd_link_hash_undefined
1055	    && h->root.type != bfd_link_hash_undefweak
1056	    && h->root.type != bfd_link_hash_common);
1057
1058  /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059     respectively, appear to be a function.  */
1060
1061  newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064  oldfunc = (h->type != STT_NOTYPE
1065	     && bed->is_function_type (h->type));
1066
1067  /* When we try to create a default indirect symbol from the dynamic
1068     definition with the default version, we skip it if its type and
1069     the type of existing regular definition mismatch.  We only do it
1070     if the existing regular definition won't be dynamic.  */
1071  if (pold_alignment == NULL
1072      && !info->shared
1073      && !info->export_dynamic
1074      && !h->ref_dynamic
1075      && newdyn
1076      && newdef
1077      && !olddyn
1078      && (olddef || h->root.type == bfd_link_hash_common)
1079      && ELF_ST_TYPE (sym->st_info) != h->type
1080      && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081      && h->type != STT_NOTYPE
1082      && !(newfunc && oldfunc))
1083    {
1084      *skip = TRUE;
1085      return TRUE;
1086    }
1087
1088  /* Plugin symbol type isn't currently set.  Stop bogus errors.  */
1089  if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1090    *type_change_ok = TRUE;
1091
1092  /* Check TLS symbol.  We don't check undefined symbol introduced by
1093     "ld -u".  */
1094  else if (oldbfd != NULL
1095	   && ELF_ST_TYPE (sym->st_info) != h->type
1096	   && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1097    {
1098      bfd *ntbfd, *tbfd;
1099      bfd_boolean ntdef, tdef;
1100      asection *ntsec, *tsec;
1101
1102      if (h->type == STT_TLS)
1103	{
1104	  ntbfd = abfd;
1105	  ntsec = sec;
1106	  ntdef = newdef;
1107	  tbfd = oldbfd;
1108	  tsec = oldsec;
1109	  tdef = olddef;
1110	}
1111      else
1112	{
1113	  ntbfd = oldbfd;
1114	  ntsec = oldsec;
1115	  ntdef = olddef;
1116	  tbfd = abfd;
1117	  tsec = sec;
1118	  tdef = newdef;
1119	}
1120
1121      if (tdef && ntdef)
1122	(*_bfd_error_handler)
1123	  (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1124	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1125      else if (!tdef && !ntdef)
1126	(*_bfd_error_handler)
1127	  (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1128	   tbfd, ntbfd, h->root.root.string);
1129      else if (tdef)
1130	(*_bfd_error_handler)
1131	  (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1132	   tbfd, tsec, ntbfd, h->root.root.string);
1133      else
1134	(*_bfd_error_handler)
1135	  (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1136	   tbfd, ntbfd, ntsec, h->root.root.string);
1137
1138      bfd_set_error (bfd_error_bad_value);
1139      return FALSE;
1140    }
1141
1142  /* We need to remember if a symbol has a definition in a dynamic
1143     object or is weak in all dynamic objects. Internal and hidden
1144     visibility will make it unavailable to dynamic objects.  */
1145  if (newdyn && !h->dynamic_def)
1146    {
1147      if (!bfd_is_und_section (sec))
1148	h->dynamic_def = 1;
1149      else
1150	{
1151	  /* Check if this symbol is weak in all dynamic objects. If it
1152	     is the first time we see it in a dynamic object, we mark
1153	     if it is weak. Otherwise, we clear it.  */
1154	  if (!h->ref_dynamic)
1155	    {
1156	      if (bind == STB_WEAK)
1157		h->dynamic_weak = 1;
1158	    }
1159	  else if (bind != STB_WEAK)
1160	    h->dynamic_weak = 0;
1161	}
1162    }
1163
1164  /* If the old symbol has non-default visibility, we ignore the new
1165     definition from a dynamic object.  */
1166  if (newdyn
1167      && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1168      && !bfd_is_und_section (sec))
1169    {
1170      *skip = TRUE;
1171      /* Make sure this symbol is dynamic.  */
1172      h->ref_dynamic = 1;
1173      /* A protected symbol has external availability. Make sure it is
1174	 recorded as dynamic.
1175
1176	 FIXME: Should we check type and size for protected symbol?  */
1177      if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1178	return bfd_elf_link_record_dynamic_symbol (info, h);
1179      else
1180	return TRUE;
1181    }
1182  else if (!newdyn
1183	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1184	   && h->def_dynamic)
1185    {
1186      /* If the new symbol with non-default visibility comes from a
1187	 relocatable file and the old definition comes from a dynamic
1188	 object, we remove the old definition.  */
1189      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1190	{
1191	  /* Handle the case where the old dynamic definition is
1192	     default versioned.  We need to copy the symbol info from
1193	     the symbol with default version to the normal one if it
1194	     was referenced before.  */
1195	  if (h->ref_regular)
1196	    {
1197	      struct elf_link_hash_entry *vh = *sym_hash;
1198
1199	      vh->root.type = h->root.type;
1200	      h->root.type = bfd_link_hash_indirect;
1201	      (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1202	      /* Protected symbols will override the dynamic definition
1203		 with default version.  */
1204	      if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1205		{
1206		  h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1207		  vh->dynamic_def = 1;
1208		  vh->ref_dynamic = 1;
1209		}
1210	      else
1211		{
1212		  h->root.type = vh->root.type;
1213		  vh->ref_dynamic = 0;
1214		  /* We have to hide it here since it was made dynamic
1215		     global with extra bits when the symbol info was
1216		     copied from the old dynamic definition.  */
1217		  (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1218		}
1219	      h = vh;
1220	    }
1221	  else
1222	    h = *sym_hash;
1223	}
1224
1225      if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1226	  && bfd_is_und_section (sec))
1227	{
1228	  /* If the new symbol is undefined and the old symbol was
1229	     also undefined before, we need to make sure
1230	     _bfd_generic_link_add_one_symbol doesn't mess
1231	     up the linker hash table undefs list.  Since the old
1232	     definition came from a dynamic object, it is still on the
1233	     undefs list.  */
1234	  h->root.type = bfd_link_hash_undefined;
1235	  h->root.u.undef.abfd = abfd;
1236	}
1237      else
1238	{
1239	  h->root.type = bfd_link_hash_new;
1240	  h->root.u.undef.abfd = NULL;
1241	}
1242
1243      if (h->def_dynamic)
1244	{
1245	  h->def_dynamic = 0;
1246	  h->ref_dynamic = 1;
1247	  h->dynamic_def = 1;
1248	}
1249      /* FIXME: Should we check type and size for protected symbol?  */
1250      h->size = 0;
1251      h->type = 0;
1252      return TRUE;
1253    }
1254
1255  if (bind == STB_GNU_UNIQUE)
1256    h->unique_global = 1;
1257
1258  /* If a new weak symbol definition comes from a regular file and the
1259     old symbol comes from a dynamic library, we treat the new one as
1260     strong.  Similarly, an old weak symbol definition from a regular
1261     file is treated as strong when the new symbol comes from a dynamic
1262     library.  Further, an old weak symbol from a dynamic library is
1263     treated as strong if the new symbol is from a dynamic library.
1264     This reflects the way glibc's ld.so works.
1265
1266     Do this before setting *type_change_ok or *size_change_ok so that
1267     we warn properly when dynamic library symbols are overridden.  */
1268
1269  if (newdef && !newdyn && olddyn)
1270    newweak = FALSE;
1271  if (olddef && newdyn)
1272    oldweak = FALSE;
1273
1274  /* Allow changes between different types of function symbol.  */
1275  if (newfunc && oldfunc)
1276    *type_change_ok = TRUE;
1277
1278  /* It's OK to change the type if either the existing symbol or the
1279     new symbol is weak.  A type change is also OK if the old symbol
1280     is undefined and the new symbol is defined.  */
1281
1282  if (oldweak
1283      || newweak
1284      || (newdef
1285	  && h->root.type == bfd_link_hash_undefined))
1286    *type_change_ok = TRUE;
1287
1288  /* It's OK to change the size if either the existing symbol or the
1289     new symbol is weak, or if the old symbol is undefined.  */
1290
1291  if (*type_change_ok
1292      || h->root.type == bfd_link_hash_undefined)
1293    *size_change_ok = TRUE;
1294
1295  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1296     symbol, respectively, appears to be a common symbol in a dynamic
1297     object.  If a symbol appears in an uninitialized section, and is
1298     not weak, and is not a function, then it may be a common symbol
1299     which was resolved when the dynamic object was created.  We want
1300     to treat such symbols specially, because they raise special
1301     considerations when setting the symbol size: if the symbol
1302     appears as a common symbol in a regular object, and the size in
1303     the regular object is larger, we must make sure that we use the
1304     larger size.  This problematic case can always be avoided in C,
1305     but it must be handled correctly when using Fortran shared
1306     libraries.
1307
1308     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1309     likewise for OLDDYNCOMMON and OLDDEF.
1310
1311     Note that this test is just a heuristic, and that it is quite
1312     possible to have an uninitialized symbol in a shared object which
1313     is really a definition, rather than a common symbol.  This could
1314     lead to some minor confusion when the symbol really is a common
1315     symbol in some regular object.  However, I think it will be
1316     harmless.  */
1317
1318  if (newdyn
1319      && newdef
1320      && !newweak
1321      && (sec->flags & SEC_ALLOC) != 0
1322      && (sec->flags & SEC_LOAD) == 0
1323      && sym->st_size > 0
1324      && !newfunc)
1325    newdyncommon = TRUE;
1326  else
1327    newdyncommon = FALSE;
1328
1329  if (olddyn
1330      && olddef
1331      && h->root.type == bfd_link_hash_defined
1332      && h->def_dynamic
1333      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1334      && (h->root.u.def.section->flags & SEC_LOAD) == 0
1335      && h->size > 0
1336      && !oldfunc)
1337    olddyncommon = TRUE;
1338  else
1339    olddyncommon = FALSE;
1340
1341  /* We now know everything about the old and new symbols.  We ask the
1342     backend to check if we can merge them.  */
1343  if (bed->merge_symbol
1344      && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1345			     pold_alignment, skip, override,
1346			     type_change_ok, size_change_ok,
1347			     &newdyn, &newdef, &newdyncommon, &newweak,
1348			     abfd, &sec,
1349			     &olddyn, &olddef, &olddyncommon, &oldweak,
1350			     oldbfd, &oldsec))
1351    return FALSE;
1352
1353  /* If both the old and the new symbols look like common symbols in a
1354     dynamic object, set the size of the symbol to the larger of the
1355     two.  */
1356
1357  if (olddyncommon
1358      && newdyncommon
1359      && sym->st_size != h->size)
1360    {
1361      /* Since we think we have two common symbols, issue a multiple
1362	 common warning if desired.  Note that we only warn if the
1363	 size is different.  If the size is the same, we simply let
1364	 the old symbol override the new one as normally happens with
1365	 symbols defined in dynamic objects.  */
1366
1367      if (! ((*info->callbacks->multiple_common)
1368	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1369	return FALSE;
1370
1371      if (sym->st_size > h->size)
1372	h->size = sym->st_size;
1373
1374      *size_change_ok = TRUE;
1375    }
1376
1377  /* If we are looking at a dynamic object, and we have found a
1378     definition, we need to see if the symbol was already defined by
1379     some other object.  If so, we want to use the existing
1380     definition, and we do not want to report a multiple symbol
1381     definition error; we do this by clobbering *PSEC to be
1382     bfd_und_section_ptr.
1383
1384     We treat a common symbol as a definition if the symbol in the
1385     shared library is a function, since common symbols always
1386     represent variables; this can cause confusion in principle, but
1387     any such confusion would seem to indicate an erroneous program or
1388     shared library.  We also permit a common symbol in a regular
1389     object to override a weak symbol in a shared object.  */
1390
1391  if (newdyn
1392      && newdef
1393      && (olddef
1394	  || (h->root.type == bfd_link_hash_common
1395	      && (newweak || newfunc))))
1396    {
1397      *override = TRUE;
1398      newdef = FALSE;
1399      newdyncommon = FALSE;
1400
1401      *psec = sec = bfd_und_section_ptr;
1402      *size_change_ok = TRUE;
1403
1404      /* If we get here when the old symbol is a common symbol, then
1405	 we are explicitly letting it override a weak symbol or
1406	 function in a dynamic object, and we don't want to warn about
1407	 a type change.  If the old symbol is a defined symbol, a type
1408	 change warning may still be appropriate.  */
1409
1410      if (h->root.type == bfd_link_hash_common)
1411	*type_change_ok = TRUE;
1412    }
1413
1414  /* Handle the special case of an old common symbol merging with a
1415     new symbol which looks like a common symbol in a shared object.
1416     We change *PSEC and *PVALUE to make the new symbol look like a
1417     common symbol, and let _bfd_generic_link_add_one_symbol do the
1418     right thing.  */
1419
1420  if (newdyncommon
1421      && h->root.type == bfd_link_hash_common)
1422    {
1423      *override = TRUE;
1424      newdef = FALSE;
1425      newdyncommon = FALSE;
1426      *pvalue = sym->st_size;
1427      *psec = sec = bed->common_section (oldsec);
1428      *size_change_ok = TRUE;
1429    }
1430
1431  /* Skip weak definitions of symbols that are already defined.  */
1432  if (newdef && olddef && newweak)
1433    {
1434      /* Don't skip new non-IR weak syms.  */
1435      if (!(oldbfd != NULL
1436	    && (oldbfd->flags & BFD_PLUGIN) != 0
1437	    && (abfd->flags & BFD_PLUGIN) == 0))
1438	*skip = TRUE;
1439
1440      /* Merge st_other.  If the symbol already has a dynamic index,
1441	 but visibility says it should not be visible, turn it into a
1442	 local symbol.  */
1443      elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1444      if (h->dynindx != -1)
1445	switch (ELF_ST_VISIBILITY (h->other))
1446	  {
1447	  case STV_INTERNAL:
1448	  case STV_HIDDEN:
1449	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1450	    break;
1451	  }
1452    }
1453
1454  /* If the old symbol is from a dynamic object, and the new symbol is
1455     a definition which is not from a dynamic object, then the new
1456     symbol overrides the old symbol.  Symbols from regular files
1457     always take precedence over symbols from dynamic objects, even if
1458     they are defined after the dynamic object in the link.
1459
1460     As above, we again permit a common symbol in a regular object to
1461     override a definition in a shared object if the shared object
1462     symbol is a function or is weak.  */
1463
1464  flip = NULL;
1465  if (!newdyn
1466      && (newdef
1467	  || (bfd_is_com_section (sec)
1468	      && (oldweak || oldfunc)))
1469      && olddyn
1470      && olddef
1471      && h->def_dynamic)
1472    {
1473      /* Change the hash table entry to undefined, and let
1474	 _bfd_generic_link_add_one_symbol do the right thing with the
1475	 new definition.  */
1476
1477      h->root.type = bfd_link_hash_undefined;
1478      h->root.u.undef.abfd = h->root.u.def.section->owner;
1479      *size_change_ok = TRUE;
1480
1481      olddef = FALSE;
1482      olddyncommon = FALSE;
1483
1484      /* We again permit a type change when a common symbol may be
1485	 overriding a function.  */
1486
1487      if (bfd_is_com_section (sec))
1488	{
1489	  if (oldfunc)
1490	    {
1491	      /* If a common symbol overrides a function, make sure
1492		 that it isn't defined dynamically nor has type
1493		 function.  */
1494	      h->def_dynamic = 0;
1495	      h->type = STT_NOTYPE;
1496	    }
1497	  *type_change_ok = TRUE;
1498	}
1499
1500      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1501	flip = *sym_hash;
1502      else
1503	/* This union may have been set to be non-NULL when this symbol
1504	   was seen in a dynamic object.  We must force the union to be
1505	   NULL, so that it is correct for a regular symbol.  */
1506	h->verinfo.vertree = NULL;
1507    }
1508
1509  /* Handle the special case of a new common symbol merging with an
1510     old symbol that looks like it might be a common symbol defined in
1511     a shared object.  Note that we have already handled the case in
1512     which a new common symbol should simply override the definition
1513     in the shared library.  */
1514
1515  if (! newdyn
1516      && bfd_is_com_section (sec)
1517      && olddyncommon)
1518    {
1519      /* It would be best if we could set the hash table entry to a
1520	 common symbol, but we don't know what to use for the section
1521	 or the alignment.  */
1522      if (! ((*info->callbacks->multiple_common)
1523	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1524	return FALSE;
1525
1526      /* If the presumed common symbol in the dynamic object is
1527	 larger, pretend that the new symbol has its size.  */
1528
1529      if (h->size > *pvalue)
1530	*pvalue = h->size;
1531
1532      /* We need to remember the alignment required by the symbol
1533	 in the dynamic object.  */
1534      BFD_ASSERT (pold_alignment);
1535      *pold_alignment = h->root.u.def.section->alignment_power;
1536
1537      olddef = FALSE;
1538      olddyncommon = FALSE;
1539
1540      h->root.type = bfd_link_hash_undefined;
1541      h->root.u.undef.abfd = h->root.u.def.section->owner;
1542
1543      *size_change_ok = TRUE;
1544      *type_change_ok = TRUE;
1545
1546      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1547	flip = *sym_hash;
1548      else
1549	h->verinfo.vertree = NULL;
1550    }
1551
1552  if (flip != NULL)
1553    {
1554      /* Handle the case where we had a versioned symbol in a dynamic
1555	 library and now find a definition in a normal object.  In this
1556	 case, we make the versioned symbol point to the normal one.  */
1557      flip->root.type = h->root.type;
1558      flip->root.u.undef.abfd = h->root.u.undef.abfd;
1559      h->root.type = bfd_link_hash_indirect;
1560      h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1561      (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1562      if (h->def_dynamic)
1563	{
1564	  h->def_dynamic = 0;
1565	  flip->ref_dynamic = 1;
1566	}
1567    }
1568
1569  return TRUE;
1570}
1571
1572/* This function is called to create an indirect symbol from the
1573   default for the symbol with the default version if needed. The
1574   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1575   set DYNSYM if the new indirect symbol is dynamic.  */
1576
1577static bfd_boolean
1578_bfd_elf_add_default_symbol (bfd *abfd,
1579			     struct bfd_link_info *info,
1580			     struct elf_link_hash_entry *h,
1581			     const char *name,
1582			     Elf_Internal_Sym *sym,
1583			     asection **psec,
1584			     bfd_vma *value,
1585			     bfd_boolean *dynsym,
1586			     bfd_boolean override)
1587{
1588  bfd_boolean type_change_ok;
1589  bfd_boolean size_change_ok;
1590  bfd_boolean skip;
1591  char *shortname;
1592  struct elf_link_hash_entry *hi;
1593  struct bfd_link_hash_entry *bh;
1594  const struct elf_backend_data *bed;
1595  bfd_boolean collect;
1596  bfd_boolean dynamic;
1597  char *p;
1598  size_t len, shortlen;
1599  asection *sec;
1600
1601  /* If this symbol has a version, and it is the default version, we
1602     create an indirect symbol from the default name to the fully
1603     decorated name.  This will cause external references which do not
1604     specify a version to be bound to this version of the symbol.  */
1605  p = strchr (name, ELF_VER_CHR);
1606  if (p == NULL || p[1] != ELF_VER_CHR)
1607    return TRUE;
1608
1609  if (override)
1610    {
1611      /* We are overridden by an old definition. We need to check if we
1612	 need to create the indirect symbol from the default name.  */
1613      hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1614				 FALSE, FALSE);
1615      BFD_ASSERT (hi != NULL);
1616      if (hi == h)
1617	return TRUE;
1618      while (hi->root.type == bfd_link_hash_indirect
1619	     || hi->root.type == bfd_link_hash_warning)
1620	{
1621	  hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1622	  if (hi == h)
1623	    return TRUE;
1624	}
1625    }
1626
1627  bed = get_elf_backend_data (abfd);
1628  collect = bed->collect;
1629  dynamic = (abfd->flags & DYNAMIC) != 0;
1630
1631  shortlen = p - name;
1632  shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1633  if (shortname == NULL)
1634    return FALSE;
1635  memcpy (shortname, name, shortlen);
1636  shortname[shortlen] = '\0';
1637
1638  /* We are going to create a new symbol.  Merge it with any existing
1639     symbol with this name.  For the purposes of the merge, act as
1640     though we were defining the symbol we just defined, although we
1641     actually going to define an indirect symbol.  */
1642  type_change_ok = FALSE;
1643  size_change_ok = FALSE;
1644  sec = *psec;
1645  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1646			      NULL, &hi, &skip, &override,
1647			      &type_change_ok, &size_change_ok))
1648    return FALSE;
1649
1650  if (skip)
1651    goto nondefault;
1652
1653  if (! override)
1654    {
1655      bh = &hi->root;
1656      if (! (_bfd_generic_link_add_one_symbol
1657	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1658	      0, name, FALSE, collect, &bh)))
1659	return FALSE;
1660      hi = (struct elf_link_hash_entry *) bh;
1661    }
1662  else
1663    {
1664      /* In this case the symbol named SHORTNAME is overriding the
1665	 indirect symbol we want to add.  We were planning on making
1666	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1667	 is the name without a version.  NAME is the fully versioned
1668	 name, and it is the default version.
1669
1670	 Overriding means that we already saw a definition for the
1671	 symbol SHORTNAME in a regular object, and it is overriding
1672	 the symbol defined in the dynamic object.
1673
1674	 When this happens, we actually want to change NAME, the
1675	 symbol we just added, to refer to SHORTNAME.  This will cause
1676	 references to NAME in the shared object to become references
1677	 to SHORTNAME in the regular object.  This is what we expect
1678	 when we override a function in a shared object: that the
1679	 references in the shared object will be mapped to the
1680	 definition in the regular object.  */
1681
1682      while (hi->root.type == bfd_link_hash_indirect
1683	     || hi->root.type == bfd_link_hash_warning)
1684	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1685
1686      h->root.type = bfd_link_hash_indirect;
1687      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1688      if (h->def_dynamic)
1689	{
1690	  h->def_dynamic = 0;
1691	  hi->ref_dynamic = 1;
1692	  if (hi->ref_regular
1693	      || hi->def_regular)
1694	    {
1695	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1696		return FALSE;
1697	    }
1698	}
1699
1700      /* Now set HI to H, so that the following code will set the
1701	 other fields correctly.  */
1702      hi = h;
1703    }
1704
1705  /* Check if HI is a warning symbol.  */
1706  if (hi->root.type == bfd_link_hash_warning)
1707    hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708
1709  /* If there is a duplicate definition somewhere, then HI may not
1710     point to an indirect symbol.  We will have reported an error to
1711     the user in that case.  */
1712
1713  if (hi->root.type == bfd_link_hash_indirect)
1714    {
1715      struct elf_link_hash_entry *ht;
1716
1717      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1718      (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1719
1720      /* See if the new flags lead us to realize that the symbol must
1721	 be dynamic.  */
1722      if (! *dynsym)
1723	{
1724	  if (! dynamic)
1725	    {
1726	      if (! info->executable
1727		  || hi->ref_dynamic)
1728		*dynsym = TRUE;
1729	    }
1730	  else
1731	    {
1732	      if (hi->ref_regular)
1733		*dynsym = TRUE;
1734	    }
1735	}
1736    }
1737
1738  /* We also need to define an indirection from the nondefault version
1739     of the symbol.  */
1740
1741nondefault:
1742  len = strlen (name);
1743  shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1744  if (shortname == NULL)
1745    return FALSE;
1746  memcpy (shortname, name, shortlen);
1747  memcpy (shortname + shortlen, p + 1, len - shortlen);
1748
1749  /* Once again, merge with any existing symbol.  */
1750  type_change_ok = FALSE;
1751  size_change_ok = FALSE;
1752  sec = *psec;
1753  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1754			      NULL, &hi, &skip, &override,
1755			      &type_change_ok, &size_change_ok))
1756    return FALSE;
1757
1758  if (skip)
1759    return TRUE;
1760
1761  if (override)
1762    {
1763      /* Here SHORTNAME is a versioned name, so we don't expect to see
1764	 the type of override we do in the case above unless it is
1765	 overridden by a versioned definition.  */
1766      if (hi->root.type != bfd_link_hash_defined
1767	  && hi->root.type != bfd_link_hash_defweak)
1768	(*_bfd_error_handler)
1769	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1770	   abfd, shortname);
1771    }
1772  else
1773    {
1774      bh = &hi->root;
1775      if (! (_bfd_generic_link_add_one_symbol
1776	     (info, abfd, shortname, BSF_INDIRECT,
1777	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1778	return FALSE;
1779      hi = (struct elf_link_hash_entry *) bh;
1780
1781      /* If there is a duplicate definition somewhere, then HI may not
1782	 point to an indirect symbol.  We will have reported an error
1783	 to the user in that case.  */
1784
1785      if (hi->root.type == bfd_link_hash_indirect)
1786	{
1787	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1788
1789	  /* See if the new flags lead us to realize that the symbol
1790	     must be dynamic.  */
1791	  if (! *dynsym)
1792	    {
1793	      if (! dynamic)
1794		{
1795		  if (! info->executable
1796		      || hi->ref_dynamic)
1797		    *dynsym = TRUE;
1798		}
1799	      else
1800		{
1801		  if (hi->ref_regular)
1802		    *dynsym = TRUE;
1803		}
1804	    }
1805	}
1806    }
1807
1808  return TRUE;
1809}
1810
1811/* This routine is used to export all defined symbols into the dynamic
1812   symbol table.  It is called via elf_link_hash_traverse.  */
1813
1814static bfd_boolean
1815_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1816{
1817  struct elf_info_failed *eif = (struct elf_info_failed *) data;
1818
1819  /* Ignore this if we won't export it.  */
1820  if (!eif->info->export_dynamic && !h->dynamic)
1821    return TRUE;
1822
1823  /* Ignore indirect symbols.  These are added by the versioning code.  */
1824  if (h->root.type == bfd_link_hash_indirect)
1825    return TRUE;
1826
1827  if (h->root.type == bfd_link_hash_warning)
1828    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1829
1830  if (h->dynindx == -1
1831      && (h->def_regular
1832	  || h->ref_regular))
1833    {
1834      bfd_boolean hide;
1835
1836      if (eif->verdefs == NULL
1837	  || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1838	      && !hide))
1839	{
1840	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1841	    {
1842	      eif->failed = TRUE;
1843	      return FALSE;
1844	    }
1845	}
1846    }
1847
1848  return TRUE;
1849}
1850
1851/* Look through the symbols which are defined in other shared
1852   libraries and referenced here.  Update the list of version
1853   dependencies.  This will be put into the .gnu.version_r section.
1854   This function is called via elf_link_hash_traverse.  */
1855
1856static bfd_boolean
1857_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1858					 void *data)
1859{
1860  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1861  Elf_Internal_Verneed *t;
1862  Elf_Internal_Vernaux *a;
1863  bfd_size_type amt;
1864
1865  if (h->root.type == bfd_link_hash_warning)
1866    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1867
1868  /* We only care about symbols defined in shared objects with version
1869     information.  */
1870  if (!h->def_dynamic
1871      || h->def_regular
1872      || h->dynindx == -1
1873      || h->verinfo.verdef == NULL)
1874    return TRUE;
1875
1876  /* See if we already know about this version.  */
1877  for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1878       t != NULL;
1879       t = t->vn_nextref)
1880    {
1881      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1882	continue;
1883
1884      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1885	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1886	  return TRUE;
1887
1888      break;
1889    }
1890
1891  /* This is a new version.  Add it to tree we are building.  */
1892
1893  if (t == NULL)
1894    {
1895      amt = sizeof *t;
1896      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1897      if (t == NULL)
1898	{
1899	  rinfo->failed = TRUE;
1900	  return FALSE;
1901	}
1902
1903      t->vn_bfd = h->verinfo.verdef->vd_bfd;
1904      t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1905      elf_tdata (rinfo->info->output_bfd)->verref = t;
1906    }
1907
1908  amt = sizeof *a;
1909  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1910  if (a == NULL)
1911    {
1912      rinfo->failed = TRUE;
1913      return FALSE;
1914    }
1915
1916  /* Note that we are copying a string pointer here, and testing it
1917     above.  If bfd_elf_string_from_elf_section is ever changed to
1918     discard the string data when low in memory, this will have to be
1919     fixed.  */
1920  a->vna_nodename = h->verinfo.verdef->vd_nodename;
1921
1922  a->vna_flags = h->verinfo.verdef->vd_flags;
1923  a->vna_nextptr = t->vn_auxptr;
1924
1925  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1926  ++rinfo->vers;
1927
1928  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1929
1930  t->vn_auxptr = a;
1931
1932  return TRUE;
1933}
1934
1935/* Figure out appropriate versions for all the symbols.  We may not
1936   have the version number script until we have read all of the input
1937   files, so until that point we don't know which symbols should be
1938   local.  This function is called via elf_link_hash_traverse.  */
1939
1940static bfd_boolean
1941_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1942{
1943  struct elf_info_failed *sinfo;
1944  struct bfd_link_info *info;
1945  const struct elf_backend_data *bed;
1946  struct elf_info_failed eif;
1947  char *p;
1948  bfd_size_type amt;
1949
1950  sinfo = (struct elf_info_failed *) data;
1951  info = sinfo->info;
1952
1953  if (h->root.type == bfd_link_hash_warning)
1954    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1955
1956  /* Fix the symbol flags.  */
1957  eif.failed = FALSE;
1958  eif.info = info;
1959  if (! _bfd_elf_fix_symbol_flags (h, &eif))
1960    {
1961      if (eif.failed)
1962	sinfo->failed = TRUE;
1963      return FALSE;
1964    }
1965
1966  /* We only need version numbers for symbols defined in regular
1967     objects.  */
1968  if (!h->def_regular)
1969    return TRUE;
1970
1971  bed = get_elf_backend_data (info->output_bfd);
1972  p = strchr (h->root.root.string, ELF_VER_CHR);
1973  if (p != NULL && h->verinfo.vertree == NULL)
1974    {
1975      struct bfd_elf_version_tree *t;
1976      bfd_boolean hidden;
1977
1978      hidden = TRUE;
1979
1980      /* There are two consecutive ELF_VER_CHR characters if this is
1981	 not a hidden symbol.  */
1982      ++p;
1983      if (*p == ELF_VER_CHR)
1984	{
1985	  hidden = FALSE;
1986	  ++p;
1987	}
1988
1989      /* If there is no version string, we can just return out.  */
1990      if (*p == '\0')
1991	{
1992	  if (hidden)
1993	    h->hidden = 1;
1994	  return TRUE;
1995	}
1996
1997      /* Look for the version.  If we find it, it is no longer weak.  */
1998      for (t = sinfo->verdefs; t != NULL; t = t->next)
1999	{
2000	  if (strcmp (t->name, p) == 0)
2001	    {
2002	      size_t len;
2003	      char *alc;
2004	      struct bfd_elf_version_expr *d;
2005
2006	      len = p - h->root.root.string;
2007	      alc = (char *) bfd_malloc (len);
2008	      if (alc == NULL)
2009		{
2010		  sinfo->failed = TRUE;
2011		  return FALSE;
2012		}
2013	      memcpy (alc, h->root.root.string, len - 1);
2014	      alc[len - 1] = '\0';
2015	      if (alc[len - 2] == ELF_VER_CHR)
2016		alc[len - 2] = '\0';
2017
2018	      h->verinfo.vertree = t;
2019	      t->used = TRUE;
2020	      d = NULL;
2021
2022	      if (t->globals.list != NULL)
2023		d = (*t->match) (&t->globals, NULL, alc);
2024
2025	      /* See if there is anything to force this symbol to
2026		 local scope.  */
2027	      if (d == NULL && t->locals.list != NULL)
2028		{
2029		  d = (*t->match) (&t->locals, NULL, alc);
2030		  if (d != NULL
2031		      && h->dynindx != -1
2032		      && ! info->export_dynamic)
2033		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2034		}
2035
2036	      free (alc);
2037	      break;
2038	    }
2039	}
2040
2041      /* If we are building an application, we need to create a
2042	 version node for this version.  */
2043      if (t == NULL && info->executable)
2044	{
2045	  struct bfd_elf_version_tree **pp;
2046	  int version_index;
2047
2048	  /* If we aren't going to export this symbol, we don't need
2049	     to worry about it.  */
2050	  if (h->dynindx == -1)
2051	    return TRUE;
2052
2053	  amt = sizeof *t;
2054	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2055	  if (t == NULL)
2056	    {
2057	      sinfo->failed = TRUE;
2058	      return FALSE;
2059	    }
2060
2061	  t->name = p;
2062	  t->name_indx = (unsigned int) -1;
2063	  t->used = TRUE;
2064
2065	  version_index = 1;
2066	  /* Don't count anonymous version tag.  */
2067	  if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2068	    version_index = 0;
2069	  for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2070	    ++version_index;
2071	  t->vernum = version_index;
2072
2073	  *pp = t;
2074
2075	  h->verinfo.vertree = t;
2076	}
2077      else if (t == NULL)
2078	{
2079	  /* We could not find the version for a symbol when
2080	     generating a shared archive.  Return an error.  */
2081	  (*_bfd_error_handler)
2082	    (_("%B: version node not found for symbol %s"),
2083	     info->output_bfd, h->root.root.string);
2084	  bfd_set_error (bfd_error_bad_value);
2085	  sinfo->failed = TRUE;
2086	  return FALSE;
2087	}
2088
2089      if (hidden)
2090	h->hidden = 1;
2091    }
2092
2093  /* If we don't have a version for this symbol, see if we can find
2094     something.  */
2095  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2096    {
2097      bfd_boolean hide;
2098
2099      h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2100						 h->root.root.string, &hide);
2101      if (h->verinfo.vertree != NULL && hide)
2102	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103    }
2104
2105  return TRUE;
2106}
2107
2108/* Read and swap the relocs from the section indicated by SHDR.  This
2109   may be either a REL or a RELA section.  The relocations are
2110   translated into RELA relocations and stored in INTERNAL_RELOCS,
2111   which should have already been allocated to contain enough space.
2112   The EXTERNAL_RELOCS are a buffer where the external form of the
2113   relocations should be stored.
2114
2115   Returns FALSE if something goes wrong.  */
2116
2117static bfd_boolean
2118elf_link_read_relocs_from_section (bfd *abfd,
2119				   asection *sec,
2120				   Elf_Internal_Shdr *shdr,
2121				   void *external_relocs,
2122				   Elf_Internal_Rela *internal_relocs)
2123{
2124  const struct elf_backend_data *bed;
2125  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126  const bfd_byte *erela;
2127  const bfd_byte *erelaend;
2128  Elf_Internal_Rela *irela;
2129  Elf_Internal_Shdr *symtab_hdr;
2130  size_t nsyms;
2131
2132  /* Position ourselves at the start of the section.  */
2133  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2134    return FALSE;
2135
2136  /* Read the relocations.  */
2137  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2138    return FALSE;
2139
2140  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2142
2143  bed = get_elf_backend_data (abfd);
2144
2145  /* Convert the external relocations to the internal format.  */
2146  if (shdr->sh_entsize == bed->s->sizeof_rel)
2147    swap_in = bed->s->swap_reloc_in;
2148  else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149    swap_in = bed->s->swap_reloca_in;
2150  else
2151    {
2152      bfd_set_error (bfd_error_wrong_format);
2153      return FALSE;
2154    }
2155
2156  erela = (const bfd_byte *) external_relocs;
2157  erelaend = erela + shdr->sh_size;
2158  irela = internal_relocs;
2159  while (erela < erelaend)
2160    {
2161      bfd_vma r_symndx;
2162
2163      (*swap_in) (abfd, erela, irela);
2164      r_symndx = ELF32_R_SYM (irela->r_info);
2165      if (bed->s->arch_size == 64)
2166	r_symndx >>= 24;
2167      if (nsyms > 0)
2168	{
2169	  if ((size_t) r_symndx >= nsyms)
2170	    {
2171	      (*_bfd_error_handler)
2172		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173		   " for offset 0x%lx in section `%A'"),
2174		 abfd, sec,
2175		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176	      bfd_set_error (bfd_error_bad_value);
2177	      return FALSE;
2178	    }
2179	}
2180      else if (r_symndx != STN_UNDEF)
2181	{
2182	  (*_bfd_error_handler)
2183	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184	       " when the object file has no symbol table"),
2185	     abfd, sec,
2186	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187	  bfd_set_error (bfd_error_bad_value);
2188	  return FALSE;
2189	}
2190      irela += bed->s->int_rels_per_ext_rel;
2191      erela += shdr->sh_entsize;
2192    }
2193
2194  return TRUE;
2195}
2196
2197/* Read and swap the relocs for a section O.  They may have been
2198   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199   not NULL, they are used as buffers to read into.  They are known to
2200   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2201   the return value is allocated using either malloc or bfd_alloc,
2202   according to the KEEP_MEMORY argument.  If O has two relocation
2203   sections (both REL and RELA relocations), then the REL_HDR
2204   relocations will appear first in INTERNAL_RELOCS, followed by the
2205   RELA_HDR relocations.  */
2206
2207Elf_Internal_Rela *
2208_bfd_elf_link_read_relocs (bfd *abfd,
2209			   asection *o,
2210			   void *external_relocs,
2211			   Elf_Internal_Rela *internal_relocs,
2212			   bfd_boolean keep_memory)
2213{
2214  void *alloc1 = NULL;
2215  Elf_Internal_Rela *alloc2 = NULL;
2216  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217  struct bfd_elf_section_data *esdo = elf_section_data (o);
2218  Elf_Internal_Rela *internal_rela_relocs;
2219
2220  if (esdo->relocs != NULL)
2221    return esdo->relocs;
2222
2223  if (o->reloc_count == 0)
2224    return NULL;
2225
2226  if (internal_relocs == NULL)
2227    {
2228      bfd_size_type size;
2229
2230      size = o->reloc_count;
2231      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2232      if (keep_memory)
2233	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2234      else
2235	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236      if (internal_relocs == NULL)
2237	goto error_return;
2238    }
2239
2240  if (external_relocs == NULL)
2241    {
2242      bfd_size_type size = 0;
2243
2244      if (esdo->rel.hdr)
2245	size += esdo->rel.hdr->sh_size;
2246      if (esdo->rela.hdr)
2247	size += esdo->rela.hdr->sh_size;
2248
2249      alloc1 = bfd_malloc (size);
2250      if (alloc1 == NULL)
2251	goto error_return;
2252      external_relocs = alloc1;
2253    }
2254
2255  internal_rela_relocs = internal_relocs;
2256  if (esdo->rel.hdr)
2257    {
2258      if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2259					      external_relocs,
2260					      internal_relocs))
2261	goto error_return;
2262      external_relocs = (((bfd_byte *) external_relocs)
2263			 + esdo->rel.hdr->sh_size);
2264      internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265			       * bed->s->int_rels_per_ext_rel);
2266    }
2267
2268  if (esdo->rela.hdr
2269      && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2270					      external_relocs,
2271					      internal_rela_relocs)))
2272    goto error_return;
2273
2274  /* Cache the results for next time, if we can.  */
2275  if (keep_memory)
2276    esdo->relocs = internal_relocs;
2277
2278  if (alloc1 != NULL)
2279    free (alloc1);
2280
2281  /* Don't free alloc2, since if it was allocated we are passing it
2282     back (under the name of internal_relocs).  */
2283
2284  return internal_relocs;
2285
2286 error_return:
2287  if (alloc1 != NULL)
2288    free (alloc1);
2289  if (alloc2 != NULL)
2290    {
2291      if (keep_memory)
2292	bfd_release (abfd, alloc2);
2293      else
2294	free (alloc2);
2295    }
2296  return NULL;
2297}
2298
2299/* Compute the size of, and allocate space for, REL_HDR which is the
2300   section header for a section containing relocations for O.  */
2301
2302static bfd_boolean
2303_bfd_elf_link_size_reloc_section (bfd *abfd,
2304				  struct bfd_elf_section_reloc_data *reldata)
2305{
2306  Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2307
2308  /* That allows us to calculate the size of the section.  */
2309  rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2310
2311  /* The contents field must last into write_object_contents, so we
2312     allocate it with bfd_alloc rather than malloc.  Also since we
2313     cannot be sure that the contents will actually be filled in,
2314     we zero the allocated space.  */
2315  rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2317    return FALSE;
2318
2319  if (reldata->hashes == NULL && reldata->count)
2320    {
2321      struct elf_link_hash_entry **p;
2322
2323      p = (struct elf_link_hash_entry **)
2324          bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2325      if (p == NULL)
2326	return FALSE;
2327
2328      reldata->hashes = p;
2329    }
2330
2331  return TRUE;
2332}
2333
2334/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335   originated from the section given by INPUT_REL_HDR) to the
2336   OUTPUT_BFD.  */
2337
2338bfd_boolean
2339_bfd_elf_link_output_relocs (bfd *output_bfd,
2340			     asection *input_section,
2341			     Elf_Internal_Shdr *input_rel_hdr,
2342			     Elf_Internal_Rela *internal_relocs,
2343			     struct elf_link_hash_entry **rel_hash
2344			       ATTRIBUTE_UNUSED)
2345{
2346  Elf_Internal_Rela *irela;
2347  Elf_Internal_Rela *irelaend;
2348  bfd_byte *erel;
2349  struct bfd_elf_section_reloc_data *output_reldata;
2350  asection *output_section;
2351  const struct elf_backend_data *bed;
2352  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353  struct bfd_elf_section_data *esdo;
2354
2355  output_section = input_section->output_section;
2356
2357  bed = get_elf_backend_data (output_bfd);
2358  esdo = elf_section_data (output_section);
2359  if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360    {
2361      output_reldata = &esdo->rel;
2362      swap_out = bed->s->swap_reloc_out;
2363    }
2364  else if (esdo->rela.hdr
2365	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2366    {
2367      output_reldata = &esdo->rela;
2368      swap_out = bed->s->swap_reloca_out;
2369    }
2370  else
2371    {
2372      (*_bfd_error_handler)
2373	(_("%B: relocation size mismatch in %B section %A"),
2374	 output_bfd, input_section->owner, input_section);
2375      bfd_set_error (bfd_error_wrong_format);
2376      return FALSE;
2377    }
2378
2379  erel = output_reldata->hdr->contents;
2380  erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381  irela = internal_relocs;
2382  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383		      * bed->s->int_rels_per_ext_rel);
2384  while (irela < irelaend)
2385    {
2386      (*swap_out) (output_bfd, irela, erel);
2387      irela += bed->s->int_rels_per_ext_rel;
2388      erel += input_rel_hdr->sh_entsize;
2389    }
2390
2391  /* Bump the counter, so that we know where to add the next set of
2392     relocations.  */
2393  output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2394
2395  return TRUE;
2396}
2397
2398/* Make weak undefined symbols in PIE dynamic.  */
2399
2400bfd_boolean
2401_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402				 struct elf_link_hash_entry *h)
2403{
2404  if (info->pie
2405      && h->dynindx == -1
2406      && h->root.type == bfd_link_hash_undefweak)
2407    return bfd_elf_link_record_dynamic_symbol (info, h);
2408
2409  return TRUE;
2410}
2411
2412/* Fix up the flags for a symbol.  This handles various cases which
2413   can only be fixed after all the input files are seen.  This is
2414   currently called by both adjust_dynamic_symbol and
2415   assign_sym_version, which is unnecessary but perhaps more robust in
2416   the face of future changes.  */
2417
2418static bfd_boolean
2419_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420			   struct elf_info_failed *eif)
2421{
2422  const struct elf_backend_data *bed;
2423
2424  /* If this symbol was mentioned in a non-ELF file, try to set
2425     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2426     permit a non-ELF file to correctly refer to a symbol defined in
2427     an ELF dynamic object.  */
2428  if (h->non_elf)
2429    {
2430      while (h->root.type == bfd_link_hash_indirect)
2431	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2432
2433      if (h->root.type != bfd_link_hash_defined
2434	  && h->root.type != bfd_link_hash_defweak)
2435	{
2436	  h->ref_regular = 1;
2437	  h->ref_regular_nonweak = 1;
2438	}
2439      else
2440	{
2441	  if (h->root.u.def.section->owner != NULL
2442	      && (bfd_get_flavour (h->root.u.def.section->owner)
2443		  == bfd_target_elf_flavour))
2444	    {
2445	      h->ref_regular = 1;
2446	      h->ref_regular_nonweak = 1;
2447	    }
2448	  else
2449	    h->def_regular = 1;
2450	}
2451
2452      if (h->dynindx == -1
2453	  && (h->def_dynamic
2454	      || h->ref_dynamic))
2455	{
2456	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2457	    {
2458	      eif->failed = TRUE;
2459	      return FALSE;
2460	    }
2461	}
2462    }
2463  else
2464    {
2465      /* Unfortunately, NON_ELF is only correct if the symbol
2466	 was first seen in a non-ELF file.  Fortunately, if the symbol
2467	 was first seen in an ELF file, we're probably OK unless the
2468	 symbol was defined in a non-ELF file.  Catch that case here.
