1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/vdev_impl.h>
34#include <sys/uberblock_impl.h>
35#include <sys/metaslab.h>
36#include <sys/metaslab_impl.h>
37#include <sys/space_map.h>
38#include <sys/zio.h>
39#include <sys/zap.h>
40#include <sys/fs/zfs.h>
41#include <sys/arc.h>
42#include <sys/zil.h>
43
44/*
45 * Virtual device management.
46 */
47
48static vdev_ops_t *vdev_ops_table[] = {
49	&vdev_root_ops,
50	&vdev_raidz_ops,
51	&vdev_mirror_ops,
52	&vdev_replacing_ops,
53	&vdev_spare_ops,
54	&vdev_disk_ops,
55	&vdev_file_ops,
56	&vdev_missing_ops,
57	&vdev_hole_ops,
58	NULL
59};
60
61/* maximum scrub/resilver I/O queue per leaf vdev */
62int zfs_scrub_limit = 10;
63
64/*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67static vdev_ops_t *
68vdev_getops(const char *type)
69{
70	vdev_ops_t *ops, **opspp;
71
72	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73		if (strcmp(ops->vdev_op_type, type) == 0)
74			break;
75
76	return (ops);
77}
78
79/*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children.  This is what's used by anything other than RAID-Z.
82 */
83uint64_t
84vdev_default_asize(vdev_t *vd, uint64_t psize)
85{
86	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87	uint64_t csize;
88
89	for (int c = 0; c < vd->vdev_children; c++) {
90		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91		asize = MAX(asize, csize);
92	}
93
94	return (asize);
95}
96
97/*
98 * Get the minimum allocatable size. We define the allocatable size as
99 * the vdev's asize rounded to the nearest metaslab. This allows us to
100 * replace or attach devices which don't have the same physical size but
101 * can still satisfy the same number of allocations.
102 */
103uint64_t
104vdev_get_min_asize(vdev_t *vd)
105{
106	vdev_t *pvd = vd->vdev_parent;
107
108	/*
109	 * The our parent is NULL (inactive spare or cache) or is the root,
110	 * just return our own asize.
111	 */
112	if (pvd == NULL)
113		return (vd->vdev_asize);
114
115	/*
116	 * The top-level vdev just returns the allocatable size rounded
117	 * to the nearest metaslab.
118	 */
119	if (vd == vd->vdev_top)
120		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121
122	/*
123	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124	 * so each child must provide at least 1/Nth of its asize.
125	 */
126	if (pvd->vdev_ops == &vdev_raidz_ops)
127		return (pvd->vdev_min_asize / pvd->vdev_children);
128
129	return (pvd->vdev_min_asize);
130}
131
132void
133vdev_set_min_asize(vdev_t *vd)
134{
135	vd->vdev_min_asize = vdev_get_min_asize(vd);
136
137	for (int c = 0; c < vd->vdev_children; c++)
138		vdev_set_min_asize(vd->vdev_child[c]);
139}
140
141vdev_t *
142vdev_lookup_top(spa_t *spa, uint64_t vdev)
143{
144	vdev_t *rvd = spa->spa_root_vdev;
145
146	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147
148	if (vdev < rvd->vdev_children) {
149		ASSERT(rvd->vdev_child[vdev] != NULL);
150		return (rvd->vdev_child[vdev]);
151	}
152
153	return (NULL);
154}
155
156vdev_t *
157vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158{
159	vdev_t *mvd;
160
161	if (vd->vdev_guid == guid)
162		return (vd);
163
164	for (int c = 0; c < vd->vdev_children; c++)
165		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166		    NULL)
167			return (mvd);
168
169	return (NULL);
170}
171
172void
173vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174{
175	size_t oldsize, newsize;
176	uint64_t id = cvd->vdev_id;
177	vdev_t **newchild;
178
179	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180	ASSERT(cvd->vdev_parent == NULL);
181
182	cvd->vdev_parent = pvd;
183
184	if (pvd == NULL)
185		return;
186
187	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191	newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193	newchild = kmem_zalloc(newsize, KM_SLEEP);
194	if (pvd->vdev_child != NULL) {
195		bcopy(pvd->vdev_child, newchild, oldsize);
196		kmem_free(pvd->vdev_child, oldsize);
197	}
198
199	pvd->vdev_child = newchild;
200	pvd->vdev_child[id] = cvd;
201
202	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205	/*
206	 * Walk up all ancestors to update guid sum.
207	 */
208	for (; pvd != NULL; pvd = pvd->vdev_parent)
209		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210
211	if (cvd->vdev_ops->vdev_op_leaf)
212		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213}
214
215void
216vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217{
218	int c;
219	uint_t id = cvd->vdev_id;
220
221	ASSERT(cvd->vdev_parent == pvd);
222
223	if (pvd == NULL)
224		return;
225
226	ASSERT(id < pvd->vdev_children);
227	ASSERT(pvd->vdev_child[id] == cvd);
228
229	pvd->vdev_child[id] = NULL;
230	cvd->vdev_parent = NULL;
231
232	for (c = 0; c < pvd->vdev_children; c++)
233		if (pvd->vdev_child[c])
234			break;
235
236	if (c == pvd->vdev_children) {
237		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238		pvd->vdev_child = NULL;
239		pvd->vdev_children = 0;
240	}
241
242	/*
243	 * Walk up all ancestors to update guid sum.
244	 */
245	for (; pvd != NULL; pvd = pvd->vdev_parent)
246		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247
248	if (cvd->vdev_ops->vdev_op_leaf)
249		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250}
251
252/*
253 * Remove any holes in the child array