2469	 FIXME: We're still in trouble if the symbol was first seen in
2470	 a dynamic object, and then later in a non-ELF regular object.  */
2471      if ((h->root.type == bfd_link_hash_defined
2472	   || h->root.type == bfd_link_hash_defweak)
2473	  && !h->def_regular
2474	  && (h->root.u.def.section->owner != NULL
2475	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2476		 != bfd_target_elf_flavour)
2477	      : (bfd_is_abs_section (h->root.u.def.section)
2478		 && !h->def_dynamic)))
2479	h->def_regular = 1;
2480    }
2481
2482  /* Backend specific symbol fixup.  */
2483  bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484  if (bed->elf_backend_fixup_symbol
2485      && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2486    return FALSE;
2487
2488  /* If this is a final link, and the symbol was defined as a common
2489     symbol in a regular object file, and there was no definition in
2490     any dynamic object, then the linker will have allocated space for
2491     the symbol in a common section but the DEF_REGULAR
2492     flag will not have been set.  */
2493  if (h->root.type == bfd_link_hash_defined
2494      && !h->def_regular
2495      && h->ref_regular
2496      && !h->def_dynamic
2497      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2498    h->def_regular = 1;
2499
2500  /* If -Bsymbolic was used (which means to bind references to global
2501     symbols to the definition within the shared object), and this
2502     symbol was defined in a regular object, then it actually doesn't
2503     need a PLT entry.  Likewise, if the symbol has non-default
2504     visibility.  If the symbol has hidden or internal visibility, we
2505     will force it local.  */
2506  if (h->needs_plt
2507      && eif->info->shared
2508      && is_elf_hash_table (eif->info->hash)
2509      && (SYMBOLIC_BIND (eif->info, h)
2510	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2511      && h->def_regular)
2512    {
2513      bfd_boolean force_local;
2514
2515      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2518    }
2519
2520  /* If a weak undefined symbol has non-default visibility, we also
2521     hide it from the dynamic linker.  */
2522  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523      && h->root.type == bfd_link_hash_undefweak)
2524    (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2525
2526  /* If this is a weak defined symbol in a dynamic object, and we know
2527     the real definition in the dynamic object, copy interesting flags
2528     over to the real definition.  */
2529  if (h->u.weakdef != NULL)
2530    {
2531      struct elf_link_hash_entry *weakdef;
2532
2533      weakdef = h->u.weakdef;
2534      if (h->root.type == bfd_link_hash_indirect)
2535	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2536
2537      BFD_ASSERT (h->root.type == bfd_link_hash_defined
2538		  || h->root.type == bfd_link_hash_defweak);
2539      BFD_ASSERT (weakdef->def_dynamic);
2540
2541      /* If the real definition is defined by a regular object file,
2542	 don't do anything special.  See the longer description in
2543	 _bfd_elf_adjust_dynamic_symbol, below.  */
2544      if (weakdef->def_regular)
2545	h->u.weakdef = NULL;
2546      else
2547	{
2548	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2549		      || weakdef->root.type == bfd_link_hash_defweak);
2550	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2551	}
2552    }
2553
2554  return TRUE;
2555}
2556
2557/* Make the backend pick a good value for a dynamic symbol.  This is
2558   called via elf_link_hash_traverse, and also calls itself
2559   recursively.  */
2560
2561static bfd_boolean
2562_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2563{
2564  struct elf_info_failed *eif = (struct elf_info_failed *) data;
2565  bfd *dynobj;
2566  const struct elf_backend_data *bed;
2567
2568  if (! is_elf_hash_table (eif->info->hash))
2569    return FALSE;
2570
2571  if (h->root.type == bfd_link_hash_warning)
2572    {
2573      h->got = elf_hash_table (eif->info)->init_got_offset;
2574      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2575
2576      /* When warning symbols are created, they **replace** the "real"
2577	 entry in the hash table, thus we never get to see the real
2578	 symbol in a hash traversal.  So look at it now.  */
2579      h = (struct elf_link_hash_entry *) h->root.u.i.link;
2580    }
2581
2582  /* Ignore indirect symbols.  These are added by the versioning code.  */
2583  if (h->root.type == bfd_link_hash_indirect)
2584    return TRUE;
2585
2586  /* Fix the symbol flags.  */
2587  if (! _bfd_elf_fix_symbol_flags (h, eif))
2588    return FALSE;
2589
2590  /* If this symbol does not require a PLT entry, and it is not
2591     defined by a dynamic object, or is not referenced by a regular
2592     object, ignore it.  We do have to handle a weak defined symbol,
2593     even if no regular object refers to it, if we decided to add it
2594     to the dynamic symbol table.  FIXME: Do we normally need to worry
2595     about symbols which are defined by one dynamic object and
2596     referenced by another one?  */
2597  if (!h->needs_plt
2598      && h->type != STT_GNU_IFUNC
2599      && (h->def_regular
2600	  || !h->def_dynamic
2601	  || (!h->ref_regular
2602	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2603    {
2604      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2605      return TRUE;
2606    }
2607
2608  /* If we've already adjusted this symbol, don't do it again.  This
2609     can happen via a recursive call.  */
2610  if (h->dynamic_adjusted)
2611    return TRUE;
2612
2613  /* Don't look at this symbol again.  Note that we must set this
2614     after checking the above conditions, because we may look at a
2615     symbol once, decide not to do anything, and then get called
2616     recursively later after REF_REGULAR is set below.  */
2617  h->dynamic_adjusted = 1;
2618
2619  /* If this is a weak definition, and we know a real definition, and
2620     the real symbol is not itself defined by a regular object file,
2621     then get a good value for the real definition.  We handle the
2622     real symbol first, for the convenience of the backend routine.
2623
2624     Note that there is a confusing case here.  If the real definition
2625     is defined by a regular object file, we don't get the real symbol
2626     from the dynamic object, but we do get the weak symbol.  If the
2627     processor backend uses a COPY reloc, then if some routine in the
2628     dynamic object changes the real symbol, we will not see that
2629     change in the corresponding weak symbol.  This is the way other
2630     ELF linkers work as well, and seems to be a result of the shared
2631     library model.
2632
2633     I will clarify this issue.  Most SVR4 shared libraries define the
2634     variable _timezone and define timezone as a weak synonym.  The
2635     tzset call changes _timezone.  If you write
2636       extern int timezone;
2637       int _timezone = 5;
2638       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2639     you might expect that, since timezone is a synonym for _timezone,
2640     the same number will print both times.  However, if the processor
2641     backend uses a COPY reloc, then actually timezone will be copied
2642     into your process image, and, since you define _timezone
2643     yourself, _timezone will not.  Thus timezone and _timezone will
2644     wind up at different memory locations.  The tzset call will set
2645     _timezone, leaving timezone unchanged.  */
2646
2647  if (h->u.weakdef != NULL)
2648    {
2649      /* If we get to this point, we know there is an implicit
2650	 reference by a regular object file via the weak symbol H.
2651	 FIXME: Is this really true?  What if the traversal finds
2652	 H->U.WEAKDEF before it finds H?  */
2653      h->u.weakdef->ref_regular = 1;
2654
2655      if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2656	return FALSE;
2657    }
2658
2659  /* If a symbol has no type and no size and does not require a PLT
2660     entry, then we are probably about to do the wrong thing here: we
2661     are probably going to create a COPY reloc for an empty object.
2662     This case can arise when a shared object is built with assembly
2663     code, and the assembly code fails to set the symbol type.  */
2664  if (h->size == 0
2665      && h->type == STT_NOTYPE
2666      && !h->needs_plt)
2667    (*_bfd_error_handler)
2668      (_("warning: type and size of dynamic symbol `%s' are not defined"),
2669       h->root.root.string);
2670
2671  dynobj = elf_hash_table (eif->info)->dynobj;
2672  bed = get_elf_backend_data (dynobj);
2673
2674  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2675    {
2676      eif->failed = TRUE;
2677      return FALSE;
2678    }
2679
2680  return TRUE;
2681}
2682
2683/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2684   DYNBSS.  */
2685
2686bfd_boolean
2687_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2688			      asection *dynbss)
2689{
2690  unsigned int power_of_two;
2691  bfd_vma mask;
2692  asection *sec = h->root.u.def.section;
2693
2694  /* The section aligment of definition is the maximum alignment
2695     requirement of symbols defined in the section.  Since we don't
2696     know the symbol alignment requirement, we start with the
2697     maximum alignment and check low bits of the symbol address
2698     for the minimum alignment.  */
2699  power_of_two = bfd_get_section_alignment (sec->owner, sec);
2700  mask = ((bfd_vma) 1 << power_of_two) - 1;
2701  while ((h->root.u.def.value & mask) != 0)
2702    {
2703       mask >>= 1;
2704       --power_of_two;
2705    }
2706
2707  if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2708						dynbss))
2709    {
2710      /* Adjust the section alignment if needed.  */
2711      if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2712				       power_of_two))
2713	return FALSE;
2714    }
2715
2716  /* We make sure that the symbol will be aligned properly.  */
2717  dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2718
2719  /* Define the symbol as being at this point in DYNBSS.  */
2720  h->root.u.def.section = dynbss;
2721  h->root.u.def.value = dynbss->size;
2722
2723  /* Increment the size of DYNBSS to make room for the symbol.  */
2724  dynbss->size += h->size;
2725
2726  return TRUE;
2727}
2728
2729/* Adjust all external symbols pointing into SEC_MERGE sections
2730   to reflect the object merging within the sections.  */
2731
2732static bfd_boolean
2733_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2734{
2735  asection *sec;
2736
2737  if (h->root.type == bfd_link_hash_warning)
2738    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2739
2740  if ((h->root.type == bfd_link_hash_defined
2741       || h->root.type == bfd_link_hash_defweak)
2742      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2743      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2744    {
2745      bfd *output_bfd = (bfd *) data;
2746
2747      h->root.u.def.value =
2748	_bfd_merged_section_offset (output_bfd,
2749				    &h->root.u.def.section,
2750				    elf_section_data (sec)->sec_info,
2751				    h->root.u.def.value);
2752    }
2753
2754  return TRUE;
2755}
2756
2757/* Returns false if the symbol referred to by H should be considered
2758   to resolve local to the current module, and true if it should be
2759   considered to bind dynamically.  */
2760
2761bfd_boolean
2762_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2763			   struct bfd_link_info *info,
2764			   bfd_boolean not_local_protected)
2765{
2766  bfd_boolean binding_stays_local_p;
2767  const struct elf_backend_data *bed;
2768  struct elf_link_hash_table *hash_table;
2769
2770  if (h == NULL)
2771    return FALSE;
2772
2773  while (h->root.type == bfd_link_hash_indirect
2774	 || h->root.type == bfd_link_hash_warning)
2775    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2776
2777  /* If it was forced local, then clearly it's not dynamic.  */
2778  if (h->dynindx == -1)
2779    return FALSE;
2780  if (h->forced_local)
2781    return FALSE;
2782
2783  /* Identify the cases where name binding rules say that a
2784     visible symbol resolves locally.  */
2785  binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2786
2787  switch (ELF_ST_VISIBILITY (h->other))
2788    {
2789    case STV_INTERNAL:
2790    case STV_HIDDEN:
2791      return FALSE;
2792
2793    case STV_PROTECTED:
2794      hash_table = elf_hash_table (info);
2795      if (!is_elf_hash_table (hash_table))
2796	return FALSE;
2797
2798      bed = get_elf_backend_data (hash_table->dynobj);
2799
2800      /* Proper resolution for function pointer equality may require
2801	 that these symbols perhaps be resolved dynamically, even though
2802	 we should be resolving them to the current module.  */
2803      if (!not_local_protected || !bed->is_function_type (h->type))
2804	binding_stays_local_p = TRUE;
2805      break;
2806
2807    default:
2808      break;
2809    }
2810
2811  /* If it isn't defined locally, then clearly it's dynamic.  */
2812  if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2813    return TRUE;
2814
2815  /* Otherwise, the symbol is dynamic if binding rules don't tell
2816     us that it remains local.  */
2817  return !binding_stays_local_p;
2818}
2819
2820/* Return true if the symbol referred to by H should be considered
2821   to resolve local to the current module, and false otherwise.  Differs
2822   from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2823   undefined symbols.  The two functions are virtually identical except
2824   for the place where forced_local and dynindx == -1 are tested.  If
2825   either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2826   the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2827   the symbol is local only for defined symbols.
2828   It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2829   !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2830   treatment of undefined weak symbols.  For those that do not make
2831   undefined weak symbols dynamic, both functions may return false.  */
2832
2833bfd_boolean
2834_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2835			      struct bfd_link_info *info,
2836			      bfd_boolean local_protected)
2837{
2838  const struct elf_backend_data *bed;
2839  struct elf_link_hash_table *hash_table;
2840
2841  /* If it's a local sym, of course we resolve locally.  */
2842  if (h == NULL)
2843    return TRUE;
2844
2845  /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2846  if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2847      || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2848    return TRUE;
2849
2850  /* Common symbols that become definitions don't get the DEF_REGULAR
2851     flag set, so test it first, and don't bail out.  */
2852  if (ELF_COMMON_DEF_P (h))
2853    /* Do nothing.  */;
2854  /* If we don't have a definition in a regular file, then we can't
2855     resolve locally.  The sym is either undefined or dynamic.  */
2856  else if (!h->def_regular)
2857    return FALSE;
2858
2859  /* Forced local symbols resolve locally.  */
2860  if (h->forced_local)
2861    return TRUE;
2862
2863  /* As do non-dynamic symbols.  */
2864  if (h->dynindx == -1)
2865    return TRUE;
2866
2867  /* At this point, we know the symbol is defined and dynamic.  In an
2868     executable it must resolve locally, likewise when building symbolic
2869     shared libraries.  */
2870  if (info->executable || SYMBOLIC_BIND (info, h))
2871    return TRUE;
2872
2873  /* Now deal with defined dynamic symbols in shared libraries.  Ones
2874     with default visibility might not resolve locally.  */
2875  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2876    return FALSE;
2877
2878  hash_table = elf_hash_table (info);
2879  if (!is_elf_hash_table (hash_table))
2880    return TRUE;
2881
2882  bed = get_elf_backend_data (hash_table->dynobj);
2883
2884  /* STV_PROTECTED non-function symbols are local.  */
2885  if (!bed->is_function_type (h->type))
2886    return TRUE;
2887
2888  /* Function pointer equality tests may require that STV_PROTECTED
2889     symbols be treated as dynamic symbols.  If the address of a
2890     function not defined in an executable is set to that function's
2891     plt entry in the executable, then the address of the function in
2892     a shared library must also be the plt entry in the executable.  */
2893  return local_protected;
2894}
2895
2896/* Caches some TLS segment info, and ensures that the TLS segment vma is
2897   aligned.  Returns the first TLS output section.  */
2898
2899struct bfd_section *
2900_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2901{
2902  struct bfd_section *sec, *tls;
2903  unsigned int align = 0;
2904
2905  for (sec = obfd->sections; sec != NULL; sec = sec->next)
2906    if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2907      break;
2908  tls = sec;
2909
2910  for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2911    if (sec->alignment_power > align)
2912      align = sec->alignment_power;
2913
2914  elf_hash_table (info)->tls_sec = tls;
2915
2916  /* Ensure the alignment of the first section is the largest alignment,
2917     so that the tls segment starts aligned.  */
2918  if (tls != NULL)
2919    tls->alignment_power = align;
2920
2921  return tls;
2922}
2923
2924/* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2925static bfd_boolean
2926is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2927				  Elf_Internal_Sym *sym)
2928{
2929  const struct elf_backend_data *bed;
2930
2931  /* Local symbols do not count, but target specific ones might.  */
2932  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2933      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2934    return FALSE;
2935
2936  bed = get_elf_backend_data (abfd);
2937  /* Function symbols do not count.  */
2938  if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2939    return FALSE;
2940
2941  /* If the section is undefined, then so is the symbol.  */
2942  if (sym->st_shndx == SHN_UNDEF)
2943    return FALSE;
2944
2945  /* If the symbol is defined in the common section, then
2946     it is a common definition and so does not count.  */
2947  if (bed->common_definition (sym))
2948    return FALSE;
2949
2950  /* If the symbol is in a target specific section then we
2951     must rely upon the backend to tell us what it is.  */
2952  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2953    /* FIXME - this function is not coded yet:
2954
2955       return _bfd_is_global_symbol_definition (abfd, sym);
2956
2957       Instead for now assume that the definition is not global,
2958       Even if this is wrong, at least the linker will behave
2959       in the same way that it used to do.  */
2960    return FALSE;
2961
2962  return TRUE;
2963}
2964
2965/* Search the symbol table of the archive element of the archive ABFD
2966   whose archive map contains a mention of SYMDEF, and determine if
2967   the symbol is defined in this element.  */
2968static bfd_boolean
2969elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2970{
2971  Elf_Internal_Shdr * hdr;
2972  bfd_size_type symcount;
2973  bfd_size_type extsymcount;
2974  bfd_size_type extsymoff;
2975  Elf_Internal_Sym *isymbuf;
2976  Elf_Internal_Sym *isym;
2977  Elf_Internal_Sym *isymend;
2978  bfd_boolean result;
2979
2980  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2981  if (abfd == NULL)
2982    return FALSE;
2983
2984  if (! bfd_check_format (abfd, bfd_object))
2985    return FALSE;
2986
2987  /* If we have already included the element containing this symbol in the
2988     link then we do not need to include it again.  Just claim that any symbol
2989     it contains is not a definition, so that our caller will not decide to
2990     (re)include this element.  */
2991  if (abfd->archive_pass)
2992    return FALSE;
2993
2994  /* Select the appropriate symbol table.  */
2995  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2996    hdr = &elf_tdata (abfd)->symtab_hdr;
2997  else
2998    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2999
3000  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3001
3002  /* The sh_info field of the symtab header tells us where the
3003     external symbols start.  We don't care about the local symbols.  */
3004  if (elf_bad_symtab (abfd))
3005    {
3006      extsymcount = symcount;
3007      extsymoff = 0;
3008    }
3009  else
3010    {
3011      extsymcount = symcount - hdr->sh_info;
3012      extsymoff = hdr->sh_info;
3013    }
3014
3015  if (extsymcount == 0)
3016    return FALSE;
3017
3018  /* Read in the symbol table.  */
3019  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3020				  NULL, NULL, NULL);
3021  if (isymbuf == NULL)
3022    return FALSE;
3023
3024  /* Scan the symbol table looking for SYMDEF.  */
3025  result = FALSE;
3026  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3027    {
3028      const char *name;
3029
3030      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3031					      isym->st_name);
3032      if (name == NULL)
3033	break;
3034
3035      if (strcmp (name, symdef->name) == 0)
3036	{
3037	  result = is_global_data_symbol_definition (abfd, isym);
3038	  break;
3039	}
3040    }
3041
3042  free (isymbuf);
3043
3044  return result;
3045}
3046
3047/* Add an entry to the .dynamic table.  */
3048
3049bfd_boolean
3050_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3051			    bfd_vma tag,
3052			    bfd_vma val)
3053{
3054  struct elf_link_hash_table *hash_table;
3055  const struct elf_backend_data *bed;
3056  asection *s;
3057  bfd_size_type newsize;
3058  bfd_byte *newcontents;
3059  Elf_Internal_Dyn dyn;
3060
3061  hash_table = elf_hash_table (info);
3062  if (! is_elf_hash_table (hash_table))
3063    return FALSE;
3064
3065  bed = get_elf_backend_data (hash_table->dynobj);
3066  s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3067  BFD_ASSERT (s != NULL);
3068
3069  newsize = s->size + bed->s->sizeof_dyn;
3070  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3071  if (newcontents == NULL)
3072    return FALSE;
3073
3074  dyn.d_tag = tag;
3075  dyn.d_un.d_val = val;
3076  bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3077
3078  s->size = newsize;
3079  s->contents = newcontents;
3080
3081  return TRUE;
3082}
3083
3084/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3085   otherwise just check whether one already exists.  Returns -1 on error,
3086   1 if a DT_NEEDED tag already exists, and 0 on success.  */
3087
3088static int
3089elf_add_dt_needed_tag (bfd *abfd,
3090		       struct bfd_link_info *info,
3091		       const char *soname,
3092		       bfd_boolean do_it)
3093{
3094  struct elf_link_hash_table *hash_table;
3095  bfd_size_type oldsize;
3096  bfd_size_type strindex;
3097
3098  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3099    return -1;
3100
3101  hash_table = elf_hash_table (info);
3102  oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3103  strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3104  if (strindex == (bfd_size_type) -1)
3105    return -1;
3106
3107  if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3108    {
3109      asection *sdyn;
3110      const struct elf_backend_data *bed;
3111      bfd_byte *extdyn;
3112
3113      bed = get_elf_backend_data (hash_table->dynobj);
3114      sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3115      if (sdyn != NULL)
3116	for (extdyn = sdyn->contents;
3117	     extdyn < sdyn->contents + sdyn->size;
3118	     extdyn += bed->s->sizeof_dyn)
3119	  {
3120	    Elf_Internal_Dyn dyn;
3121
3122	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3123	    if (dyn.d_tag == DT_NEEDED
3124		&& dyn.d_un.d_val == strindex)
3125	      {
3126		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3127		return 1;
3128	      }
3129	  }
3130    }
3131
3132  if (do_it)
3133    {
3134      if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3135	return -1;
3136
3137      if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3138	return -1;
3139    }
3140  else
3141    /* We were just checking for existence of the tag.  */
3142    _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3143
3144  return 0;
3145}
3146
3147static bfd_boolean
3148on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3149{
3150  for (; needed != NULL; needed = needed->next)
3151    if (strcmp (soname, needed->name) == 0)
3152      return TRUE;
3153
3154  return FALSE;
3155}
3156
3157/* Sort symbol by value and section.  */
3158static int
3159elf_sort_symbol (const void *arg1, const void *arg2)
3160{
3161  const struct elf_link_hash_entry *h1;
3162  const struct elf_link_hash_entry *h2;
3163  bfd_signed_vma vdiff;
3164
3165  h1 = *(const struct elf_link_hash_entry **) arg1;
3166  h2 = *(const struct elf_link_hash_entry **) arg2;
3167  vdiff = h1->root.u.def.value - h2->root.u.def.value;
3168  if (vdiff != 0)
3169    return vdiff > 0 ? 1 : -1;
3170  else
3171    {
3172      long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3173      if (sdiff != 0)
3174	return sdiff > 0 ? 1 : -1;
3175    }
3176  return 0;
3177}
3178
3179/* This function is used to adjust offsets into .dynstr for
3180   dynamic symbols.  This is called via elf_link_hash_traverse.  */
3181
3182static bfd_boolean
3183elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3184{
3185  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3186
3187  if (h->root.type == bfd_link_hash_warning)
3188    h = (struct elf_link_hash_entry *) h->root.u.i.link;
3189
3190  if (h->dynindx != -1)
3191    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3192  return TRUE;
3193}
3194
3195/* Assign string offsets in .dynstr, update all structures referencing
3196   them.  */
3197
3198static bfd_boolean
3199elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3200{
3201  struct elf_link_hash_table *hash_table = elf_hash_table (info);
3202  struct elf_link_local_dynamic_entry *entry;
3203  struct elf_strtab_hash *dynstr = hash_table->dynstr;
3204  bfd *dynobj = hash_table->dynobj;
3205  asection *sdyn;
3206  bfd_size_type size;
3207  const struct elf_backend_data *bed;
3208  bfd_byte *extdyn;
3209
3210  _bfd_elf_strtab_finalize (dynstr);
3211  size = _bfd_elf_strtab_size (dynstr);
3212
3213  bed = get_elf_backend_data (dynobj);
3214  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3215  BFD_ASSERT (sdyn != NULL);
3216
3217  /* Update all .dynamic entries referencing .dynstr strings.  */
3218  for (extdyn = sdyn->contents;
3219       extdyn < sdyn->contents + sdyn->size;
3220       extdyn += bed->s->sizeof_dyn)
3221    {
3222      Elf_Internal_Dyn dyn;
3223
3224      bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3225      switch (dyn.d_tag)
3226	{
3227	case DT_STRSZ:
3228	  dyn.d_un.d_val = size;
3229	  break;
3230	case DT_NEEDED:
3231	case DT_SONAME:
3232	case DT_RPATH:
3233	case DT_RUNPATH:
3234	case DT_FILTER:
3235	case DT_AUXILIARY:
3236	case DT_AUDIT:
3237	case DT_DEPAUDIT:
3238	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3239	  break;
3240	default:
3241	  continue;
3242	}
3243      bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3244    }
3245
3246  /* Now update local dynamic symbols.  */
3247  for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3248    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3249						  entry->isym.st_name);
3250
3251  /* And the rest of dynamic symbols.  */
3252  elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3253
3254  /* Adjust version definitions.  */
3255  if (elf_tdata (output_bfd)->cverdefs)
3256    {
3257      asection *s;
3258      bfd_byte *p;
3259      bfd_size_type i;
3260      Elf_Internal_Verdef def;
3261      Elf_Internal_Verdaux defaux;
3262
3263      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3264      p = s->contents;
3265      do
3266	{
3267	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3268				   &def);
3269	  p += sizeof (Elf_External_Verdef);
3270	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3271	    continue;
3272	  for (i = 0; i < def.vd_cnt; ++i)
3273	    {
3274	      _bfd_elf_swap_verdaux_in (output_bfd,
3275					(Elf_External_Verdaux *) p, &defaux);
3276	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3277							defaux.vda_name);
3278	      _bfd_elf_swap_verdaux_out (output_bfd,
3279					 &defaux, (Elf_External_Verdaux *) p);
3280	      p += sizeof (Elf_External_Verdaux);
3281	    }
3282	}
3283      while (def.vd_next);
3284    }
3285
3286  /* Adjust version references.  */
3287  if (elf_tdata (output_bfd)->verref)
3288    {
3289      asection *s;
3290      bfd_byte *p;
3291      bfd_size_type i;
3292      Elf_Internal_Verneed need;
3293      Elf_Internal_Vernaux needaux;
3294
3295      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3296      p = s->contents;
3297      do
3298	{
3299	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3300				    &need);
3301	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3302	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3303				     (Elf_External_Verneed *) p);
3304	  p += sizeof (Elf_External_Verneed);
3305	  for (i = 0; i < need.vn_cnt; ++i)
3306	    {
3307	      _bfd_elf_swap_vernaux_in (output_bfd,
3308					(Elf_External_Vernaux *) p, &needaux);
3309	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3310							 needaux.vna_name);
3311	      _bfd_elf_swap_vernaux_out (output_bfd,
3312					 &needaux,
3313					 (Elf_External_Vernaux *) p);
3314	      p += sizeof (Elf_External_Vernaux);
3315	    }
3316	}
3317      while (need.vn_next);
3318    }
3319
3320  return TRUE;
3321}
3322
3323/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3324   The default is to only match when the INPUT and OUTPUT are exactly
3325   the same target.  */
3326
3327bfd_boolean
3328_bfd_elf_default_relocs_compatible (const bfd_target *input,
3329				    const bfd_target *output)
3330{
3331  return input == output;
3332}
3333
3334/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3335   This version is used when different targets for the same architecture
3336   are virtually identical.  */
3337
3338bfd_boolean
3339_bfd_elf_relocs_compatible (const bfd_target *input,
3340			    const bfd_target *output)
3341{
3342  const struct elf_backend_data *obed, *ibed;
3343
3344  if (input == output)
3345    return TRUE;
3346
3347  ibed = xvec_get_elf_backend_data (input);
3348  obed = xvec_get_elf_backend_data (output);
3349
3350  if (ibed->arch != obed->arch)
3351    return FALSE;
3352
3353  /* If both backends are using this function, deem them compatible.  */
3354  return ibed->relocs_compatible == obed->relocs_compatible;
3355}
3356
3357/* Add symbols from an ELF object file to the linker hash table.  */
3358
3359static bfd_boolean
3360elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3361{
3362  Elf_Internal_Ehdr *ehdr;
3363  Elf_Internal_Shdr *hdr;
3364  bfd_size_type symcount;
3365  bfd_size_type extsymcount;
3366  bfd_size_type extsymoff;
3367  struct elf_link_hash_entry **sym_hash;
3368  bfd_boolean dynamic;
3369  Elf_External_Versym *extversym = NULL;
3370  Elf_External_Versym *ever;
3371  struct elf_link_hash_entry *weaks;
3372  struct elf_link_hash_entry **nondeflt_vers = NULL;
3373  bfd_size_type nondeflt_vers_cnt = 0;
3374  Elf_Internal_Sym *isymbuf = NULL;
3375  Elf_Internal_Sym *isym;
3376  Elf_Internal_Sym *isymend;
3377  const struct elf_backend_data *bed;
3378  bfd_boolean add_needed;
3379  struct elf_link_hash_table *htab;
3380  bfd_size_type amt;
3381  void *alloc_mark = NULL;
3382  struct bfd_hash_entry **old_table = NULL;
3383  unsigned int old_size = 0;
3384  unsigned int old_count = 0;
3385  void *old_tab = NULL;
3386  void *old_hash;
3387  void *old_ent;
3388  struct bfd_link_hash_entry *old_undefs = NULL;
3389  struct bfd_link_hash_entry *old_undefs_tail = NULL;
3390  long old_dynsymcount = 0;
3391  size_t tabsize = 0;
3392  size_t hashsize = 0;
3393
3394  htab = elf_hash_table (info);
3395  bed = get_elf_backend_data (abfd);
3396
3397  if ((abfd->flags & DYNAMIC) == 0)
3398    dynamic = FALSE;
3399  else
3400    {
3401      dynamic = TRUE;
3402
3403      /* You can't use -r against a dynamic object.  Also, there's no
3404	 hope of using a dynamic object which does not exactly match
3405	 the format of the output file.  */
3406      if (info->relocatable
3407	  || !is_elf_hash_table (htab)
3408	  || info->output_bfd->xvec != abfd->xvec)
3409	{
3410	  if (info->relocatable)
3411	    bfd_set_error (bfd_error_invalid_operation);
3412	  else
3413	    bfd_set_error (bfd_error_wrong_format);
3414	  goto error_return;
3415	}
3416    }
3417
3418  ehdr = elf_elfheader (abfd);
3419  if (info->warn_alternate_em
3420      && bed->elf_machine_code != ehdr->e_machine
3421      && ((bed->elf_machine_alt1 != 0
3422	   && ehdr->e_machine == bed->elf_machine_alt1)
3423	  || (bed->elf_machine_alt2 != 0
3424	      && ehdr->e_machine == bed->elf_machine_alt2)))
3425    info->callbacks->einfo
3426      (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3427       ehdr->e_machine, abfd, bed->elf_machine_code);
3428
3429  /* As a GNU extension, any input sections which are named
3430     .gnu.warning.SYMBOL are treated as warning symbols for the given
3431     symbol.  This differs from .gnu.warning sections, which generate
3432     warnings when they are included in an output file.  */
3433  if (info->executable)
3434    {
3435      asection *s;
3436
3437      for (s = abfd->sections; s != NULL; s = s->next)
3438	{
3439	  const char *name;
3440
3441	  name = bfd_get_section_name (abfd, s);
3442	  if (CONST_STRNEQ (name, ".gnu.warning."))
3443	    {
3444	      char *msg;
3445	      bfd_size_type sz;
3446
3447	      name += sizeof ".gnu.warning." - 1;
3448
3449	      /* If this is a shared object, then look up the symbol
3450		 in the hash table.  If it is there, and it is already
3451		 been defined, then we will not be using the entry
3452		 from this shared object, so we don't need to warn.
3453		 FIXME: If we see the definition in a regular object
3454		 later on, we will warn, but we shouldn't.  The only
3455		 fix is to keep track of what warnings we are supposed
3456		 to emit, and then handle them all at the end of the
3457		 link.  */
3458	      if (dynamic)
3459		{
3460		  struct elf_link_hash_entry *h;
3461
3462		  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3463
3464		  /* FIXME: What about bfd_link_hash_common?  */
3465		  if (h != NULL
3466		      && (h->root.type == bfd_link_hash_defined
3467			  || h->root.type == bfd_link_hash_defweak))
3468		    {
3469		      /* We don't want to issue this warning.  Clobber
3470			 the section size so that the warning does not
3471			 get copied into the output file.  */
3472		      s->size = 0;
3473		      continue;
3474		    }
3475		}
3476
3477	      sz = s->size;
3478	      msg = (char *) bfd_alloc (abfd, sz + 1);
3479	      if (msg == NULL)
3480		goto error_return;
3481
3482	      if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3483		goto error_return;
3484
3485	      msg[sz] = '\0';
3486
3487	      if (! (_bfd_generic_link_add_one_symbol
3488		     (info, abfd, name, BSF_WARNING, s, 0, msg,
3489		      FALSE, bed->collect, NULL)))
3490		goto error_return;
3491
3492	      if (! info->relocatable)
3493		{
3494		  /* Clobber the section size so that the warning does
3495		     not get copied into the output file.  */
3496		  s->size = 0;
3497
3498		  /* Also set SEC_EXCLUDE, so that symbols defined in
3499		     the warning section don't get copied to the output.  */
3500		  s->flags |= SEC_EXCLUDE;
3501		}
3502	    }
3503	}
3504    }
3505
3506  add_needed = TRUE;
3507  if (! dynamic)
3508    {
3509      /* If we are creating a shared library, create all the dynamic
3510	 sections immediately.  We need to attach them to something,
3511	 so we attach them to this BFD, provided it is the right
3512	 format.  FIXME: If there are no input BFD's of the same
3513	 format as the output, we can't make a shared library.  */
3514      if (info->shared
3515	  && is_elf_hash_table (htab)
3516	  && info->output_bfd->xvec == abfd->xvec
3517	  && !htab->dynamic_sections_created)
3518	{
3519	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3520	    goto error_return;
3521	}
3522    }
3523  else if (!is_elf_hash_table (htab))
3524    goto error_return;
3525  else
3526    {
3527      asection *s;
3528      const char *soname = NULL;
3529      char *audit = NULL;
3530      struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3531      int ret;
3532
3533      /* ld --just-symbols and dynamic objects don't mix very well.
3534	 ld shouldn't allow it.  */
3535      if ((s = abfd->sections) != NULL
3536	  && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3537	abort ();
3538
3539      /* If this dynamic lib was specified on the command line with
3540	 --as-needed in effect, then we don't want to add a DT_NEEDED
3541	 tag unless the lib is actually used.  Similary for libs brought
3542	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3543	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3544	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3545	 all.  */
3546      add_needed = (elf_dyn_lib_class (abfd)
3547		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3548		       | DYN_NO_NEEDED)) == 0;
3549
3550      s = bfd_get_section_by_name (abfd, ".dynamic");
3551      if (s != NULL)
3552	{
3553	  bfd_byte *dynbuf;
3554	  bfd_byte *extdyn;
3555	  unsigned int elfsec;
3556	  unsigned long shlink;
3557
3558	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3559	    {
3560error_free_dyn:
3561	      free (dynbuf);
3562	      goto error_return;
3563	    }
3564
3565	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3566	  if (elfsec == SHN_BAD)
3567	    goto error_free_dyn;
3568	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3569
3570	  for (extdyn = dynbuf;
3571	       extdyn < dynbuf + s->size;
3572	       extdyn += bed->s->sizeof_dyn)
3573	    {
3574	      Elf_Internal_Dyn dyn;
3575
3576	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3577	      if (dyn.d_tag == DT_SONAME)
3578		{
3579		  unsigned int tagv = dyn.d_un.d_val;
3580		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3581		  if (soname == NULL)
3582		    goto error_free_dyn;
3583		}
3584	      if (dyn.d_tag == DT_NEEDED)
3585		{
3586		  struct bfd_link_needed_list *n, **pn;
3587		  char *fnm, *anm;
3588		  unsigned int tagv = dyn.d_un.d_val;
3589
3590		  amt = sizeof (struct bfd_link_needed_list);
3591		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3592		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3593		  if (n == NULL || fnm == NULL)
3594		    goto error_free_dyn;
3595		  amt = strlen (fnm) + 1;
3596		  anm = (char *) bfd_alloc (abfd, amt);
3597		  if (anm == NULL)
3598		    goto error_free_dyn;
3599		  memcpy (anm, fnm, amt);
3600		  n->name = anm;
3601		  n->by = abfd;
3602		  n->next = NULL;
3603		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3604		    ;
3605		  *pn = n;
3606		}
3607	      if (dyn.d_tag == DT_RUNPATH)
3608		{
3609		  struct bfd_link_needed_list *n, **pn;
3610		  char *fnm, *anm;
3611		  unsigned int tagv = dyn.d_un.d_val;
3612
3613		  amt = sizeof (struct bfd_link_needed_list);
3614		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3615		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3616		  if (n == NULL || fnm == NULL)
3617		    goto error_free_dyn;
3618		  amt = strlen (fnm) + 1;
3619		  anm = (char *) bfd_alloc (abfd, amt);
3620		  if (anm == NULL)
3621		    goto error_free_dyn;
3622		  memcpy (anm, fnm, amt);
3623		  n->name = anm;
3624		  n->by = abfd;
3625		  n->next = NULL;
3626		  for (pn = & runpath;
3627		       *pn != NULL;
3628		       pn = &(*pn)->next)
3629		    ;
3630		  *pn = n;
3631		}
3632	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3633	      if (!runpath && dyn.d_tag == DT_RPATH)
3634		{
3635		  struct bfd_link_needed_list *n, **pn;
3636		  char *fnm, *anm;
3637		  unsigned int tagv = dyn.d_un.d_val;
3638
3639		  amt = sizeof (struct bfd_link_needed_list);
3640		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3641		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3642		  if (n == NULL || fnm == NULL)
3643		    goto error_free_dyn;
3644		  amt = strlen (fnm) + 1;
3645		  anm = (char *) bfd_alloc (abfd, amt);
3646		  if (anm == NULL)
3647		    goto error_free_dyn;
3648		  memcpy (anm, fnm, amt);
3649		  n->name = anm;
3650		  n->by = abfd;
3651		  n->next = NULL;
3652		  for (pn = & rpath;
3653		       *pn != NULL;
3654		       pn = &(*pn)->next)
3655		    ;
3656		  *pn = n;
3657		}
3658	      if (dyn.d_tag == DT_AUDIT)
3659		{
3660		  unsigned int tagv = dyn.d_un.d_val;
3661		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3662		}
3663	    }
3664
3665	  free (dynbuf);
3666	}
3667
3668      /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3669	 frees all more recently bfd_alloc'd blocks as well.  */
3670      if (runpath)
3671	rpath = runpath;
3672
3673      if (rpath)
3674	{
3675	  struct bfd_link_needed_list **pn;
3676	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3677	    ;
3678	  *pn = rpath;
3679	}
3680
3681      /* We do not want to include any of the sections in a dynamic
3682	 object in the output file.  We hack by simply clobbering the
3683	 list of sections in the BFD.  This could be handled more
3684	 cleanly by, say, a new section flag; the existing
3685	 SEC_NEVER_LOAD flag is not the one we want, because that one
3686	 still implies that the section takes up space in the output
3687	 file.  */
3688      bfd_section_list_clear (abfd);
3689
3690      /* Find the name to use in a DT_NEEDED entry that refers to this
3691	 object.  If the object has a DT_SONAME entry, we use it.
3692	 Otherwise, if the generic linker stuck something in
3693	 elf_dt_name, we use that.  Otherwise, we just use the file
3694	 name.  */
3695      if (soname == NULL || *soname == '\0')
3696	{
3697	  soname = elf_dt_name (abfd);
3698	  if (soname == NULL || *soname == '\0')
3699	    soname = bfd_get_filename (abfd);
3700	}
3701
3702      /* Save the SONAME because sometimes the linker emulation code
3703	 will need to know it.  */
3704      elf_dt_name (abfd) = soname;
3705
3706      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3707      if (ret < 0)
3708	goto error_return;
3709
3710      /* If we have already included this dynamic object in the
3711	 link, just ignore it.  There is no reason to include a
3712	 particular dynamic object more than once.  */
3713      if (ret > 0)
3714	return TRUE;
3715
3716      /* Save the DT_AUDIT entry for the linker emulation code. */
3717      elf_dt_audit (abfd) = audit;
3718    }
3719
3720  /* If this is a dynamic object, we always link against the .dynsym
3721     symbol table, not the .symtab symbol table.  The dynamic linker
3722     will only see the .dynsym symbol table, so there is no reason to
3723     look at .symtab for a dynamic object.  */
3724
3725  if (! dynamic || elf_dynsymtab (abfd) == 0)
3726    hdr = &elf_tdata (abfd)->symtab_hdr;
3727  else
3728    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3729
3730  symcount = hdr->sh_size / bed->s->sizeof_sym;
3731
3732  /* The sh_info field of the symtab header tells us where the
3733     external symbols start.  We don't care about the local symbols at
3734     this point.  */
3735  if (elf_bad_symtab (abfd))
3736    {
3737      extsymcount = symcount;
3738      extsymoff = 0;
3739    }
3740  else
3741    {
3742      extsymcount = symcount - hdr->sh_info;
3743      extsymoff = hdr->sh_info;
3744    }
3745
3746  sym_hash = NULL;
3747  if (extsymcount != 0)
3748    {
3749      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3750				      NULL, NULL, NULL);
3751      if (isymbuf == NULL)
3752	goto error_return;
3753
3754      /* We store a pointer to the hash table entry for each external
3755	 symbol.  */
3756      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3757      sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3758      if (sym_hash == NULL)
3759	goto error_free_sym;
3760      elf_sym_hashes (abfd) = sym_hash;
3761    }
3762
3763  if (dynamic)
3764    {
3765      /* Read in any version definitions.  */
3766      if (!_bfd_elf_slurp_version_tables (abfd,
3767					  info->default_imported_symver))
3768	goto error_free_sym;
3769
3770      /* Read in the symbol versions, but don't bother to convert them
3771	 to internal format.  */
3772      if (elf_dynversym (abfd) != 0)
3773	{
3774	  Elf_Internal_Shdr *versymhdr;
3775
3776	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3777	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3778	  if (extversym == NULL)
3779	    goto error_free_sym;
3780	  amt = versymhdr->sh_size;
3781	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3782	      || bfd_bread (extversym, amt, abfd) != amt)
3783	    goto error_free_vers;
3784	}
3785    }
3786
3787  /* If we are loading an as-needed shared lib, save the symbol table
3788     state before we start adding symbols.  If the lib turns out
3789     to be unneeded, restore the state.  */
3790  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3791    {
3792      unsigned int i;
3793      size_t entsize;
3794
3795      for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3796	{
3797	  struct bfd_hash_entry *p;
3798	  struct elf_link_hash_entry *h;
3799
3800	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3801	    {
3802	      h = (struct elf_link_hash_entry *) p;
3803	      entsize += htab->root.table.entsize;
3804	      if (h->root.type == bfd_link_hash_warning)
3805		entsize += htab->root.table.entsize;
3806	    }
3807	}
3808
3809      tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3810      hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3811      old_tab = bfd_malloc (tabsize + entsize + hashsize);
3812      if (old_tab == NULL)
3813	goto error_free_vers;
3814
3815      /* Remember the current objalloc pointer, so that all mem for
3816	 symbols added can later be reclaimed.  */
3817      alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3818      if (alloc_mark == NULL)
3819	goto error_free_vers;
3820
3821      /* Make a special call to the linker "notice" function to
3822	 tell it that we are about to handle an as-needed lib.  */
3823      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3824				       notice_as_needed, 0, NULL))
3825	goto error_free_vers;
3826
3827      /* Clone the symbol table and sym hashes.  Remember some
3828	 pointers into the symbol table, and dynamic symbol count.  */
3829      old_hash = (char *) old_tab + tabsize;
3830      old_ent = (char *) old_hash + hashsize;
3831      memcpy (old_tab, htab->root.table.table, tabsize);
3832      memcpy (old_hash, sym_hash, hashsize);
3833      old_undefs = htab->root.undefs;
3834      old_undefs_tail = htab->root.undefs_tail;
3835      old_table = htab->root.table.table;
3836      old_size = htab->root.table.size;
3837      old_count = htab->root.table.count;
3838      old_dynsymcount = htab->dynsymcount;
3839
3840      for (i = 0; i < htab->root.table.size; i++)
3841	{
3842	  struct bfd_hash_entry *p;
3843	  struct elf_link_hash_entry *h;
3844
3845	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3846	    {
3847	      memcpy (old_ent, p, htab->root.table.entsize);
3848	      old_ent = (char *) old_ent + htab->root.table.entsize;
3849	      h = (struct elf_link_hash_entry *) p;
3850	      if (h->root.type == bfd_link_hash_warning)
3851		{
3852		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3853		  old_ent = (char *) old_ent + htab->root.table.entsize;
3854		}
3855	    }
3856	}
3857    }
3858
3859  weaks = NULL;
3860  ever = extversym != NULL ? extversym + extsymoff : NULL;
3861  for (isym = isymbuf, isymend = isymbuf + extsymcount;
3862       isym < isymend;
3863       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3864    {
3865      int bind;
3866      bfd_vma value;
3867      asection *sec, *new_sec;
3868      flagword flags;
3869      const char *name;
3870      struct elf_link_hash_entry *h;
3871      bfd_boolean definition;
3872      bfd_boolean size_change_ok;
3873      bfd_boolean type_change_ok;
3874      bfd_boolean new_weakdef;
3875      bfd_boolean override;
3876      bfd_boolean common;
3877      unsigned int old_alignment;
3878      bfd *old_bfd;
3879      bfd * undef_bfd = NULL;
3880
3881      override = FALSE;
3882
3883      flags = BSF_NO_FLAGS;
3884      sec = NULL;
3885      value = isym->st_value;
3886      *sym_hash = NULL;
3887      common = bed->common_definition (isym);
3888
3889      bind = ELF_ST_BIND (isym->st_info);
3890      switch (bind)
3891	{
3892	case STB_LOCAL:
3893	  /* This should be impossible, since ELF requires that all
3894	     global symbols follow all local symbols, and that sh_info
3895	     point to the first global symbol.  Unfortunately, Irix 5
3896	     screws this up.  */
3897	  continue;
3898
3899	case STB_GLOBAL:
3900	  if (isym->st_shndx != SHN_UNDEF && !common)
3901	    flags = BSF_GLOBAL;
3902	  break;
3903
3904	case STB_WEAK:
3905	  flags = BSF_WEAK;
3906	  break;
3907
3908	case STB_GNU_UNIQUE:
3909	  flags = BSF_GNU_UNIQUE;
3910	  break;
3911
3912	default:
3913	  /* Leave it up to the processor backend.  */
3914	  break;
3915	}
3916
3917      if (isym->st_shndx == SHN_UNDEF)
3918	sec = bfd_und_section_ptr;
3919      else if (isym->st_shndx == SHN_ABS)
3920	sec = bfd_abs_section_ptr;
3921      else if (isym->st_shndx == SHN_COMMON)
3922	{
3923	  sec = bfd_com_section_ptr;
3924	  /* What ELF calls the size we call the value.  What ELF
3925	     calls the value we call the alignment.  */
3926	  value = isym->st_size;
3927	}
3928      else
3929	{
3930	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3931	  if (sec == NULL)
3932	    sec = bfd_abs_section_ptr;
3933	  else if (sec->kept_section)
3934	    {
3935	      /* Symbols from discarded section are undefined.  We keep
3936		 its visibility.  */
3937	      sec = bfd_und_section_ptr;
3938	      isym->st_shndx = SHN_UNDEF;
3939	    }
3940	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3941	    value -= sec->vma;
3942	}
3943
3944      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3945					      isym->st_name);
3946      if (name == NULL)
3947	goto error_free_vers;
3948
3949      if (isym->st_shndx == SHN_COMMON
3950	  && (abfd->flags & BFD_PLUGIN) != 0)
3951	{
3952	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3953
3954	  if (xc == NULL)
3955	    {
3956	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3957				 | SEC_EXCLUDE);
3958	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3959	      if (xc == NULL)
3960		goto error_free_vers;
3961	    }
3962	  sec = xc;
3963	}
3964      else if (isym->st_shndx == SHN_COMMON
3965	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
3966	       && !info->relocatable)
3967	{
3968	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3969
3970	  if (tcomm == NULL)
3971	    {
3972	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3973				 | SEC_LINKER_CREATED);
3974	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3975	      if (tcomm == NULL)
3976		goto error_free_vers;
3977	    }
3978	  sec = tcomm;
3979	}
3980      else if (bed->elf_add_symbol_hook)
3981	{
3982	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3983					     &sec, &value))
3984	    goto error_free_vers;
3985
3986	  /* The hook function sets the name to NULL if this symbol
3987	     should be skipped for some reason.  */
3988	  if (name == NULL)
3989	    continue;
3990	}
3991
3992      /* Sanity check that all possibilities were handled.  */
3993      if (sec == NULL)
3994	{
3995	  bfd_set_error (bfd_error_bad_value);
3996	  goto error_free_vers;
3997	}
3998
3999      if (bfd_is_und_section (sec)
4000	  || bfd_is_com_section (sec))
4001	definition = FALSE;
4002      else
4003	definition = TRUE;
4004
4005      size_change_ok = FALSE;
4006      type_change_ok = bed->type_change_ok;
4007      old_alignment = 0;
4008      old_bfd = NULL;
4009      new_sec = sec;
4010
4011      if (is_elf_hash_table (htab))
4012	{
4013	  Elf_Internal_Versym iver;
4014	  unsigned int vernum = 0;
4015	  bfd_boolean skip;
4016
4017	  /* If this is a definition of a symbol which was previously
4018	     referenced in a non-weak manner then make a note of the bfd
4019	     that contained the reference.  This is used if we need to
4020	     refer to the source of the reference later on.  */
4021	  if (! bfd_is_und_section (sec))
4022	    {
4023	      h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4024
4025	      if (h != NULL
4026		  && h->root.type == bfd_link_hash_undefined
4027		  && h->root.u.undef.abfd)
4028		undef_bfd = h->root.u.undef.abfd;
4029	    }
4030
4031	  if (ever == NULL)
4032	    {
4033	      if (info->default_imported_symver)
4034		/* Use the default symbol version created earlier.  */
4035		iver.vs_vers = elf_tdata (abfd)->cverdefs;
4036	      else
4037		iver.vs_vers = 0;
4038	    }
4039	  else
4040	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4041
4042	  vernum = iver.vs_vers & VERSYM_VERSION;
4043
4044	  /* If this is a hidden symbol, or if it is not version
4045	     1, we append the version name to the symbol name.
4046	     However, we do not modify a non-hidden absolute symbol
4047	     if it is not a function, because it might be the version
4048	     symbol itself.  FIXME: What if it isn't?  */
4049	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4050	      || (vernum > 1
4051		  && (!bfd_is_abs_section (sec)
4052		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4053	    {
4054	      const char *verstr;
4055	      size_t namelen, verlen, newlen;
4056	      char *newname, *p;
4057
4058	      if (isym->st_shndx != SHN_UNDEF)
4059		{
4060		  if (vernum > elf_tdata (abfd)->cverdefs)
4061		    verstr = NULL;
4062		  else if (vernum > 1)
4063		    verstr =
4064		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4065		  else
4066		    verstr = "";
4067
4068		  if (verstr == NULL)
4069		    {
4070		      (*_bfd_error_handler)
4071			(_("%B: %s: invalid version %u (max %d)"),
4072			 abfd, name, vernum,
4073			 elf_tdata (abfd)->cverdefs);
4074		      bfd_set_error (bfd_error_bad_value);
4075		      goto error_free_vers;
4076		    }
4077		}
4078	      else
4079		{
4080		  /* We cannot simply test for the number of
4081		     entries in the VERNEED section since the
4082		     numbers for the needed versions do not start
4083		     at 0.  */
4084		  Elf_Internal_Verneed *t;
4085
4086		  verstr = NULL;
4087		  for (t = elf_tdata (abfd)->verref;
4088		       t != NULL;
4089		       t = t->vn_nextref)
4090		    {
4091		      Elf_Internal_Vernaux *a;
4092
4093		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4094			{
4095			  if (a->vna_other == vernum)
4096			    {
4097			      verstr = a->vna_nodename;
4098			      break;
4099			    }
4100			}
4101		      if (a != NULL)
4102			break;
4103		    }
4104		  if (verstr == NULL)
4105		    {
4106		      (*_bfd_error_handler)
4107			(_("%B: %s: invalid needed version %d"),
4108			 abfd, name, vernum);
4109		      bfd_set_error (bfd_error_bad_value);
4110		      goto error_free_vers;
4111		    }
4112		}
4113
4114	      namelen = strlen (name);
4115	      verlen = strlen (verstr);
4116	      newlen = namelen + verlen + 2;
4117	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4118		  && isym->st_shndx != SHN_UNDEF)
4119		++newlen;
4120
4121	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4122	      if (newname == NULL)
4123		goto error_free_vers;
4124	      memcpy (newname, name, namelen);
4125	      p = newname + namelen;
4126	      *p++ = ELF_VER_CHR;
4127	      /* If this is a defined non-hidden version symbol,
4128		 we add another @ to the name.  This indicates the
4129		 default version of the symbol.  */
4130	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4131		  && isym->st_shndx != SHN_UNDEF)
4132		*p++ = ELF_VER_CHR;
4133	      memcpy (p, verstr, verlen + 1);
4134
4135	      name = newname;
4136	    }
4137
4138	  /* If necessary, make a second attempt to locate the bfd
4139	     containing an unresolved, non-weak reference to the
4140	     current symbol.  */
4141	  if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4142	    {
4143	      h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4144
4145	      if (h != NULL
4146		  && h->root.type == bfd_link_hash_undefined
4147		  && h->root.u.undef.abfd)
4148		undef_bfd = h->root.u.undef.abfd;
4149	    }
4150
4151	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4152				      &value, &old_alignment,
4153				      sym_hash, &skip, &override,
4154				      &type_change_ok, &size_change_ok))
4155	    goto error_free_vers;
4156
4157	  if (skip)
4158	    continue;
4159
4160	  if (override)
4161	    definition = FALSE;
4162
4163	  h = *sym_hash;
4164	  while (h->root.type == bfd_link_hash_indirect
4165		 || h->root.type == bfd_link_hash_warning)
4166	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4167
4168	  /* Remember the old alignment if this is a common symbol, so
4169	     that we don't reduce the alignment later on.  We can't
4170	     check later, because _bfd_generic_link_add_one_symbol
4171	     will set a default for the alignment which we want to
4172	     override. We also remember the old bfd where the existing
4173	     definition comes from.  */
4174	  switch (h->root.type)
4175	    {
4176	    default:
4177	      break;
4178
4179	    case bfd_link_hash_defined:
4180	    case bfd_link_hash_defweak:
4181	      old_bfd = h->root.u.def.section->owner;
4182	      break;
4183
4184	    case bfd_link_hash_common:
4185	      old_bfd = h->root.u.c.p->section->owner;
4186	      old_alignment = h->root.u.c.p->alignment_power;
4187	      break;
4188	    }
4189
4190	  if (elf_tdata (abfd)->verdef != NULL
4191	      && ! override
4192	      && vernum > 1
4193	      && definition)
4194	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4195	}
4196
4197      if (! (_bfd_generic_link_add_one_symbol
4198	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4199	      (struct bfd_link_hash_entry **) sym_hash)))
4200	goto error_free_vers;
4201
4202      h = *sym_hash;
4203      while (h->root.type == bfd_link_hash_indirect
4204	     || h->root.type == bfd_link_hash_warning)
4205	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4206
4207      *sym_hash = h;
4208      if (is_elf_hash_table (htab))
4209	h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4210
4211      new_weakdef = FALSE;
4212      if (dynamic
4213	  && definition
4214	  && (flags & BSF_WEAK) != 0
4215	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4216	  && is_elf_hash_table (htab)
4217	  && h->u.weakdef == NULL)
4218	{
4219	  /* Keep a list of all weak defined non function symbols from
4220	     a dynamic object, using the weakdef field.  Later in this
4221	     function we will set the weakdef field to the correct
4222	     value.  We only put non-function symbols from dynamic
4223	     objects on this list, because that happens to be the only
4224	     time we need to know the normal symbol corresponding to a
4225	     weak symbol, and the information is time consuming to
4226	     figure out.  If the weakdef field is not already NULL,
4227	     then this symbol was already defined by some previous
4228	     dynamic object, and we will be using that previous
4229	     definition anyhow.  */
4230
4231	  h->u.weakdef = weaks;
4232	  weaks = h;
4233	  new_weakdef = TRUE;
4234	}
4235
4236      /* Set the alignment of a common symbol.  */
4237      if ((common || bfd_is_com_section (sec))
4238	  && h->root.type == bfd_link_hash_common)
4239	{
4240	  unsigned int align;
4241
4242	  if (common)
4243	    align = bfd_log2 (isym->st_value);
4244	  else
4245	    {
4246	      /* The new symbol is a common symbol in a shared object.
4247		 We need to get the alignment from the section.  */
4248	      align = new_sec->alignment_power;
4249	    }
4250	  if (align > old_alignment)
4251	    h->root.u.c.p->alignment_power = align;
4252	  else
4253	    h->root.u.c.p->alignment_power = old_alignment;
4254	}
4255
4256      if (is_elf_hash_table (htab))
4257	{
4258	  bfd_boolean dynsym;
4259
4260	  /* Check the alignment when a common symbol is involved. This
4261	     can change when a common symbol is overridden by a normal
4262	     definition or a common symbol is ignored due to the old
4263	     normal definition. We need to make sure the maximum
4264	     alignment is maintained.  */
4265	  if ((old_alignment || common)
4266	      && h->root.type != bfd_link_hash_common)
4267	    {
4268	      unsigned int common_align;
4269	      unsigned int normal_align;
4270	      unsigned int symbol_align;
4271	      bfd *normal_bfd;
4272	      bfd *common_bfd;
4273
4274	      symbol_align = ffs (h->root.u.def.value) - 1;
4275	      if (h->root.u.def.section->owner != NULL
4276		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4277		{
4278		  normal_align = h->root.u.def.section->alignment_power;
4279		  if (normal_align > symbol_align)
4280		    normal_align = symbol_align;
4281		}
4282	      else
4283		normal_align = symbol_align;
4284
4285	      if (old_alignment)
4286		{
4287		  common_align = old_alignment;
4288		  common_bfd = old_bfd;
4289		  normal_bfd = abfd;
4290		}
4291	      else
4292		{
4293		  common_align = bfd_log2 (isym->st_value);
4294		  common_bfd = abfd;
4295		  normal_bfd = old_bfd;
4296		}
4297
4298	      if (normal_align < common_align)
4299		{
4300		  /* PR binutils/2735 */
4301		  if (normal_bfd == NULL)
4302		    (*_bfd_error_handler)
4303		      (_("Warning: alignment %u of common symbol `%s' in %B"
4304			 " is greater than the alignment (%u) of its section %A"),
4305		       common_bfd, h->root.u.def.section,
4306		       1 << common_align, name, 1 << normal_align);
4307		  else
4308		    (*_bfd_error_handler)
4309		      (_("Warning: alignment %u of symbol `%s' in %B"
4310			 " is smaller than %u in %B"),
4311		       normal_bfd, common_bfd,
4312		       1 << normal_align, name, 1 << common_align);
4313		}
4314	    }
4315
4316	  /* Remember the symbol size if it isn't undefined.  */
4317	  if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4318	      && (definition || h->size == 0))
4319	    {
4320	      if (h->size != 0
4321		  && h->size != isym->st_size
4322		  && ! size_change_ok)
4323		(*_bfd_error_handler)
4324		  (_("Warning: size of symbol `%s' changed"
4325		     " from %lu in %B to %lu in %B"),
4326		   old_bfd, abfd,
4327		   name, (unsigned long) h->size,
4328		   (unsigned long) isym->st_size);
4329
4330	      h->size = isym->st_size;
4331	    }
4332
4333	  /* If this is a common symbol, then we always want H->SIZE
4334	     to be the size of the common symbol.  The code just above
4335	     won't fix the size if a common symbol becomes larger.  We
4336	     don't warn about a size change here, because that is
4337	     covered by --warn-common.  Allow changed between different
4338	     function types.  */
4339	  if (h->root.type == bfd_link_hash_common)
4340	    h->size = h->root.u.c.size;
4341
4342	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4343	      && (definition || h->type == STT_NOTYPE))
4344	    {
4345	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4346
4347	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4348		 symbol.  */
4349	      if (type == STT_GNU_IFUNC
4350		  && (abfd->flags & DYNAMIC) != 0)
4351		type = STT_FUNC;
4352
4353	      if (h->type != type)
4354		{
4355		  if (h->type != STT_NOTYPE && ! type_change_ok)
4356		    (*_bfd_error_handler)
4357		      (_("Warning: type of symbol `%s' changed"
4358			 " from %d to %d in %B"),
4359		       abfd, name, h->type, type);
4360
4361		  h->type = type;
4362		}
4363	    }
4364
4365	  /* Merge st_other field.  */
4366	  elf_merge_st_other (abfd, h, isym, definition, dynamic);
4367
4368	  /* Set a flag in the hash table entry indicating the type of
4369	     reference or definition we just found.  Keep a count of
4370	     the number of dynamic symbols we find.  A dynamic symbol
4371	     is one which is referenced or defined by both a regular
4372	     object and a shared object.  */
4373	  dynsym = FALSE;
4374	  if (! dynamic)
4375	    {
4376	      if (! definition)
4377		{
4378		  h->ref_regular = 1;
4379		  if (bind != STB_WEAK)
4380		    h->ref_regular_nonweak = 1;
4381		}
4382	      else
4383		{
4384		  h->def_regular = 1;
4385		  if (h->def_dynamic)
4386		    {
4387		      h->def_dynamic = 0;
4388		      h->ref_dynamic = 1;
4389		      h->dynamic_def = 1;
4390		    }
4391		}
4392	      if (! info->executable
4393		  || h->def_dynamic
4394		  || h->ref_dynamic)
4395		dynsym = TRUE;
4396	    }
4397	  else
4398	    {
4399	      if (! definition)
4400		h->ref_dynamic = 1;
4401	      else
4402		h->def_dynamic = 1;
4403	      if (h->def_regular
4404		  || h->ref_regular
4405		  || (h->u.weakdef != NULL
4406		      && ! new_weakdef
4407		      && h->u.weakdef->dynindx != -1))
4408		dynsym = TRUE;
4409	    }
4410
4411	  if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4412	    {
4413	      /* We don't want to make debug symbol dynamic.  */
4414	      dynsym = FALSE;
4415	    }
4416
4417	  /* Check to see if we need to add an indirect symbol for
4418	     the default name.  */
4419	  if (definition || h->root.type == bfd_link_hash_common)
4420	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4421					      &sec, &value, &dynsym,
4422					      override))
4423	      goto error_free_vers;
4424
4425	  if (definition && !dynamic)
4426	    {
4427	      char *p = strchr (name, ELF_VER_CHR);
4428	      if (p != NULL && p[1] != ELF_VER_CHR)
4429		{
4430		  /* Queue non-default versions so that .symver x, x@FOO
4431		     aliases can be checked.  */
4432		  if (!nondeflt_vers)
4433		    {
4434		      amt = ((isymend - isym + 1)
4435			     * sizeof (struct elf_link_hash_entry *));
4436		      nondeflt_vers =
4437                          (struct elf_link_hash_entry **) bfd_malloc (amt);
4438		      if (!nondeflt_vers)
4439			goto error_free_vers;
4440		    }
4441		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4442		}
4443	    }
4444
4445	  if (dynsym && h->dynindx == -1)
4446	    {
4447	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4448		goto error_free_vers;
4449	      if (h->u.weakdef != NULL
4450		  && ! new_weakdef
4451		  && h->u.weakdef->dynindx == -1)
4452		{
4453		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4454		    goto error_free_vers;
4455		}
4456	    }
4457	  else if (dynsym && h->dynindx != -1)
4458	    /* If the symbol already has a dynamic index, but
4459	       visibility says it should not be visible, turn it into
4460	       a local symbol.  */
4461	    switch (ELF_ST_VISIBILITY (h->other))
4462	      {
4463	      case STV_INTERNAL:
4464	      case STV_HIDDEN:
4465		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4466		dynsym = FALSE;
4467		break;
4468	      }
4469
4470	  if (!add_needed
4471	      && definition
4472	      && ((dynsym
4473		   && h->ref_regular)
4474		  || (h->ref_dynamic
4475		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4476		      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4477	    {
4478	      int ret;
4479	      const char *soname = elf_dt_name (abfd);
4480
4481	      /* A symbol from a library loaded via DT_NEEDED of some
4482		 other library is referenced by a regular object.
4483		 Add a DT_NEEDED entry for it.  Issue an error if
4484		 --no-add-needed is used and the reference was not
4485		 a weak one.  */
4486	      if (undef_bfd != NULL
4487		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4488		{
4489		  (*_bfd_error_handler)
4490		    (_("%B: undefined reference to symbol '%s'"),
4491		     undef_bfd, name);
4492		  (*_bfd_error_handler)
4493		    (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4494		     abfd, name);
4495		  bfd_set_error (bfd_error_invalid_operation);
4496		  goto error_free_vers;
4497		}
4498
4499	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4500                  (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4501
4502	      add_needed = TRUE;
4503	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4504	      if (ret < 0)
4505		goto error_free_vers;
4506
4507	      BFD_ASSERT (ret == 0);
4508	    }
4509	}
4510    }
4511
4512  if (extversym != NULL)
4513    {
4514      free (extversym);
4515      extversym = NULL;
4516    }
4517
4518  if (isymbuf != NULL)
4519    {
4520      free (isymbuf);
4521      isymbuf = NULL;
4522    }
4523
4524  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4525    {
4526      unsigned int i;
4527
4528      /* Restore the symbol table.  */
4529      if (bed->as_needed_cleanup)
4530	(*bed->as_needed_cleanup) (abfd, info);
4531      old_hash = (char *) old_tab + tabsize;
4532      old_ent = (char *) old_hash + hashsize;
4533      sym_hash = elf_sym_hashes (abfd);
4534      htab->root.table.table = old_table;
4535      htab->root.table.size = old_size;
4536      htab->root.table.count = old_count;
4537      memcpy (htab->root.table.table, old_tab, tabsize);
4538      memcpy (sym_hash, old_hash, hashsize);
4539      htab->root.undefs = old_undefs;
4540      htab->root.undefs_tail = old_undefs_tail;
4541      for (i = 0; i < htab->root.table.size; i++)
4542	{
4543	  struct bfd_hash_entry *p;
4544	  struct elf_link_hash_entry *h;
4545
4546	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4547	    {
4548	      h = (struct elf_link_hash_entry *) p;
4549	      if (h->root.type == bfd_link_hash_warning)
4550		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4551	      if (h->dynindx >= old_dynsymcount)
4552		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4553
4554	      memcpy (p, old_ent, htab->root.table.entsize);
4555	      old_ent = (char *) old_ent + htab->root.table.entsize;
4556	      h = (struct elf_link_hash_entry *) p;
4557	      if (h->root.type == bfd_link_hash_warning)
4558		{
4559		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4560		  old_ent = (char *) old_ent + htab->root.table.entsize;
4561		}
4562	    }
4563	}
4564
4565      /* Make a special call to the linker "notice" function to
4566	 tell it that symbols added for crefs may need to be removed.  */
4567      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4568				       notice_not_needed, 0, NULL))
4569	goto error_free_vers;
4570
4571      free (old_tab);
4572      objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4573			   alloc_mark);
4574      if (nondeflt_vers != NULL)
4575	free (nondeflt_vers);
4576      return TRUE;
4577    }
4578
4579  if (old_tab != NULL)
4580    {
4581      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4582				       notice_needed, 0, NULL))
4583	goto error_free_vers;
4584      free (old_tab);
4585      old_tab = NULL;
4586    }
4587
4588  /* Now that all the symbols from this input file are created, handle
4589     .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4590  if (nondeflt_vers != NULL)
4591    {
4592      bfd_size_type cnt, symidx;
4593
4594      for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4595	{
4596	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4597	  char *shortname, *p;
4598
4599	  p = strchr (h->root.root.string, ELF_VER_CHR);
4600	  if (p == NULL
4601	      || (h->root.type != bfd_link_hash_defined
4602		  && h->root.type != bfd_link_hash_defweak))
4603	    continue;
4604
4605	  amt = p - h->root.root.string;
4606	  shortname = (char *) bfd_malloc (amt + 1);
4607	  if (!shortname)
4608	    goto error_free_vers;
4609	  memcpy (shortname, h->root.root.string, amt);
4610	  shortname[amt] = '\0';
4611
4612	  hi = (struct elf_link_hash_entry *)
4613	       bfd_link_hash_lookup (&htab->root, shortname,
4614				     FALSE, FALSE, FALSE);
4615	  if (hi != NULL
4616	      && hi->root.type == h->root.type
4617	      && hi->root.u.def.value == h->root.u.def.value
4618	      && hi->root.u.def.section == h->root.u.def.section)
4619	    {
4620	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4621	      hi->root.type = bfd_link_hash_indirect;
4622	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4623	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4624	      sym_hash = elf_sym_hashes (abfd);
4625	      if (sym_hash)
4626		for (symidx = 0; symidx < extsymcount; ++symidx)
4627		  if (sym_hash[symidx] == hi)
4628		    {
4629		      sym_hash[symidx] = h;
4630		      break;
4631		    }
4632	    }
4633	  free (shortname);
4634	}
4635      free (nondeflt_vers);
4636      nondeflt_vers = NULL;
4637    }
4638
4639  /* Now set the weakdefs field correctly for all the weak defined
4640     symbols we found.  The only way to do this is to search all the
4641     symbols.  Since we only need the information for non functions in
4642     dynamic objects, that's the only time we actually put anything on
4643     the list WEAKS.  We need this information so that if a regular
4644     object refers to a symbol defined weakly in a dynamic object, the
4645     real symbol in the dynamic object is also put in the dynamic
4646     symbols; we also must arrange for both symbols to point to the
4647     same memory location.  We could handle the general case of symbol
4648     aliasing, but a general symbol alias can only be generated in
4649     assembler code, handling it correctly would be very time
4650     consuming, and other ELF linkers don't handle general aliasing
4651     either.  */
4652  if (weaks != NULL)
4653    {
4654      struct elf_link_hash_entry **hpp;
4655      struct elf_link_hash_entry **hppend;
4656      struct elf_link_hash_entry **sorted_sym_hash;
4657      struct elf_link_hash_entry *h;
4658      size_t sym_count;
4659
4660      /* Since we have to search the whole symbol list for each weak
4661	 defined symbol, search time for N weak defined symbols will be
4662	 O(N^2). Binary search will cut it down to O(NlogN).  */
4663      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4664      sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4665      if (sorted_sym_hash == NULL)
4666	goto error_return;
4667      sym_hash = sorted_sym_hash;
4668      hpp = elf_sym_hashes (abfd);
4669      hppend = hpp + extsymcount;
4670      sym_count = 0;
4671      for (; hpp < hppend; hpp++)
4672	{
4673	  h = *hpp;
4674	  if (h != NULL
4675	      && h->root.type == bfd_link_hash_defined
4676	      && !bed->is_function_type (h->type))
4677	    {
4678	      *sym_hash = h;
4679	      sym_hash++;
4680	      sym_count++;
4681	    }
4682	}
4683
4684      qsort (sorted_sym_hash, sym_count,
4685	     sizeof (struct elf_link_hash_entry *),
4686	     elf_sort_symbol);
4687
4688      while (weaks != NULL)
4689	{
4690	  struct elf_link_hash_entry *hlook;
4691	  asection *slook;
4692	  bfd_vma vlook;
4693	  long ilook;
4694	  size_t i, j, idx;
4695
4696	  hlook = weaks;
4697	  weaks = hlook->u.weakdef;
4698	  hlook->u.weakdef = NULL;
4699
4700	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4701		      || hlook->root.type == bfd_link_hash_defweak
4702		      || hlook->root.type == bfd_link_hash_common
4703		      || hlook->root.type == bfd_link_hash_indirect);
4704	  slook = hlook->root.u.def.section;
4705	  vlook = hlook->root.u.def.value;
4706
4707	  ilook = -1;
4708	  i = 0;
4709	  j = sym_count;
4710	  while (i < j)
4711	    {
4712	      bfd_signed_vma vdiff;
4713	      idx = (i + j) / 2;
4714	      h = sorted_sym_hash [idx];
4715	      vdiff = vlook - h->root.u.def.value;
4716	      if (vdiff < 0)
4717		j = idx;
4718	      else if (vdiff > 0)
4719		i = idx + 1;
4720	      else
4721		{
4722		  long sdiff = slook->id - h->root.u.def.section->id;
4723		  if (sdiff < 0)
4724		    j = idx;
4725		  else if (sdiff > 0)
4726		    i = idx + 1;
4727		  else
4728		    {
4729		      ilook = idx;
4730		      break;
4731		    }
4732		}
4733	    }
4734
4735	  /* We didn't find a value/section match.  */
4736	  if (ilook == -1)
4737	    continue;
4738
4739	  for (i = ilook; i < sym_count; i++)
4740	    {
4741	      h = sorted_sym_hash [i];
4742
4743	      /* Stop if value or section doesn't match.  */
4744	      if (h->root.u.def.value != vlook
4745		  || h->root.u.def.section != slook)
4746		break;
4747	      else if (h != hlook)
4748		{
4749		  hlook->u.weakdef = h;
4750
4751		  /* If the weak definition is in the list of dynamic
4752		     symbols, make sure the real definition is put
4753		     there as well.  */
4754		  if (hlook->dynindx != -1 && h->dynindx == -1)
4755		    {
4756		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4757			{
4758			err_free_sym_hash:
4759			  free (sorted_sym_hash);
4760			  goto error_return;
4761			}
4762		    }
4763
4764		  /* If the real definition is in the list of dynamic
4765		     symbols, make sure the weak definition is put
4766		     there as well.  If we don't do this, then the
4767		     dynamic loader might not merge the entries for the
4768		     real definition and the weak definition.  */
4769		  if (h->dynindx != -1 && hlook->dynindx == -1)
4770		    {
4771		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4772			goto err_free_sym_hash;
4773		    }
4774		  break;
4775		}
4776	    }
4777	}
4778
4779      free (sorted_sym_hash);
4780    }
4781
4782  if (bed->check_directives
4783      && !(*bed->check_directives) (abfd, info))
4784    return FALSE;
4785
4786  /* If this object is the same format as the output object, and it is
4787     not a shared library, then let the backend look through the
4788     relocs.
4789
4790     This is required to build global offset table entries and to
4791     arrange for dynamic relocs.  It is not required for the
4792     particular common case of linking non PIC code, even when linking
4793     against shared libraries, but unfortunately there is no way of
4794     knowing whether an object file has been compiled PIC or not.
4795     Looking through the relocs is not particularly time consuming.
4796     The problem is that we must either (1) keep the relocs in memory,
4797     which causes the linker to require additional runtime memory or
4798     (2) read the relocs twice from the input file, which wastes time.
4799     This would be a good case for using mmap.
4800
4801     I have no idea how to handle linking PIC code into a file of a
4802     different format.  It probably can't be done.  */
4803  if (! dynamic
4804      && is_elf_hash_table (htab)
4805      && bed->check_relocs != NULL
4806      && elf_object_id (abfd) == elf_hash_table_id (htab)
4807      && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4808    {
4809      asection *o;
4810
4811      for (o = abfd->sections; o != NULL; o = o->next)
4812	{
4813	  Elf_Internal_Rela *internal_relocs;
4814	  bfd_boolean ok;
4815
4816	  if ((o->flags & SEC_RELOC) == 0
4817	      || o->reloc_count == 0
4818	      || ((info->strip == strip_all || info->strip == strip_debugger)
4819		  && (o->flags & SEC_DEBUGGING) != 0)
4820	      || bfd_is_abs_section (o->output_section))
4821	    continue;
4822
4823	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4824						       info->keep_memory);
4825	  if (internal_relocs == NULL)
4826	    goto error_return;
4827
4828	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4829
4830	  if (elf_section_data (o)->relocs != internal_relocs)
4831	    free (internal_relocs);
4832
4833	  if (! ok)
4834	    goto error_return;
4835	}
4836    }
4837
4838  /* If this is a non-traditional link, try to optimize the handling
4839     of the .stab/.stabstr sections.  */
4840  if (! dynamic
4841      && ! info->traditional_format
4842      && is_elf_hash_table (htab)
4843      && (info->strip != strip_all && info->strip != strip_debugger))
4844    {
4845      asection *stabstr;
4846
4847      stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4848      if (stabstr != NULL)
4849	{
4850	  bfd_size_type string_offset = 0;
4851	  asection *stab;
4852
4853	  for (stab = abfd->sections; stab; stab = stab->next)
4854	    if (CONST_STRNEQ (stab->name, ".stab")
4855		&& (!stab->name[5] ||
4856		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4857		&& (stab->flags & SEC_MERGE) == 0
4858		&& !bfd_is_abs_section (stab->output_section))
4859	      {
4860		struct bfd_elf_section_data *secdata;
4861
4862		secdata = elf_section_data (stab);
4863		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4864					       stabstr, &secdata->sec_info,
4865					       &string_offset))
4866		  goto error_return;
4867		if (secdata->sec_info)
4868		  stab->sec_info_type = ELF_INFO_TYPE_STABS;
4869	    }
4870	}
4871    }
4872
4873  if (is_elf_hash_table (htab) && add_needed)
4874    {
4875      /* Add this bfd to the loaded list.  */
4876      struct elf_link_loaded_list *n;
4877
4878      n = (struct elf_link_loaded_list *)
4879          bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4880      if (n == NULL)
4881	goto error_return;
4882      n->abfd = abfd;
4883      n->next = htab->loaded;
4884      htab->loaded = n;
4885    }
4886
4887  return TRUE;
4888
4889 error_free_vers:
4890  if (old_tab != NULL)
4891    free (old_tab);
4892  if (nondeflt_vers != NULL)
4893    free (nondeflt_vers);
4894  if (extversym != NULL)
4895    free (extversym);
4896 error_free_sym:
4897  if (isymbuf != NULL)
4898    free (isymbuf);
4899 error_return:
4900  return FALSE;
4901}
4902
4903/* Return the linker hash table entry of a symbol that might be
4904   satisfied by an archive symbol.  Return -1 on error.  */
4905
4906struct elf_link_hash_entry *
4907_bfd_elf_archive_symbol_lookup (bfd *abfd,
4908				struct bfd_link_info *info,
4909				const char *name)
4910{
4911  struct elf_link_hash_entry *h;
4912  char *p, *copy;
4913  size_t len, first;
4914
4915  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4916  if (h != NULL)
4917    return h;
4918
4919  /* If this is a default version (the name contains @@), look up the
4920     symbol again with only one `@' as well as without the version.
4921     The effect is that references to the symbol with and without the
4922     version will be matched by the default symbol in the archive.  */
4923
4924  p = strchr (name, ELF_VER_CHR);
4925  if (p == NULL || p[1] != ELF_VER_CHR)
4926    return h;
4927
4928  /* First check with only one `@'.  */
4929  len = strlen (name);
4930  copy = (char *) bfd_alloc (abfd, len);
4931  if (copy == NULL)
4932    return (struct elf_link_hash_entry *) 0 - 1;
4933
4934  first = p - name + 1;
4935  memcpy (copy, name, first);
4936  memcpy (copy + first, name + first + 1, len - first);
4937
4938  h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4939  if (h == NULL)
4940    {
4941      /* We also need to check references to the symbol without the
4942	 version.  */
4943      copy[first - 1] = '\0';
4944      h = elf_link_hash_lookup (elf_hash_table (info), copy,
4945				FALSE, FALSE, FALSE);
4946    }
4947
4948  bfd_release (abfd, copy);
4949  return h;
4950}
4951
4952/* Add symbols from an ELF archive file to the linker hash table.  We
4953   don't use _bfd_generic_link_add_archive_symbols because of a
4954   problem which arises on UnixWare.  The UnixWare libc.so is an
4955   archive which includes an entry libc.so.1 which defines a bunch of
4956   symbols.  The libc.so archive also includes a number of other
4957   object files, which also define symbols, some of which are the same
4958   as those defined in libc.so.1.  Correct linking requires that we
4959   consider each object file in turn, and include it if it defines any
4960   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4961   this; it looks through the list of undefined symbols, and includes
4962   any object file which defines them.  When this algorithm is used on
4963   UnixWare, it winds up pulling in libc.so.1 early and defining a
4964   bunch of symbols.  This means that some of the other objects in the
4965   archive are not included in the link, which is incorrect since they
4966   precede libc.so.1 in the archive.
4967
4968   Fortunately, ELF archive handling is simpler than that done by
4969   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4970   oddities.  In ELF, if we find a symbol in the archive map, and the
4971   symbol is currently undefined, we know that we must pull in that
4972   object file.
4973
4974   Unfortunately, we do have to make multiple passes over the symbol
4975   table until nothing further is resolved.  */
4976
4977static bfd_boolean
4978elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4979{
4980  symindex c;
4981  bfd_boolean *defined = NULL;
4982  bfd_boolean *included = NULL;
4983  carsym *symdefs;
4984  bfd_boolean loop;
4985  bfd_size_type amt;
4986  const struct elf_backend_data *bed;
4987  struct elf_link_hash_entry * (*archive_symbol_lookup)
4988    (bfd *, struct bfd_link_info *, const char *);
4989
4990  if (! bfd_has_map (abfd))
4991    {
4992      /* An empty archive is a special case.  */
4993      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4994	return TRUE;
4995      bfd_set_error (bfd_error_no_armap);
4996      return FALSE;
4997    }
4998
4999  /* Keep track of all symbols we know to be already defined, and all
5000     files we know to be already included.  This is to speed up the
5001     second and subsequent passes.  */
5002  c = bfd_ardata (abfd)->symdef_count;
5003  if (c == 0)
5004    return TRUE;
5005  amt = c;
5006  amt *= sizeof (bfd_boolean);
5007  defined = (bfd_boolean *) bfd_zmalloc (amt);
5008  included = (bfd_boolean *) bfd_zmalloc (amt);
5009  if (defined == NULL || included == NULL)
5010    goto error_return;
5011
5012  symdefs = bfd_ardata (abfd)->symdefs;
5013  bed = get_elf_backend_data (abfd);
5014  archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5015
5016  do
5017    {
5018      file_ptr last;
5019      symindex i;
5020      carsym *symdef;
5021      carsym *symdefend;
5022
5023      loop = FALSE;
5024      last = -1;
5025
5026      symdef = symdefs;
5027      symdefend = symdef + c;
5028      for (i = 0; symdef < symdefend; symdef++, i++)
5029	{
5030	  struct elf_link_hash_entry *h;
5031	  bfd *element;
5032	  struct bfd_link_hash_entry *undefs_tail;
5033	  symindex mark;
5034
5035	  if (defined[i] || included[i])
5036	    continue;
5037	  if (symdef->file_offset == last)
5038	    {
5039	      included[i] = TRUE;
5040	      continue;
5041	    }
5042
5043	  h = archive_symbol_lookup (abfd, info, symdef->name);
5044	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5045	    goto error_return;
5046
5047	  if (h == NULL)
5048	    continue;
5049
5050	  if (h->root.type == bfd_link_hash_common)
5051	    {
5052	      /* We currently have a common symbol.  The archive map contains
5053		 a reference to this symbol, so we may want to include it.  We
5054		 only want to include it however, if this archive element
5055		 contains a definition of the symbol, not just another common
5056		 declaration of it.
5057
5058		 Unfortunately some archivers (including GNU ar) will put
5059		 declarations of common symbols into their archive maps, as
5060		 well as real definitions, so we cannot just go by the archive
5061		 map alone.  Instead we must read in the element's symbol
5062		 table and check that to see what kind of symbol definition
5063		 this is.  */
5064	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5065		continue;
5066	    }
5067	  else if (h->root.type != bfd_link_hash_undefined)
5068	    {
5069	      if (h->root.type != bfd_link_hash_undefweak)
5070		defined[i] = TRUE;
5071	      continue;
5072	    }
5073
5074	  /* We need to include this archive member.  */
5075	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5076	  if (element == NULL)
5077	    goto error_return;
5078
5079	  if (! bfd_check_format (element, bfd_object))
5080	    goto error_return;
5081
5082	  /* Doublecheck that we have not included this object
5083	     already--it should be impossible, but there may be
5084	     something wrong with the archive.  */
5085	  if (element->archive_pass != 0)
5086	    {
5087	      bfd_set_error (bfd_error_bad_value);
5088	      goto error_return;
5089	    }
5090	  element->archive_pass = 1;
5091
5092	  undefs_tail = info->hash->undefs_tail;
5093
5094	  if (!(*info->callbacks
5095		->add_archive_element) (info, element, symdef->name, &element))
5096	    goto error_return;
5097	  if (!bfd_link_add_symbols (element, info))
5098	    goto error_return;
5099
5100	  /* If there are any new undefined symbols, we need to make
5101	     another pass through the archive in order to see whether
5102	     they can be defined.  FIXME: This isn't perfect, because
5103	     common symbols wind up on undefs_tail and because an
5104	     undefined symbol which is defined later on in this pass
5105	     does not require another pass.  This isn't a bug, but it
5106	     does make the code less efficient than it could be.  */
5107	  if (undefs_tail != info->hash->undefs_tail)
5108	    loop = TRUE;
5109
5110	  /* Look backward to mark all symbols from this object file
5111	     which we have already seen in this pass.  */
5112	  mark = i;
5113	  do
5114	    {
5115	      included[mark] = TRUE;
5116	      if (mark == 0)
5117		break;
5118	      --mark;
5119	    }
5120	  while (symdefs[mark].file_offset == symdef->file_offset);
5121
5122	  /* We mark subsequent symbols from this object file as we go
5123	     on through the loop.  */
5124	  last = symdef->file_offset;
5125	}
5126    }
5127  while (loop);
5128
5129  free (defined);
5130  free (included);
5131
5132  return TRUE;
5133
5134 error_return:
5135  if (defined != NULL)
5136    free (defined);
5137  if (included != NULL)
5138    free (included);
5139  return FALSE;
5140}
5141
5142/* Given an ELF BFD, add symbols to the global hash table as
5143   appropriate.  */
5144
5145bfd_boolean
5146bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5147{
5148  switch (bfd_get_format (abfd))
5149    {
5150    case bfd_object:
5151      return elf_link_add_object_symbols (abfd, info);
5152    case bfd_archive:
5153      return elf_link_add_archive_symbols (abfd, info);
5154    default:
5155      bfd_set_error (bfd_error_wrong_format);
5156      return FALSE;
5157    }
5158}
5159
5160struct hash_codes_info
5161{
5162  unsigned long *hashcodes;
5163  bfd_boolean error;
5164};
5165
5166/* This function will be called though elf_link_hash_traverse to store
5167   all hash value of the exported symbols in an array.  */
5168
5169static bfd_boolean
5170elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5171{
5172  struct hash_codes_info *inf = (struct hash_codes_info *) data;
5173  const char *name;
5174  char *p;
5175  unsigned long ha;
5176  char *alc = NULL;
5177
5178  if (h->root.type == bfd_link_hash_warning)
5179    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5180
5181  /* Ignore indirect symbols.  These are added by the versioning code.  */
5182  if (h->dynindx == -1)
5183    return TRUE;
5184
5185  name = h->root.root.string;
5186  p = strchr (name, ELF_VER_CHR);
5187  if (p != NULL)
5188    {
5189      alc = (char *) bfd_malloc (p - name + 1);
5190      if (alc == NULL)
5191	{
5192	  inf->error = TRUE;
5193	  return FALSE;
5194	}
5195      memcpy (alc, name, p - name);
5196      alc[p - name] = '\0';
5197      name = alc;
5198    }
5199
5200  /* Compute the hash value.  */
5201  ha = bfd_elf_hash (name);
5202
5203  /* Store the found hash value in the array given as the argument.  */
5204  *(inf->hashcodes)++ = ha;
5205
5206  /* And store it in the struct so that we can put it in the hash table
5207     later.  */
5208  h->u.elf_hash_value = ha;
5209
5210  if (alc != NULL)
5211    free (alc);
5212
5213  return TRUE;
5214}
5215
5216struct collect_gnu_hash_codes
5217{
5218  bfd *output_bfd;
5219  const struct elf_backend_data *bed;
5220  unsigned long int nsyms;
5221  unsigned long int maskbits;
5222  unsigned long int *hashcodes;
5223  unsigned long int *hashval;
5224  unsigned long int *indx;
5225  unsigned long int *counts;
5226  bfd_vma *bitmask;
5227  bfd_byte *contents;
5228  long int min_dynindx;
5229  unsigned long int bucketcount;
5230  unsigned long int symindx;
5231  long int local_indx;
5232  long int shift1, shift2;
5233  unsigned long int mask;
5234  bfd_boolean error;
5235};
5236
5237/* This function will be called though elf_link_hash_traverse to store
5238   all hash value of the exported symbols in an array.  */
5239
5240static bfd_boolean
5241elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5242{
5243  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5244  const char *name;
5245  char *p;
5246  unsigned long ha;
5247  char *alc = NULL;
5248
5249  if (h->root.type == bfd_link_hash_warning)
5250    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5251
5252  /* Ignore indirect symbols.  These are added by the versioning code.  */
5253  if (h->dynindx == -1)
5254    return TRUE;
5255
5256  /* Ignore also local symbols and undefined symbols.  */
5257  if (! (*s->bed->elf_hash_symbol) (h))
5258    return TRUE;
5259
5260  name = h->root.root.string;
5261  p = strchr (name, ELF_VER_CHR);
5262  if (p != NULL)
5263    {
5264      alc = (char *) bfd_malloc (p - name + 1);
5265      if (alc == NULL)
5266	{
5267	  s->error = TRUE;
5268	  return FALSE;
5269	}
5270      memcpy (alc, name, p - name);
5271      alc[p - name] = '\0';
5272      name = alc;
5273    }
5274
5275  /* Compute the hash value.  */
5276  ha = bfd_elf_gnu_hash (name);
5277
5278  /* Store the found hash value in the array for compute_bucket_count,
5279     and also for .dynsym reordering purposes.  */
5280  s->hashcodes[s->nsyms] = ha;
5281  s->hashval[h->dynindx] = ha;
5282  ++s->nsyms;
5283  if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5284    s->min_dynindx = h->dynindx;
5285
5286  if (alc != NULL)
5287    free (alc);
5288
5289  return TRUE;
5290}
5291
5292/* This function will be called though elf_link_hash_traverse to do
5293   final dynaminc symbol renumbering.  */
5294
5295static bfd_boolean
5296elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5297{
5298  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5299  unsigned long int bucket;
5300  unsigned long int val;
5301
5302  if (h->root.type == bfd_link_hash_warning)
5303    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5304
5305  /* Ignore indirect symbols.  */
5306  if (h->dynindx == -1)
5307    return TRUE;
5308
5309  /* Ignore also local symbols and undefined symbols.  */
5310  if (! (*s->bed->elf_hash_symbol) (h))
5311    {
5312      if (h->dynindx >= s->min_dynindx)
5313	h->dynindx = s->local_indx++;
5314      return TRUE;
5315    }
5316
5317  bucket = s->hashval[h->dynindx] % s->bucketcount;
5318  val = (s->hashval[h->dynindx] >> s->shift1)
5319	& ((s->maskbits >> s->shift1) - 1);
5320  s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5321  s->bitmask[val]
5322    |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5323  val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5324  if (s->counts[bucket] == 1)
5325    /* Last element terminates the chain.  */
5326    val |= 1;
5327  bfd_put_32 (s->output_bfd, val,
5328	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5329  --s->counts[bucket];
5330  h->dynindx = s->indx[bucket]++;
5331  return TRUE;
5332}
5333
5334/* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5335
5336bfd_boolean
5337_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5338{
5339  return !(h->forced_local
5340	   || h->root.type == bfd_link_hash_undefined
5341	   || h->root.type == bfd_link_hash_undefweak
5342	   || ((h->root.type == bfd_link_hash_defined
5343		|| h->root.type == bfd_link_hash_defweak)
5344	       && h->root.u.def.section->output_section == NULL));
5345}
5346
5347/* Array used to determine the number of hash table buckets to use
5348   based on the number of symbols there are.  If there are fewer than
5349   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5350   fewer than 37 we use 17 buckets, and so forth.  We never use more
5351   than 32771 buckets.  */
5352
5353static const size_t elf_buckets[] =
5354{
5355  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5356  16411, 32771, 0
5357};
5358
5359/* Compute bucket count for hashing table.  We do not use a static set
5360   of possible tables sizes anymore.  Instead we determine for all
5361   possible reasonable sizes of the table the outcome (i.e., the
5362   number of collisions etc) and choose the best solution.  The
5363   weighting functions are not too simple to allow the table to grow
5364   without bounds.  Instead one of the weighting factors is the size.
5365   Therefore the result is always a good payoff between few collisions
5366   (= short chain lengths) and table size.  */
5367static size_t
5368compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5369		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5370		      unsigned long int nsyms,
5371		      int gnu_hash)
5372{
5373  size_t best_size = 0;
5374  unsigned long int i;
5375
5376  /* We have a problem here.  The following code to optimize the table
5377     size requires an integer type with more the 32 bits.  If
5378     BFD_HOST_U_64_BIT is set we know about such a type.  */
5379#ifdef BFD_HOST_U_64_BIT
5380  if (info->optimize)
5381    {
5382      size_t minsize;
5383      size_t maxsize;
5384      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5385      bfd *dynobj = elf_hash_table (info)->dynobj;
5386      size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5387      const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5388      unsigned long int *counts;
5389      bfd_size_type amt;
5390      unsigned int no_improvement_count = 0;
5391
5392      /* Possible optimization parameters: if we have NSYMS symbols we say
5393	 that the hashing table must at least have NSYMS/4 and at most
5394	 2*NSYMS buckets.  */
5395      minsize = nsyms / 4;
5396      if (minsize == 0)
5397	minsize = 1;
5398      best_size = maxsize = nsyms * 2;
5399      if (gnu_hash)
5400	{
5401	  if (minsize < 2)
5402	    minsize = 2;
5403	  if ((best_size & 31) == 0)
5404	    ++best_size;
5405	}
5406
5407      /* Create array where we count the collisions in.  We must use bfd_malloc
5408	 since the size could be large.  */
5409      amt = maxsize;
5410      amt *= sizeof (unsigned long int);
5411      counts = (unsigned long int *) bfd_malloc (amt);
5412      if (counts == NULL)
5413	return 0;
5414
5415      /* Compute the "optimal" size for the hash table.  The criteria is a
5416	 minimal chain length.  The minor criteria is (of course) the size
5417	 of the table.  */
5418      for (i = minsize; i < maxsize; ++i)
5419	{
5420	  /* Walk through the array of hashcodes and count the collisions.  */
5421	  BFD_HOST_U_64_BIT max;
5422	  unsigned long int j;
5423	  unsigned long int fact;
5424
5425	  if (gnu_hash && (i & 31) == 0)
5426	    continue;
5427
5428	  memset (counts, '\0', i * sizeof (unsigned long int));
5429
5430	  /* Determine how often each hash bucket is used.  */
5431	  for (j = 0; j < nsyms; ++j)
5432	    ++counts[hashcodes[j] % i];
5433
5434	  /* For the weight function we need some information about the
5435	     pagesize on the target.  This is information need not be 100%
5436	     accurate.  Since this information is not available (so far) we
5437	     define it here to a reasonable default value.  If it is crucial
5438	     to have a better value some day simply define this value.  */
5439# ifndef BFD_TARGET_PAGESIZE
5440#  define BFD_TARGET_PAGESIZE	(4096)
5441# endif
5442
5443	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5444	     and the chains.  */
5445	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5446
5447# if 1
5448	  /* Variant 1: optimize for short chains.  We add the squares
5449	     of all the chain lengths (which favors many small chain
5450	     over a few long chains).  */
5451	  for (j = 0; j < i; ++j)
5452	    max += counts[j] * counts[j];
5453
5454	  /* This adds penalties for the overall size of the table.  */
5455	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5456	  max *= fact * fact;
5457# else
5458	  /* Variant 2: Optimize a lot more for small table.  Here we
5459	     also add squares of the size but we also add penalties for
5460	     empty slots (the +1 term).  */
5461	  for (j = 0; j < i; ++j)
5462	    max += (1 + counts[j]) * (1 + counts[j]);
5463
5464	  /* The overall size of the table is considered, but not as
5465	     strong as in variant 1, where it is squared.  */
5466	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5467	  max *= fact;
5468# endif
5469
5470	  /* Compare with current best results.  */
5471	  if (max < best_chlen)
5472	    {
5473	      best_chlen = max;
5474	      best_size = i;
5475              no_improvement_count = 0;
5476	    }
5477	  /* PR 11843: Avoid futile long searches for the best bucket size
5478	     when there are a large number of symbols.  */
5479	  else if (++no_improvement_count == 100)
5480	    break;
5481	}
5482
5483      free (counts);
5484    }
5485  else
5486#endif /* defined (BFD_HOST_U_64_BIT) */
5487    {
5488      /* This is the fallback solution if no 64bit type is available or if we
5489	 are not supposed to spend much time on optimizations.  We select the
5490	 bucket count using a fixed set of numbers.  */
5491      for (i = 0; elf_buckets[i] != 0; i++)
5492	{
5493	  best_size = elf_buckets[i];
5494	  if (nsyms < elf_buckets[i + 1])
5495	    break;
5496	}
5497      if (gnu_hash && best_size < 2)
5498	best_size = 2;
5499    }
5500
5501  return best_size;
5502}
5503
5504/* Size any SHT_GROUP section for ld -r.  */
5505
5506bfd_boolean
5507_bfd_elf_size_group_sections (struct bfd_link_info *info)
5508{
5509  bfd *ibfd;
5510
5511  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5512    if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5513	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5514      return FALSE;
5515  return TRUE;
5516}
5517
5518/* Set up the sizes and contents of the ELF dynamic sections.  This is
5519   called by the ELF linker emulation before_allocation routine.  We
5520   must set the sizes of the sections before the linker sets the
5521   addresses of the various sections.  */
5522
5523bfd_boolean
5524bfd_elf_size_dynamic_sections (bfd *output_bfd,
5525			       const char *soname,
5526			       const char *rpath,
5527			       const char *filter_shlib,
5528			       const char *audit,
5529			       const char *depaudit,
5530			       const char * const *auxiliary_filters,
5531			       struct bfd_link_info *info,
5532			       asection **sinterpptr,
5533			       struct bfd_elf_version_tree *verdefs)
5534{
5535  bfd_size_type soname_indx;
5536  bfd *dynobj;
5537  const struct elf_backend_data *bed;
5538  struct elf_info_failed asvinfo;
5539
5540  *sinterpptr = NULL;
5541
5542  soname_indx = (bfd_size_type) -1;
5543
5544  if (!is_elf_hash_table (info->hash))
5545    return TRUE;
5546
5547  bed = get_elf_backend_data (output_bfd);
5548  if (info->execstack)
5549    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5550  else if (info->noexecstack)
5551    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5552  else
5553    {
5554      bfd *inputobj;
5555      asection *notesec = NULL;
5556      int exec = 0;
5557
5558      for (inputobj = info->input_bfds;
5559	   inputobj;
5560	   inputobj = inputobj->link_next)
5561	{
5562	  asection *s;
5563
5564	  if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5565	    continue;
5566	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5567	  if (s)
5568	    {
5569	      if (s->flags & SEC_CODE)
5570		exec = PF_X;
5571	      notesec = s;
5572	    }
5573	  else if (bed->default_execstack)
5574	    exec = PF_X;
5575	}
5576      if (notesec)
5577	{
5578	  elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5579	  if (exec && info->relocatable
5580	      && notesec->output_section != bfd_abs_section_ptr)
5581	    notesec->output_section->flags |= SEC_CODE;
5582	}
5583    }
5584
5585  /* Any syms created from now on start with -1 in
5586     got.refcount/offset and plt.refcount/offset.  */
5587  elf_hash_table (info)->init_got_refcount
5588    = elf_hash_table (info)->init_got_offset;
5589  elf_hash_table (info)->init_plt_refcount
5590    = elf_hash_table (info)->init_plt_offset;
5591
5592  if (info->relocatable
5593      && !_bfd_elf_size_group_sections (info))
5594    return FALSE;
5595
5596  /* The backend may have to create some sections regardless of whether
5597     we're dynamic or not.  */
5598  if (bed->elf_backend_always_size_sections
5599      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5600    return FALSE;
5601
5602  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5603    return FALSE;
5604
5605  dynobj = elf_hash_table (info)->dynobj;
5606
5607  /* If there were no dynamic objects in the link, there is nothing to
5608     do here.  */
5609  if (dynobj == NULL)
5610    return TRUE;
5611
5612  if (elf_hash_table (info)->dynamic_sections_created)
5613    {
5614      struct elf_info_failed eif;
5615      struct elf_link_hash_entry *h;
5616      asection *dynstr;
5617      struct bfd_elf_version_tree *t;
5618      struct bfd_elf_version_expr *d;
5619      asection *s;
5620      bfd_boolean all_defined;
5621
5622      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5623      BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5624
5625      if (soname != NULL)
5626	{
5627	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5628					     soname, TRUE);
5629	  if (soname_indx == (bfd_size_type) -1
5630	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5631	    return FALSE;
5632	}
5633
5634      if (info->symbolic)
5635	{
5636	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5637	    return FALSE;
5638	  info->flags |= DF_SYMBOLIC;
5639	}
5640
5641      if (rpath != NULL)
5642	{
5643	  bfd_size_type indx;
5644
5645	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5646				      TRUE);
5647	  if (indx == (bfd_size_type) -1
5648	      || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5649	    return FALSE;
5650
5651	  if  (info->new_dtags)
5652	    {
5653	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5654	      if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5655		return FALSE;
5656	    }
5657	}
5658
5659      if (filter_shlib != NULL)
5660	{
5661	  bfd_size_type indx;
5662
5663	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664				      filter_shlib, TRUE);
5665	  if (indx == (bfd_size_type) -1
5666	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5667	    return FALSE;
5668	}
5669
5670      if (auxiliary_filters != NULL)
5671	{
5672	  const char * const *p;
5673
5674	  for (p = auxiliary_filters; *p != NULL; p++)
5675	    {
5676	      bfd_size_type indx;
5677
5678	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5679					  *p, TRUE);
5680	      if (indx == (bfd_size_type) -1
5681		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5682		return FALSE;
5683	    }
5684	}
5685
5686      if (audit != NULL)
5687	{
5688	  bfd_size_type indx;
5689
5690	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5691				      TRUE);
5692	  if (indx == (bfd_size_type) -1
5693	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5694	    return FALSE;
5695	}
5696
5697      if (depaudit != NULL)
5698	{
5699	  bfd_size_type indx;
5700
5701	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5702				      TRUE);
5703	  if (indx == (bfd_size_type) -1
5704	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5705	    return FALSE;
5706	}
5707
5708      eif.info = info;
5709      eif.verdefs = verdefs;
5710      eif.failed = FALSE;
5711
5712      /* If we are supposed to export all symbols into the dynamic symbol
5713	 table (this is not the normal case), then do so.  */
5714      if (info->export_dynamic
5715	  || (info->executable && info->dynamic))
5716	{
5717	  elf_link_hash_traverse (elf_hash_table (info),
5718				  _bfd_elf_export_symbol,
5719				  &eif);
5720	  if (eif.failed)
5721	    return FALSE;
5722	}
5723
5724      /* Make all global versions with definition.  */
5725      for (t = verdefs; t != NULL; t = t->next)
5726	for (d = t->globals.list; d != NULL; d = d->next)
5727	  if (!d->symver && d->literal)
5728	    {
5729	      const char *verstr, *name;
5730	      size_t namelen, verlen, newlen;
5731	      char *newname, *p, leading_char;
5732	      struct elf_link_hash_entry *newh;
5733
5734	      leading_char = bfd_get_symbol_leading_char (output_bfd);
5735	      name = d->pattern;
5736	      namelen = strlen (name) + (leading_char != '\0');
5737	      verstr = t->name;
5738	      verlen = strlen (verstr);
5739	      newlen = namelen + verlen + 3;
5740
5741	      newname = (char *) bfd_malloc (newlen);
5742	      if (newname == NULL)
5743		return FALSE;
5744	      newname[0] = leading_char;
5745	      memcpy (newname + (leading_char != '\0'), name, namelen);
5746
5747	      /* Check the hidden versioned definition.  */
5748	      p = newname + namelen;
5749	      *p++ = ELF_VER_CHR;
5750	      memcpy (p, verstr, verlen + 1);
5751	      newh = elf_link_hash_lookup (elf_hash_table (info),
5752					   newname, FALSE, FALSE,
5753					   FALSE);
5754	      if (newh == NULL
5755		  || (newh->root.type != bfd_link_hash_defined
5756		      && newh->root.type != bfd_link_hash_defweak))
5757		{
5758		  /* Check the default versioned definition.  */
5759		  *p++ = ELF_VER_CHR;
5760		  memcpy (p, verstr, verlen + 1);
5761		  newh = elf_link_hash_lookup (elf_hash_table (info),
5762					       newname, FALSE, FALSE,
5763					       FALSE);
5764		}
5765	      free (newname);
5766
5767	      /* Mark this version if there is a definition and it is
5768		 not defined in a shared object.  */
5769	      if (newh != NULL
5770		  && !newh->def_dynamic
5771		  && (newh->root.type == bfd_link_hash_defined
5772		      || newh->root.type == bfd_link_hash_defweak))
5773		d->symver = 1;
5774	    }
5775
5776      /* Attach all the symbols to their version information.  */
5777      asvinfo.info = info;
5778      asvinfo.verdefs = verdefs;
5779      asvinfo.failed = FALSE;
5780
5781      elf_link_hash_traverse (elf_hash_table (info),
5782			      _bfd_elf_link_assign_sym_version,
5783			      &asvinfo);
5784      if (asvinfo.failed)
5785	return FALSE;
5786
5787      if (!info->allow_undefined_version)
5788	{
5789	  /* Check if all global versions have a definition.  */
5790	  all_defined = TRUE;
5791	  for (t = verdefs; t != NULL; t = t->next)
5792	    for (d = t->globals.list; d != NULL; d = d->next)
5793	      if (d->literal && !d->symver && !d->script)
5794		{
5795		  (*_bfd_error_handler)
5796		    (_("%s: undefined version: %s"),
5797		     d->pattern, t->name);
5798		  all_defined = FALSE;
5799		}
5800
5801	  if (!all_defined)
5802	    {
5803	      bfd_set_error (bfd_error_bad_value);
5804	      return FALSE;
5805	    }
5806	}
5807
5808      /* Find all symbols which were defined in a dynamic object and make
5809	 the backend pick a reasonable value for them.  */
5810      elf_link_hash_traverse (elf_hash_table (info),
5811			      _bfd_elf_adjust_dynamic_symbol,
5812			      &eif);
5813      if (eif.failed)
5814	return FALSE;
5815
5816      /* Add some entries to the .dynamic section.  We fill in some of the
5817	 values later, in bfd_elf_final_link, but we must add the entries
5818	 now so that we know the final size of the .dynamic section.  */
5819
5820      /* If there are initialization and/or finalization functions to
5821	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5822      h = (info->init_function
5823	   ? elf_link_hash_lookup (elf_hash_table (info),
5824				   info->init_function, FALSE,
5825				   FALSE, FALSE)
5826	   : NULL);
5827      if (h != NULL
5828	  && (h->ref_regular
5829	      || h->def_regular))
5830	{
5831	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5832	    return FALSE;
5833	}
5834      h = (info->fini_function
5835	   ? elf_link_hash_lookup (elf_hash_table (info),
5836				   info->fini_function, FALSE,
5837				   FALSE, FALSE)
5838	   : NULL);
5839      if (h != NULL
5840	  && (h->ref_regular
5841	      || h->def_regular))
5842	{
5843	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5844	    return FALSE;
5845	}
5846
5847      s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5848      if (s != NULL && s->linker_has_input)
5849	{
5850	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5851	  if (! info->executable)
5852	    {
5853	      bfd *sub;
5854	      asection *o;
5855
5856	      for (sub = info->input_bfds; sub != NULL;
5857		   sub = sub->link_next)
5858		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5859		  for (o = sub->sections; o != NULL; o = o->next)
5860		    if (elf_section_data (o)->this_hdr.sh_type
5861			== SHT_PREINIT_ARRAY)
5862		      {
5863			(*_bfd_error_handler)
5864			  (_("%B: .preinit_array section is not allowed in DSO"),
5865			   sub);
5866			break;
5867		      }
5868
5869	      bfd_set_error (bfd_error_nonrepresentable_section);
5870	      return FALSE;
5871	    }
5872
5873	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5874	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5875	    return FALSE;
5876	}
5877      s = bfd_get_section_by_name (output_bfd, ".init_array");
5878      if (s != NULL && s->linker_has_input)
5879	{
5880	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5881	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5882	    return FALSE;
5883	}
5884      s = bfd_get_section_by_name (output_bfd, ".fini_array");
5885      if (s != NULL && s->linker_has_input)
5886	{
5887	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5888	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5889	    return FALSE;
5890	}
5891
5892      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5893      /* If .dynstr is excluded from the link, we don't want any of
5894	 these tags.  Strictly, we should be checking each section
5895	 individually;  This quick check covers for the case where
5896	 someone does a /DISCARD/ : { *(*) }.  */
5897      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5898	{
5899	  bfd_size_type strsize;
5900
5901	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5902	  if ((info->emit_hash
5903	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5904	      || (info->emit_gnu_hash
5905		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5906	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5907	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5908	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5909	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5910					      bed->s->sizeof_sym))
5911	    return FALSE;
5912	}
5913    }
5914
5915  /* The backend must work out the sizes of all the other dynamic
5916     sections.  */
5917  if (bed->elf_backend_size_dynamic_sections
5918      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5919    return FALSE;
5920
5921  if (elf_hash_table (info)->dynamic_sections_created)
5922    {
5923      unsigned long section_sym_count;
5924      asection *s;
5925
5926      /* Set up the version definition section.  */
5927      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5928      BFD_ASSERT (s != NULL);
5929
5930      /* We may have created additional version definitions if we are
5931	 just linking a regular application.  */
5932      verdefs = asvinfo.verdefs;
5933
5934      /* Skip anonymous version tag.  */
5935      if (verdefs != NULL && verdefs->vernum == 0)
5936	verdefs = verdefs->next;
5937
5938      if (verdefs == NULL && !info->create_default_symver)
5939	s->flags |= SEC_EXCLUDE;
5940      else
5941	{
5942	  unsigned int cdefs;
5943	  bfd_size_type size;
5944	  struct bfd_elf_version_tree *t;
5945	  bfd_byte *p;
5946	  Elf_Internal_Verdef def;
5947	  Elf_Internal_Verdaux defaux;
5948	  struct bfd_link_hash_entry *bh;
5949	  struct elf_link_hash_entry *h;
5950	  const char *name;
5951
5952	  cdefs = 0;
5953	  size = 0;
5954
5955	  /* Make space for the base version.  */
5956	  size += sizeof (Elf_External_Verdef);
5957	  size += sizeof (Elf_External_Verdaux);
5958	  ++cdefs;
5959
5960	  /* Make space for the default version.  */
5961	  if (info->create_default_symver)
5962	    {
5963	      size += sizeof (Elf_External_Verdef);
5964	      ++cdefs;
5965	    }
5966
5967	  for (t = verdefs; t != NULL; t = t->next)
5968	    {
5969	      struct bfd_elf_version_deps *n;
5970
5971	      /* Don't emit base version twice.  */
5972	      if (t->vernum == 0)
5973		continue;
5974
5975	      size += sizeof (Elf_External_Verdef);
5976	      size += sizeof (Elf_External_Verdaux);
5977	      ++cdefs;
5978
5979	      for (n = t->deps; n != NULL; n = n->next)
5980		size += sizeof (Elf_External_Verdaux);
5981	    }
5982
5983	  s->size = size;
5984	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5985	  if (s->contents == NULL && s->size != 0)
5986	    return FALSE;
5987
5988	  /* Fill in the version definition section.  */
5989
5990	  p = s->contents;
5991
5992	  def.vd_version = VER_DEF_CURRENT;
5993	  def.vd_flags = VER_FLG_BASE;
5994	  def.vd_ndx = 1;
5995	  def.vd_cnt = 1;
5996	  if (info->create_default_symver)
5997	    {
5998	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5999	      def.vd_next = sizeof (Elf_External_Verdef);
6000	    }
6001	  else
6002	    {
6003	      def.vd_aux = sizeof (Elf_External_Verdef);
6004	      def.vd_next = (sizeof (Elf_External_Verdef)
6005			     + sizeof (Elf_External_Verdaux));
6006	    }
6007
6008	  if (soname_indx != (bfd_size_type) -1)
6009	    {
6010	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6011				      soname_indx);
6012	      def.vd_hash = bfd_elf_hash (soname);
6013	      defaux.vda_name = soname_indx;
6014	      name = soname;
6015	    }
6016	  else
6017	    {
6018	      bfd_size_type indx;
6019
6020	      name = lbasename (output_bfd->filename);
6021	      def.vd_hash = bfd_elf_hash (name);
6022	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023					  name, FALSE);
6024	      if (indx == (bfd_size_type) -1)
6025		return FALSE;
6026	      defaux.vda_name = indx;
6027	    }
6028	  defaux.vda_next = 0;
6029
6030	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6031				    (Elf_External_Verdef *) p);
6032	  p += sizeof (Elf_External_Verdef);
6033	  if (info->create_default_symver)
6034	    {
6035	      /* Add a symbol representing this version.  */
6036	      bh = NULL;
6037	      if (! (_bfd_generic_link_add_one_symbol
6038		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6039		      0, NULL, FALSE,
6040		      get_elf_backend_data (dynobj)->collect, &bh)))
6041		return FALSE;
6042	      h = (struct elf_link_hash_entry *) bh;
6043	      h->non_elf = 0;
6044	      h->def_regular = 1;
6045	      h->type = STT_OBJECT;
6046	      h->verinfo.vertree = NULL;
6047
6048	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6049		return FALSE;
6050
6051	      /* Create a duplicate of the base version with the same
6052		 aux block, but different flags.  */
6053	      def.vd_flags = 0;
6054	      def.vd_ndx = 2;
6055	      def.vd_aux = sizeof (Elf_External_Verdef);
6056	      if (verdefs)
6057		def.vd_next = (sizeof (Elf_External_Verdef)
6058			       + sizeof (Elf_External_Verdaux));
6059	      else
6060		def.vd_next = 0;
6061	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6062					(Elf_External_Verdef *) p);
6063	      p += sizeof (Elf_External_Verdef);
6064	    }
6065	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6066				     (Elf_External_Verdaux *) p);
6067	  p += sizeof (Elf_External_Verdaux);
6068
6069	  for (t = verdefs; t != NULL; t = t->next)
6070	    {
6071	      unsigned int cdeps;
6072	      struct bfd_elf_version_deps *n;
6073
6074	      /* Don't emit the base version twice.  */
6075	      if (t->vernum == 0)
6076		continue;
6077
6078	      cdeps = 0;
6079	      for (n = t->deps; n != NULL; n = n->next)
6080		++cdeps;
6081
6082	      /* Add a symbol representing this version.  */
6083	      bh = NULL;
6084	      if (! (_bfd_generic_link_add_one_symbol
6085		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6086		      0, NULL, FALSE,
6087		      get_elf_backend_data (dynobj)->collect, &bh)))
6088		return FALSE;
6089	      h = (struct elf_link_hash_entry *) bh;
6090	      h->non_elf = 0;
6091	      h->def_regular = 1;
6092	      h->type = STT_OBJECT;
6093	      h->verinfo.vertree = t;
6094
6095	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6096		return FALSE;
6097
6098	      def.vd_version = VER_DEF_CURRENT;
6099	      def.vd_flags = 0;
6100	      if (t->globals.list == NULL
6101		  && t->locals.list == NULL
6102		  && ! t->used)
6103		def.vd_flags |= VER_FLG_WEAK;
6104	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6105	      def.vd_cnt = cdeps + 1;
6106	      def.vd_hash = bfd_elf_hash (t->name);
6107	      def.vd_aux = sizeof (Elf_External_Verdef);
6108	      def.vd_next = 0;
6109
6110	      /* If a basever node is next, it *must* be the last node in
6111		 the chain, otherwise Verdef construction breaks.  */
6112	      if (t->next != NULL && t->next->vernum == 0)
6113		BFD_ASSERT (t->next->next == NULL);
6114
6115	      if (t->next != NULL && t->next->vernum != 0)
6116		def.vd_next = (sizeof (Elf_External_Verdef)
6117			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6118
6119	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6120					(Elf_External_Verdef *) p);
6121	      p += sizeof (Elf_External_Verdef);
6122
6123	      defaux.vda_name = h->dynstr_index;
6124	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6125				      h->dynstr_index);
6126	      defaux.vda_next = 0;
6127	      if (t->deps != NULL)
6128		defaux.vda_next = sizeof (Elf_External_Verdaux);
6129	      t->name_indx = defaux.vda_name;
6130
6131	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6132					 (Elf_External_Verdaux *) p);
6133	      p += sizeof (Elf_External_Verdaux);
6134
6135	      for (n = t->deps; n != NULL; n = n->next)
6136		{
6137		  if (n->version_needed == NULL)
6138		    {
6139		      /* This can happen if there was an error in the
6140			 version script.  */
6141		      defaux.vda_name = 0;
6142		    }
6143		  else
6144		    {
6145		      defaux.vda_name = n->version_needed->name_indx;
6146		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6147					      defaux.vda_name);
6148		    }
6149		  if (n->next == NULL)
6150		    defaux.vda_next = 0;
6151		  else
6152		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6153
6154		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155					     (Elf_External_Verdaux *) p);
6156		  p += sizeof (Elf_External_Verdaux);
6157		}
6158	    }
6159
6160	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6161	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6162	    return FALSE;
6163
6164	  elf_tdata (output_bfd)->cverdefs = cdefs;
6165	}
6166
6167      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6168	{
6169	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6170	    return FALSE;
6171	}
6172      else if (info->flags & DF_BIND_NOW)
6173	{
6174	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6175	    return FALSE;
6176	}
6177
6178      if (info->flags_1)
6179	{
6180	  if (info->executable)
6181	    info->flags_1 &= ~ (DF_1_INITFIRST
6182				| DF_1_NODELETE
6183				| DF_1_NOOPEN);
6184	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6185	    return FALSE;
6186	}
6187
6188      /* Work out the size of the version reference section.  */
6189
6190      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6191      BFD_ASSERT (s != NULL);
6192      {
6193	struct elf_find_verdep_info sinfo;
6194
6195	sinfo.info = info;
6196	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6197	if (sinfo.vers == 0)
6198	  sinfo.vers = 1;
6199	sinfo.failed = FALSE;
6200
6201	elf_link_hash_traverse (elf_hash_table (info),
6202				_bfd_elf_link_find_version_dependencies,
6203				&sinfo);
6204	if (sinfo.failed)
6205	  return FALSE;
6206
6207	if (elf_tdata (output_bfd)->verref == NULL)
6208	  s->flags |= SEC_EXCLUDE;
6209	else
6210	  {
6211	    Elf_Internal_Verneed *t;
6212	    unsigned int size;
6213	    unsigned int crefs;
6214	    bfd_byte *p;
6215
6216	    /* Build the version dependency section.  */
6217	    size = 0;
6218	    crefs = 0;
6219	    for (t = elf_tdata (output_bfd)->verref;
6220		 t != NULL;
6221		 t = t->vn_nextref)
6222	      {
6223		Elf_Internal_Vernaux *a;
6224
6225		size += sizeof (Elf_External_Verneed);
6226		++crefs;
6227		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6228		  size += sizeof (Elf_External_Vernaux);
6229	      }
6230
6231	    s->size = size;
6232	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6233	    if (s->contents == NULL)
6234	      return FALSE;
6235
6236	    p = s->contents;
6237	    for (t = elf_tdata (output_bfd)->verref;
6238		 t != NULL;
6239		 t = t->vn_nextref)
6240	      {
6241		unsigned int caux;
6242		Elf_Internal_Vernaux *a;
6243		bfd_size_type indx;
6244
6245		caux = 0;
6246		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6247		  ++caux;
6248
6249		t->vn_version = VER_NEED_CURRENT;
6250		t->vn_cnt = caux;
6251		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6252					    elf_dt_name (t->vn_bfd) != NULL
6253					    ? elf_dt_name (t->vn_bfd)
6254					    : lbasename (t->vn_bfd->filename),
6255					    FALSE);
6256		if (indx == (bfd_size_type) -1)
6257		  return FALSE;
6258		t->vn_file = indx;
6259		t->vn_aux = sizeof (Elf_External_Verneed);
6260		if (t->vn_nextref == NULL)
6261		  t->vn_next = 0;
6262		else
6263		  t->vn_next = (sizeof (Elf_External_Verneed)
6264				+ caux * sizeof (Elf_External_Vernaux));
6265
6266		_bfd_elf_swap_verneed_out (output_bfd, t,
6267					   (Elf_External_Verneed *) p);
6268		p += sizeof (Elf_External_Verneed);
6269
6270		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6271		  {
6272		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6273		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6274						a->vna_nodename, FALSE);
6275		    if (indx == (bfd_size_type) -1)
6276		      return FALSE;
6277		    a->vna_name = indx;
6278		    if (a->vna_nextptr == NULL)
6279		      a->vna_next = 0;
6280		    else
6281		      a->vna_next = sizeof (Elf_External_Vernaux);
6282
6283		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6284					       (Elf_External_Vernaux *) p);
6285		    p += sizeof (Elf_External_Vernaux);
6286		  }
6287	      }
6288
6289	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6290		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6291	      return FALSE;
6292
6293	    elf_tdata (output_bfd)->cverrefs = crefs;
6294	  }
6295      }
6296
6297      if ((elf_tdata (output_bfd)->cverrefs == 0
6298	   && elf_tdata (output_bfd)->cverdefs == 0)
6299	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6300					     &section_sym_count) == 0)
6301	{
6302	  s = bfd_get_section_by_name (dynobj, ".gnu.version");
6303	  s->flags |= SEC_EXCLUDE;
6304	}
6305    }
6306  return TRUE;
6307}
6308
6309/* Find the first non-excluded output section.  We'll use its
6310   section symbol for some emitted relocs.  */
6311void
6312_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6313{
6314  asection *s;
6315
6316  for (s = output_bfd->sections; s != NULL; s = s->next)
6317    if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6318	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6319      {
6320	elf_hash_table (info)->text_index_section = s;
6321	break;
6322      }
6323}
6324
6325/* Find two non-excluded output sections, one for code, one for data.
6326   We'll use their section symbols for some emitted relocs.  */
6327void
6328_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6329{
6330  asection *s;
6331
6332  /* Data first, since setting text_index_section changes
6333     _bfd_elf_link_omit_section_dynsym.  */
6334  for (s = output_bfd->sections; s != NULL; s = s->next)
6335    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6336	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6337      {
6338	elf_hash_table (info)->data_index_section = s;
6339	break;
6340      }
6341
6342  for (s = output_bfd->sections; s != NULL; s = s->next)
6343    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6344	 == (SEC_ALLOC | SEC_READONLY))
6345	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346      {
6347	elf_hash_table (info)->text_index_section = s;
6348	break;
6349      }
6350
6351  if (elf_hash_table (info)->text_index_section == NULL)
6352    elf_hash_table (info)->text_index_section
6353      = elf_hash_table (info)->data_index_section;
6354}
6355
6356bfd_boolean
6357bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6358{
6359  const struct elf_backend_data *bed;
6360
6361  if (!is_elf_hash_table (info->hash))
6362    return TRUE;
6363
6364  bed = get_elf_backend_data (output_bfd);
6365  (*bed->elf_backend_init_index_section) (output_bfd, info);
6366
6367  if (elf_hash_table (info)->dynamic_sections_created)
6368    {
6369      bfd *dynobj;
6370      asection *s;
6371      bfd_size_type dynsymcount;
6372      unsigned long section_sym_count;
6373      unsigned int dtagcount;
6374
6375      dynobj = elf_hash_table (info)->dynobj;
6376
6377      /* Assign dynsym indicies.  In a shared library we generate a
6378	 section symbol for each output section, which come first.
6379	 Next come all of the back-end allocated local dynamic syms,
6380	 followed by the rest of the global symbols.  */
6381
6382      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6383						    &section_sym_count);
6384
6385      /* Work out the size of the symbol version section.  */
6386      s = bfd_get_section_by_name (dynobj, ".gnu.version");
6387      BFD_ASSERT (s != NULL);
6388      if (dynsymcount != 0
6389	  && (s->flags & SEC_EXCLUDE) == 0)
6390	{
6391	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6392	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6393	  if (s->contents == NULL)
6394	    return FALSE;
6395
6396	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6397	    return FALSE;
6398	}
6399
6400      /* Set the size of the .dynsym and .hash sections.  We counted
6401	 the number of dynamic symbols in elf_link_add_object_symbols.
6402	 We will build the contents of .dynsym and .hash when we build
6403	 the final symbol table, because until then we do not know the
6404	 correct value to give the symbols.  We built the .dynstr
6405	 section as we went along in elf_link_add_object_symbols.  */
6406      s = bfd_get_section_by_name (dynobj, ".dynsym");
6407      BFD_ASSERT (s != NULL);
6408      s->size = dynsymcount * bed->s->sizeof_sym;
6409
6410      if (dynsymcount != 0)
6411	{
6412	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6413	  if (s->contents == NULL)
6414	    return FALSE;
6415
6416	  /* The first entry in .dynsym is a dummy symbol.
6417	     Clear all the section syms, in case we don't output them all.  */
6418	  ++section_sym_count;
6419	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6420	}
6421
6422      elf_hash_table (info)->bucketcount = 0;
6423
6424      /* Compute the size of the hashing table.  As a side effect this
6425	 computes the hash values for all the names we export.  */
6426      if (info->emit_hash)
6427	{
6428	  unsigned long int *hashcodes;
6429	  struct hash_codes_info hashinf;
6430	  bfd_size_type amt;
6431	  unsigned long int nsyms;
6432	  size_t bucketcount;
6433	  size_t hash_entry_size;
6434
6435	  /* Compute the hash values for all exported symbols.  At the same
6436	     time store the values in an array so that we could use them for
6437	     optimizations.  */
6438	  amt = dynsymcount * sizeof (unsigned long int);
6439	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6440	  if (hashcodes == NULL)
6441	    return FALSE;
6442	  hashinf.hashcodes = hashcodes;
6443	  hashinf.error = FALSE;
6444
6445	  /* Put all hash values in HASHCODES.  */
6446	  elf_link_hash_traverse (elf_hash_table (info),
6447				  elf_collect_hash_codes, &hashinf);
6448	  if (hashinf.error)
6449	    {
6450	      free (hashcodes);
6451	      return FALSE;
6452	    }
6453
6454	  nsyms = hashinf.hashcodes - hashcodes;
6455	  bucketcount
6456	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6457	  free (hashcodes);
6458
6459	  if (bucketcount == 0)
6460	    return FALSE;
6461
6462	  elf_hash_table (info)->bucketcount = bucketcount;
6463
6464	  s = bfd_get_section_by_name (dynobj, ".hash");
6465	  BFD_ASSERT (s != NULL);
6466	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6467	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6468	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6469	  if (s->contents == NULL)
6470	    return FALSE;
6471
6472	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6473	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6474		   s->contents + hash_entry_size);
6475	}
6476
6477      if (info->emit_gnu_hash)
6478	{
6479	  size_t i, cnt;
6480	  unsigned char *contents;
6481	  struct collect_gnu_hash_codes cinfo;
6482	  bfd_size_type amt;
6483	  size_t bucketcount;
6484
6485	  memset (&cinfo, 0, sizeof (cinfo));
6486
6487	  /* Compute the hash values for all exported symbols.  At the same
6488	     time store the values in an array so that we could use them for
6489	     optimizations.  */
6490	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6491	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6492	  if (cinfo.hashcodes == NULL)
6493	    return FALSE;
6494
6495	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6496	  cinfo.min_dynindx = -1;
6497	  cinfo.output_bfd = output_bfd;
6498	  cinfo.bed = bed;
6499
6500	  /* Put all hash values in HASHCODES.  */
6501	  elf_link_hash_traverse (elf_hash_table (info),
6502				  elf_collect_gnu_hash_codes, &cinfo);
6503	  if (cinfo.error)
6504	    {
6505	      free (cinfo.hashcodes);
6506	      return FALSE;
6507	    }
6508
6509	  bucketcount
6510	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6511
6512	  if (bucketcount == 0)
6513	    {
6514	      free (cinfo.hashcodes);
6515	      return FALSE;
6516	    }
6517
6518	  s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6519	  BFD_ASSERT (s != NULL);
6520
6521	  if (cinfo.nsyms == 0)
6522	    {
6523	      /* Empty .gnu.hash section is special.  */
6524	      BFD_ASSERT (cinfo.min_dynindx == -1);
6525	      free (cinfo.hashcodes);
6526	      s->size = 5 * 4 + bed->s->arch_size / 8;
6527	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6528	      if (contents == NULL)
6529		return FALSE;
6530	      s->contents = contents;
6531	      /* 1 empty bucket.  */
6532	      bfd_put_32 (output_bfd, 1, contents);
6533	      /* SYMIDX above the special symbol 0.  */
6534	      bfd_put_32 (output_bfd, 1, contents + 4);
6535	      /* Just one word for bitmask.  */
6536	      bfd_put_32 (output_bfd, 1, contents + 8);
6537	      /* Only hash fn bloom filter.  */
6538	      bfd_put_32 (output_bfd, 0, contents + 12);
6539	      /* No hashes are valid - empty bitmask.  */
6540	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6541	      /* No hashes in the only bucket.  */
6542	      bfd_put_32 (output_bfd, 0,
6543			  contents + 16 + bed->s->arch_size / 8);
6544	    }
6545	  else
6546	    {
6547	      unsigned long int maskwords, maskbitslog2, x;
6548	      BFD_ASSERT (cinfo.min_dynindx != -1);
6549
6550	      x = cinfo.nsyms;
6551	      maskbitslog2 = 1;
6552	      while ((x >>= 1) != 0)
6553		++maskbitslog2;
6554	      if (maskbitslog2 < 3)
6555		maskbitslog2 = 5;
6556	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6557		maskbitslog2 = maskbitslog2 + 3;
6558	      else
6559		maskbitslog2 = maskbitslog2 + 2;
6560	      if (bed->s->arch_size == 64)
6561		{
6562		  if (maskbitslog2 == 5)
6563		    maskbitslog2 = 6;
6564		  cinfo.shift1 = 6;
6565		}
6566	      else
6567		cinfo.shift1 = 5;
6568	      cinfo.mask = (1 << cinfo.shift1) - 1;
6569	      cinfo.shift2 = maskbitslog2;
6570	      cinfo.maskbits = 1 << maskbitslog2;
6571	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6572	      amt = bucketcount * sizeof (unsigned long int) * 2;
6573	      amt += maskwords * sizeof (bfd_vma);
6574	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6575	      if (cinfo.bitmask == NULL)
6576		{
6577		  free (cinfo.hashcodes);
6578		  return FALSE;
6579		}
6580
6581	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6582	      cinfo.indx = cinfo.counts + bucketcount;
6583	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6584	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6585
6586	      /* Determine how often each hash bucket is used.  */
6587	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6588	      for (i = 0; i < cinfo.nsyms; ++i)
6589		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6590
6591	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6592		if (cinfo.counts[i] != 0)
6593		  {
6594		    cinfo.indx[i] = cnt;
6595		    cnt += cinfo.counts[i];
6596		  }
6597	      BFD_ASSERT (cnt == dynsymcount);
6598	      cinfo.bucketcount = bucketcount;
6599	      cinfo.local_indx = cinfo.min_dynindx;
6600
6601	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6602	      s->size += cinfo.maskbits / 8;
6603	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6604	      if (contents == NULL)
6605		{
6606		  free (cinfo.bitmask);
6607		  free (cinfo.hashcodes);
6608		  return FALSE;
6609		}
6610
6611	      s->contents = contents;
6612	      bfd_put_32 (output_bfd, bucketcount, contents);
6613	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6614	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6615	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6616	      contents += 16 + cinfo.maskbits / 8;
6617
6618	      for (i = 0; i < bucketcount; ++i)
6619		{
6620		  if (cinfo.counts[i] == 0)
6621		    bfd_put_32 (output_bfd, 0, contents);
6622		  else
6623		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6624		  contents += 4;
6625		}
6626
6627	      cinfo.contents = contents;
6628
6629	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6630	      elf_link_hash_traverse (elf_hash_table (info),
6631				      elf_renumber_gnu_hash_syms, &cinfo);
6632
6633	      contents = s->contents + 16;
6634	      for (i = 0; i < maskwords; ++i)
6635		{
6636		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6637			   contents);
6638		  contents += bed->s->arch_size / 8;
6639		}
6640
6641	      free (cinfo.bitmask);
6642	      free (cinfo.hashcodes);
6643	    }
6644	}
6645
6646      s = bfd_get_section_by_name (dynobj, ".dynstr");
6647      BFD_ASSERT (s != NULL);
6648
6649      elf_finalize_dynstr (output_bfd, info);
6650
6651      s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6652
6653      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6654	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6655	  return FALSE;
6656    }
6657
6658  return TRUE;
6659}
6660
6661/* Indicate that we are only retrieving symbol values from this
6662   section.  */
6663
6664void
6665_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6666{
6667  if (is_elf_hash_table (info->hash))
6668    sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6669  _bfd_generic_link_just_syms (sec, info);
6670}
6671
6672/* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6673
6674static void
6675merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6676			    asection *sec)
6677{
6678  BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6679  sec->sec_info_type = ELF_INFO_TYPE_NONE;
6680}
6681
6682/* Finish SHF_MERGE section merging.  */
6683
6684bfd_boolean
6685_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6686{
6687  bfd *ibfd;
6688  asection *sec;
6689
6690  if (!is_elf_hash_table (info->hash))
6691    return FALSE;
6692
6693  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6694    if ((ibfd->flags & DYNAMIC) == 0)
6695      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6696	if ((sec->flags & SEC_MERGE) != 0
6697	    && !bfd_is_abs_section (sec->output_section))
6698	  {
6699	    struct bfd_elf_section_data *secdata;
6700
6701	    secdata = elf_section_data (sec);
6702	    if (! _bfd_add_merge_section (abfd,
6703					  &elf_hash_table (info)->merge_info,
6704					  sec, &secdata->sec_info))
6705	      return FALSE;
6706	    else if (secdata->sec_info)
6707	      sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6708	  }
6709
6710  if (elf_hash_table (info)->merge_info != NULL)
6711    _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6712			 merge_sections_remove_hook);
6713  return TRUE;
6714}
6715
6716/* Create an entry in an ELF linker hash table.  */
6717
6718struct bfd_hash_entry *
6719_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6720			    struct bfd_hash_table *table,
6721			    const char *string)
6722{
6723  /* Allocate the structure if it has not already been allocated by a
6724     subclass.  */
6725  if (entry == NULL)
6726    {
6727      entry = (struct bfd_hash_entry *)
6728          bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6729      if (entry == NULL)
6730	return entry;
6731    }
6732
6733  /* Call the allocation method of the superclass.  */
6734  entry = _bfd_link_hash_newfunc (entry, table, string);
6735  if (entry != NULL)
6736    {
6737      struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6738      struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6739
6740      /* Set local fields.  */
6741      ret->indx = -1;
6742      ret->dynindx = -1;
6743      ret->got = htab->init_got_refcount;
6744      ret->plt = htab->init_plt_refcount;
6745      memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6746			      - offsetof (struct elf_link_hash_entry, size)));
6747      /* Assume that we have been called by a non-ELF symbol reader.
6748	 This flag is then reset by the code which reads an ELF input
6749	 file.  This ensures that a symbol created by a non-ELF symbol
6750	 reader will have the flag set correctly.  */
6751      ret->non_elf = 1;
6752    }
6753
6754  return entry;
6755}
6756
6757/* Copy data from an indirect symbol to its direct symbol, hiding the
6758   old indirect symbol.  Also used for copying flags to a weakdef.  */
6759
6760void
6761_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6762				  struct elf_link_hash_entry *dir,
6763				  struct elf_link_hash_entry *ind)
6764{
6765  struct elf_link_hash_table *htab;
6766
6767  /* Copy down any references that we may have already seen to the
6768     symbol which just became indirect.  */
6769
6770  dir->ref_dynamic |= ind->ref_dynamic;
6771  dir->ref_regular |= ind->ref_regular;
6772  dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6773  dir->non_got_ref |= ind->non_got_ref;
6774  dir->needs_plt |= ind->needs_plt;
6775  dir->pointer_equality_needed |= ind->pointer_equality_needed;
6776
6777  if (ind->root.type != bfd_link_hash_indirect)
6778    return;
6779
6780  /* Copy over the global and procedure linkage table refcount entries.
6781     These may have been already set up by a check_relocs routine.  */
6782  htab = elf_hash_table (info);
6783  if (ind->got.refcount > htab->init_got_refcount.refcount)
6784    {
6785      if (dir->got.refcount < 0)
6786	dir->got.refcount = 0;
6787      dir->got.refcount += ind->got.refcount;
6788      ind->got.refcount = htab->init_got_refcount.refcount;
6789    }
6790
6791  if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6792    {
6793      if (dir->plt.refcount < 0)
6794	dir->plt.refcount = 0;
6795      dir->plt.refcount += ind->plt.refcount;
6796      ind->plt.refcount = htab->init_plt_refcount.refcount;
6797    }
6798
6799  if (ind->dynindx != -1)
6800    {
6801      if (dir->dynindx != -1)
6802	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6803      dir->dynindx = ind->dynindx;
6804      dir->dynstr_index = ind->dynstr_index;
6805      ind->dynindx = -1;
6806      ind->dynstr_index = 0;
6807    }
6808}
6809
6810void
6811_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6812				struct elf_link_hash_entry *h,
6813				bfd_boolean force_local)
6814{
6815  /* STT_GNU_IFUNC symbol must go through PLT.  */
6816  if (h->type != STT_GNU_IFUNC)
6817    {
6818      h->plt = elf_hash_table (info)->init_plt_offset;
6819      h->needs_plt = 0;
6820    }
6821  if (force_local)
6822    {
6823      h->forced_local = 1;
6824      if (h->dynindx != -1)
6825	{
6826	  h->dynindx = -1;
6827	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6828				  h->dynstr_index);
6829	}
6830    }
6831}
6832
6833/* Initialize an ELF linker hash table.  */
6834
6835bfd_boolean
6836_bfd_elf_link_hash_table_init
6837  (struct elf_link_hash_table *table,
6838   bfd *abfd,
6839   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6840				      struct bfd_hash_table *,
6841				      const char *),
6842   unsigned int entsize,
6843   enum elf_target_id target_id)
6844{
6845  bfd_boolean ret;
6846  int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6847
6848  memset (table, 0, sizeof * table);
6849  table->init_got_refcount.refcount = can_refcount - 1;
6850  table->init_plt_refcount.refcount = can_refcount - 1;
6851  table->init_got_offset.offset = -(bfd_vma) 1;
6852  table->init_plt_offset.offset = -(bfd_vma) 1;
6853  /* The first dynamic symbol is a dummy.  */
6854  table->dynsymcount = 1;
6855
6856  ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6857
6858  table->root.type = bfd_link_elf_hash_table;
6859  table->hash_table_id = target_id;
6860
6861  return ret;
6862}
6863
6864/* Create an ELF linker hash table.  */
6865
6866struct bfd_link_hash_table *
6867_bfd_elf_link_hash_table_create (bfd *abfd)
6868{
6869  struct elf_link_hash_table *ret;
6870  bfd_size_type amt = sizeof (struct elf_link_hash_table);
6871
6872  ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6873  if (ret == NULL)
6874    return NULL;
6875
6876  if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6877				       sizeof (struct elf_link_hash_entry),
6878				       GENERIC_ELF_DATA))
6879    {
6880      free (ret);
6881      return NULL;
6882    }
6883
6884  return &ret->root;
6885}
6886
6887/* This is a hook for the ELF emulation code in the generic linker to
6888   tell the backend linker what file name to use for the DT_NEEDED
6889   entry for a dynamic object.  */
6890
6891void
6892bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6893{
6894  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6895      && bfd_get_format (abfd) == bfd_object)
6896    elf_dt_name (abfd) = name;
6897}
6898
6899int
6900bfd_elf_get_dyn_lib_class (bfd *abfd)
6901{
6902  int lib_class;
6903  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6904      && bfd_get_format (abfd) == bfd_object)
6905    lib_class = elf_dyn_lib_class (abfd);
6906  else
6907    lib_class = 0;
6908  return lib_class;
6909}
6910
6911void
6912bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6913{
6914  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6915      && bfd_get_format (abfd) == bfd_object)
6916    elf_dyn_lib_class (abfd) = lib_class;
6917}
6918
6919/* Get the list of DT_NEEDED entries for a link.  This is a hook for
6920   the linker ELF emulation code.  */
6921
6922struct bfd_link_needed_list *
6923bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6924			 struct bfd_link_info *info)
6925{
6926  if (! is_elf_hash_table (info->hash))
6927    return NULL;
6928  return elf_hash_table (info)->needed;
6929}
6930
6931/* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6932   hook for the linker ELF emulation code.  */
6933
6934struct bfd_link_needed_list *
6935bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6936			  struct bfd_link_info *info)
6937{
6938  if (! is_elf_hash_table (info->hash))
6939    return NULL;
6940  return elf_hash_table (info)->runpath;
6941}
6942
6943/* Get the name actually used for a dynamic object for a link.  This
6944   is the SONAME entry if there is one.  Otherwise, it is the string
6945   passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6946
6947const char *
6948bfd_elf_get_dt_soname (bfd *abfd)
6949{
6950  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6951      && bfd_get_format (abfd) == bfd_object)
6952    return elf_dt_name (abfd);
6953  return NULL;
6954}
6955
6956/* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6957   the ELF linker emulation code.  */
6958
6959bfd_boolean
6960bfd_elf_get_bfd_needed_list (bfd *abfd,
6961			     struct bfd_link_needed_list **pneeded)
6962{
6963  asection *s;
6964  bfd_byte *dynbuf = NULL;
6965  unsigned int elfsec;
6966  unsigned long shlink;
6967  bfd_byte *extdyn, *extdynend;
6968  size_t extdynsize;
6969  void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6970
6971  *pneeded = NULL;
6972
6973  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6974      || bfd_get_format (abfd) != bfd_object)
6975    return TRUE;
6976
6977  s = bfd_get_section_by_name (abfd, ".dynamic");
6978  if (s == NULL || s->size == 0)
6979    return TRUE;
6980
6981  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6982    goto error_return;
6983
6984  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6985  if (elfsec == SHN_BAD)
6986    goto error_return;
6987
6988  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6989
6990  extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6991  swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6992
6993  extdyn = dynbuf;
6994  extdynend = extdyn + s->size;
6995  for (; extdyn < extdynend; extdyn += extdynsize)
6996    {
6997      Elf_Internal_Dyn dyn;
6998
6999      (*swap_dyn_in) (abfd, extdyn, &dyn);
7000
7001      if (dyn.d_tag == DT_NULL)
7002	break;
7003
7004      if (dyn.d_tag == DT_NEEDED)
7005	{
7006	  const char *string;
7007	  struct bfd_link_needed_list *l;
7008	  unsigned int tagv = dyn.d_un.d_val;
7009	  bfd_size_type amt;
7010
7011	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7012	  if (string == NULL)
7013	    goto error_return;
7014
7015	  amt = sizeof *l;
7016	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7017	  if (l == NULL)
7018	    goto error_return;
7019
7020	  l->by = abfd;
7021	  l->name = string;
7022	  l->next = *pneeded;
7023	  *pneeded = l;
7024	}
7025    }
7026
7027  free (dynbuf);
7028
7029  return TRUE;
7030
7031 error_return:
7032  if (dynbuf != NULL)
7033    free (dynbuf);
7034  return FALSE;
7035}
7036
7037struct elf_symbuf_symbol
7038{
7039  unsigned long st_name;	/* Symbol name, index in string tbl */
7040  unsigned char st_info;	/* Type and binding attributes */
7041  unsigned char st_other;	/* Visibilty, and target specific */
7042};
7043
7044struct elf_symbuf_head
7045{
7046  struct elf_symbuf_symbol *ssym;
7047  bfd_size_type count;
7048  unsigned int st_shndx;
7049};
7050
7051struct elf_symbol
7052{
7053  union
7054    {
7055      Elf_Internal_Sym *isym;
7056      struct elf_symbuf_symbol *ssym;
7057    } u;
7058  const char *name;
7059};
7060
7061/* Sort references to symbols by ascending section number.  */
7062
7063static int
7064elf_sort_elf_symbol (const void *arg1, const void *arg2)
7065{
7066  const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7067  const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7068
7069  return s1->st_shndx - s2->st_shndx;
7070}
7071
7072static int
7073elf_sym_name_compare (const void *arg1, const void *arg2)
7074{
7075  const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7076  const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7077  return strcmp (s1->name, s2->name);
7078}
7079
7080static struct elf_symbuf_head *
7081elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7082{
7083  Elf_Internal_Sym **ind, **indbufend, **indbuf;
7084  struct elf_symbuf_symbol *ssym;
7085  struct elf_symbuf_head *ssymbuf, *ssymhead;
7086  bfd_size_type i, shndx_count, total_size;
7087
7088  indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7089  if (indbuf == NULL)
7090    return NULL;
7091
7092  for (ind = indbuf, i = 0; i < symcount; i++)
7093    if (isymbuf[i].st_shndx != SHN_UNDEF)
7094      *ind++ = &isymbuf[i];
7095  indbufend = ind;
7096
7097  qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7098	 elf_sort_elf_symbol);
7099
7100  shndx_count = 0;
7101  if (indbufend > indbuf)
7102    for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7103      if (ind[0]->st_shndx != ind[1]->st_shndx)
7104	shndx_count++;
7105
7106  total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7107		+ (indbufend - indbuf) * sizeof (*ssym));
7108  ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7109  if (ssymbuf == NULL)
7110    {
7111      free (indbuf);
7112      return NULL;
7113    }
7114
7115  ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7116  ssymbuf->ssym = NULL;
7117  ssymbuf->count = shndx_count;
7118  ssymbuf->st_shndx = 0;
7119  for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7120    {
7121      if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7122	{
7123	  ssymhead++;
7124	  ssymhead->ssym = ssym;
7125	  ssymhead->count = 0;
7126	  ssymhead->st_shndx = (*ind)->st_shndx;
7127	}
7128      ssym->st_name = (*ind)->st_name;
7129      ssym->st_info = (*ind)->st_info;
7130      ssym->st_other = (*ind)->st_other;
7131      ssymhead->count++;
7132    }
7133  BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7134	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7135		  == total_size));
7136
7137  free (indbuf);
7138  return ssymbuf;
7139}
7140
7141/* Check if 2 sections define the same set of local and global
7142   symbols.  */
7143
7144static bfd_boolean
7145bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7146				   struct bfd_link_info *info)
7147{
7148  bfd *bfd1, *bfd2;
7149  const struct elf_backend_data *bed1, *bed2;
7150  Elf_Internal_Shdr *hdr1, *hdr2;
7151  bfd_size_type symcount1, symcount2;
7152  Elf_Internal_Sym *isymbuf1, *isymbuf2;
7153  struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7154  Elf_Internal_Sym *isym, *isymend;
7155  struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7156  bfd_size_type count1, count2, i;
7157  unsigned int shndx1, shndx2;
7158  bfd_boolean result;
7159
7160  bfd1 = sec1->owner;
7161  bfd2 = sec2->owner;
7162
7163  /* Both sections have to be in ELF.  */
7164  if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7165      || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7166    return FALSE;
7167
7168  if (elf_section_type (sec1) != elf_section_type (sec2))
7169    return FALSE;
7170
7171  shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7172  shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7173  if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7174    return FALSE;
7175
7176  bed1 = get_elf_backend_data (bfd1);
7177  bed2 = get_elf_backend_data (bfd2);
7178  hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7179  symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7180  hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7181  symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7182
7183  if (symcount1 == 0 || symcount2 == 0)
7184    return FALSE;
7185
7186  result = FALSE;
7187  isymbuf1 = NULL;
7188  isymbuf2 = NULL;
7189  ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7190  ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7191
7192  if (ssymbuf1 == NULL)
7193    {
7194      isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7195				       NULL, NULL, NULL);
7196      if (isymbuf1 == NULL)
7197	goto done;
7198
7199      if (!info->reduce_memory_overheads)
7200	elf_tdata (bfd1)->symbuf = ssymbuf1
7201	  = elf_create_symbuf (symcount1, isymbuf1);
7202    }
7203
7204  if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7205    {
7206      isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7207				       NULL, NULL, NULL);
7208      if (isymbuf2 == NULL)
7209	goto done;
7210
7211      if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7212	elf_tdata (bfd2)->symbuf = ssymbuf2
7213	  = elf_create_symbuf (symcount2, isymbuf2);
7214    }
7215
7216  if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7217    {
7218      /* Optimized faster version.  */
7219      bfd_size_type lo, hi, mid;
7220      struct elf_symbol *symp;
7221      struct elf_symbuf_symbol *ssym, *ssymend;
7222
7223      lo = 0;
7224      hi = ssymbuf1->count;
7225      ssymbuf1++;
7226      count1 = 0;
7227      while (lo < hi)
7228	{
7229	  mid = (lo + hi) / 2;
7230	  if (shndx1 < ssymbuf1[mid].st_shndx)
7231	    hi = mid;
7232	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7233	    lo = mid + 1;
7234	  else
7235	    {
7236	      count1 = ssymbuf1[mid].count;
7237	      ssymbuf1 += mid;
7238	      break;
7239	    }
7240	}
7241
7242      lo = 0;
7243      hi = ssymbuf2->count;
7244      ssymbuf2++;
7245      count2 = 0;
7246      while (lo < hi)
7247	{
7248	  mid = (lo + hi) / 2;
7249	  if (shndx2 < ssymbuf2[mid].st_shndx)
7250	    hi = mid;
7251	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7252	    lo = mid + 1;
7253	  else
7254	    {
7255	      count2 = ssymbuf2[mid].count;
7256	      ssymbuf2 += mid;
7257	      break;
7258	    }
7259	}
7260
7261      if (count1 == 0 || count2 == 0 || count1 != count2)
7262	goto done;
7263
7264      symtable1 = (struct elf_symbol *)
7265          bfd_malloc (count1 * sizeof (struct elf_symbol));
7266      symtable2 = (struct elf_symbol *)
7267          bfd_malloc (count2 * sizeof (struct elf_symbol));
7268      if (symtable1 == NULL || symtable2 == NULL)
7269	goto done;
7270
7271      symp = symtable1;
7272      for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7273	   ssym < ssymend; ssym++, symp++)
7274	{
7275	  symp->u.ssym = ssym;
7276	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7277							hdr1->sh_link,
7278							ssym->st_name);
7279	}
7280
7281      symp = symtable2;
7282      for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7283	   ssym < ssymend; ssym++, symp++)
7284	{
7285	  symp->u.ssym = ssym;
7286	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7287							hdr2->sh_link,
7288							ssym->st_name);
7289	}
7290
7291      /* Sort symbol by name.  */
7292      qsort (symtable1, count1, sizeof (struct elf_symbol),
7293	     elf_sym_name_compare);
7294      qsort (symtable2, count1, sizeof (struct elf_symbol),
7295	     elf_sym_name_compare);
7296
7297      for (i = 0; i < count1; i++)
7298	/* Two symbols must have the same binding, type and name.  */
7299	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7300	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7301	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7302	  goto done;
7303
7304      result = TRUE;
7305      goto done;
7306    }
7307
7308  symtable1 = (struct elf_symbol *)
7309      bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7310  symtable2 = (struct elf_symbol *)
7311      bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7312  if (symtable1 == NULL || symtable2 == NULL)
7313    goto done;
7314
7315  /* Count definitions in the section.  */
7316  count1 = 0;
7317  for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7318    if (isym->st_shndx == shndx1)
7319      symtable1[count1++].u.isym = isym;
7320
7321  count2 = 0;
7322  for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7323    if (isym->st_shndx == shndx2)
7324      symtable2[count2++].u.isym = isym;
7325
7326  if (count1 == 0 || count2 == 0 || count1 != count2)
7327    goto done;
7328
7329  for (i = 0; i < count1; i++)
7330    symtable1[i].name
7331      = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7332					 symtable1[i].u.isym->st_name);
7333
7334  for (i = 0; i < count2; i++)
7335    symtable2[i].name
7336      = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7337					 symtable2[i].u.isym->st_name);
7338
7339  /* Sort symbol by name.  */
7340  qsort (symtable1, count1, sizeof (struct elf_symbol),
7341	 elf_sym_name_compare);
7342  qsort (symtable2, count1, sizeof (struct elf_symbol),
7343	 elf_sym_name_compare);
7344
7345  for (i = 0; i < count1; i++)
7346    /* Two symbols must have the same binding, type and name.  */
7347    if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7348	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7349	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7350      goto done;
7351
7352  result = TRUE;
7353
7354done:
7355  if (symtable1)
7356    free (symtable1);
7357  if (symtable2)
7358    free (symtable2);
7359  if (isymbuf1)
7360    free (isymbuf1);
7361  if (isymbuf2)
7362    free (isymbuf2);
7363
7364  return result;
7365}
7366
7367/* Return TRUE if 2 section types are compatible.  */
7368
7369bfd_boolean
7370_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7371				 bfd *bbfd, const asection *bsec)
7372{
7373  if (asec == NULL
7374      || bsec == NULL
7375      || abfd->xvec->flavour != bfd_target_elf_flavour
7376      || bbfd->xvec->flavour != bfd_target_elf_flavour)
7377    return TRUE;
7378
7379  return elf_section_type (asec) == elf_section_type (bsec);
7380}
7381
7382/* Final phase of ELF linker.  */
7383
7384/* A structure we use to avoid passing large numbers of arguments.  */
7385
7386struct elf_final_link_info
7387{
7388  /* General link information.  */
7389  struct bfd_link_info *info;
7390  /* Output BFD.  */
7391  bfd *output_bfd;
7392  /* Symbol string table.  */
7393  struct bfd_strtab_hash *symstrtab;
7394  /* .dynsym section.  */
7395  asection *dynsym_sec;
7396  /* .hash section.  */
7397  asection *hash_sec;
7398  /* symbol version section (.gnu.version).  */
7399  asection *symver_sec;
7400  /* Buffer large enough to hold contents of any section.  */
7401  bfd_byte *contents;
7402  /* Buffer large enough to hold external relocs of any section.  */
7403  void *external_relocs;
7404  /* Buffer large enough to hold internal relocs of any section.  */
7405  Elf_Internal_Rela *internal_relocs;
7406  /* Buffer large enough to hold external local symbols of any input
7407     BFD.  */
7408  bfd_byte *external_syms;
7409  /* And a buffer for symbol section indices.  */
7410  Elf_External_Sym_Shndx *locsym_shndx;
7411  /* Buffer large enough to hold internal local symbols of any input
7412     BFD.  */
7413  Elf_Internal_Sym *internal_syms;
7414  /* Array large enough to hold a symbol index for each local symbol
7415     of any input BFD.  */
7416  long *indices;
7417  /* Array large enough to hold a section pointer for each local
7418     symbol of any input BFD.  */
7419  asection **sections;
7420  /* Buffer to hold swapped out symbols.  */
7421  bfd_byte *symbuf;
7422  /* And one for symbol section indices.  */
7423  Elf_External_Sym_Shndx *symshndxbuf;
7424  /* Number of swapped out symbols in buffer.  */
7425  size_t symbuf_count;
7426  /* Number of symbols which fit in symbuf.  */
7427  size_t symbuf_size;
7428  /* And same for symshndxbuf.  */
7429  size_t shndxbuf_size;
7430};
7431
7432/* This struct is used to pass information to elf_link_output_extsym.  */
7433
7434struct elf_outext_info
7435{
7436  bfd_boolean failed;
7437  bfd_boolean localsyms;
7438  struct elf_final_link_info *finfo;
7439};
7440
7441
7442/* Support for evaluating a complex relocation.
7443
7444   Complex relocations are generalized, self-describing relocations.  The
7445   implementation of them consists of two parts: complex symbols, and the
7446   relocations themselves.
7447
7448   The relocations are use a reserved elf-wide relocation type code (R_RELC
7449   external / BFD_RELOC_RELC internal) and an encoding of relocation field
7450   information (start bit, end bit, word width, etc) into the addend.  This
7451   information is extracted from CGEN-generated operand tables within gas.
7452
7453   Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7454   internal) representing prefix-notation expressions, including but not
7455   limited to those sorts of expressions normally encoded as addends in the
7456   addend field.  The symbol mangling format is:
7457
7458   <node> := <literal>
7459          |  <unary-operator> ':' <node>
7460          |  <binary-operator> ':' <node> ':' <node>
7461	  ;
7462
7463   <literal> := 's' <digits=N> ':' <N character symbol name>
7464             |  'S' <digits=N> ':' <N character section name>
7465	     |  '#' <hexdigits>
7466	     ;
7467
7468   <binary-operator> := as in C
7469   <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7470
7471static void
7472set_symbol_value (bfd *bfd_with_globals,
7473		  Elf_Internal_Sym *isymbuf,
7474		  size_t locsymcount,
7475		  size_t symidx,
7476		  bfd_vma val)
7477{
7478  struct elf_link_hash_entry **sym_hashes;
7479  struct elf_link_hash_entry *h;
7480  size_t extsymoff = locsymcount;
7481
7482  if (symidx < locsymcount)
7483    {
7484      Elf_Internal_Sym *sym;
7485
7486      sym = isymbuf + symidx;
7487      if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7488	{
7489	  /* It is a local symbol: move it to the
7490	     "absolute" section and give it a value.  */
7491	  sym->st_shndx = SHN_ABS;
7492	  sym->st_value = val;
7493	  return;
7494	}
7495      BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7496      extsymoff = 0;
7497    }
7498
7499  /* It is a global symbol: set its link type
7500     to "defined" and give it a value.  */
7501
7502  sym_hashes = elf_sym_hashes (bfd_with_globals);
7503  h = sym_hashes [symidx - extsymoff];
7504  while (h->root.type == bfd_link_hash_indirect
7505	 || h->root.type == bfd_link_hash_warning)
7506    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7507  h->root.type = bfd_link_hash_defined;
7508  h->root.u.def.value = val;
7509  h->root.u.def.section = bfd_abs_section_ptr;
7510}
7511
7512static bfd_boolean
7513resolve_symbol (const char *name,
7514		bfd *input_bfd,
7515		struct elf_final_link_info *finfo,
7516		bfd_vma *result,
7517		Elf_Internal_Sym *isymbuf,
7518		size_t locsymcount)
7519{
7520  Elf_Internal_Sym *sym;
7521  struct bfd_link_hash_entry *global_entry;
7522  const char *candidate = NULL;
7523  Elf_Internal_Shdr *symtab_hdr;
7524  size_t i;
7525
7526  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7527
7528  for (i = 0; i < locsymcount; ++ i)
7529    {
7530      sym = isymbuf + i;
7531
7532      if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7533	continue;
7534
7535      candidate = bfd_elf_string_from_elf_section (input_bfd,
7536						   symtab_hdr->sh_link,
7537						   sym->st_name);
7538#ifdef DEBUG
7539      printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7540	      name, candidate, (unsigned long) sym->st_value);
7541#endif
7542      if (candidate && strcmp (candidate, name) == 0)
7543	{
7544	  asection *sec = finfo->sections [i];
7545
7546	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7547	  *result += sec->output_offset + sec->output_section->vma;
7548#ifdef DEBUG
7549	  printf ("Found symbol with value %8.8lx\n",
7550		  (unsigned long) *result);
7551#endif
7552	  return TRUE;
7553	}
7554    }
7555
7556  /* Hmm, haven't found it yet. perhaps it is a global.  */
7557  global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7558				       FALSE, FALSE, TRUE);
7559  if (!global_entry)
7560    return FALSE;
7561
7562  if (global_entry->type == bfd_link_hash_defined
7563      || global_entry->type == bfd_link_hash_defweak)
7564    {
7565      *result = (global_entry->u.def.value
7566		 + global_entry->u.def.section->output_section->vma
7567		 + global_entry->u.def.section->output_offset);
7568#ifdef DEBUG
7569      printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7570	      global_entry->root.string, (unsigned long) *result);
7571#endif
7572      return TRUE;
7573    }
7574
7575  return FALSE;
7576}
7577
7578static bfd_boolean
7579resolve_section (const char *name,
7580		 asection *sections,
7581		 bfd_vma *result)
7582{
7583  asection *curr;
7584  unsigned int len;
7585
7586  for (curr = sections; curr; curr = curr->next)
7587    if (strcmp (curr->name, name) == 0)
7588      {
7589	*result = curr->vma;
7590	return TRUE;
7591      }
7592
7593  /* Hmm. still haven't found it. try pseudo-section names.  */
7594  for (curr = sections; curr; curr = curr->next)
7595    {
7596      len = strlen (curr->name);
7597      if (len > strlen (name))
7598	continue;
7599
7600      if (strncmp (curr->name, name, len) == 0)
7601	{
7602	  if (strncmp (".end", name + len, 4) == 0)
7603	    {
7604	      *result = curr->vma + curr->size;
7605	      return TRUE;
7606	    }
7607
7608	  /* Insert more pseudo-section names here, if you like.  */
7609	}
7610    }
7611
7612  return FALSE;
7613}
7614
7615static void
7616undefined_reference (const char *reftype, const char *name)
7617{
7618  _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7619		      reftype, name);
7620}
7621
7622static bfd_boolean
7623eval_symbol (bfd_vma *result,
7624	     const char **symp,
7625	     bfd *input_bfd,
7626	     struct elf_final_link_info *finfo,
7627	     bfd_vma dot,
7628	     Elf_Internal_Sym *isymbuf,
7629	     size_t locsymcount,
7630	     int signed_p)
7631{
7632  size_t len;
7633  size_t symlen;
7634  bfd_vma a;
7635  bfd_vma b;
7636  char symbuf[4096];
7637  const char *sym = *symp;
7638  const char *symend;
7639  bfd_boolean symbol_is_section = FALSE;
7640
7641  len = strlen (sym);
7642  symend = sym + len;
7643
7644  if (len < 1 || len > sizeof (symbuf))
7645    {
7646      bfd_set_error (bfd_error_invalid_operation);
7647      return FALSE;
7648    }
7649
7650  switch (* sym)
7651    {
7652    case '.':
7653      *result = dot;
7654      *symp = sym + 1;
7655      return TRUE;
7656
7657    case '#':
7658      ++sym;
7659      *result = strtoul (sym, (char **) symp, 16);
7660      return TRUE;
7661
7662    case 'S':
7663      symbol_is_section = TRUE;
7664    case 's':
7665      ++sym;
7666      symlen = strtol (sym, (char **) symp, 10);
7667      sym = *symp + 1; /* Skip the trailing ':'.  */
7668
7669      if (symend < sym || symlen + 1 > sizeof (symbuf))
7670	{
7671	  bfd_set_error (bfd_error_invalid_operation);
7672	  return FALSE;
7673	}
7674
7675      memcpy (symbuf, sym, symlen);
7676      symbuf[symlen] = '\0';
7677      *symp = sym + symlen;
7678
7679      /* Is it always possible, with complex symbols, that gas "mis-guessed"
7680	 the symbol as a section, or vice-versa. so we're pretty liberal in our
7681	 interpretation here; section means "try section first", not "must be a
7682	 section", and likewise with symbol.  */
7683
7684      if (symbol_is_section)
7685	{
7686	  if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7687	      && !resolve_symbol (symbuf, input_bfd, finfo, result,
7688				  isymbuf, locsymcount))
7689	    {
7690	      undefined_reference ("section", symbuf);
7691	      return FALSE;
7692	    }
7693	}
7694      else
7695	{
7696	  if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7697			       isymbuf, locsymcount)
7698	      && !resolve_section (symbuf, finfo->output_bfd->sections,
7699				   result))
7700	    {
7701	      undefined_reference ("symbol", symbuf);
7702	      return FALSE;
7703	    }
7704	}
7705
7706      return TRUE;
7707
7708      /* All that remains are operators.  */
7709
7710#define UNARY_OP(op)						\
7711  if (strncmp (sym, #op, strlen (#op)) == 0)			\
7712    {								\
7713      sym += strlen (#op);					\
7714      if (*sym == ':')						\
7715	++sym;							\
7716      *symp = sym;						\
7717      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,	\
7718			isymbuf, locsymcount, signed_p))	\
7719	return FALSE;						\
7720      if (signed_p)						\
7721	*result = op ((bfd_signed_vma) a);			\
7722      else							\
7723	*result = op a;						\
7724      return TRUE;						\
7725    }
7726
7727#define BINARY_OP(op)						\
7728  if (strncmp (sym, #op, strlen (#op)) == 0)			\
7729    {								\
7730      sym += strlen (#op);					\
7731      if (*sym == ':')						\
7732	++sym;							\
7733      *symp = sym;						\
7734      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,	\
7735			isymbuf, locsymcount, signed_p))	\
7736	return FALSE;						\
7737      ++*symp;							\
7738      if (!eval_symbol (&b, symp, input_bfd, finfo, dot,	\
7739			isymbuf, locsymcount, signed_p))	\
7740	return FALSE;						\
7741      if (signed_p)						\
7742	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
7743      else							\
7744	*result = a op b;					\
7745      return TRUE;						\
7746    }
7747
7748    default:
7749      UNARY_OP  (0-);
7750      BINARY_OP (<<);
7751      BINARY_OP (>>);
7752      BINARY_OP (==);
7753      BINARY_OP (!=);
7754      BINARY_OP (<=);
7755      BINARY_OP (>=);
7756      BINARY_OP (&&);
7757      BINARY_OP (||);
7758      UNARY_OP  (~);
7759      UNARY_OP  (!);
7760      BINARY_OP (*);
7761      BINARY_OP (/);
7762      BINARY_OP (%);
7763      BINARY_OP (^);
7764      BINARY_OP (|);
7765      BINARY_OP (&);
7766      BINARY_OP (+);
7767      BINARY_OP (-);
7768      BINARY_OP (<);
7769      BINARY_OP (>);
7770#undef UNARY_OP
7771#undef BINARY_OP
7772      _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7773      bfd_set_error (bfd_error_invalid_operation);
7774      return FALSE;
7775    }
7776}
7777
7778static void
7779put_value (bfd_vma size,
7780	   unsigned long chunksz,
7781	   bfd *input_bfd,
7782	   bfd_vma x,
7783	   bfd_byte *location)
7784{
7785  location += (size - chunksz);
7786
7787  for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7788    {
7789      switch (chunksz)
7790	{
7791	default:
7792	case 0:
7793	  abort ();
7794	case 1:
7795	  bfd_put_8 (input_bfd, x, location);
7796	  break;
7797	case 2:
7798	  bfd_put_16 (input_bfd, x, location);
7799	  break;
7800	case 4:
7801	  bfd_put_32 (input_bfd, x, location);
7802	  break;
7803	case 8:
7804#ifdef BFD64
7805	  bfd_put_64 (input_bfd, x, location);
7806#else
7807	  abort ();
7808#endif
7809	  break;
7810	}
7811    }
7812}
7813
7814static bfd_vma
7815get_value (bfd_vma size,
7816	   unsigned long chunksz,
7817	   bfd *input_bfd,
7818	   bfd_byte *location)
7819{
7820  bfd_vma x = 0;
7821
7822  for (; size; size -= chunksz, location += chunksz)
7823    {
7824      switch (chunksz)
7825	{
7826	default:
7827	case 0:
7828	  abort ();
7829	case 1:
7830	  x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7831	  break;
7832	case 2:
7833	  x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7834	  break;
7835	case 4:
7836	  x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7837	  break;
7838	case 8:
7839#ifdef BFD64
7840	  x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7841#else
7842	  abort ();
7843#endif
7844	  break;
7845	}
7846    }
7847  return x;
7848}
7849
7850static void
7851decode_complex_addend (unsigned long *start,   /* in bits */
7852		       unsigned long *oplen,   /* in bits */
7853		       unsigned long *len,     /* in bits */
7854		       unsigned long *wordsz,  /* in bytes */
7855		       unsigned long *chunksz, /* in bytes */
7856		       unsigned long *lsb0_p,
7857		       unsigned long *signed_p,
7858		       unsigned long *trunc_p,
7859		       unsigned long encoded)
7860{
7861  * start     =  encoded        & 0x3F;
7862  * len       = (encoded >>  6) & 0x3F;
7863  * oplen     = (encoded >> 12) & 0x3F;
7864  * wordsz    = (encoded >> 18) & 0xF;
7865  * chunksz   = (encoded >> 22) & 0xF;
7866  * lsb0_p    = (encoded >> 27) & 1;
7867  * signed_p  = (encoded >> 28) & 1;
7868  * trunc_p   = (encoded >> 29) & 1;
7869}
7870
7871bfd_reloc_status_type
7872bfd_elf_perform_complex_relocation (bfd *input_bfd,
7873				    asection *input_section ATTRIBUTE_UNUSED,
7874				    bfd_byte *contents,
7875				    Elf_Internal_Rela *rel,
7876				    bfd_vma relocation)
7877{
7878  bfd_vma shift, x, mask;
7879  unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7880  bfd_reloc_status_type r;
7881
7882  /*  Perform this reloc, since it is complex.
7883      (this is not to say that it necessarily refers to a complex
7884      symbol; merely that it is a self-describing CGEN based reloc.
7885      i.e. the addend has the complete reloc information (bit start, end,
7886      word size, etc) encoded within it.).  */
7887
7888  decode_complex_addend (&start, &oplen, &len, &wordsz,
7889			 &chunksz, &lsb0_p, &signed_p,
7890			 &trunc_p, rel->r_addend);
7891
7892  mask = (((1L << (len - 1)) - 1) << 1) | 1;
7893
7894  if (lsb0_p)
7895    shift = (start + 1) - len;
7896  else
7897    shift = (8 * wordsz) - (start + len);
7898
7899  /* FIXME: octets_per_byte.  */
7900  x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7901
7902#ifdef DEBUG
7903  printf ("Doing complex reloc: "
7904	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7905	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7906	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7907	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7908	  oplen, (unsigned long) x, (unsigned long) mask,
7909	  (unsigned long) relocation);
7910#endif
7911
7912  r = bfd_reloc_ok;
7913  if (! trunc_p)
7914    /* Now do an overflow check.  */
7915    r = bfd_check_overflow ((signed_p
7916			     ? complain_overflow_signed
7917			     : complain_overflow_unsigned),
7918			    len, 0, (8 * wordsz),
7919			    relocation);
7920
7921  /* Do the deed.  */
7922  x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7923
7924#ifdef DEBUG
7925  printf ("           relocation: %8.8lx\n"
7926	  "         shifted mask: %8.8lx\n"
7927	  " shifted/masked reloc: %8.8lx\n"
7928	  "               result: %8.8lx\n",
7929	  (unsigned long) relocation, (unsigned long) (mask << shift),
7930	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7931#endif
7932  /* FIXME: octets_per_byte.  */
7933  put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7934  return r;
7935}
7936
7937/* When performing a relocatable link, the input relocations are
7938   preserved.  But, if they reference global symbols, the indices
7939   referenced must be updated.  Update all the relocations found in
7940   RELDATA.  */
7941
7942static void
7943elf_link_adjust_relocs (bfd *abfd,
7944			struct bfd_elf_section_reloc_data *reldata)
7945{
7946  unsigned int i;
7947  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7948  bfd_byte *erela;
7949  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7950  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7951  bfd_vma r_type_mask;
7952  int r_sym_shift;
7953  unsigned int count = reldata->count;
7954  struct elf_link_hash_entry **rel_hash = reldata->hashes;
7955
7956  if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7957    {
7958      swap_in = bed->s->swap_reloc_in;
7959      swap_out = bed->s->swap_reloc_out;
7960    }
7961  else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7962    {
7963      swap_in = bed->s->swap_reloca_in;
7964      swap_out = bed->s->swap_reloca_out;
7965    }
7966  else
7967    abort ();
7968
7969  if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7970    abort ();
7971
7972  if (bed->s->arch_size == 32)
7973    {
7974      r_type_mask = 0xff;
7975      r_sym_shift = 8;
7976    }
7977  else
7978    {
7979      r_type_mask = 0xffffffff;
7980      r_sym_shift = 32;
7981    }
7982
7983  erela = reldata->hdr->contents;
7984  for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7985    {
7986      Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7987      unsigned int j;
7988
7989      if (*rel_hash == NULL)
7990	continue;
7991
7992      BFD_ASSERT ((*rel_hash)->indx >= 0);
7993
7994      (*swap_in) (abfd, erela, irela);
7995      for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7996	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7997			   | (irela[j].r_info & r_type_mask));
7998      (*swap_out) (abfd, irela, erela);
7999    }
8000}
8001
8002struct elf_link_sort_rela
8003{
8004  union {
8005    bfd_vma offset;
8006    bfd_vma sym_mask;
8007  } u;
8008  enum elf_reloc_type_class type;
8009  /* We use this as an array of size int_rels_per_ext_rel.  */
8010  Elf_Internal_Rela rela[1];
8011};
8012
8013static int
8014elf_link_sort_cmp1 (const void *A, const void *B)
8015{
8016  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8017  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8018  int relativea, relativeb;
8019
8020  relativea = a->type == reloc_class_relative;
8021  relativeb = b->type == reloc_class_relative;
8022
8023  if (relativea < relativeb)
8024    return 1;
8025  if (relativea > relativeb)
8026    return -1;
8027  if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8028    return -1;
8029  if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8030    return 1;
8031  if (a->rela->r_offset < b->rela->r_offset)
8032    return -1;
8033  if (a->rela->r_offset > b->rela->r_offset)
8034    return 1;
8035  return 0;
8036}
8037
8038static int
8039elf_link_sort_cmp2 (const void *A, const void *B)
8040{
8041  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8042  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8043  int copya, copyb;
8044
8045  if (a->u.offset < b->u.offset)
8046    return -1;
8047  if (a->u.offset > b->u.offset)
8048    return 1;
8049  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8050  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8051  if (copya < copyb)
8052    return -1;
8053  if (copya > copyb)
8054    return 1;
8055  if (a->rela->r_offset < b->rela->r_offset)
8056    return -1;
8057  if (a->rela->r_offset > b->rela->r_offset)
8058    return 1;
8059  return 0;
8060}
8061
8062static size_t
8063elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8064{
8065  asection *dynamic_relocs;
8066  asection *rela_dyn;
8067  asection *rel_dyn;
8068  bfd_size_type count, size;
8069  size_t i, ret, sort_elt, ext_size;
8070  bfd_byte *sort, *s_non_relative, *p;
8071  struct elf_link_sort_rela *sq;
8072  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8073  int i2e = bed->s->int_rels_per_ext_rel;
8074  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8075  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8076  struct bfd_link_order *lo;
8077  bfd_vma r_sym_mask;
8078  bfd_boolean use_rela;
8079
8080  /* Find a dynamic reloc section.  */
8081  rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8082  rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8083  if (rela_dyn != NULL && rela_dyn->size > 0
8084      && rel_dyn != NULL && rel_dyn->size > 0)
8085    {
8086      bfd_boolean use_rela_initialised = FALSE;
8087
8088      /* This is just here to stop gcc from complaining.
8089	 It's initialization checking code is not perfect.  */
8090      use_rela = TRUE;
8091
8092      /* Both sections are present.  Examine the sizes
8093	 of the indirect sections to help us choose.  */
8094      for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8095	if (lo->type == bfd_indirect_link_order)
8096	  {
8097	    asection *o = lo->u.indirect.section;
8098
8099	    if ((o->size % bed->s->sizeof_rela) == 0)
8100	      {
8101		if ((o->size % bed->s->sizeof_rel) == 0)
8102		  /* Section size is divisible by both rel and rela sizes.
8103		     It is of no help to us.  */
8104		  ;
8105		else
8106		  {
8107		    /* Section size is only divisible by rela.  */
8108		    if (use_rela_initialised && (use_rela == FALSE))
8109		      {
8110			_bfd_error_handler
8111			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8112			bfd_set_error (bfd_error_invalid_operation);
8113			return 0;
8114		      }
8115		    else
8116		      {
8117			use_rela = TRUE;
8118			use_rela_initialised = TRUE;
8119		      }
8120		  }
8121	      }
8122	    else if ((o->size % bed->s->sizeof_rel) == 0)
8123	      {
8124		/* Section size is only divisible by rel.  */
8125		if (use_rela_initialised && (use_rela == TRUE))
8126		  {
8127		    _bfd_error_handler
8128		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8129		    bfd_set_error (bfd_error_invalid_operation);
8130		    return 0;
8131		  }
8132		else
8133		  {
8134		    use_rela = FALSE;
8135		    use_rela_initialised = TRUE;
8136		  }
8137	      }
8138	    else
8139	      {
8140		/* The section size is not divisible by either - something is wrong.  */
8141		_bfd_error_handler
8142		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8143		bfd_set_error (bfd_error_invalid_operation);
8144		return 0;
8145	      }
8146	  }
8147
8148      for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149	if (lo->type == bfd_indirect_link_order)
8150	  {
8151	    asection *o = lo->u.indirect.section;
8152
8153	    if ((o->size % bed->s->sizeof_rela) == 0)
8154	      {
8155		if ((o->size % bed->s->sizeof_rel) == 0)
8156		  /* Section size is divisible by both rel and rela sizes.
8157		     It is of no help to us.  */
8158		  ;
8159		else
8160		  {
8161		    /* Section size is only divisible by rela.  */
8162		    if (use_rela_initialised && (use_rela == FALSE))
8163		      {
8164			_bfd_error_handler
8165			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166			bfd_set_error (bfd_error_invalid_operation);
8167			return 0;
8168		      }
8169		    else
8170		      {
8171			use_rela = TRUE;
8172			use_rela_initialised = TRUE;
8173		      }
8174		  }
8175	      }
8176	    else if ((o->size % bed->s->sizeof_rel) == 0)
8177	      {
8178		/* Section size is only divisible by rel.  */
8179		if (use_rela_initialised && (use_rela == TRUE))
8180		  {
8181		    _bfd_error_handler
8182		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183		    bfd_set_error (bfd_error_invalid_operation);
8184		    return 0;
8185		  }
8186		else
8187		  {
8188		    use_rela = FALSE;
8189		    use_rela_initialised = TRUE;
8190		  }
8191	      }
8192	    else
8193	      {
8194		/* The section size is not divisible by either - something is wrong.  */
8195		_bfd_error_handler
8196		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197		bfd_set_error (bfd_error_invalid_operation);
8198		return 0;
8199	      }
8200	  }
8201
8202      if (! use_rela_initialised)
8203	/* Make a guess.  */
8204	use_rela = TRUE;
8205    }
8206  else if (rela_dyn != NULL && rela_dyn->size > 0)
8207    use_rela = TRUE;
8208  else if (rel_dyn != NULL && rel_dyn->size > 0)
8209    use_rela = FALSE;
8210  else
8211    return 0;
8212
8213  if (use_rela)
8214    {
8215      dynamic_relocs = rela_dyn;
8216      ext_size = bed->s->sizeof_rela;
8217      swap_in = bed->s->swap_reloca_in;
8218      swap_out = bed->s->swap_reloca_out;
8219    }
8220  else
8221    {
8222      dynamic_relocs = rel_dyn;
8223      ext_size = bed->s->sizeof_rel;
8224      swap_in = bed->s->swap_reloc_in;
8225      swap_out = bed->s->swap_reloc_out;
8226    }
8227
8228  size = 0;
8229  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8230    if (lo->type == bfd_indirect_link_order)
8231      size += lo->u.indirect.section->size;
8232
8233  if (size != dynamic_relocs->size)
8234    return 0;
8235
8236  sort_elt = (sizeof (struct elf_link_sort_rela)
8237	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8238
8239  count = dynamic_relocs->size / ext_size;
8240  if (count == 0)
8241    return 0;
8242  sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8243
8244  if (sort == NULL)
8245    {
8246      (*info->callbacks->warning)
8247	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8248      return 0;
8249    }
8250
8251  if (bed->s->arch_size == 32)
8252    r_sym_mask = ~(bfd_vma) 0xff;
8253  else
8254    r_sym_mask = ~(bfd_vma) 0xffffffff;
8255
8256  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8257    if (lo->type == bfd_indirect_link_order)
8258      {
8259	bfd_byte *erel, *erelend;
8260	asection *o = lo->u.indirect.section;
8261
8262	if (o->contents == NULL && o->size != 0)
8263	  {
8264	    /* This is a reloc section that is being handled as a normal
8265	       section.  See bfd_section_from_shdr.  We can't combine
8266	       relocs in this case.  */
8267	    free (sort);
8268	    return 0;
8269	  }
8270	erel = o->contents;
8271	erelend = o->contents + o->size;
8272	/* FIXME: octets_per_byte.  */
8273	p = sort + o->output_offset / ext_size * sort_elt;
8274
8275	while (erel < erelend)
8276	  {
8277	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8278
8279	    (*swap_in) (abfd, erel, s->rela);
8280	    s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8281	    s->u.sym_mask = r_sym_mask;
8282	    p += sort_elt;
8283	    erel += ext_size;
8284	  }
8285      }
8286
8287  qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8288
8289  for (i = 0, p = sort; i < count; i++, p += sort_elt)
8290    {
8291      struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8292      if (s->type != reloc_class_relative)
8293	break;
8294    }
8295  ret = i;
8296  s_non_relative = p;
8297
8298  sq = (struct elf_link_sort_rela *) s_non_relative;
8299  for (; i < count; i++, p += sort_elt)
8300    {
8301      struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8302      if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8303	sq = sp;
8304      sp->u.offset = sq->rela->r_offset;
8305    }
8306
8307  qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8308
8309  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8310    if (lo->type == bfd_indirect_link_order)
8311      {
8312	bfd_byte *erel, *erelend;
8313	asection *o = lo->u.indirect.section;
8314
8315	erel = o->contents;
8316	erelend = o->contents + o->size;
8317	/* FIXME: octets_per_byte.  */
8318	p = sort + o->output_offset / ext_size * sort_elt;
8319	while (erel < erelend)
8320	  {
8321	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8322	    (*swap_out) (abfd, s->rela, erel);
8323	    p += sort_elt;
8324	    erel += ext_size;
8325	  }
8326      }
8327
8328  free (sort);
8329  *psec = dynamic_relocs;
8330  return ret;
8331}
8332
8333/* Flush the output symbols to the file.  */
8334
8335static bfd_boolean
8336elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8337			    const struct elf_backend_data *bed)
8338{
8339  if (finfo->symbuf_count > 0)
8340    {
8341      Elf_Internal_Shdr *hdr;
8342      file_ptr pos;
8343      bfd_size_type amt;
8344
8345      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8346      pos = hdr->sh_offset + hdr->sh_size;
8347      amt = finfo->symbuf_count * bed->s->sizeof_sym;
8348      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8349	  || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8350	return FALSE;
8351
8352      hdr->sh_size += amt;
8353      finfo->symbuf_count = 0;
8354    }
8355
8356  return TRUE;
8357}
8358
8359/* Add a symbol to the output symbol table.  */
8360
8361static int
8362elf_link_output_sym (struct elf_final_link_info *finfo,
8363		     const char *name,
8364		     Elf_Internal_Sym *elfsym,
8365		     asection *input_sec,
8366		     struct elf_link_hash_entry *h)
8367{
8368  bfd_byte *dest;
8369  Elf_External_Sym_Shndx *destshndx;
8370  int (*output_symbol_hook)
8371    (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8372     struct elf_link_hash_entry *);
8373  const struct elf_backend_data *bed;
8374
8375  bed = get_elf_backend_data (finfo->output_bfd);
8376  output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8377  if (output_symbol_hook != NULL)
8378    {
8379      int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8380      if (ret != 1)
8381	return ret;
8382    }
8383
8384  if (name == NULL || *name == '\0')
8385    elfsym->st_name = 0;
8386  else if (input_sec->flags & SEC_EXCLUDE)
8387    elfsym->st_name = 0;
8388  else
8389    {
8390      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8391							    name, TRUE, FALSE);
8392      if (elfsym->st_name == (unsigned long) -1)
8393	return 0;
8394    }
8395
8396  if (finfo->symbuf_count >= finfo->symbuf_size)
8397    {
8398      if (! elf_link_flush_output_syms (finfo, bed))
8399	return 0;
8400    }
8401
8402  dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8403  destshndx = finfo->symshndxbuf;
8404  if (destshndx != NULL)
8405    {
8406      if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8407	{
8408	  bfd_size_type amt;
8409
8410	  amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8411	  destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8412                                                              amt * 2);
8413	  if (destshndx == NULL)
8414	    return 0;
8415	  finfo->symshndxbuf = destshndx;
8416	  memset ((char *) destshndx + amt, 0, amt);
8417	  finfo->shndxbuf_size *= 2;
8418	}
8419      destshndx += bfd_get_symcount (finfo->output_bfd);
8420    }
8421
8422  bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8423  finfo->symbuf_count += 1;
8424  bfd_get_symcount (finfo->output_bfd) += 1;
8425
8426  return 1;
8427}
8428
8429/* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8430
8431static bfd_boolean
8432check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8433{
8434  if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8435      && sym->st_shndx < SHN_LORESERVE)
8436    {
8437      /* The gABI doesn't support dynamic symbols in output sections
8438	 beyond 64k.  */
8439      (*_bfd_error_handler)
8440	(_("%B: Too many sections: %d (>= %d)"),
8441	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8442      bfd_set_error (bfd_error_nonrepresentable_section);
8443      return FALSE;
8444    }
8445  return TRUE;
8446}
8447
8448/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8449   allowing an unsatisfied unversioned symbol in the DSO to match a
8450   versioned symbol that would normally require an explicit version.
8451   We also handle the case that a DSO references a hidden symbol
8452   which may be satisfied by a versioned symbol in another DSO.  */
8453
8454static bfd_boolean
8455elf_link_check_versioned_symbol (struct bfd_link_info *info,
8456				 const struct elf_backend_data *bed,
8457				 struct elf_link_hash_entry *h)
8458{
8459  bfd *abfd;
8460  struct elf_link_loaded_list *loaded;
8461
8462  if (!is_elf_hash_table (info->hash))
8463    return FALSE;
8464
8465  switch (h->root.type)
8466    {
8467    default:
8468      abfd = NULL;
8469      break;
8470
8471    case bfd_link_hash_undefined:
8472    case bfd_link_hash_undefweak:
8473      abfd = h->root.u.undef.abfd;
8474      if ((abfd->flags & DYNAMIC) == 0
8475	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8476	return FALSE;
8477      break;
8478
8479    case bfd_link_hash_defined:
8480    case bfd_link_hash_defweak:
8481      abfd = h->root.u.def.section->owner;
8482      break;
8483
8484    case bfd_link_hash_common:
8485      abfd = h->root.u.c.p->section->owner;
8486      break;
8487    }
8488  BFD_ASSERT (abfd != NULL);
8489
8490  for (loaded = elf_hash_table (info)->loaded;
8491       loaded != NULL;
8492       loaded = loaded->next)
8493    {
8494      bfd *input;
8495      Elf_Internal_Shdr *hdr;
8496      bfd_size_type symcount;
8497      bfd_size_type extsymcount;
8498      bfd_size_type extsymoff;
8499      Elf_Internal_Shdr *versymhdr;
8500      Elf_Internal_Sym *isym;
8501      Elf_Internal_Sym *isymend;
8502      Elf_Internal_Sym *isymbuf;
8503      Elf_External_Versym *ever;
8504      Elf_External_Versym *extversym;
8505
8506      input = loaded->abfd;
8507
8508      /* We check each DSO for a possible hidden versioned definition.  */
8509      if (input == abfd
8510	  || (input->flags & DYNAMIC) == 0
8511	  || elf_dynversym (input) == 0)
8512	continue;
8513
8514      hdr = &elf_tdata (input)->dynsymtab_hdr;
8515
8516      symcount = hdr->sh_size / bed->s->sizeof_sym;
8517      if (elf_bad_symtab (input))
8518	{
8519	  extsymcount = symcount;
8520	  extsymoff = 0;
8521	}
8522      else
8523	{
8524	  extsymcount = symcount - hdr->sh_info;
8525	  extsymoff = hdr->sh_info;
8526	}
8527
8528      if (extsymcount == 0)
8529	continue;
8530
8531      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8532				      NULL, NULL, NULL);
8533      if (isymbuf == NULL)
8534	return FALSE;
8535
8536      /* Read in any version definitions.  */
8537      versymhdr = &elf_tdata (input)->dynversym_hdr;
8538      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8539      if (extversym == NULL)
8540	goto error_ret;
8541
8542      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8543	  || (bfd_bread (extversym, versymhdr->sh_size, input)
8544	      != versymhdr->sh_size))
8545	{
8546	  free (extversym);
8547	error_ret:
8548	  free (isymbuf);
8549	  return FALSE;
8550	}
8551
8552      ever = extversym + extsymoff;
8553      isymend = isymbuf + extsymcount;
8554      for (isym = isymbuf; isym < isymend; isym++, ever++)
8555	{
8556	  const char *name;
8557	  Elf_Internal_Versym iver;
8558	  unsigned short version_index;
8559
8560	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8561	      || isym->st_shndx == SHN_UNDEF)
8562	    continue;
8563
8564	  name = bfd_elf_string_from_elf_section (input,
8565						  hdr->sh_link,
8566						  isym->st_name);
8567	  if (strcmp (name, h->root.root.string) != 0)
8568	    continue;
8569
8570	  _bfd_elf_swap_versym_in (input, ever, &iver);
8571
8572	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8573	      && !(h->def_regular
8574		   && h->forced_local))
8575	    {
8576	      /* If we have a non-hidden versioned sym, then it should
8577		 have provided a definition for the undefined sym unless
8578		 it is defined in a non-shared object and forced local.
8579	       */
8580	      abort ();
8581	    }
8582
8583	  version_index = iver.vs_vers & VERSYM_VERSION;
8584	  if (version_index == 1 || version_index == 2)
8585	    {
8586	      /* This is the base or first version.  We can use it.  */
8587	      free (extversym);
8588	      free (isymbuf);
8589	      return TRUE;
8590	    }
8591	}
8592
8593      free (extversym);
8594      free (isymbuf);
8595    }
8596
8597  return FALSE;
8598}
8599
8600/* Add an external symbol to the symbol table.  This is called from
8601   the hash table traversal routine.  When generating a shared object,
8602   we go through the symbol table twice.  The first time we output
8603   anything that might have been forced to local scope in a version
8604   script.  The second time we output the symbols that are still
8605   global symbols.  */
8606
8607static bfd_boolean
8608elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8609{
8610  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8611  struct elf_final_link_info *finfo = eoinfo->finfo;
8612  bfd_boolean strip;
8613  Elf_Internal_Sym sym;
8614  asection *input_sec;
8615  const struct elf_backend_data *bed;
8616  long indx;
8617  int ret;
8618
8619  if (h->root.type == bfd_link_hash_warning)
8620    {
8621      h = (struct elf_link_hash_entry *) h->root.u.i.link;
8622      if (h->root.type == bfd_link_hash_new)
8623	return TRUE;
8624    }
8625
8626  /* Decide whether to output this symbol in this pass.  */
8627  if (eoinfo->localsyms)
8628    {
8629      if (!h->forced_local)
8630	return TRUE;
8631    }
8632  else
8633    {
8634      if (h->forced_local)
8635	return TRUE;
8636    }
8637
8638  bed = get_elf_backend_data (finfo->output_bfd);
8639
8640  if (h->root.type == bfd_link_hash_undefined)
8641    {
8642      /* If we have an undefined symbol reference here then it must have
8643	 come from a shared library that is being linked in.  (Undefined
8644	 references in regular files have already been handled unless
8645	 they are in unreferenced sections which are removed by garbage
8646	 collection).  */
8647      bfd_boolean ignore_undef = FALSE;
8648
8649      /* Some symbols may be special in that the fact that they're
8650	 undefined can be safely ignored - let backend determine that.  */
8651      if (bed->elf_backend_ignore_undef_symbol)
8652	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8653
8654      /* If we are reporting errors for this situation then do so now.  */
8655      if (!ignore_undef
8656	  && h->ref_dynamic
8657	  && (!h->ref_regular || finfo->info->gc_sections)
8658	  && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8659	  && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8660	{
8661	  if (! (finfo->info->callbacks->undefined_symbol
8662		 (finfo->info, h->root.root.string,
8663		  h->ref_regular ? NULL : h->root.u.undef.abfd,
8664		  NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8665	    {
8666	      bfd_set_error (bfd_error_bad_value);
8667	      eoinfo->failed = TRUE;
8668	      return FALSE;
8669	    }
8670	}
8671    }
8672
8673  /* We should also warn if a forced local symbol is referenced from
8674     shared libraries.  */
8675  if (! finfo->info->relocatable
8676      && (! finfo->info->shared)
8677      && h->forced_local
8678      && h->ref_dynamic
8679      && !h->dynamic_def
8680      && !h->dynamic_weak
8681      && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8682    {
8683      bfd *def_bfd;
8684      const char *msg;
8685
8686      if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8687	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8688      else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8689	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8690      else
8691	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8692      def_bfd = finfo->output_bfd;
8693      if (h->root.u.def.section != bfd_abs_section_ptr)
8694	def_bfd = h->root.u.def.section->owner;
8695      (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8696			     h->root.root.string);
8697      bfd_set_error (bfd_error_bad_value);
8698      eoinfo->failed = TRUE;
8699      return FALSE;
8700    }
8701
8702  /* We don't want to output symbols that have never been mentioned by
8703     a regular file, or that we have been told to strip.  However, if
8704     h->indx is set to -2, the symbol is used by a reloc and we must
8705     output it.  */
8706  if (h->indx == -2)
8707    strip = FALSE;
8708  else if ((h->def_dynamic
8709	    || h->ref_dynamic
8710	    || h->root.type == bfd_link_hash_new)
8711	   && !h->def_regular
8712	   && !h->ref_regular)
8713    strip = TRUE;
8714  else if (finfo->info->strip == strip_all)
8715    strip = TRUE;
8716  else if (finfo->info->strip == strip_some
8717	   && bfd_hash_lookup (finfo->info->keep_hash,
8718			       h->root.root.string, FALSE, FALSE) == NULL)
8719    strip = TRUE;
8720  else if (finfo->info->strip_discarded
8721	   && (h->root.type == bfd_link_hash_defined
8722	       || h->root.type == bfd_link_hash_defweak)
8723	   && elf_discarded_section (h->root.u.def.section))
8724    strip = TRUE;
8725  else if ((h->root.type == bfd_link_hash_undefined
8726	    || h->root.type == bfd_link_hash_undefweak)
8727	   && h->root.u.undef.abfd != NULL
8728	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8729    strip = TRUE;
8730  else
8731    strip = FALSE;
8732
8733  /* If we're stripping it, and it's not a dynamic symbol, there's
8734     nothing else to do unless it is a forced local symbol or a
8735     STT_GNU_IFUNC symbol.  */
8736  if (strip
8737      && h->dynindx == -1
8738      && h->type != STT_GNU_IFUNC
8739      && !h->forced_local)
8740    return TRUE;
8741
8742  sym.st_value = 0;
8743  sym.st_size = h->size;
8744  sym.st_other = h->other;
8745  if (h->forced_local)
8746    {
8747      sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8748      /* Turn off visibility on local symbol.  */
8749      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8750    }
8751  else if (h->unique_global)
8752    sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8753  else if (h->root.type == bfd_link_hash_undefweak
8754	   || h->root.type == bfd_link_hash_defweak)
8755    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8756  else
8757    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8758
8759  switch (h->root.type)
8760    {
8761    default:
8762    case bfd_link_hash_new:
8763    case bfd_link_hash_warning:
8764      abort ();
8765      return FALSE;
8766
8767    case bfd_link_hash_undefined:
8768    case bfd_link_hash_undefweak:
8769      input_sec = bfd_und_section_ptr;
8770      sym.st_shndx = SHN_UNDEF;
8771      break;
8772
8773    case bfd_link_hash_defined:
8774    case bfd_link_hash_defweak:
8775      {
8776	input_sec = h->root.u.def.section;
8777	if (input_sec->output_section != NULL)
8778	  {
8779	    sym.st_shndx =
8780	      _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8781						 input_sec->output_section);
8782	    if (sym.st_shndx == SHN_BAD)
8783	      {
8784		(*_bfd_error_handler)
8785		  (_("%B: could not find output section %A for input section %A"),
8786		   finfo->output_bfd, input_sec->output_section, input_sec);
8787		bfd_set_error (bfd_error_nonrepresentable_section);
8788		eoinfo->failed = TRUE;
8789		return FALSE;
8790	      }
8791
8792	    /* ELF symbols in relocatable files are section relative,
8793	       but in nonrelocatable files they are virtual
8794	       addresses.  */
8795	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
8796	    if (! finfo->info->relocatable)
8797	      {
8798		sym.st_value += input_sec->output_section->vma;
8799		if (h->type == STT_TLS)
8800		  {
8801		    asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8802		    if (tls_sec != NULL)
8803		      sym.st_value -= tls_sec->vma;
8804		    else
8805		      {
8806			/* The TLS section may have been garbage collected.  */
8807			BFD_ASSERT (finfo->info->gc_sections
8808				    && !input_sec->gc_mark);
8809		      }
8810		  }
8811	      }
8812	  }
8813	else
8814	  {
8815	    BFD_ASSERT (input_sec->owner == NULL
8816			|| (input_sec->owner->flags & DYNAMIC) != 0);
8817	    sym.st_shndx = SHN_UNDEF;
8818	    input_sec = bfd_und_section_ptr;
8819	  }
8820      }
8821      break;
8822
8823    case bfd_link_hash_common:
8824      input_sec = h->root.u.c.p->section;
8825      sym.st_shndx = bed->common_section_index (input_sec);
8826      sym.st_value = 1 << h->root.u.c.p->alignment_power;
8827      break;
8828
8829    case bfd_link_hash_indirect:
8830      /* These symbols are created by symbol versioning.  They point
8831	 to the decorated version of the name.  For example, if the
8832	 symbol foo@@GNU_1.2 is the default, which should be used when
8833	 foo is used with no version, then we add an indirect symbol
8834	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
8835	 since the indirected symbol is already in the hash table.  */
8836      return TRUE;
8837    }
8838
8839  /* Give the processor backend a chance to tweak the symbol value,
8840     and also to finish up anything that needs to be done for this
8841     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8842     forced local syms when non-shared is due to a historical quirk.
8843     STT_GNU_IFUNC symbol must go through PLT.  */
8844  if ((h->type == STT_GNU_IFUNC
8845       && h->def_regular
8846       && !finfo->info->relocatable)
8847      || ((h->dynindx != -1
8848	   || h->forced_local)
8849	  && ((finfo->info->shared
8850	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8851		   || h->root.type != bfd_link_hash_undefweak))
8852	      || !h->forced_local)
8853	  && elf_hash_table (finfo->info)->dynamic_sections_created))
8854    {
8855      if (! ((*bed->elf_backend_finish_dynamic_symbol)
8856	     (finfo->output_bfd, finfo->info, h, &sym)))
8857	{
8858	  eoinfo->failed = TRUE;
8859	  return FALSE;
8860	}
8861    }
8862
8863  /* If we are marking the symbol as undefined, and there are no
8864     non-weak references to this symbol from a regular object, then
8865     mark the symbol as weak undefined; if there are non-weak
8866     references, mark the symbol as strong.  We can't do this earlier,
8867     because it might not be marked as undefined until the
8868     finish_dynamic_symbol routine gets through with it.  */
8869  if (sym.st_shndx == SHN_UNDEF
8870      && h->ref_regular
8871      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8872	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8873    {
8874      int bindtype;
8875      unsigned int type = ELF_ST_TYPE (sym.st_info);
8876
8877      /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8878      if (type == STT_GNU_IFUNC)
8879	type = STT_FUNC;
8880
8881      if (h->ref_regular_nonweak)
8882	bindtype = STB_GLOBAL;
8883      else
8884	bindtype = STB_WEAK;
8885      sym.st_info = ELF_ST_INFO (bindtype, type);
8886    }
8887
8888  /* If this is a symbol defined in a dynamic library, don't use the
8889     symbol size from the dynamic library.  Relinking an executable
8890     against a new library may introduce gratuitous changes in the
8891     executable's symbols if we keep the size.  */
8892  if (sym.st_shndx == SHN_UNDEF
8893      && !h->def_regular
8894      && h->def_dynamic)
8895    sym.st_size = 0;
8896
8897  /* If a non-weak symbol with non-default visibility is not defined
8898     locally, it is a fatal error.  */
8899  if (! finfo->info->relocatable
8900      && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8901      && ELF_ST_BIND (sym.st_info) != STB_WEAK
8902      && h->root.type == bfd_link_hash_undefined
8903      && !h->def_regular)
8904    {
8905      const char *msg;
8906
8907      if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8908	msg = _("%B: protected symbol `%s' isn't defined");
8909      else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8910	msg = _("%B: internal symbol `%s' isn't defined");
8911      else
8912	msg = _("%B: hidden symbol `%s' isn't defined");
8913      (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8914      bfd_set_error (bfd_error_bad_value);
8915      eoinfo->failed = TRUE;
8916      return FALSE;
8917    }
8918
8919  /* If this symbol should be put in the .dynsym section, then put it
8920     there now.  We already know the symbol index.  We also fill in
8921     the entry in the .hash section.  */
8922  if (h->dynindx != -1
8923      && elf_hash_table (finfo->info)->dynamic_sections_created)
8924    {
8925      bfd_byte *esym;
8926
8927      sym.st_name = h->dynstr_index;
8928      esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8929      if (! check_dynsym (finfo->output_bfd, &sym))
8930	{
8931	  eoinfo->failed = TRUE;
8932	  return FALSE;
8933	}
8934      bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8935
8936      if (finfo->hash_sec != NULL)
8937	{
8938	  size_t hash_entry_size;
8939	  bfd_byte *bucketpos;
8940	  bfd_vma chain;
8941	  size_t bucketcount;
8942	  size_t bucket;
8943
8944	  bucketcount = elf_hash_table (finfo->info)->bucketcount;
8945	  bucket = h->u.elf_hash_value % bucketcount;
8946
8947	  hash_entry_size
8948	    = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8949	  bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8950		       + (bucket + 2) * hash_entry_size);
8951	  chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8952	  bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8953	  bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8954		   ((bfd_byte *) finfo->hash_sec->contents
8955		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8956	}
8957
8958      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8959	{
8960	  Elf_Internal_Versym iversym;
8961	  Elf_External_Versym *eversym;
8962
8963	  if (!h->def_regular)
8964	    {
8965	      if (h->verinfo.verdef == NULL)
8966		iversym.vs_vers = 0;
8967	      else
8968		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8969	    }
8970	  else
8971	    {
8972	      if (h->verinfo.vertree == NULL)
8973		iversym.vs_vers = 1;
8974	      else
8975		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8976	      if (finfo->info->create_default_symver)
8977		iversym.vs_vers++;
8978	    }
8979
8980	  if (h->hidden)
8981	    iversym.vs_vers |= VERSYM_HIDDEN;
8982
8983	  eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8984	  eversym += h->dynindx;
8985	  _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8986	}
8987    }
8988
8989  /* If we're stripping it, then it was just a dynamic symbol, and
8990     there's nothing else to do.  */
8991  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8992    return TRUE;
8993
8994  indx = bfd_get_symcount (finfo->output_bfd);
8995  ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8996  if (ret == 0)
8997    {
8998      eoinfo->failed = TRUE;
8999      return FALSE;
9000    }
9001  else if (ret == 1)
9002    h->indx = indx;
9003  else if (h->indx == -2)
9004    abort();
9005
9006  return TRUE;
9007}
9008
9009/* Return TRUE if special handling is done for relocs in SEC against
9010   symbols defined in discarded sections.  */
9011
9012static bfd_boolean
9013elf_section_ignore_discarded_relocs (asection *sec)
9014{
9015  const struct elf_backend_data *bed;
9016
9017  switch (sec->sec_info_type)
9018    {
9019    case ELF_INFO_TYPE_STABS:
9020    case ELF_INFO_TYPE_EH_FRAME:
9021      return TRUE;
9022    default:
9023      break;
9024    }
9025
9026  bed = get_elf_backend_data (sec->owner);
9027  if (bed->elf_backend_ignore_discarded_relocs != NULL
9028      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9029    return TRUE;
9030
9031  return FALSE;
9032}
9033
9034/* Return a mask saying how ld should treat relocations in SEC against
9035   symbols defined in discarded sections.  If this function returns
9036   COMPLAIN set, ld will issue a warning message.  If this function
9037   returns PRETEND set, and the discarded section was link-once and the
9038   same size as the kept link-once section, ld will pretend that the
9039   symbol was actually defined in the kept section.  Otherwise ld will
9040   zero the reloc (at least that is the intent, but some cooperation by
9041   the target dependent code is needed, particularly for REL targets).  */
9042
9043unsigned int
9044_bfd_elf_default_action_discarded (asection *sec)
9045{
9046  if (sec->flags & SEC_DEBUGGING)
9047    return PRETEND;
9048
9049  if (strcmp (".eh_frame", sec->name) == 0)
9050    return 0;
9051
9052  if (strcmp (".gcc_except_table", sec->name) == 0)
9053    return 0;
9054
9055  return COMPLAIN | PRETEND;
9056}
9057
9058/* Find a match between a section and a member of a section group.  */
9059
9060static asection *
9061match_group_member (asection *sec, asection *group,
9062		    struct bfd_link_info *info)
9063{
9064  asection *first = elf_next_in_group (group);
9065  asection *s = first;
9066
9067  while (s != NULL)
9068    {
9069      if (bfd_elf_match_symbols_in_sections (s, sec, info))
9070	return s;
9071
9072      s = elf_next_in_group (s);
9073      if (s == first)
9074	break;
9075    }
9076
9077  return NULL;
9078}
9079
9080/* Check if the kept section of a discarded section SEC can be used
9081   to replace it.  Return the replacement if it is OK.  Otherwise return
9082   NULL.  */
9083
9084asection *
9085_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9086{
9087  asection *kept;
9088
9089  kept = sec->kept_section;
9090  if (kept != NULL)
9091    {
9092      if ((kept->flags & SEC_GROUP) != 0)
9093	kept = match_group_member (sec, kept, info);
9094      if (kept != NULL
9095	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9096	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9097	kept = NULL;
9098      sec->kept_section = kept;
9099    }
9100  return kept;
9101}
9102
9103/* Link an input file into the linker output file.  This function
9104   handles all the sections and relocations of the input file at once.
9105   This is so that we only have to read the local symbols once, and
9106   don't have to keep them in memory.  */
9107
9108static bfd_boolean
9109elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9110{
9111  int (*relocate_section)
9112    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9113     Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9114  bfd *output_bfd;
9115  Elf_Internal_Shdr *symtab_hdr;
9116  size_t locsymcount;
9117  size_t extsymoff;
9118  Elf_Internal_Sym *isymbuf;
9119  Elf_Internal_Sym *isym;
9120  Elf_Internal_Sym *isymend;
9121  long *pindex;
9122  asection **ppsection;
9123  asection *o;
9124  const struct elf_backend_data *bed;
9125  struct elf_link_hash_entry **sym_hashes;
9126
9127  output_bfd = finfo->output_bfd;
9128  bed = get_elf_backend_data (output_bfd);
9129  relocate_section = bed->elf_backend_relocate_section;
9130
9131  /* If this is a dynamic object, we don't want to do anything here:
9132     we don't want the local symbols, and we don't want the section
9133     contents.  */
9134  if ((input_bfd->flags & DYNAMIC) != 0)
9135    return TRUE;
9136
9137  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9138  if (elf_bad_symtab (input_bfd))
9139    {
9140      locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9141      extsymoff = 0;
9142    }
9143  else
9144    {
9145      locsymcount = symtab_hdr->sh_info;
9146      extsymoff = symtab_hdr->sh_info;
9147    }
9148
9149  /* Read the local symbols.  */
9150  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9151  if (isymbuf == NULL && locsymcount != 0)
9152    {
9153      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9154				      finfo->internal_syms,
9155				      finfo->external_syms,
9156				      finfo->locsym_shndx);
9157      if (isymbuf == NULL)
9158	return FALSE;
9159    }
9160
9161  /* Find local symbol sections and adjust values of symbols in
9162     SEC_MERGE sections.  Write out those local symbols we know are
9163     going into the output file.  */
9164  isymend = isymbuf + locsymcount;
9165  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9166       isym < isymend;
9167       isym++, pindex++, ppsection++)
9168    {
9169      asection *isec;
9170      const char *name;
9171      Elf_Internal_Sym osym;
9172      long indx;
9173      int ret;
9174
9175      *pindex = -1;
9176
9177      if (elf_bad_symtab (input_bfd))
9178	{
9179	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9180	    {
9181	      *ppsection = NULL;
9182	      continue;
9183	    }
9184	}
9185
9186      if (isym->st_shndx == SHN_UNDEF)
9187	isec = bfd_und_section_ptr;
9188      else if (isym->st_shndx == SHN_ABS)
9189	isec = bfd_abs_section_ptr;
9190      else if (isym->st_shndx == SHN_COMMON)
9191	isec = bfd_com_section_ptr;
9192      else
9193	{
9194	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9195	  if (isec == NULL)
9196	    {
9197	      /* Don't attempt to output symbols with st_shnx in the
9198		 reserved range other than SHN_ABS and SHN_COMMON.  */
9199	      *ppsection = NULL;
9200	      continue;
9201	    }
9202	  else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9203		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9204	    isym->st_value =
9205	      _bfd_merged_section_offset (output_bfd, &isec,
9206					  elf_section_data (isec)->sec_info,
9207					  isym->st_value);
9208	}
9209
9210      *ppsection = isec;
9211
9212      /* Don't output the first, undefined, symbol.  */
9213      if (ppsection == finfo->sections)
9214	continue;
9215
9216      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9217	{
9218	  /* We never output section symbols.  Instead, we use the
9219	     section symbol of the corresponding section in the output
9220	     file.  */
9221	  continue;
9222	}
9223
9224      /* If we are stripping all symbols, we don't want to output this
9225	 one.  */
9226      if (finfo->info->strip == strip_all)
9227	continue;
9228
9229      /* If we are discarding all local symbols, we don't want to
9230	 output this one.  If we are generating a relocatable output
9231	 file, then some of the local symbols may be required by
9232	 relocs; we output them below as we discover that they are
9233	 needed.  */
9234      if (finfo->info->discard == discard_all)
9235	continue;
9236
9237      /* If this symbol is defined in a section which we are
9238	 discarding, we don't need to keep it.  */
9239      if (isym->st_shndx != SHN_UNDEF
9240	  && isym->st_shndx < SHN_LORESERVE
9241	  && bfd_section_removed_from_list (output_bfd,
9242					    isec->output_section))
9243	continue;
9244
9245      /* Get the name of the symbol.  */
9246      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9247					      isym->st_name);
9248      if (name == NULL)
9249	return FALSE;
9250
9251      /* See if we are discarding symbols with this name.  */
9252      if ((finfo->info->strip == strip_some
9253	   && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9254	       == NULL))
9255	  || (((finfo->info->discard == discard_sec_merge
9256		&& (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9257	       || finfo->info->discard == discard_l)
9258	      && bfd_is_local_label_name (input_bfd, name)))
9259	continue;
9260
9261      osym = *isym;
9262
9263      /* Adjust the section index for the output file.  */
9264      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9265							 isec->output_section);
9266      if (osym.st_shndx == SHN_BAD)
9267	return FALSE;
9268
9269      /* ELF symbols in relocatable files are section relative, but
9270	 in executable files they are virtual addresses.  Note that
9271	 this code assumes that all ELF sections have an associated
9272	 BFD section with a reasonable value for output_offset; below
9273	 we assume that they also have a reasonable value for
9274	 output_section.  Any special sections must be set up to meet
9275	 these requirements.  */
9276      osym.st_value += isec->output_offset;
9277      if (! finfo->info->relocatable)
9278	{
9279	  osym.st_value += isec->output_section->vma;
9280	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9281	    {
9282	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
9283	      BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9284	      osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9285	    }
9286	}
9287
9288      indx = bfd_get_symcount (output_bfd);
9289      ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9290      if (ret == 0)
9291	return FALSE;
9292      else if (ret == 1)
9293	*pindex = indx;
9294    }
9295
9296  /* Relocate the contents of each section.  */
9297  sym_hashes = elf_sym_hashes (input_bfd);
9298  for (o = input_bfd->sections; o != NULL; o = o->next)
9299    {
9300      bfd_byte *contents;
9301
9302      if (! o->linker_mark)
9303	{
9304	  /* This section was omitted from the link.  */
9305	  continue;
9306	}
9307
9308      if (finfo->info->relocatable
9309	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9310	{
9311	  /* Deal with the group signature symbol.  */
9312	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
9313	  unsigned long symndx = sec_data->this_hdr.sh_info;
9314	  asection *osec = o->output_section;
9315
9316	  if (symndx >= locsymcount
9317	      || (elf_bad_symtab (input_bfd)
9318		  && finfo->sections[symndx] == NULL))
9319	    {
9320	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9321	      while (h->root.type == bfd_link_hash_indirect
9322		     || h->root.type == bfd_link_hash_warning)
9323		h = (struct elf_link_hash_entry *) h->root.u.i.link;
9324	      /* Arrange for symbol to be output.  */
9325	      h->indx = -2;
9326	      elf_section_data (osec)->this_hdr.sh_info = -2;
9327	    }
9328	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9329	    {
9330	      /* We'll use the output section target_index.  */
9331	      asection *sec = finfo->sections[symndx]->output_section;
9332	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9333	    }
9334	  else
9335	    {
9336	      if (finfo->indices[symndx] == -1)
9337		{
9338		  /* Otherwise output the local symbol now.  */
9339		  Elf_Internal_Sym sym = isymbuf[symndx];
9340		  asection *sec = finfo->sections[symndx]->output_section;
9341		  const char *name;
9342		  long indx;
9343		  int ret;
9344
9345		  name = bfd_elf_string_from_elf_section (input_bfd,
9346							  symtab_hdr->sh_link,
9347							  sym.st_name);
9348		  if (name == NULL)
9349		    return FALSE;
9350
9351		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9352								    sec);
9353		  if (sym.st_shndx == SHN_BAD)
9354		    return FALSE;
9355
9356		  sym.st_value += o->output_offset;
9357
9358		  indx = bfd_get_symcount (output_bfd);
9359		  ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9360		  if (ret == 0)
9361		    return FALSE;
9362		  else if (ret == 1)
9363		    finfo->indices[symndx] = indx;
9364		  else
9365		    abort ();
9366		}
9367	      elf_section_data (osec)->this_hdr.sh_info
9368		= finfo->indices[symndx];
9369	    }
9370	}
9371
9372      if ((o->flags & SEC_HAS_CONTENTS) == 0
9373	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9374	continue;
9375
9376      if ((o->flags & SEC_LINKER_CREATED) != 0)
9377	{
9378	  /* Section was created by _bfd_elf_link_create_dynamic_sections
9379	     or somesuch.  */
9380	  continue;
9381	}
9382
9383      /* Get the contents of the section.  They have been cached by a
9384	 relaxation routine.  Note that o is a section in an input
9385	 file, so the contents field will not have been set by any of
9386	 the routines which work on output files.  */
9387      if (elf_section_data (o)->this_hdr.contents != NULL)
9388	contents = elf_section_data (o)->this_hdr.contents;
9389      else
9390	{
9391	  contents = finfo->contents;
9392	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9393	    return FALSE;
9394	}
9395
9396      if ((o->flags & SEC_RELOC) != 0)
9397	{
9398	  Elf_Internal_Rela *internal_relocs;
9399	  Elf_Internal_Rela *rel, *relend;
9400	  bfd_vma r_type_mask;
9401	  int r_sym_shift;
9402	  int action_discarded;
9403	  int ret;
9404
9405	  /* Get the swapped relocs.  */
9406	  internal_relocs
9407	    = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9408					 finfo->internal_relocs, FALSE);
9409	  if (internal_relocs == NULL
9410	      && o->reloc_count > 0)
9411	    return FALSE;
9412
9413	  if (bed->s->arch_size == 32)
9414	    {
9415	      r_type_mask = 0xff;
9416	      r_sym_shift = 8;
9417	    }
9418	  else
9419	    {
9420	      r_type_mask = 0xffffffff;
9421	      r_sym_shift = 32;
9422	    }
9423
9424	  action_discarded = -1;
9425	  if (!elf_section_ignore_discarded_relocs (o))
9426	    action_discarded = (*bed->action_discarded) (o);
9427
9428	  /* Run through the relocs evaluating complex reloc symbols and
9429	     looking for relocs against symbols from discarded sections
9430	     or section symbols from removed link-once sections.
9431	     Complain about relocs against discarded sections.  Zero
9432	     relocs against removed link-once sections.  */
9433
9434	  rel = internal_relocs;
9435	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9436	  for ( ; rel < relend; rel++)
9437	    {
9438	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
9439	      unsigned int s_type;
9440	      asection **ps, *sec;
9441	      struct elf_link_hash_entry *h = NULL;
9442	      const char *sym_name;
9443
9444	      if (r_symndx == STN_UNDEF)
9445		continue;
9446
9447	      if (r_symndx >= locsymcount
9448		  || (elf_bad_symtab (input_bfd)
9449		      && finfo->sections[r_symndx] == NULL))
9450		{
9451		  h = sym_hashes[r_symndx - extsymoff];
9452
9453		  /* Badly formatted input files can contain relocs that
9454		     reference non-existant symbols.  Check here so that
9455		     we do not seg fault.  */
9456		  if (h == NULL)
9457		    {
9458		      char buffer [32];
9459
9460		      sprintf_vma (buffer, rel->r_info);
9461		      (*_bfd_error_handler)
9462			(_("error: %B contains a reloc (0x%s) for section %A "
9463			   "that references a non-existent global symbol"),
9464			 input_bfd, o, buffer);
9465		      bfd_set_error (bfd_error_bad_value);
9466		      return FALSE;
9467		    }
9468
9469		  while (h->root.type == bfd_link_hash_indirect
9470			 || h->root.type == bfd_link_hash_warning)
9471		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9472
9473		  s_type = h->type;
9474
9475		  ps = NULL;
9476		  if (h->root.type == bfd_link_hash_defined
9477		      || h->root.type == bfd_link_hash_defweak)
9478		    ps = &h->root.u.def.section;
9479
9480		  sym_name = h->root.root.string;
9481		}
9482	      else
9483		{
9484		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9485
9486		  s_type = ELF_ST_TYPE (sym->st_info);
9487		  ps = &finfo->sections[r_symndx];
9488		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9489					       sym, *ps);
9490		}
9491
9492	      if ((s_type == STT_RELC || s_type == STT_SRELC)
9493		  && !finfo->info->relocatable)
9494		{
9495		  bfd_vma val;
9496		  bfd_vma dot = (rel->r_offset
9497				 + o->output_offset + o->output_section->vma);
9498#ifdef DEBUG
9499		  printf ("Encountered a complex symbol!");
9500		  printf (" (input_bfd %s, section %s, reloc %ld\n",
9501			  input_bfd->filename, o->name,
9502			  (long) (rel - internal_relocs));
9503		  printf (" symbol: idx  %8.8lx, name %s\n",
9504			  r_symndx, sym_name);
9505		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9506			  (unsigned long) rel->r_info,
9507			  (unsigned long) rel->r_offset);
9508#endif
9509		  if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9510				    isymbuf, locsymcount, s_type == STT_SRELC))
9511		    return FALSE;
9512
9513		  /* Symbol evaluated OK.  Update to absolute value.  */
9514		  set_symbol_value (input_bfd, isymbuf, locsymcount,
9515				    r_symndx, val);
9516		  continue;
9517		}
9518
9519	      if (action_discarded != -1 && ps != NULL)
9520		{
9521		  /* Complain if the definition comes from a
9522		     discarded section.  */
9523		  if ((sec = *ps) != NULL && elf_discarded_section (sec))
9524		    {
9525		      BFD_ASSERT (r_symndx != STN_UNDEF);
9526		      if (action_discarded & COMPLAIN)
9527			(*finfo->info->callbacks->einfo)
9528			  (_("%X`%s' referenced in section `%A' of %B: "
9529			     "defined in discarded section `%A' of %B\n"),
9530			   sym_name, o, input_bfd, sec, sec->owner);
9531
9532		      /* Try to do the best we can to support buggy old
9533			 versions of gcc.  Pretend that the symbol is
9534			 really defined in the kept linkonce section.
9535			 FIXME: This is quite broken.  Modifying the
9536			 symbol here means we will be changing all later
9537			 uses of the symbol, not just in this section.  */
9538		      if (action_discarded & PRETEND)
9539			{
9540			  asection *kept;
9541
9542			  kept = _bfd_elf_check_kept_section (sec,
9543							      finfo->info);
9544			  if (kept != NULL)
9545			    {
9546			      *ps = kept;
9547			      continue;
9548			    }
9549			}
9550		    }
9551		}
9552	    }
9553
9554	  /* Relocate the section by invoking a back end routine.
9555
9556	     The back end routine is responsible for adjusting the
9557	     section contents as necessary, and (if using Rela relocs
9558	     and generating a relocatable output file) adjusting the
9559	     reloc addend as necessary.
9560
9561	     The back end routine does not have to worry about setting
9562	     the reloc address or the reloc symbol index.
9563
9564	     The back end routine is given a pointer to the swapped in
9565	     internal symbols, and can access the hash table entries
9566	     for the external symbols via elf_sym_hashes (input_bfd).
9567
9568	     When generating relocatable output, the back end routine
9569	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
9570	     output symbol is going to be a section symbol
9571	     corresponding to the output section, which will require
9572	     the addend to be adjusted.  */
9573
9574	  ret = (*relocate_section) (output_bfd, finfo->info,
9575				     input_bfd, o, contents,
9576				     internal_relocs,
9577				     isymbuf,
9578				     finfo->sections);
9579	  if (!ret)
9580	    return FALSE;
9581
9582	  if (ret == 2
9583	      || finfo->info->relocatable
9584	      || finfo->info->emitrelocations)
9585	    {
9586	      Elf_Internal_Rela *irela;
9587	      Elf_Internal_Rela *irelaend, *irelamid;
9588	      bfd_vma last_offset;
9589	      struct elf_link_hash_entry **rel_hash;
9590	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9591	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9592	      unsigned int next_erel;
9593	      bfd_boolean rela_normal;
9594	      struct bfd_elf_section_data *esdi, *esdo;
9595
9596	      esdi = elf_section_data (o);
9597	      esdo = elf_section_data (o->output_section);
9598	      rela_normal = FALSE;
9599
9600	      /* Adjust the reloc addresses and symbol indices.  */
9601
9602	      irela = internal_relocs;
9603	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9604	      rel_hash = esdo->rel.hashes + esdo->rel.count;
9605	      /* We start processing the REL relocs, if any.  When we reach
9606		 IRELAMID in the loop, we switch to the RELA relocs.  */
9607	      irelamid = irela;
9608	      if (esdi->rel.hdr != NULL)
9609		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9610			     * bed->s->int_rels_per_ext_rel);
9611	      rel_hash_list = rel_hash;
9612	      rela_hash_list = NULL;
9613	      last_offset = o->output_offset;
9614	      if (!finfo->info->relocatable)
9615		last_offset += o->output_section->vma;
9616	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9617		{
9618		  unsigned long r_symndx;
9619		  asection *sec;
9620		  Elf_Internal_Sym sym;
9621
9622		  if (next_erel == bed->s->int_rels_per_ext_rel)
9623		    {
9624		      rel_hash++;
9625		      next_erel = 0;
9626		    }
9627
9628		  if (irela == irelamid)
9629		    {
9630		      rel_hash = esdo->rela.hashes + esdo->rela.count;
9631		      rela_hash_list = rel_hash;
9632		      rela_normal = bed->rela_normal;
9633		    }
9634
9635		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9636							     finfo->info, o,
9637							     irela->r_offset);
9638		  if (irela->r_offset >= (bfd_vma) -2)
9639		    {
9640		      /* This is a reloc for a deleted entry or somesuch.
9641			 Turn it into an R_*_NONE reloc, at the same
9642			 offset as the last reloc.  elf_eh_frame.c and
9643			 bfd_elf_discard_info rely on reloc offsets
9644			 being ordered.  */
9645		      irela->r_offset = last_offset;
9646		      irela->r_info = 0;
9647		      irela->r_addend = 0;
9648		      continue;
9649		    }
9650
9651		  irela->r_offset += o->output_offset;
9652
9653		  /* Relocs in an executable have to be virtual addresses.  */
9654		  if (!finfo->info->relocatable)
9655		    irela->r_offset += o->output_section->vma;
9656
9657		  last_offset = irela->r_offset;
9658
9659		  r_symndx = irela->r_info >> r_sym_shift;
9660		  if (r_symndx == STN_UNDEF)
9661		    continue;
9662
9663		  if (r_symndx >= locsymcount
9664		      || (elf_bad_symtab (input_bfd)
9665			  && finfo->sections[r_symndx] == NULL))
9666		    {
9667		      struct elf_link_hash_entry *rh;
9668		      unsigned long indx;
9669
9670		      /* This is a reloc against a global symbol.  We
9671			 have not yet output all the local symbols, so
9672			 we do not know the symbol index of any global
9673			 symbol.  We set the rel_hash entry for this
9674			 reloc to point to the global hash table entry
9675			 for this symbol.  The symbol index is then
9676			 set at the end of bfd_elf_final_link.  */
9677		      indx = r_symndx - extsymoff;
9678		      rh = elf_sym_hashes (input_bfd)[indx];
9679		      while (rh->root.type == bfd_link_hash_indirect
9680			     || rh->root.type == bfd_link_hash_warning)
9681			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9682
9683		      /* Setting the index to -2 tells
9684			 elf_link_output_extsym that this symbol is
9685			 used by a reloc.  */
9686		      BFD_ASSERT (rh->indx < 0);
9687		      rh->indx = -2;
9688
9689		      *rel_hash = rh;
9690
9691		      continue;
9692		    }
9693
9694		  /* This is a reloc against a local symbol.  */
9695
9696		  *rel_hash = NULL;
9697		  sym = isymbuf[r_symndx];
9698		  sec = finfo->sections[r_symndx];
9699		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9700		    {
9701		      /* I suppose the backend ought to fill in the
9702			 section of any STT_SECTION symbol against a
9703			 processor specific section.  */
9704		      r_symndx = STN_UNDEF;
9705		      if (bfd_is_abs_section (sec))
9706			;
9707		      else if (sec == NULL || sec->owner == NULL)
9708			{
9709			  bfd_set_error (bfd_error_bad_value);
9710			  return FALSE;
9711			}
9712		      else
9713			{
9714			  asection *osec = sec->output_section;
9715
9716			  /* If we have discarded a section, the output
9717			     section will be the absolute section.  In
9718			     case of discarded SEC_MERGE sections, use
9719			     the kept section.  relocate_section should
9720			     have already handled discarded linkonce
9721			     sections.  */
9722			  if (bfd_is_abs_section (osec)
9723			      && sec->kept_section != NULL
9724			      && sec->kept_section->output_section != NULL)
9725			    {
9726			      osec = sec->kept_section->output_section;
9727			      irela->r_addend -= osec->vma;
9728			    }
9729
9730			  if (!bfd_is_abs_section (osec))
9731			    {
9732			      r_symndx = osec->target_index;
9733			      if (r_symndx == STN_UNDEF)
9734				{
9735				  struct elf_link_hash_table *htab;
9736				  asection *oi;
9737
9738				  htab = elf_hash_table (finfo->info);
9739				  oi = htab->text_index_section;
9740				  if ((osec->flags & SEC_READONLY) == 0
9741				      && htab->data_index_section != NULL)
9742				    oi = htab->data_index_section;
9743
9744				  if (oi != NULL)
9745				    {
9746				      irela->r_addend += osec->vma - oi->vma;
9747				      r_symndx = oi->target_index;
9748				    }
9749				}
9750
9751			      BFD_ASSERT (r_symndx != STN_UNDEF);
9752			    }
9753			}
9754
9755		      /* Adjust the addend according to where the
9756			 section winds up in the output section.  */
9757		      if (rela_normal)
9758			irela->r_addend += sec->output_offset;
9759		    }
9760		  else
9761		    {
9762		      if (finfo->indices[r_symndx] == -1)
9763			{
9764			  unsigned long shlink;
9765			  const char *name;
9766			  asection *osec;
9767			  long indx;
9768
9769			  if (finfo->info->strip == strip_all)
9770			    {
9771			      /* You can't do ld -r -s.  */
9772			      bfd_set_error (bfd_error_invalid_operation);
9773			      return FALSE;
9774			    }
9775
9776			  /* This symbol was skipped earlier, but
9777			     since it is needed by a reloc, we
9778			     must output it now.  */
9779			  shlink = symtab_hdr->sh_link;
9780			  name = (bfd_elf_string_from_elf_section
9781				  (input_bfd, shlink, sym.st_name));
9782			  if (name == NULL)
9783			    return FALSE;
9784
9785			  osec = sec->output_section;
9786			  sym.st_shndx =
9787			    _bfd_elf_section_from_bfd_section (output_bfd,
9788							       osec);
9789			  if (sym.st_shndx == SHN_BAD)
9790			    return FALSE;
9791
9792			  sym.st_value += sec->output_offset;
9793			  if (! finfo->info->relocatable)
9794			    {
9795			      sym.st_value += osec->vma;
9796			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9797				{
9798				  /* STT_TLS symbols are relative to PT_TLS
9799				     segment base.  */
9800				  BFD_ASSERT (elf_hash_table (finfo->info)
9801					      ->tls_sec != NULL);
9802				  sym.st_value -= (elf_hash_table (finfo->info)
9803						   ->tls_sec->vma);
9804				}
9805			    }
9806
9807			  indx = bfd_get_symcount (output_bfd);
9808			  ret = elf_link_output_sym (finfo, name, &sym, sec,
9809						     NULL);
9810			  if (ret == 0)
9811			    return FALSE;
9812			  else if (ret == 1)
9813			    finfo->indices[r_symndx] = indx;
9814			  else
9815			    abort ();
9816			}
9817
9818		      r_symndx = finfo->indices[r_symndx];
9819		    }
9820
9821		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9822				   | (irela->r_info & r_type_mask));
9823		}
9824
9825	      /* Swap out the relocs.  */
9826	      input_rel_hdr = esdi->rel.hdr;
9827	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9828		{
9829		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9830						     input_rel_hdr,
9831						     internal_relocs,
9832						     rel_hash_list))
9833		    return FALSE;
9834		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9835				      * bed->s->int_rels_per_ext_rel);
9836		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9837		}
9838
9839	      input_rela_hdr = esdi->rela.hdr;
9840	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9841		{
9842		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9843						     input_rela_hdr,
9844						     internal_relocs,
9845						     rela_hash_list))
9846		    return FALSE;
9847		}
9848	    }
9849	}
9850
9851      /* Write out the modified section contents.  */
9852      if (bed->elf_backend_write_section
9853	  && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9854						contents))
9855	{
9856	  /* Section written out.  */
9857	}
9858      else switch (o->sec_info_type)
9859	{
9860	case ELF_INFO_TYPE_STABS:
9861	  if (! (_bfd_write_section_stabs
9862		 (output_bfd,
9863		  &elf_hash_table (finfo->info)->stab_info,
9864		  o, &elf_section_data (o)->sec_info, contents)))
9865	    return FALSE;
9866	  break;
9867	case ELF_INFO_TYPE_MERGE:
9868	  if (! _bfd_write_merged_section (output_bfd, o,
9869					   elf_section_data (o)->sec_info))
9870	    return FALSE;
9871	  break;
9872	case ELF_INFO_TYPE_EH_FRAME:
9873	  {
9874	    if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9875						   o, contents))
9876	      return FALSE;
9877	  }
9878	  break;
9879	default:
9880	  {
9881	    /* FIXME: octets_per_byte.  */
9882	    if (! (o->flags & SEC_EXCLUDE)
9883		&& ! bfd_set_section_contents (output_bfd, o->output_section,
9884					       contents,
9885					       (file_ptr) o->output_offset,
9886					       o->size))
9887	      return FALSE;
9888	  }
9889	  break;
9890	}
9891    }
9892
9893  return TRUE;
9894}
9895
9896/* Generate a reloc when linking an ELF file.  This is a reloc
9897   requested by the linker, and does not come from any input file.  This
9898   is used to build constructor and destructor tables when linking
9899   with -Ur.  */
9900
9901static bfd_boolean
9902elf_reloc_link_order (bfd *output_bfd,
9903		      struct bfd_link_info *info,
9904		      asection *output_section,
9905		      struct bfd_link_order *link_order)
9906{
9907  reloc_howto_type *howto;
9908  long indx;
9909  bfd_vma offset;
9910  bfd_vma addend;
9911  struct bfd_elf_section_reloc_data *reldata;
9912  struct elf_link_hash_entry **rel_hash_ptr;
9913  Elf_Internal_Shdr *rel_hdr;
9914  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9915  Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9916  bfd_byte *erel;
9917  unsigned int i;
9918  struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9919
9920  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9921  if (howto == NULL)
9922    {
9923      bfd_set_error (bfd_error_bad_value);
9924      return FALSE;
9925    }
9926
9927  addend = link_order->u.reloc.p->addend;
9928
9929  if (esdo->rel.hdr)
9930    reldata = &esdo->rel;
9931  else if (esdo->rela.hdr)
9932    reldata = &esdo->rela;
9933  else
9934    {
9935      reldata = NULL;
9936      BFD_ASSERT (0);
9937    }
9938
9939  /* Figure out the symbol index.  */
9940  rel_hash_ptr = reldata->hashes + reldata->count;
9941  if (link_order->type == bfd_section_reloc_link_order)
9942    {
9943      indx = link_order->u.reloc.p->u.section->target_index;
9944      BFD_ASSERT (indx != 0);
9945      *rel_hash_ptr = NULL;
9946    }
9947  else
9948    {
9949      struct elf_link_hash_entry *h;
9950
9951      /* Treat a reloc against a defined symbol as though it were
9952	 actually against the section.  */
9953      h = ((struct elf_link_hash_entry *)
9954	   bfd_wrapped_link_hash_lookup (output_bfd, info,
9955					 link_order->u.reloc.p->u.name,
9956					 FALSE, FALSE, TRUE));
9957      if (h != NULL
9958	  && (h->root.type == bfd_link_hash_defined
9959	      || h->root.type == bfd_link_hash_defweak))
9960	{
9961	  asection *section;
9962
9963	  section = h->root.u.def.section;
9964	  indx = section->output_section->target_index;
9965	  *rel_hash_ptr = NULL;
9966	  /* It seems that we ought to add the symbol value to the
9967	     addend here, but in practice it has already been added
9968	     because it was passed to constructor_callback.  */
9969	  addend += section->output_section->vma + section->output_offset;
9970	}
9971      else if (h != NULL)
9972	{
9973	  /* Setting the index to -2 tells elf_link_output_extsym that
9974	     this symbol is used by a reloc.  */
9975	  h->indx = -2;
9976	  *rel_hash_ptr = h;
9977	  indx = 0;
9978	}
9979      else
9980	{
9981	  if (! ((*info->callbacks->unattached_reloc)
9982		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9983	    return FALSE;
9984	  indx = 0;
9985	}
9986    }
9987
9988  /* If this is an inplace reloc, we must write the addend into the
9989     object file.  */
9990  if (howto->partial_inplace && addend != 0)
9991    {
9992      bfd_size_type size;
9993      bfd_reloc_status_type rstat;
9994      bfd_byte *buf;
9995      bfd_boolean ok;
9996      const char *sym_name;
9997
9998      size = (bfd_size_type) bfd_get_reloc_size (howto);
9999      buf = (bfd_byte *) bfd_zmalloc (size);
10000      if (buf == NULL)
10001	return FALSE;
10002      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10003      switch (rstat)
10004	{
10005	case bfd_reloc_ok:
10006	  break;
10007
10008	default:
10009	case bfd_reloc_outofrange:
10010	  abort ();
10011
10012	case bfd_reloc_overflow:
10013	  if (link_order->type == bfd_section_reloc_link_order)
10014	    sym_name = bfd_section_name (output_bfd,
10015					 link_order->u.reloc.p->u.section);
10016	  else
10017	    sym_name = link_order->u.reloc.p->u.name;
10018	  if (! ((*info->callbacks->reloc_overflow)
10019		 (info, NULL, sym_name, howto->name, addend, NULL,
10020		  NULL, (bfd_vma) 0)))
10021	    {
10022	      free (buf);
10023	      return FALSE;
10024	    }
10025	  break;
10026	}
10027      ok = bfd_set_section_contents (output_bfd, output_section, buf,
10028				     link_order->offset, size);
10029      free (buf);
10030      if (! ok)
10031	return FALSE;
10032    }
10033
10034  /* The address of a reloc is relative to the section in a
10035     relocatable file, and is a virtual address in an executable
10036     file.  */
10037  offset = link_order->offset;
10038  if (! info->relocatable)
10039    offset += output_section->vma;
10040
10041  for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10042    {
10043      irel[i].r_offset = offset;
10044      irel[i].r_info = 0;
10045      irel[i].r_addend = 0;
10046    }
10047  if (bed->s->arch_size == 32)
10048    irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10049  else
10050#ifdef BFD64
10051          {
10052            bfd_uint64_t indx64 = indx;
10053            irel[0].r_info = ELF64_R_INFO (indx64, howto->type);
10054          }
10055#else
10056          BFD_FAIL();
10057#endif
10058
10059  rel_hdr = reldata->hdr;
10060  erel = rel_hdr->contents;
10061  if (rel_hdr->sh_type == SHT_REL)
10062    {
10063      erel += reldata->count * bed->s->sizeof_rel;
10064      (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10065    }
10066  else
10067    {
10068      irel[0].r_addend = addend;
10069      erel += reldata->count * bed->s->sizeof_rela;
10070      (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10071    }
10072
10073  ++reldata->count;
10074
10075  return TRUE;
10076}
10077
10078
10079/* Get the output vma of the section pointed to by the sh_link field.  */
10080
10081static bfd_vma
10082elf_get_linked_section_vma (struct bfd_link_order *p)
10083{
10084  Elf_Internal_Shdr **elf_shdrp;
10085  asection *s;
10086  int elfsec;
10087
10088  s = p->u.indirect.section;
10089  elf_shdrp = elf_elfsections (s->owner);
10090  elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10091  elfsec = elf_shdrp[elfsec]->sh_link;
10092  /* PR 290:
10093     The Intel C compiler generates SHT_IA_64_UNWIND with
10094     SHF_LINK_ORDER.  But it doesn't set the sh_link or
10095     sh_info fields.  Hence we could get the situation
10096     where elfsec is 0.  */
10097  if (elfsec == 0)
10098    {
10099      const struct elf_backend_data *bed
10100	= get_elf_backend_data (s->owner);
10101      if (bed->link_order_error_handler)
10102	bed->link_order_error_handler
10103	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10104      return 0;
10105    }
10106  else
10107    {
10108      s = elf_shdrp[elfsec]->bfd_section;
10109      return s->output_section->vma + s->output_offset;
10110    }
10111}
10112
10113
10114/* Compare two sections based on the locations of the sections they are
10115   linked to.  Used by elf_fixup_link_order.  */
10116
10117static int
10118compare_link_order (const void * a, const void * b)
10119{
10120  bfd_vma apos;
10121  bfd_vma bpos;
10122
10123  apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10124  bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10125  if (apos < bpos)
10126    return -1;
10127  return apos > bpos;
10128}
10129
10130
10131/* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10132   order as their linked sections.  Returns false if this could not be done
10133   because an output section includes both ordered and unordered
10134   sections.  Ideally we'd do this in the linker proper.  */
10135
10136static bfd_boolean
10137elf_fixup_link_order (bfd *abfd, asection *o)
10138{
10139  int seen_linkorder;
10140  int seen_other;
10141  int n;
10142  struct bfd_link_order *p;
10143  bfd *sub;
10144  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10145  unsigned elfsec;
10146  struct bfd_link_order **sections;
10147  asection *s, *other_sec, *linkorder_sec;
10148  bfd_vma offset;
10149
10150  other_sec = NULL;
10151  linkorder_sec = NULL;
10152  seen_other = 0;
10153  seen_linkorder = 0;
10154  for (p = o->map_head.link_order; p != NULL; p = p->next)
10155    {
10156      if (p->type == bfd_indirect_link_order)
10157	{
10158	  s = p->u.indirect.section;
10159	  sub = s->owner;
10160	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10161	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10162	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10163	      && elfsec < elf_numsections (sub)
10164	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10165	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10166	    {
10167	      seen_linkorder++;
10168	      linkorder_sec = s;
10169	    }
10170	  else
10171	    {
10172	      seen_other++;
10173	      other_sec = s;
10174	    }
10175	}
10176      else
10177	seen_other++;
10178
10179      if (seen_other && seen_linkorder)
10180	{
10181	  if (other_sec && linkorder_sec)
10182	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10183				   o, linkorder_sec,
10184				   linkorder_sec->owner, other_sec,
10185				   other_sec->owner);
10186	  else
10187	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10188				   o);
10189	  bfd_set_error (bfd_error_bad_value);
10190	  return FALSE;
10191	}
10192    }
10193
10194  if (!seen_linkorder)
10195    return TRUE;
10196
10197  sections = (struct bfd_link_order **)
10198    bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10199  if (sections == NULL)
10200    return FALSE;
10201  seen_linkorder = 0;
10202
10203  for (p = o->map_head.link_order; p != NULL; p = p->next)
10204    {
10205      sections[seen_linkorder++] = p;
10206    }
10207  /* Sort the input sections in the order of their linked section.  */
10208  qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10209	 compare_link_order);
10210
10211  /* Change the offsets of the sections.  */
10212  offset = 0;
10213  for (n = 0; n < seen_linkorder; n++)
10214    {
10215      s = sections[n]->u.indirect.section;
10216      offset &= ~(bfd_vma) 0 << s->alignment_power;
10217      s->output_offset = offset;
10218      sections[n]->offset = offset;
10219      /* FIXME: octets_per_byte.  */
10220      offset += sections[n]->size;
10221    }
10222
10223  free (sections);
10224  return TRUE;
10225}
10226
10227
10228/* Do the final step of an ELF link.  */
10229
10230bfd_boolean
10231bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10232{
10233  bfd_boolean dynamic;
10234  bfd_boolean emit_relocs;
10235  bfd *dynobj;
10236  struct elf_final_link_info finfo;
10237  asection *o;
10238  struct bfd_link_order *p;
10239  bfd *sub;
10240  bfd_size_type max_contents_size;
10241  bfd_size_type max_external_reloc_size;
10242  bfd_size_type max_internal_reloc_count;
10243  bfd_size_type max_sym_count;
10244  bfd_size_type max_sym_shndx_count;
10245  file_ptr off;
10246  Elf_Internal_Sym elfsym;
10247  unsigned int i;
10248  Elf_Internal_Shdr *symtab_hdr;
10249  Elf_Internal_Shdr *symtab_shndx_hdr;
10250  Elf_Internal_Shdr *symstrtab_hdr;
10251  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10252  struct elf_outext_info eoinfo;
10253  bfd_boolean merged;
10254  size_t relativecount = 0;
10255  asection *reldyn = 0;
10256  bfd_size_type amt;
10257  asection *attr_section = NULL;
10258  bfd_vma attr_size = 0;
10259  const char *std_attrs_section;
10260
10261  if (! is_elf_hash_table (info->hash))
10262    return FALSE;
10263
10264  if (info->shared)
10265    abfd->flags |= DYNAMIC;
10266
10267  dynamic = elf_hash_table (info)->dynamic_sections_created;
10268  dynobj = elf_hash_table (info)->dynobj;
10269
10270  emit_relocs = (info->relocatable
10271		 || info->emitrelocations);
10272
10273  finfo.info = info;
10274  finfo.output_bfd = abfd;
10275  finfo.symstrtab = _bfd_elf_stringtab_init ();
10276  if (finfo.symstrtab == NULL)
10277    return FALSE;
10278
10279  if (! dynamic)
10280    {
10281      finfo.dynsym_sec = NULL;
10282      finfo.hash_sec = NULL;
10283      finfo.symver_sec = NULL;
10284    }
10285  else
10286    {
10287      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10288      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10289      BFD_ASSERT (finfo.dynsym_sec != NULL);
10290      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10291      /* Note that it is OK if symver_sec is NULL.  */
10292    }
10293
10294  finfo.contents = NULL;
10295  finfo.external_relocs = NULL;
10296  finfo.internal_relocs = NULL;
10297  finfo.external_syms = NULL;
10298  finfo.locsym_shndx = NULL;
10299  finfo.internal_syms = NULL;
10300  finfo.indices = NULL;
10301  finfo.sections = NULL;
10302  finfo.symbuf = NULL;
10303  finfo.symshndxbuf = NULL;
10304  finfo.symbuf_count = 0;
10305  finfo.shndxbuf_size = 0;
10306
10307  /* The object attributes have been merged.  Remove the input
10308     sections from the link, and set the contents of the output
10309     secton.  */
10310  std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10311  for (o = abfd->sections; o != NULL; o = o->next)
10312    {
10313      if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10314	  || strcmp (o->name, ".gnu.attributes") == 0)
10315	{
10316	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10317	    {
10318	      asection *input_section;
10319
10320	      if (p->type != bfd_indirect_link_order)
10321		continue;
10322	      input_section = p->u.indirect.section;
10323	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10324		 elf_link_input_bfd ignores this section.  */
10325	      input_section->flags &= ~SEC_HAS_CONTENTS;
10326	    }
10327
10328	  attr_size = bfd_elf_obj_attr_size (abfd);
10329	  if (attr_size)
10330	    {
10331	      bfd_set_section_size (abfd, o, attr_size);
10332	      attr_section = o;
10333	      /* Skip this section later on.  */
10334	      o->map_head.link_order = NULL;
10335	    }
10336	  else
10337	    o->flags |= SEC_EXCLUDE;
10338	}
10339    }
10340
10341  /* Count up the number of relocations we will output for each output
10342     section, so that we know the sizes of the reloc sections.  We
10343     also figure out some maximum sizes.  */
10344  max_contents_size = 0;
10345  max_external_reloc_size = 0;
10346  max_internal_reloc_count = 0;
10347  max_sym_count = 0;
10348  max_sym_shndx_count = 0;
10349  merged = FALSE;
10350  for (o = abfd->sections; o != NULL; o = o->next)
10351    {
10352      struct bfd_elf_section_data *esdo = elf_section_data (o);
10353      o->reloc_count = 0;
10354
10355      for (p = o->map_head.link_order; p != NULL; p = p->next)
10356	{
10357	  unsigned int reloc_count = 0;
10358	  struct bfd_elf_section_data *esdi = NULL;
10359
10360	  if (p->type == bfd_section_reloc_link_order
10361	      || p->type == bfd_symbol_reloc_link_order)
10362	    reloc_count = 1;
10363	  else if (p->type == bfd_indirect_link_order)
10364	    {
10365	      asection *sec;
10366
10367	      sec = p->u.indirect.section;
10368	      esdi = elf_section_data (sec);
10369
10370	      /* Mark all sections which are to be included in the
10371		 link.  This will normally be every section.  We need
10372		 to do this so that we can identify any sections which
10373		 the linker has decided to not include.  */
10374	      sec->linker_mark = TRUE;
10375
10376	      if (sec->flags & SEC_MERGE)
10377		merged = TRUE;
10378
10379	      if (info->relocatable || info->emitrelocations)
10380		reloc_count = sec->reloc_count;
10381	      else if (bed->elf_backend_count_relocs)
10382		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10383
10384	      if (sec->rawsize > max_contents_size)
10385		max_contents_size = sec->rawsize;
10386	      if (sec->size > max_contents_size)
10387		max_contents_size = sec->size;
10388
10389	      /* We are interested in just local symbols, not all
10390		 symbols.  */
10391	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10392		  && (sec->owner->flags & DYNAMIC) == 0)
10393		{
10394		  size_t sym_count;
10395
10396		  if (elf_bad_symtab (sec->owner))
10397		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10398				 / bed->s->sizeof_sym);
10399		  else
10400		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10401
10402		  if (sym_count > max_sym_count)
10403		    max_sym_count = sym_count;
10404
10405		  if (sym_count > max_sym_shndx_count
10406		      && elf_symtab_shndx (sec->owner) != 0)
10407		    max_sym_shndx_count = sym_count;
10408
10409		  if ((sec->flags & SEC_RELOC) != 0)
10410		    {
10411		      size_t ext_size = 0;
10412
10413		      if (esdi->rel.hdr != NULL)
10414			ext_size = esdi->rel.hdr->sh_size;
10415		      if (esdi->rela.hdr != NULL)
10416			ext_size += esdi->rela.hdr->sh_size;
10417
10418		      if (ext_size > max_external_reloc_size)
10419			max_external_reloc_size = ext_size;
10420		      if (sec->reloc_count > max_internal_reloc_count)
10421			max_internal_reloc_count = sec->reloc_count;
10422		    }
10423		}
10424	    }
10425
10426	  if (reloc_count == 0)
10427	    continue;
10428
10429	  o->reloc_count += reloc_count;
10430
10431	  if (p->type == bfd_indirect_link_order
10432	      && (info->relocatable || info->emitrelocations))
10433	    {
10434	      if (esdi->rel.hdr)
10435		esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10436	      if (esdi->rela.hdr)
10437		esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10438	    }
10439	  else
10440	    {
10441	      if (o->use_rela_p)
10442		esdo->rela.count += reloc_count;
10443	      else
10444		esdo->rel.count += reloc_count;
10445	    }
10446	}
10447
10448      if (o->reloc_count > 0)
10449	o->flags |= SEC_RELOC;
10450      else
10451	{
10452	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10453	     set it (this is probably a bug) and if it is set
10454	     assign_section_numbers will create a reloc section.  */
10455	  o->flags &=~ SEC_RELOC;
10456	}
10457
10458      /* If the SEC_ALLOC flag is not set, force the section VMA to
10459	 zero.  This is done in elf_fake_sections as well, but forcing
10460	 the VMA to 0 here will ensure that relocs against these
10461	 sections are handled correctly.  */
10462      if ((o->flags & SEC_ALLOC) == 0
10463	  && ! o->user_set_vma)
10464	o->vma = 0;
10465    }
10466
10467  if (! info->relocatable && merged)
10468    elf_link_hash_traverse (elf_hash_table (info),
10469			    _bfd_elf_link_sec_merge_syms, abfd);
10470
10471  /* Figure out the file positions for everything but the symbol table
10472     and the relocs.  We set symcount to force assign_section_numbers
10473     to create a symbol table.  */
10474  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10475  BFD_ASSERT (! abfd->output_has_begun);
10476  if (! _bfd_elf_compute_section_file_positions (abfd, info))
10477    goto error_return;
10478
10479  /* Set sizes, and assign file positions for reloc sections.  */
10480  for (o = abfd->sections; o != NULL; o = o->next)
10481    {
10482      struct bfd_elf_section_data *esdo = elf_section_data (o);
10483      if ((o->flags & SEC_RELOC) != 0)
10484	{
10485	  if (esdo->rel.hdr
10486	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10487	    goto error_return;
10488
10489	  if (esdo->rela.hdr
10490	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10491	    goto error_return;
10492	}
10493
10494      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10495	 to count upwards while actually outputting the relocations.  */
10496      esdo->rel.count = 0;
10497      esdo->rela.count = 0;
10498    }
10499
10500  _bfd_elf_assign_file_positions_for_relocs (abfd);
10501
10502  /* We have now assigned file positions for all the sections except
10503     .symtab and .strtab.  We start the .symtab section at the current
10504     file position, and write directly to it.  We build the .strtab
10505     section in memory.  */
10506  bfd_get_symcount (abfd) = 0;
10507  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10508  /* sh_name is set in prep_headers.  */
10509  symtab_hdr->sh_type = SHT_SYMTAB;
10510  /* sh_flags, sh_addr and sh_size all start off zero.  */
10511  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10512  /* sh_link is set in assign_section_numbers.  */
10513  /* sh_info is set below.  */
10514  /* sh_offset is set just below.  */
10515  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10516
10517  off = elf_tdata (abfd)->next_file_pos;
10518  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10519
10520  /* Note that at this point elf_tdata (abfd)->next_file_pos is
10521     incorrect.  We do not yet know the size of the .symtab section.
10522     We correct next_file_pos below, after we do know the size.  */
10523
10524  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10525     continuously seeking to the right position in the file.  */
10526  if (! info->keep_memory || max_sym_count < 20)
10527    finfo.symbuf_size = 20;
10528  else
10529    finfo.symbuf_size = max_sym_count;
10530  amt = finfo.symbuf_size;
10531  amt *= bed->s->sizeof_sym;
10532  finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10533  if (finfo.symbuf == NULL)
10534    goto error_return;
10535  if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10536    {
10537      /* Wild guess at number of output symbols.  realloc'd as needed.  */
10538      amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10539      finfo.shndxbuf_size = amt;
10540      amt *= sizeof (Elf_External_Sym_Shndx);
10541      finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10542      if (finfo.symshndxbuf == NULL)
10543	goto error_return;
10544    }
10545
10546  /* Start writing out the symbol table.  The first symbol is always a
10547     dummy symbol.  */
10548  if (info->strip != strip_all
10549      || emit_relocs)
10550    {
10551      elfsym.st_value = 0;
10552      elfsym.st_size = 0;
10553      elfsym.st_info = 0;
10554      elfsym.st_other = 0;
10555      elfsym.st_shndx = SHN_UNDEF;
10556      if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10557			       NULL) != 1)
10558	goto error_return;
10559    }
10560
10561  /* Output a symbol for each section.  We output these even if we are
10562     discarding local symbols, since they are used for relocs.  These
10563     symbols have no names.  We store the index of each one in the
10564     index field of the section, so that we can find it again when
10565     outputting relocs.  */
10566  if (info->strip != strip_all
10567      || emit_relocs)
10568    {
10569      elfsym.st_size = 0;
10570      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10571      elfsym.st_other = 0;
10572      elfsym.st_value = 0;
10573      for (i = 1; i < elf_numsections (abfd); i++)
10574	{
10575	  o = bfd_section_from_elf_index (abfd, i);
10576	  if (o != NULL)
10577	    {
10578	      o->target_index = bfd_get_symcount (abfd);
10579	      elfsym.st_shndx = i;
10580	      if (!info->relocatable)
10581		elfsym.st_value = o->vma;
10582	      if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10583		goto error_return;
10584	    }
10585	}
10586    }
10587
10588  /* Allocate some memory to hold information read in from the input
10589     files.  */
10590  if (max_contents_size != 0)
10591    {
10592      finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10593      if (finfo.contents == NULL)
10594	goto error_return;
10595    }
10596
10597  if (max_external_reloc_size != 0)
10598    {
10599      finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10600      if (finfo.external_relocs == NULL)
10601	goto error_return;
10602    }
10603
10604  if (max_internal_reloc_count != 0)
10605    {
10606      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10607      amt *= sizeof (Elf_Internal_Rela);
10608      finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10609      if (finfo.internal_relocs == NULL)
10610	goto error_return;
10611    }
10612
10613  if (max_sym_count != 0)
10614    {
10615      amt = max_sym_count * bed->s->sizeof_sym;
10616      finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10617      if (finfo.external_syms == NULL)
10618	goto error_return;
10619
10620      amt = max_sym_count * sizeof (Elf_Internal_Sym);
10621      finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10622      if (finfo.internal_syms == NULL)
10623	goto error_return;
10624
10625      amt = max_sym_count * sizeof (long);
10626      finfo.indices = (long int *) bfd_malloc (amt);
10627      if (finfo.indices == NULL)
10628	goto error_return;
10629
10630      amt = max_sym_count * sizeof (asection *);
10631      finfo.sections = (asection **) bfd_malloc (amt);
10632      if (finfo.sections == NULL)
10633	goto error_return;
10634    }
10635
10636  if (max_sym_shndx_count != 0)
10637    {
10638      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10639      finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10640      if (finfo.locsym_shndx == NULL)
10641	goto error_return;
10642    }
10643
10644  if (elf_hash_table (info)->tls_sec)
10645    {
10646      bfd_vma base, end = 0;
10647      asection *sec;
10648
10649      for (sec = elf_hash_table (info)->tls_sec;
10650	   sec && (sec->flags & SEC_THREAD_LOCAL);
10651	   sec = sec->next)
10652	{
10653	  bfd_size_type size = sec->size;
10654
10655	  if (size == 0
10656	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
10657	    {
10658	      struct bfd_link_order *ord = sec->map_tail.link_order;
10659
10660	      if (ord != NULL)
10661		size = ord->offset + ord->size;
10662	    }
10663	  end = sec->vma + size;
10664	}
10665      base = elf_hash_table (info)->tls_sec->vma;
10666      /* Only align end of TLS section if static TLS doesn't have special
10667	 alignment requirements.  */
10668      if (bed->static_tls_alignment == 1)
10669	end = align_power (end,
10670			   elf_hash_table (info)->tls_sec->alignment_power);
10671      elf_hash_table (info)->tls_size = end - base;
10672    }
10673
10674  /* Reorder SHF_LINK_ORDER sections.  */
10675  for (o = abfd->sections; o != NULL; o = o->next)
10676    {
10677      if (!elf_fixup_link_order (abfd, o))
10678	return FALSE;
10679    }
10680
10681  /* Since ELF permits relocations to be against local symbols, we
10682     must have the local symbols available when we do the relocations.
10683     Since we would rather only read the local symbols once, and we
10684     would rather not keep them in memory, we handle all the
10685     relocations for a single input file at the same time.
10686
10687     Unfortunately, there is no way to know the total number of local
10688     symbols until we have seen all of them, and the local symbol
10689     indices precede the global symbol indices.  This means that when
10690     we are generating relocatable output, and we see a reloc against
10691     a global symbol, we can not know the symbol index until we have
10692     finished examining all the local symbols to see which ones we are
10693     going to output.  To deal with this, we keep the relocations in
10694     memory, and don't output them until the end of the link.  This is
10695     an unfortunate waste of memory, but I don't see a good way around
10696     it.  Fortunately, it only happens when performing a relocatable
10697     link, which is not the common case.  FIXME: If keep_memory is set
10698     we could write the relocs out and then read them again; I don't
10699     know how bad the memory loss will be.  */
10700
10701  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10702    sub->output_has_begun = FALSE;
10703  for (o = abfd->sections; o != NULL; o = o->next)
10704    {
10705      for (p = o->map_head.link_order; p != NULL; p = p->next)
10706	{
10707	  if (p->type == bfd_indirect_link_order
10708	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10709		  == bfd_target_elf_flavour)
10710	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10711	    {
10712	      if (! sub->output_has_begun)
10713		{
10714		  if (! elf_link_input_bfd (&finfo, sub))
10715		    goto error_return;
10716		  sub->output_has_begun = TRUE;
10717		}
10718	    }
10719	  else if (p->type == bfd_section_reloc_link_order
10720		   || p->type == bfd_symbol_reloc_link_order)
10721	    {
10722	      if (! elf_reloc_link_order (abfd, info, o, p))
10723		goto error_return;
10724	    }
10725	  else
10726	    {
10727	      if (! _bfd_default_link_order (abfd, info, o, p))
10728		goto error_return;
10729	    }
10730	}
10731    }
10732
10733  /* Free symbol buffer if needed.  */
10734  if (!info->reduce_memory_overheads)
10735    {
10736      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10737	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10738	    && elf_tdata (sub)->symbuf)
10739	  {
10740	    free (elf_tdata (sub)->symbuf);
10741	    elf_tdata (sub)->symbuf = NULL;
10742	  }
10743    }
10744
10745  /* Output any global symbols that got converted to local in a
10746     version script or due to symbol visibility.  We do this in a
10747     separate step since ELF requires all local symbols to appear
10748     prior to any global symbols.  FIXME: We should only do this if
10749     some global symbols were, in fact, converted to become local.
10750     FIXME: Will this work correctly with the Irix 5 linker?  */
10751  eoinfo.failed = FALSE;
10752  eoinfo.finfo = &finfo;
10753  eoinfo.localsyms = TRUE;
10754  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10755			  &eoinfo);
10756  if (eoinfo.failed)
10757    return FALSE;
10758
10759  /* If backend needs to output some local symbols not present in the hash
10760     table, do it now.  */
10761  if (bed->elf_backend_output_arch_local_syms)
10762    {
10763      typedef int (*out_sym_func)
10764	(void *, const char *, Elf_Internal_Sym *, asection *,
10765	 struct elf_link_hash_entry *);
10766
10767      if (! ((*bed->elf_backend_output_arch_local_syms)
10768	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10769	return FALSE;
10770    }
10771
10772  /* That wrote out all the local symbols.  Finish up the symbol table
10773     with the global symbols. Even if we want to strip everything we
10774     can, we still need to deal with those global symbols that got
10775     converted to local in a version script.  */
10776
10777  /* The sh_info field records the index of the first non local symbol.  */
10778  symtab_hdr->sh_info = bfd_get_symcount (abfd);
10779
10780  if (dynamic
10781      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10782    {
10783      Elf_Internal_Sym sym;
10784      bfd_byte *dynsym = finfo.dynsym_sec->contents;
10785      long last_local = 0;
10786
10787      /* Write out the section symbols for the output sections.  */
10788      if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10789	{
10790	  asection *s;
10791
10792	  sym.st_size = 0;
10793	  sym.st_name = 0;
10794	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10795	  sym.st_other = 0;
10796
10797	  for (s = abfd->sections; s != NULL; s = s->next)
10798	    {
10799	      int indx;
10800	      bfd_byte *dest;
10801	      long dynindx;
10802
10803	      dynindx = elf_section_data (s)->dynindx;
10804	      if (dynindx <= 0)
10805		continue;
10806	      indx = elf_section_data (s)->this_idx;
10807	      BFD_ASSERT (indx > 0);
10808	      sym.st_shndx = indx;
10809	      if (! check_dynsym (abfd, &sym))
10810		return FALSE;
10811	      sym.st_value = s->vma;
10812	      dest = dynsym + dynindx * bed->s->sizeof_sym;
10813	      if (last_local < dynindx)
10814		last_local = dynindx;
10815	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10816	    }
10817	}
10818
10819      /* Write out the local dynsyms.  */
10820      if (elf_hash_table (info)->dynlocal)
10821	{
10822	  struct elf_link_local_dynamic_entry *e;
10823	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10824	    {
10825	      asection *s;
10826	      bfd_byte *dest;
10827
10828	      /* Copy the internal symbol and turn off visibility.
10829		 Note that we saved a word of storage and overwrote
10830		 the original st_name with the dynstr_index.  */
10831	      sym = e->isym;
10832	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10833
10834	      s = bfd_section_from_elf_index (e->input_bfd,
10835					      e->isym.st_shndx);
10836	      if (s != NULL)
10837		{
10838		  sym.st_shndx =
10839		    elf_section_data (s->output_section)->this_idx;
10840		  if (! check_dynsym (abfd, &sym))
10841		    return FALSE;
10842		  sym.st_value = (s->output_section->vma
10843				  + s->output_offset
10844				  + e->isym.st_value);
10845		}
10846
10847	      if (last_local < e->dynindx)
10848		last_local = e->dynindx;
10849
10850	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10851	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10852	    }
10853	}
10854
10855      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10856	last_local + 1;
10857    }
10858
10859  /* We get the global symbols from the hash table.  */
10860  eoinfo.failed = FALSE;
10861  eoinfo.localsyms = FALSE;
10862  eoinfo.finfo = &finfo;
10863  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10864			  &eoinfo);
10865  if (eoinfo.failed)
10866    return FALSE;
10867
10868  /* If backend needs to output some symbols not present in the hash
10869     table, do it now.  */
10870  if (bed->elf_backend_output_arch_syms)
10871    {
10872      typedef int (*out_sym_func)
10873	(void *, const char *, Elf_Internal_Sym *, asection *,
10874	 struct elf_link_hash_entry *);
10875
10876      if (! ((*bed->elf_backend_output_arch_syms)
10877	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10878	return FALSE;
10879    }
10880
10881  /* Flush all symbols to the file.  */
10882  if (! elf_link_flush_output_syms (&finfo, bed))
10883    return FALSE;
10884
10885  /* Now we know the size of the symtab section.  */
10886  off += symtab_hdr->sh_size;
10887
10888  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10889  if (symtab_shndx_hdr->sh_name != 0)
10890    {
10891      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10892      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10893      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10894      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10895      symtab_shndx_hdr->sh_size = amt;
10896
10897      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10898						       off, TRUE);
10899
10900      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10901	  || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10902	return FALSE;
10903    }
10904
10905
10906  /* Finish up and write out the symbol string table (.strtab)
10907     section.  */
10908  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10909  /* sh_name was set in prep_headers.  */
10910  symstrtab_hdr->sh_type = SHT_STRTAB;
10911  symstrtab_hdr->sh_flags = 0;
10912  symstrtab_hdr->sh_addr = 0;
10913  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10914  symstrtab_hdr->sh_entsize = 0;
10915  symstrtab_hdr->sh_link = 0;
10916  symstrtab_hdr->sh_info = 0;
10917  /* sh_offset is set just below.  */
10918  symstrtab_hdr->sh_addralign = 1;
10919
10920  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10921  elf_tdata (abfd)->next_file_pos = off;
10922
10923  if (bfd_get_symcount (abfd) > 0)
10924    {
10925      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10926	  || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10927	return FALSE;
10928    }
10929
10930  /* Adjust the relocs to have the correct symbol indices.  */
10931  for (o = abfd->sections; o != NULL; o = o->next)
10932    {
10933      struct bfd_elf_section_data *esdo = elf_section_data (o);
10934      if ((o->flags & SEC_RELOC) == 0)
10935	continue;
10936
10937      if (esdo->rel.hdr != NULL)
10938	elf_link_adjust_relocs (abfd, &esdo->rel);
10939      if (esdo->rela.hdr != NULL)
10940	elf_link_adjust_relocs (abfd, &esdo->rela);
10941
10942      /* Set the reloc_count field to 0 to prevent write_relocs from
10943	 trying to swap the relocs out itself.  */
10944      o->reloc_count = 0;
10945    }
10946
10947  if (dynamic && info->combreloc && dynobj != NULL)
10948    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10949
10950  /* If we are linking against a dynamic object, or generating a
10951     shared library, finish up the dynamic linking information.  */
10952  if (dynamic)
10953    {
10954      bfd_byte *dyncon, *dynconend;
10955
10956      /* Fix up .dynamic entries.  */
10957      o = bfd_get_section_by_name (dynobj, ".dynamic");
10958      BFD_ASSERT (o != NULL);
10959
10960      dyncon = o->contents;
10961      dynconend = o->contents + o->size;
10962      for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10963	{
10964	  Elf_Internal_Dyn dyn;
10965	  const char *name;
10966	  unsigned int type;
10967
10968	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10969
10970	  switch (dyn.d_tag)
10971	    {
10972	    default:
10973	      continue;
10974	    case DT_NULL:
10975	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10976		{
10977		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
10978		    {
10979		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10980		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10981		    default: continue;
10982		    }
10983		  dyn.d_un.d_val = relativecount;
10984		  relativecount = 0;
10985		  break;
10986		}
10987	      continue;
10988
10989	    case DT_INIT:
10990	      name = info->init_function;
10991	      goto get_sym;
10992	    case DT_FINI:
10993	      name = info->fini_function;
10994	    get_sym:
10995	      {
10996		struct elf_link_hash_entry *h;
10997
10998		h = elf_link_hash_lookup (elf_hash_table (info), name,
10999					  FALSE, FALSE, TRUE);
11000		if (h != NULL
11001		    && (h->root.type == bfd_link_hash_defined
11002			|| h->root.type == bfd_link_hash_defweak))
11003		  {
11004		    dyn.d_un.d_ptr = h->root.u.def.value;
11005		    o = h->root.u.def.section;
11006		    if (o->output_section != NULL)
11007		      dyn.d_un.d_ptr += (o->output_section->vma
11008					 + o->output_offset);
11009		    else
11010		      {
11011			/* The symbol is imported from another shared
11012			   library and does not apply to this one.  */
11013			dyn.d_un.d_ptr = 0;
11014		      }
11015		    break;
11016		  }
11017	      }
11018	      continue;
11019
11020	    case DT_PREINIT_ARRAYSZ:
11021	      name = ".preinit_array";
11022	      goto get_size;
11023	    case DT_INIT_ARRAYSZ:
11024	      name = ".init_array";
11025	      goto get_size;
11026	    case DT_FINI_ARRAYSZ:
11027	      name = ".fini_array";
11028	    get_size:
11029	      o = bfd_get_section_by_name (abfd, name);
11030	      if (o == NULL)
11031		{
11032		  (*_bfd_error_handler)
11033		    (_("%B: could not find output section %s"), abfd, name);
11034		  goto error_return;
11035		}
11036	      if (o->size == 0)
11037		(*_bfd_error_handler)
11038		  (_("warning: %s section has zero size"), name);
11039	      dyn.d_un.d_val = o->size;
11040	      break;
11041
11042	    case DT_PREINIT_ARRAY:
11043	      name = ".preinit_array";
11044	      goto get_vma;
11045	    case DT_INIT_ARRAY:
11046	      name = ".init_array";
11047	      goto get_vma;
11048	    case DT_FINI_ARRAY:
11049	      name = ".fini_array";
11050	      goto get_vma;
11051
11052	    case DT_HASH:
11053	      name = ".hash";
11054	      goto get_vma;
11055	    case DT_GNU_HASH:
11056	      name = ".gnu.hash";
11057	      goto get_vma;
11058	    case DT_STRTAB:
11059	      name = ".dynstr";
11060	      goto get_vma;
11061	    case DT_SYMTAB:
11062	      name = ".dynsym";
11063	      goto get_vma;
11064	    case DT_VERDEF:
11065	      name = ".gnu.version_d";
11066	      goto get_vma;
11067	    case DT_VERNEED:
11068	      name = ".gnu.version_r";
11069	      goto get_vma;
11070	    case DT_VERSYM:
11071	      name = ".gnu.version";
11072	    get_vma:
11073	      o = bfd_get_section_by_name (abfd, name);
11074	      if (o == NULL)
11075		{
11076		  (*_bfd_error_handler)
11077		    (_("%B: could not find output section %s"), abfd, name);
11078		  goto error_return;
11079		}
11080	      dyn.d_un.d_ptr = o->vma;
11081	      break;
11082
11083	    case DT_REL:
11084	    case DT_RELA:
11085	    case DT_RELSZ:
11086	    case DT_RELASZ:
11087	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11088		type = SHT_REL;
11089	      else
11090		type = SHT_RELA;
11091	      dyn.d_un.d_val = 0;
11092	      dyn.d_un.d_ptr = 0;
11093	      for (i = 1; i < elf_numsections (abfd); i++)
11094		{
11095		  Elf_Internal_Shdr *hdr;
11096
11097		  hdr = elf_elfsections (abfd)[i];
11098		  if (hdr->sh_type == type
11099		      && (hdr->sh_flags & SHF_ALLOC) != 0)
11100		    {
11101		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11102			dyn.d_un.d_val += hdr->sh_size;
11103		      else
11104			{
11105			  if (dyn.d_un.d_ptr == 0
11106			      || hdr->sh_addr < dyn.d_un.d_ptr)
11107			    dyn.d_un.d_ptr = hdr->sh_addr;
11108			}
11109		    }
11110		}
11111	      break;
11112	    }
11113	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11114	}
11115    }
11116
11117  /* If we have created any dynamic sections, then output them.  */
11118  if (dynobj != NULL)
11119    {
11120      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11121	goto error_return;
11122
11123      /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11124      if (info->warn_shared_textrel && info->shared)
11125	{
11126	  bfd_byte *dyncon, *dynconend;
11127
11128	  /* Fix up .dynamic entries.  */
11129	  o = bfd_get_section_by_name (dynobj, ".dynamic");
11130	  BFD_ASSERT (o != NULL);
11131
11132	  dyncon = o->contents;
11133	  dynconend = o->contents + o->size;
11134	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11135	    {
11136	      Elf_Internal_Dyn dyn;
11137
11138	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11139
11140	      if (dyn.d_tag == DT_TEXTREL)
11141		{
11142		 info->callbacks->einfo
11143		    (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11144		  break;
11145		}
11146	    }
11147	}
11148
11149      for (o = dynobj->sections; o != NULL; o = o->next)
11150	{
11151	  if ((o->flags & SEC_HAS_CONTENTS) == 0
11152	      || o->size == 0
11153	      || o->output_section == bfd_abs_section_ptr)
11154	    continue;
11155	  if ((o->flags & SEC_LINKER_CREATED) == 0)
11156	    {
11157	      /* At this point, we are only interested in sections
11158		 created by _bfd_elf_link_create_dynamic_sections.  */
11159	      continue;
11160	    }
11161	  if (elf_hash_table (info)->stab_info.stabstr == o)
11162	    continue;
11163	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
11164	    continue;
11165	  if ((elf_section_data (o->output_section)->this_hdr.sh_type
11166	       != SHT_STRTAB)
11167	      || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11168	    {
11169	      /* FIXME: octets_per_byte.  */
11170	      if (! bfd_set_section_contents (abfd, o->output_section,
11171					      o->contents,
11172					      (file_ptr) o->output_offset,
11173					      o->size))
11174		goto error_return;
11175	    }
11176	  else
11177	    {
11178	      /* The contents of the .dynstr section are actually in a
11179		 stringtab.  */
11180	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11181	      if (bfd_seek (abfd, off, SEEK_SET) != 0
11182		  || ! _bfd_elf_strtab_emit (abfd,
11183					     elf_hash_table (info)->dynstr))
11184		goto error_return;
11185	    }
11186	}
11187    }
11188
11189  if (info->relocatable)
11190    {
11191      bfd_boolean failed = FALSE;
11192
11193      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11194      if (failed)
11195	goto error_return;
11196    }
11197
11198  /* If we have optimized stabs strings, output them.  */
11199  if (elf_hash_table (info)->stab_info.stabstr != NULL)
11200    {
11201      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11202	goto error_return;
11203    }
11204
11205  if (info->eh_frame_hdr)
11206    {
11207      if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11208	goto error_return;
11209    }
11210
11211  if (finfo.symstrtab != NULL)
11212    _bfd_stringtab_free (finfo.symstrtab);
11213  if (finfo.contents != NULL)
11214    free (finfo.contents);
11215  if (finfo.external_relocs != NULL)
11216    free (finfo.external_relocs);
11217  if (finfo.internal_relocs != NULL)
11218    free (finfo.internal_relocs);
11219  if (finfo.external_syms != NULL)
11220    free (finfo.external_syms);
11221  if (finfo.locsym_shndx != NULL)
11222    free (finfo.locsym_shndx);
11223  if (finfo.internal_syms != NULL)
11224    free (finfo.internal_syms);
11225  if (finfo.indices != NULL)
11226    free (finfo.indices);
11227  if (finfo.sections != NULL)
11228    free (finfo.sections);
11229  if (finfo.symbuf != NULL)
11230    free (finfo.symbuf);
11231  if (finfo.symshndxbuf != NULL)
11232    free (finfo.symshndxbuf);
11233  for (o = abfd->sections; o != NULL; o = o->next)
11234    {
11235      struct bfd_elf_section_data *esdo = elf_section_data (o);
11236      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11237	free (esdo->rel.hashes);
11238      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11239	free (esdo->rela.hashes);
11240    }
11241
11242  elf_tdata (abfd)->linker = TRUE;
11243
11244  if (attr_section)
11245    {
11246      bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11247      if (contents == NULL)
11248	return FALSE;	/* Bail out and fail.  */
11249      bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11250      bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11251      free (contents);
11252    }
11253
11254  return TRUE;
11255
11256 error_return:
11257  if (finfo.symstrtab != NULL)
11258    _bfd_stringtab_free (finfo.symstrtab);
11259  if (finfo.contents != NULL)
11260    free (finfo.contents);
11261  if (finfo.external_relocs != NULL)
11262    free (finfo.external_relocs);
11263  if (finfo.internal_relocs != NULL)
11264    free (finfo.internal_relocs);
11265  if (finfo.external_syms != NULL)
11266    free (finfo.external_syms);
11267  if (finfo.locsym_shndx != NULL)
11268    free (finfo.locsym_shndx);
11269  if (finfo.internal_syms != NULL)
11270    free (finfo.internal_syms);
11271  if (finfo.indices != NULL)
11272    free (finfo.indices);
11273  if (finfo.sections != NULL)
11274    free (finfo.sections);
11275  if (finfo.symbuf != NULL)
11276    free (finfo.symbuf);
11277  if (finfo.symshndxbuf != NULL)
11278    free (finfo.symshndxbuf);
11279  for (o = abfd->sections; o != NULL; o = o->next)
11280    {
11281      struct bfd_elf_section_data *esdo = elf_section_data (o);
11282      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11283	free (esdo->rel.hashes);
11284      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11285	free (esdo->rela.hashes);
11286    }
11287
11288  return FALSE;
11289}
11290
11291/* Initialize COOKIE for input bfd ABFD.  */
11292
11293static bfd_boolean
11294init_reloc_cookie (struct elf_reloc_cookie *cookie,
11295		   struct bfd_link_info *info, bfd *abfd)
11296{
11297  Elf_Internal_Shdr *symtab_hdr;
11298  const struct elf_backend_data *bed;
11299
11300  bed = get_elf_backend_data (abfd);
11301  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11302
11303  cookie->abfd = abfd;
11304  cookie->sym_hashes = elf_sym_hashes (abfd);
11305  cookie->bad_symtab = elf_bad_symtab (abfd);
11306  if (cookie->bad_symtab)
11307    {
11308      cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11309      cookie->extsymoff = 0;
11310    }
11311  else
11312    {
11313      cookie->locsymcount = symtab_hdr->sh_info;
11314      cookie->extsymoff = symtab_hdr->sh_info;
11315    }
11316
11317  if (bed->s->arch_size == 32)
11318    cookie->r_sym_shift = 8;
11319  else
11320    cookie->r_sym_shift = 32;
11321
11322  cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11323  if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11324    {
11325      cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11326					      cookie->locsymcount, 0,
11327					      NULL, NULL, NULL);
11328      if (cookie->locsyms == NULL)
11329	{
11330	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11331	  return FALSE;
11332	}
11333      if (info->keep_memory)
11334	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11335    }
11336  return TRUE;
11337}
11338
11339/* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11340
11341static void
11342fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11343{
11344  Elf_Internal_Shdr *symtab_hdr;
11345
11346  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11347  if (cookie->locsyms != NULL
11348      && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11349    free (cookie->locsyms);
11350}
11351
11352/* Initialize the relocation information in COOKIE for input section SEC
11353   of input bfd ABFD.  */
11354
11355static bfd_boolean
11356init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11357			struct bfd_link_info *info, bfd *abfd,
11358			asection *sec)
11359{
11360  const struct elf_backend_data *bed;
11361
11362  if (sec->reloc_count == 0)
11363    {
11364      cookie->rels = NULL;
11365      cookie->relend = NULL;
11366    }
11367  else
11368    {
11369      bed = get_elf_backend_data (abfd);
11370
11371      cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11372						info->keep_memory);
11373      if (cookie->rels == NULL)
11374	return FALSE;
11375      cookie->rel = cookie->rels;
11376      cookie->relend = (cookie->rels
11377			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
11378    }
11379  cookie->rel = cookie->rels;
11380  return TRUE;
11381}
11382
11383/* Free the memory allocated by init_reloc_cookie_rels,
11384   if appropriate.  */
11385
11386static void
11387fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11388			asection *sec)
11389{
11390  if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11391    free (cookie->rels);
11392}
11393
11394/* Initialize the whole of COOKIE for input section SEC.  */
11395
11396static bfd_boolean
11397init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11398			       struct bfd_link_info *info,
11399			       asection *sec)
11400{
11401  if (!init_reloc_cookie (cookie, info, sec->owner))
11402    goto error1;
11403  if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11404    goto error2;
11405  return TRUE;
11406
11407 error2:
11408  fini_reloc_cookie (cookie, sec->owner);
11409 error1:
11410  return FALSE;
11411}
11412
11413/* Free the memory allocated by init_reloc_cookie_for_section,
11414   if appropriate.  */
11415
11416static void
11417fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11418			       asection *sec)
11419{
11420  fini_reloc_cookie_rels (cookie, sec);
11421  fini_reloc_cookie (cookie, sec->owner);
11422}
11423
11424/* Garbage collect unused sections.  */
11425
11426/* Default gc_mark_hook.  */
11427
11428asection *
11429_bfd_elf_gc_mark_hook (asection *sec,
11430		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11431		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11432		       struct elf_link_hash_entry *h,
11433		       Elf_Internal_Sym *sym)
11434{
11435  const char *sec_name;
11436
11437  if (h != NULL)
11438    {
11439      switch (h->root.type)
11440	{
11441	case bfd_link_hash_defined:
11442	case bfd_link_hash_defweak:
11443	  return h->root.u.def.section;
11444
11445	case bfd_link_hash_common:
11446	  return h->root.u.c.p->section;
11447
11448	case bfd_link_hash_undefined:
11449	case bfd_link_hash_undefweak:
11450	  /* To work around a glibc bug, keep all XXX input sections
11451	     when there is an as yet undefined reference to __start_XXX
11452	     or __stop_XXX symbols.  The linker will later define such
11453	     symbols for orphan input sections that have a name
11454	     representable as a C identifier.  */
11455	  if (strncmp (h->root.root.string, "__start_", 8) == 0)
11456	    sec_name = h->root.root.string + 8;
11457	  else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11458	    sec_name = h->root.root.string + 7;
11459	  else
11460	    sec_name = NULL;
11461
11462	  if (sec_name && *sec_name != '\0')
11463	    {
11464	      bfd *i;
11465
11466	      for (i = info->input_bfds; i; i = i->link_next)
11467		{
11468		  sec = bfd_get_section_by_name (i, sec_name);
11469		  if (sec)
11470		    sec->flags |= SEC_KEEP;
11471		}
11472	    }
11473	  break;
11474
11475	default:
11476	  break;
11477	}
11478    }
11479  else
11480    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11481
11482  return NULL;
11483}
11484
11485/* COOKIE->rel describes a relocation against section SEC, which is
11486   a section we've decided to keep.  Return the section that contains
11487   the relocation symbol, or NULL if no section contains it.  */
11488
11489asection *
11490_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11491		       elf_gc_mark_hook_fn gc_mark_hook,
11492		       struct elf_reloc_cookie *cookie)
11493{
11494  unsigned long r_symndx;
11495  struct elf_link_hash_entry *h;
11496
11497  r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11498  if (r_symndx == STN_UNDEF)
11499    return NULL;
11500
11501  if (r_symndx >= cookie->locsymcount
11502      || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11503    {
11504      h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11505      while (h->root.type == bfd_link_hash_indirect
11506	     || h->root.type == bfd_link_hash_warning)
11507	h = (struct elf_link_hash_entry *) h->root.u.i.link;
11508      return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11509    }
11510
11511  return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11512			  &cookie->locsyms[r_symndx]);
11513}
11514
11515/* COOKIE->rel describes a relocation against section SEC, which is
11516   a section we've decided to keep.  Mark the section that contains
11517   the relocation symbol.  */
11518
11519bfd_boolean
11520_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11521			asection *sec,
11522			elf_gc_mark_hook_fn gc_mark_hook,
11523			struct elf_reloc_cookie *cookie)
11524{
11525  asection *rsec;
11526
11527  rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11528  if (rsec && !rsec->gc_mark)
11529    {
11530      if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11531	rsec->gc_mark = 1;
11532      else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11533	return FALSE;
11534    }
11535  return TRUE;
11536}
11537
11538/* The mark phase of garbage collection.  For a given section, mark
11539   it and any sections in this section's group, and all the sections
11540   which define symbols to which it refers.  */
11541
11542bfd_boolean
11543_bfd_elf_gc_mark (struct bfd_link_info *info,
11544		  asection *sec,
11545		  elf_gc_mark_hook_fn gc_mark_hook)
11546{
11547  bfd_boolean ret;
11548  asection *group_sec, *eh_frame;
11549
11550  sec->gc_mark = 1;
11551
11552  /* Mark all the sections in the group.  */
11553  group_sec = elf_section_data (sec)->next_in_group;
11554  if (group_sec && !group_sec->gc_mark)
11555    if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11556      return FALSE;
11557
11558  /* Look through the section relocs.  */
11559  ret = TRUE;
11560  eh_frame = elf_eh_frame_section (sec->owner);
11561  if ((sec->flags & SEC_RELOC) != 0
11562      && sec->reloc_count > 0
11563      && sec != eh_frame)
11564    {
11565      struct elf_reloc_cookie cookie;
11566
11567      if (!init_reloc_cookie_for_section (&cookie, info, sec))
11568	ret = FALSE;
11569      else
11570	{
11571	  for (; cookie.rel < cookie.relend; cookie.rel++)
11572	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11573	      {
11574		ret = FALSE;
11575		break;
11576	      }
11577	  fini_reloc_cookie_for_section (&cookie, sec);
11578	}
11579    }
11580
11581  if (ret && eh_frame && elf_fde_list (sec))
11582    {
11583      struct elf_reloc_cookie cookie;
11584
11585      if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11586	ret = FALSE;
11587      else
11588	{
11589	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11590				      gc_mark_hook, &cookie))
11591	    ret = FALSE;
11592	  fini_reloc_cookie_for_section (&cookie, eh_frame);
11593	}
11594    }
11595
11596  return ret;
11597}
11598
11599/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11600
11601struct elf_gc_sweep_symbol_info
11602{
11603  struct bfd_link_info *info;
11604  void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11605		       bfd_boolean);
11606};
11607
11608static bfd_boolean
11609elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11610{
11611  if (h->root.type == bfd_link_hash_warning)
11612    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11613
11614  if ((h->root.type == bfd_link_hash_defined
11615       || h->root.type == bfd_link_hash_defweak)
11616      && !h->root.u.def.section->gc_mark
11617      && !(h->root.u.def.section->owner->flags & DYNAMIC))
11618    {
11619      struct elf_gc_sweep_symbol_info *inf =
11620          (struct elf_gc_sweep_symbol_info *) data;
11621      (*inf->hide_symbol) (inf->info, h, TRUE);
11622    }
11623
11624  return TRUE;
11625}
11626
11627/* The sweep phase of garbage collection.  Remove all garbage sections.  */
11628
11629typedef bfd_boolean (*gc_sweep_hook_fn)
11630  (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11631
11632static bfd_boolean
11633elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11634{
11635  bfd *sub;
11636  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11637  gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11638  unsigned long section_sym_count;
11639  struct elf_gc_sweep_symbol_info sweep_info;
11640
11641  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11642    {
11643      asection *o;
11644
11645      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11646	continue;
11647
11648      for (o = sub->sections; o != NULL; o = o->next)
11649	{
11650	  /* When any section in a section group is kept, we keep all
11651	     sections in the section group.  If the first member of
11652	     the section group is excluded, we will also exclude the
11653	     group section.  */
11654	  if (o->flags & SEC_GROUP)
11655	    {
11656	      asection *first = elf_next_in_group (o);
11657	      o->gc_mark = first->gc_mark;
11658	    }
11659	  else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11660		   || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11661		   || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11662	    {
11663	      /* Keep debug, special and SHT_NOTE sections.  */
11664	      o->gc_mark = 1;
11665	    }
11666
11667	  if (o->gc_mark)
11668	    continue;
11669
11670	  /* Skip sweeping sections already excluded.  */
11671	  if (o->flags & SEC_EXCLUDE)
11672	    continue;
11673
11674	  /* Since this is early in the link process, it is simple
11675	     to remove a section from the output.  */
11676	  o->flags |= SEC_EXCLUDE;
11677
11678	  if (info->print_gc_sections && o->size != 0)
11679	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11680
11681	  /* But we also have to update some of the relocation
11682	     info we collected before.  */
11683	  if (gc_sweep_hook
11684	      && (o->flags & SEC_RELOC) != 0
11685	      && o->reloc_count > 0
11686	      && !bfd_is_abs_section (o->output_section))
11687	    {
11688	      Elf_Internal_Rela *internal_relocs;
11689	      bfd_boolean r;
11690
11691	      internal_relocs
11692		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11693					     info->keep_memory);
11694	      if (internal_relocs == NULL)
11695		return FALSE;
11696
11697	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11698
11699	      if (elf_section_data (o)->relocs != internal_relocs)
11700		free (internal_relocs);
11701
11702	      if (!r)
11703		return FALSE;
11704	    }
11705	}
11706    }
11707
11708  /* Remove the symbols that were in the swept sections from the dynamic
11709     symbol table.  GCFIXME: Anyone know how to get them out of the
11710     static symbol table as well?  */
11711  sweep_info.info = info;
11712  sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11713  elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11714			  &sweep_info);
11715
11716  _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11717  return TRUE;
11718}
11719
11720/* Propagate collected vtable information.  This is called through
11721   elf_link_hash_traverse.  */
11722
11723static bfd_boolean
11724elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11725{
11726  if (h->root.type == bfd_link_hash_warning)
11727    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11728
11729  /* Those that are not vtables.  */
11730  if (h->vtable == NULL || h->vtable->parent == NULL)
11731    return TRUE;
11732
11733  /* Those vtables that do not have parents, we cannot merge.  */
11734  if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11735    return TRUE;
11736
11737  /* If we've already been done, exit.  */
11738  if (h->vtable->used && h->vtable->used[-1])
11739    return TRUE;
11740
11741  /* Make sure the parent's table is up to date.  */
11742  elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11743
11744  if (h->vtable->used == NULL)
11745    {
11746      /* None of this table's entries were referenced.  Re-use the
11747	 parent's table.  */
11748      h->vtable->used = h->vtable->parent->vtable->used;
11749      h->vtable->size = h->vtable->parent->vtable->size;
11750    }
11751  else
11752    {
11753      size_t n;
11754      bfd_boolean *cu, *pu;
11755
11756      /* Or the parent's entries into ours.  */
11757      cu = h->vtable->used;
11758      cu[-1] = TRUE;
11759      pu = h->vtable->parent->vtable->used;
11760      if (pu != NULL)
11761	{
11762	  const struct elf_backend_data *bed;
11763	  unsigned int log_file_align;
11764
11765	  bed = get_elf_backend_data (h->root.u.def.section->owner);
11766	  log_file_align = bed->s->log_file_align;
11767	  n = h->vtable->parent->vtable->size >> log_file_align;
11768	  while (n--)
11769	    {
11770	      if (*pu)
11771		*cu = TRUE;
11772	      pu++;
11773	      cu++;
11774	    }
11775	}
11776    }
11777
11778  return TRUE;
11779}
11780
11781static bfd_boolean
11782elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11783{
11784  asection *sec;
11785  bfd_vma hstart, hend;
11786  Elf_Internal_Rela *relstart, *relend, *rel;
11787  const struct elf_backend_data *bed;
11788  unsigned int log_file_align;
11789
11790  if (h->root.type == bfd_link_hash_warning)
11791    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11792
11793  /* Take care of both those symbols that do not describe vtables as
11794     well as those that are not loaded.  */
11795  if (h->vtable == NULL || h->vtable->parent == NULL)
11796    return TRUE;
11797
11798  BFD_ASSERT (h->root.type == bfd_link_hash_defined
11799	      || h->root.type == bfd_link_hash_defweak);
11800
11801  sec = h->root.u.def.section;
11802  hstart = h->root.u.def.value;
11803  hend = hstart + h->size;
11804
11805  relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11806  if (!relstart)
11807    return *(bfd_boolean *) okp = FALSE;
11808  bed = get_elf_backend_data (sec->owner);
11809  log_file_align = bed->s->log_file_align;
11810
11811  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11812
11813  for (rel = relstart; rel < relend; ++rel)
11814    if (rel->r_offset >= hstart && rel->r_offset < hend)
11815      {
11816	/* If the entry is in use, do nothing.  */
11817	if (h->vtable->used
11818	    && (rel->r_offset - hstart) < h->vtable->size)
11819	  {
11820	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11821	    if (h->vtable->used[entry])
11822	      continue;
11823	  }
11824	/* Otherwise, kill it.  */
11825	rel->r_offset = rel->r_info = rel->r_addend = 0;
11826      }
11827
11828  return TRUE;
11829}
11830
11831/* Mark sections containing dynamically referenced symbols.  When
11832   building shared libraries, we must assume that any visible symbol is
11833   referenced.  */
11834
11835bfd_boolean
11836bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11837{
11838  struct bfd_link_info *info = (struct bfd_link_info *) inf;
11839
11840  if (h->root.type == bfd_link_hash_warning)
11841    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11842
11843  if ((h->root.type == bfd_link_hash_defined
11844       || h->root.type == bfd_link_hash_defweak)
11845      && (h->ref_dynamic
11846	  || (!info->executable
11847	      && h->def_regular
11848	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11849	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11850    h->root.u.def.section->flags |= SEC_KEEP;
11851
11852  return TRUE;
11853}
11854
11855/* Keep all sections containing symbols undefined on the command-line,
11856   and the section containing the entry symbol.  */
11857
11858void
11859_bfd_elf_gc_keep (struct bfd_link_info *info)
11860{
11861  struct bfd_sym_chain *sym;
11862
11863  for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11864    {
11865      struct elf_link_hash_entry *h;
11866
11867      h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11868				FALSE, FALSE, FALSE);
11869
11870      if (h != NULL
11871	  && (h->root.type == bfd_link_hash_defined
11872	      || h->root.type == bfd_link_hash_defweak)
11873	  && !bfd_is_abs_section (h->root.u.def.section))
11874	h->root.u.def.section->flags |= SEC_KEEP;
11875    }
11876}
11877
11878/* Do mark and sweep of unused sections.  */
11879
11880bfd_boolean
11881bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11882{
11883  bfd_boolean ok = TRUE;
11884  bfd *sub;
11885  elf_gc_mark_hook_fn gc_mark_hook;
11886  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11887
11888  if (!bed->can_gc_sections
11889      || !is_elf_hash_table (info->hash))
11890    {
11891      (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11892      return TRUE;
11893    }
11894
11895  bed->gc_keep (info);
11896
11897  /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
11898     at the .eh_frame section if we can mark the FDEs individually.  */
11899  _bfd_elf_begin_eh_frame_parsing (info);
11900  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11901    {
11902      asection *sec;
11903      struct elf_reloc_cookie cookie;
11904
11905      sec = bfd_get_section_by_name (sub, ".eh_frame");
11906      if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11907	{
11908	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11909	  if (elf_section_data (sec)->sec_info)
11910	    elf_eh_frame_section (sub) = sec;
11911	  fini_reloc_cookie_for_section (&cookie, sec);
11912	}
11913    }
11914  _bfd_elf_end_eh_frame_parsing (info);
11915
11916  /* Apply transitive closure to the vtable entry usage info.  */
11917  elf_link_hash_traverse (elf_hash_table (info),
11918			  elf_gc_propagate_vtable_entries_used,
11919			  &ok);
11920  if (!ok)
11921    return FALSE;
11922
11923  /* Kill the vtable relocations that were not used.  */
11924  elf_link_hash_traverse (elf_hash_table (info),
11925			  elf_gc_smash_unused_vtentry_relocs,
11926			  &ok);
11927  if (!ok)
11928    return FALSE;
11929
11930  /* Mark dynamically referenced symbols.  */
11931  if (elf_hash_table (info)->dynamic_sections_created)
11932    elf_link_hash_traverse (elf_hash_table (info),
11933			    bed->gc_mark_dynamic_ref,
11934			    info);
11935
11936  /* Grovel through relocs to find out who stays ...  */
11937  gc_mark_hook = bed->gc_mark_hook;
11938  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11939    {
11940      asection *o;
11941
11942      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11943	continue;
11944
11945      for (o = sub->sections; o != NULL; o = o->next)
11946	if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11947	  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11948	    return FALSE;
11949    }
11950
11951  /* Allow the backend to mark additional target specific sections.  */
11952  if (bed->gc_mark_extra_sections)
11953    bed->gc_mark_extra_sections (info, gc_mark_hook);
11954
11955  /* ... and mark SEC_EXCLUDE for those that go.  */
11956  return elf_gc_sweep (abfd, info);
11957}
11958
11959/* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
11960
11961bfd_boolean
11962bfd_elf_gc_record_vtinherit (bfd *abfd,
11963			     asection *sec,
11964			     struct elf_link_hash_entry *h,
11965			     bfd_vma offset)
11966{
11967  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11968  struct elf_link_hash_entry **search, *child;
11969  bfd_size_type extsymcount;
11970  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11971
11972  /* The sh_info field of the symtab header tells us where the
11973     external symbols start.  We don't care about the local symbols at
11974     this point.  */
11975  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11976  if (!elf_bad_symtab (abfd))
11977    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11978
11979  sym_hashes = elf_sym_hashes (abfd);
11980  sym_hashes_end = sym_hashes + extsymcount;
11981
11982  /* Hunt down the child symbol, which is in this section at the same
11983     offset as the relocation.  */
11984  for (search = sym_hashes; search != sym_hashes_end; ++search)
11985    {
11986      if ((child = *search) != NULL
11987	  && (child->root.type == bfd_link_hash_defined
11988	      || child->root.type == bfd_link_hash_defweak)
11989	  && child->root.u.def.section == sec
11990	  && child->root.u.def.value == offset)
11991	goto win;
11992    }
11993
11994  (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11995			 abfd, sec, (unsigned long) offset);
11996  bfd_set_error (bfd_error_invalid_operation);
11997  return FALSE;
11998
11999 win:
12000  if (!child->vtable)
12001    {
12002      child->vtable = (struct elf_link_virtual_table_entry *)
12003          bfd_zalloc (abfd, sizeof (*child->vtable));
12004      if (!child->vtable)
12005	return FALSE;
12006    }
12007  if (!h)
12008    {
12009      /* This *should* only be the absolute section.  It could potentially
12010	 be that someone has defined a non-global vtable though, which
12011	 would be bad.  It isn't worth paging in the local symbols to be
12012	 sure though; that case should simply be handled by the assembler.  */
12013
12014      child->vtable->parent = (struct elf_link_hash_entry *) -1;
12015    }
12016  else
12017    child->vtable->parent = h;
12018
12019  return TRUE;
12020}
12021
12022/* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12023
12024bfd_boolean
12025bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12026			   asection *sec ATTRIBUTE_UNUSED,
12027			   struct elf_link_hash_entry *h,
12028			   bfd_vma addend)
12029{
12030  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12031  unsigned int log_file_align = bed->s->log_file_align;
12032
12033  if (!h->vtable)
12034    {
12035      h->vtable = (struct elf_link_virtual_table_entry *)
12036          bfd_zalloc (abfd, sizeof (*h->vtable));
12037      if (!h->vtable)
12038	return FALSE;
12039    }
12040
12041  if (addend >= h->vtable->size)
12042    {
12043      size_t size, bytes, file_align;
12044      bfd_boolean *ptr = h->vtable->used;
12045
12046      /* While the symbol is undefined, we have to be prepared to handle
12047	 a zero size.  */
12048      file_align = 1 << log_file_align;
12049      if (h->root.type == bfd_link_hash_undefined)
12050	size = addend + file_align;
12051      else
12052	{
12053	  size = h->size;
12054	  if (addend >= size)
12055	    {
12056	      /* Oops!  We've got a reference past the defined end of
12057		 the table.  This is probably a bug -- shall we warn?  */
12058	      size = addend + file_align;
12059	    }
12060	}
12061      size = (size + file_align - 1) & -file_align;
12062
12063      /* Allocate one extra entry for use as a "done" flag for the
12064	 consolidation pass.  */
12065      bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12066
12067      if (ptr)
12068	{
12069	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12070
12071	  if (ptr != NULL)
12072	    {
12073	      size_t oldbytes;
12074
12075	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
12076			  * sizeof (bfd_boolean));
12077	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12078	    }
12079	}
12080      else
12081	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12082
12083      if (ptr == NULL)
12084	return FALSE;
12085
12086      /* And arrange for that done flag to be at index -1.  */
12087      h->vtable->used = ptr + 1;
12088      h->vtable->size = size;
12089    }
12090
12091  h->vtable->used[addend >> log_file_align] = TRUE;
12092
12093  return TRUE;
12094}
12095
12096struct alloc_got_off_arg {
12097  bfd_vma gotoff;
12098  struct bfd_link_info *info;
12099};
12100
12101/* We need a special top-level link routine to convert got reference counts
12102   to real got offsets.  */
12103
12104static bfd_boolean
12105elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12106{
12107  struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12108  bfd *obfd = gofarg->info->output_bfd;
12109  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12110
12111  if (h->root.type == bfd_link_hash_warning)
12112    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12113
12114  if (h->got.refcount > 0)
12115    {
12116      h->got.offset = gofarg->gotoff;
12117      gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12118    }
12119  else
12120    h->got.offset = (bfd_vma) -1;
12121
12122  return TRUE;
12123}
12124
12125/* And an accompanying bit to work out final got entry offsets once
12126   we're done.  Should be called from final_link.  */
12127
12128bfd_boolean
12129bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12130					struct bfd_link_info *info)
12131{
12132  bfd *i;
12133  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12134  bfd_vma gotoff;
12135  struct alloc_got_off_arg gofarg;
12136
12137  BFD_ASSERT (abfd == info->output_bfd);
12138
12139  if (! is_elf_hash_table (info->hash))
12140    return FALSE;
12141
12142  /* The GOT offset is relative to the .got section, but the GOT header is
12143     put into the .got.plt section, if the backend uses it.  */
12144  if (bed->want_got_plt)
12145    gotoff = 0;
12146  else
12147    gotoff = bed->got_header_size;
12148
12149  /* Do the local .got entries first.  */
12150  for (i = info->input_bfds; i; i = i->link_next)
12151    {
12152      bfd_signed_vma *local_got;
12153      bfd_size_type j, locsymcount;
12154      Elf_Internal_Shdr *symtab_hdr;
12155
12156      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12157	continue;
12158
12159      local_got = elf_local_got_refcounts (i);
12160      if (!local_got)
12161	continue;
12162
12163      symtab_hdr = &elf_tdata (i)->symtab_hdr;
12164      if (elf_bad_symtab (i))
12165	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12166      else
12167	locsymcount = symtab_hdr->sh_info;
12168
12169      for (j = 0; j < locsymcount; ++j)
12170	{
12171	  if (local_got[j] > 0)
12172	    {
12173	      local_got[j] = gotoff;
12174	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12175	    }
12176	  else
12177	    local_got[j] = (bfd_vma) -1;
12178	}
12179    }
12180
12181  /* Then the global .got entries.  .plt refcounts are handled by
12182     adjust_dynamic_symbol  */
12183  gofarg.gotoff = gotoff;
12184  gofarg.info = info;
12185  elf_link_hash_traverse (elf_hash_table (info),
12186			  elf_gc_allocate_got_offsets,
12187			  &gofarg);
12188  return TRUE;
12189}
12190
12191/* Many folk need no more in the way of final link than this, once
12192   got entry reference counting is enabled.  */
12193
12194bfd_boolean
12195bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12196{
12197  if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12198    return FALSE;
12199
12200  /* Invoke the regular ELF backend linker to do all the work.  */
12201  return bfd_elf_final_link (abfd, info);
12202}
12203
12204bfd_boolean
12205bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12206{
12207  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12208
12209  if (rcookie->bad_symtab)
12210    rcookie->rel = rcookie->rels;
12211
12212  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12213    {
12214      unsigned long r_symndx;
12215
12216      if (! rcookie->bad_symtab)
12217	if (rcookie->rel->r_offset > offset)
12218	  return FALSE;
12219      if (rcookie->rel->r_offset != offset)
12220	continue;
12221
12222      r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12223      if (r_symndx == STN_UNDEF)
12224	return TRUE;
12225
12226      if (r_symndx >= rcookie->locsymcount
12227	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12228	{
12229	  struct elf_link_hash_entry *h;
12230
12231	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12232
12233	  while (h->root.type == bfd_link_hash_indirect
12234		 || h->root.type == bfd_link_hash_warning)
12235	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12236
12237	  if ((h->root.type == bfd_link_hash_defined
12238	       || h->root.type == bfd_link_hash_defweak)
12239	      && elf_discarded_section (h->root.u.def.section))
12240	    return TRUE;
12241	  else
12242	    return FALSE;
12243	}
12244      else
12245	{
12246	  /* It's not a relocation against a global symbol,
12247	     but it could be a relocation against a local
12248	     symbol for a discarded section.  */
12249	  asection *isec;
12250	  Elf_Internal_Sym *isym;
12251
12252	  /* Need to: get the symbol; get the section.  */
12253	  isym = &rcookie->locsyms[r_symndx];
12254	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12255	  if (isec != NULL && elf_discarded_section (isec))
12256	    return TRUE;
12257	}
12258      return FALSE;
12259    }
12260  return FALSE;
12261}
12262
12263/* Discard unneeded references to discarded sections.
12264   Returns TRUE if any section's size was changed.  */
12265/* This function assumes that the relocations are in sorted order,
12266   which is true for all known assemblers.  */
12267
12268bfd_boolean
12269bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12270{
12271  struct elf_reloc_cookie cookie;
12272  asection *stab, *eh;
12273  const struct elf_backend_data *bed;
12274  bfd *abfd;
12275  bfd_boolean ret = FALSE;
12276
12277  if (info->traditional_format
12278      || !is_elf_hash_table (info->hash))
12279    return FALSE;
12280
12281  _bfd_elf_begin_eh_frame_parsing (info);
12282  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12283    {
12284      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12285	continue;
12286
12287      bed = get_elf_backend_data (abfd);
12288
12289      if ((abfd->flags & DYNAMIC) != 0)
12290	continue;
12291
12292      eh = NULL;
12293      if (!info->relocatable)
12294	{
12295	  eh = bfd_get_section_by_name (abfd, ".eh_frame");
12296	  if (eh != NULL
12297	      && (eh->size == 0
12298		  || bfd_is_abs_section (eh->output_section)))
12299	    eh = NULL;
12300	}
12301
12302      stab = bfd_get_section_by_name (abfd, ".stab");
12303      if (stab != NULL
12304	  && (stab->size == 0
12305	      || bfd_is_abs_section (stab->output_section)
12306	      || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12307	stab = NULL;
12308
12309      if (stab == NULL
12310	  && eh == NULL
12311	  && bed->elf_backend_discard_info == NULL)
12312	continue;
12313
12314      if (!init_reloc_cookie (&cookie, info, abfd))
12315	return FALSE;
12316
12317      if (stab != NULL
12318	  && stab->reloc_count > 0
12319	  && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12320	{
12321	  if (_bfd_discard_section_stabs (abfd, stab,
12322					  elf_section_data (stab)->sec_info,
12323					  bfd_elf_reloc_symbol_deleted_p,
12324					  &cookie))
12325	    ret = TRUE;
12326	  fini_reloc_cookie_rels (&cookie, stab);
12327	}
12328
12329      if (eh != NULL
12330	  && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12331	{
12332	  _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12333	  if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12334						 bfd_elf_reloc_symbol_deleted_p,
12335						 &cookie))
12336	    ret = TRUE;
12337	  fini_reloc_cookie_rels (&cookie, eh);
12338	}
12339
12340      if (bed->elf_backend_discard_info != NULL
12341	  && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12342	ret = TRUE;
12343
12344      fini_reloc_cookie (&cookie, abfd);
12345    }
12346  _bfd_elf_end_eh_frame_parsing (info);
12347
12348  if (info->eh_frame_hdr
12349      && !info->relocatable
12350      && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12351    ret = TRUE;
12352
12353  return ret;
12354}
12355
12356/* For a SHT_GROUP section, return the group signature.  For other
12357   sections, return the normal section name.  */
12358
12359static const char *
12360section_signature (asection *sec)
12361{
12362  if ((sec->flags & SEC_GROUP) != 0
12363      && elf_next_in_group (sec) != NULL
12364      && elf_group_name (elf_next_in_group (sec)) != NULL)
12365    return elf_group_name (elf_next_in_group (sec));
12366  return sec->name;
12367}
12368
12369void
12370_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12371				 struct bfd_link_info *info)
12372{
12373  flagword flags;
12374  const char *name, *p;
12375  struct bfd_section_already_linked *l;
12376  struct bfd_section_already_linked_hash_entry *already_linked_list;
12377
12378  if (sec->output_section == bfd_abs_section_ptr)
12379    return;
12380
12381  flags = sec->flags;
12382
12383  /* Return if it isn't a linkonce section.  A comdat group section
12384     also has SEC_LINK_ONCE set.  */
12385  if ((flags & SEC_LINK_ONCE) == 0)
12386    return;
12387
12388  /* Don't put group member sections on our list of already linked
12389     sections.  They are handled as a group via their group section.  */
12390  if (elf_sec_group (sec) != NULL)
12391    return;
12392
12393  /* FIXME: When doing a relocatable link, we may have trouble
12394     copying relocations in other sections that refer to local symbols
12395     in the section being discarded.  Those relocations will have to
12396     be converted somehow; as of this writing I'm not sure that any of
12397     the backends handle that correctly.
12398
12399     It is tempting to instead not discard link once sections when
12400     doing a relocatable link (technically, they should be discarded
12401     whenever we are building constructors).  However, that fails,
12402     because the linker winds up combining all the link once sections
12403     into a single large link once section, which defeats the purpose
12404     of having link once sections in the first place.
12405
12406     Also, not merging link once sections in a relocatable link
12407     causes trouble for MIPS ELF, which relies on link once semantics
12408     to handle the .reginfo section correctly.  */
12409
12410  name = section_signature (sec);
12411
12412  if (CONST_STRNEQ (name, ".gnu.linkonce.")
12413      && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12414    p++;
12415  else
12416    p = name;
12417
12418  already_linked_list = bfd_section_already_linked_table_lookup (p);
12419
12420  for (l = already_linked_list->entry; l != NULL; l = l->next)
12421    {
12422      /* We may have 2 different types of sections on the list: group
12423	 sections and linkonce sections.  Match like sections.  */
12424      if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12425	  && strcmp (name, section_signature (l->sec)) == 0
12426	  && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12427	{
12428	  /* The section has already been linked.  See if we should
12429	     issue a warning.  */
12430	  switch (flags & SEC_LINK_DUPLICATES)
12431	    {
12432	    default:
12433	      abort ();
12434
12435	    case SEC_LINK_DUPLICATES_DISCARD:
12436	      break;
12437
12438	    case SEC_LINK_DUPLICATES_ONE_ONLY:
12439	      (*_bfd_error_handler)
12440		(_("%B: ignoring duplicate section `%A'"),
12441		 abfd, sec);
12442	      break;
12443
12444	    case SEC_LINK_DUPLICATES_SAME_SIZE:
12445	      if (sec->size != l->sec->size)
12446		(*_bfd_error_handler)
12447		  (_("%B: duplicate section `%A' has different size"),
12448		   abfd, sec);
12449	      break;
12450
12451	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12452	      if (sec->size != l->sec->size)
12453		(*_bfd_error_handler)
12454		  (_("%B: duplicate section `%A' has different size"),
12455		   abfd, sec);
12456	      else if (sec->size != 0)
12457		{
12458		  bfd_byte *sec_contents, *l_sec_contents;
12459
12460		  if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12461		    (*_bfd_error_handler)
12462		      (_("%B: warning: could not read contents of section `%A'"),
12463		       abfd, sec);
12464		  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12465							&l_sec_contents))
12466		    (*_bfd_error_handler)
12467		      (_("%B: warning: could not read contents of section `%A'"),
12468		       l->sec->owner, l->sec);
12469		  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12470		    (*_bfd_error_handler)
12471		      (_("%B: warning: duplicate section `%A' has different contents"),
12472		       abfd, sec);
12473
12474		  if (sec_contents)
12475		    free (sec_contents);
12476		  if (l_sec_contents)
12477		    free (l_sec_contents);
12478		}
12479	      break;
12480	    }
12481
12482	  /* Set the output_section field so that lang_add_section
12483	     does not create a lang_input_section structure for this
12484	     section.  Since there might be a symbol in the section
12485	     being discarded, we must retain a pointer to the section
12486	     which we are really going to use.  */
12487	  sec->output_section = bfd_abs_section_ptr;
12488	  sec->kept_section = l->sec;
12489
12490	  if (flags & SEC_GROUP)
12491	    {
12492	      asection *first = elf_next_in_group (sec);
12493	      asection *s = first;
12494
12495	      while (s != NULL)
12496		{
12497		  s->output_section = bfd_abs_section_ptr;
12498		  /* Record which group discards it.  */
12499		  s->kept_section = l->sec;
12500		  s = elf_next_in_group (s);
12501		  /* These lists are circular.  */
12502		  if (s == first)
12503		    break;
12504		}
12505	    }
12506
12507	  return;
12508	}
12509    }
12510
12511  /* A single member comdat group section may be discarded by a
12512     linkonce section and vice versa.  */
12513
12514  if ((flags & SEC_GROUP) != 0)
12515    {
12516      asection *first = elf_next_in_group (sec);
12517
12518      if (first != NULL && elf_next_in_group (first) == first)
12519	/* Check this single member group against linkonce sections.  */
12520	for (l = already_linked_list->entry; l != NULL; l = l->next)
12521	  if ((l->sec->flags & SEC_GROUP) == 0
12522	      && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12523	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12524	    {
12525	      first->output_section = bfd_abs_section_ptr;
12526	      first->kept_section = l->sec;
12527	      sec->output_section = bfd_abs_section_ptr;
12528	      break;
12529	    }
12530    }
12531  else
12532    /* Check this linkonce section against single member groups.  */
12533    for (l = already_linked_list->entry; l != NULL; l = l->next)
12534      if (l->sec->flags & SEC_GROUP)
12535	{
12536	  asection *first = elf_next_in_group (l->sec);
12537
12538	  if (first != NULL
12539	      && elf_next_in_group (first) == first
12540	      && bfd_elf_match_symbols_in_sections (first, sec, info))
12541	    {
12542	      sec->output_section = bfd_abs_section_ptr;
12543	      sec->kept_section = first;
12544	      break;
12545	    }
12546	}
12547
12548  /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12549     referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12550     specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12551     prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12552     matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12553     but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12554     `.gnu.linkonce.t.F' section from a different bfd not requiring any
12555     `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12556     The reverse order cannot happen as there is never a bfd with only the
12557     `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12558     matter as here were are looking only for cross-bfd sections.  */
12559
12560  if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12561    for (l = already_linked_list->entry; l != NULL; l = l->next)
12562      if ((l->sec->flags & SEC_GROUP) == 0
12563	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12564	{
12565	  if (abfd != l->sec->owner)
12566	    sec->output_section = bfd_abs_section_ptr;
12567	  break;
12568	}
12569
12570  /* This is the first section with this name.  Record it.  */
12571  if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12572    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12573}
12574
12575bfd_boolean
12576_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12577{
12578  return sym->st_shndx == SHN_COMMON;
12579}
12580
12581unsigned int
12582_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12583{
12584  return SHN_COMMON;
12585}
12586
12587asection *
12588_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12589{
12590  return bfd_com_section_ptr;
12591}
12592
12593bfd_vma
12594_bfd_elf_default_got_elt_size (bfd *abfd,
12595			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12596			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12597			       bfd *ibfd ATTRIBUTE_UNUSED,
12598			       unsigned long symndx ATTRIBUTE_UNUSED)
12599{
12600  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12601  return bed->s->arch_size / 8;
12602}
12603
12604/* Routines to support the creation of dynamic relocs.  */
12605
12606/* Return true if NAME is a name of a relocation
12607   section associated with section S.  */
12608
12609static bfd_boolean
12610is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12611{
12612  if (rela)
12613    return CONST_STRNEQ (name, ".rela")
12614      && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12615
12616  return CONST_STRNEQ (name, ".rel")
12617    && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12618}
12619
12620/* Returns the name of the dynamic reloc section associated with SEC.  */
12621
12622static const char *
12623get_dynamic_reloc_section_name (bfd *       abfd,
12624				asection *  sec,
12625				bfd_boolean is_rela)
12626{
12627  const char * name;
12628  unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12629  unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name;
12630
12631  name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12632  if (name == NULL)
12633    return NULL;
12634
12635  if (! is_reloc_section (is_rela, name, sec))
12636    {
12637      static bfd_boolean complained = FALSE;
12638
12639      if (! complained)
12640	{
12641	  (*_bfd_error_handler)
12642	    (_("%B: bad relocation section name `%s\'"),  abfd, name);
12643	  complained = TRUE;
12644	}
12645      name = NULL;
12646    }
12647
12648  return name;
12649}
12650
12651/* Returns the dynamic reloc section associated with SEC.
12652   If necessary compute the name of the dynamic reloc section based
12653   on SEC's name (looked up in ABFD's string table) and the setting
12654   of IS_RELA.  */
12655
12656asection *
12657_bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12658				    asection *  sec,
12659				    bfd_boolean is_rela)
12660{
12661  asection * reloc_sec = elf_section_data (sec)->sreloc;
12662
12663  if (reloc_sec == NULL)
12664    {
12665      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12666
12667      if (name != NULL)
12668	{
12669	  reloc_sec = bfd_get_section_by_name (abfd, name);
12670
12671	  if (reloc_sec != NULL)
12672	    elf_section_data (sec)->sreloc = reloc_sec;
12673	}
12674    }
12675
12676  return reloc_sec;
12677}
12678
12679/* Returns the dynamic reloc section associated with SEC.  If the
12680   section does not exist it is created and attached to the DYNOBJ
12681   bfd and stored in the SRELOC field of SEC's elf_section_data
12682   structure.
12683
12684   ALIGNMENT is the alignment for the newly created section and
12685   IS_RELA defines whether the name should be .rela.<SEC's name>
12686   or .rel.<SEC's name>.  The section name is looked up in the
12687   string table associated with ABFD.  */
12688
12689asection *
12690_bfd_elf_make_dynamic_reloc_section (asection *         sec,
12691				     bfd *		dynobj,
12692				     unsigned int	alignment,
12693				     bfd *              abfd,
12694				     bfd_boolean        is_rela)
12695{
12696  asection * reloc_sec = elf_section_data (sec)->sreloc;
12697
12698  if (reloc_sec == NULL)
12699    {
12700      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12701
12702      if (name == NULL)
12703	return NULL;
12704
12705      reloc_sec = bfd_get_section_by_name (dynobj, name);
12706
12707      if (reloc_sec == NULL)
12708	{
12709	  flagword flags;
12710
12711	  flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12712	  if ((sec->flags & SEC_ALLOC) != 0)
12713	    flags |= SEC_ALLOC | SEC_LOAD;
12714
12715	  reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12716	  if (reloc_sec != NULL)
12717	    {
12718	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12719		reloc_sec = NULL;
12720	    }
12721	}
12722
12723      elf_section_data (sec)->sreloc = reloc_sec;
12724    }
12725
12726  return reloc_sec;
12727}
12728
12729/* Copy the ELF symbol type associated with a linker hash entry.  */
12730void
12731_bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12732    struct bfd_link_hash_entry * hdest,
12733    struct bfd_link_hash_entry * hsrc)
12734{
12735  struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12736  struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12737
12738  ehdest->type = ehsrc->type;
12739}
12740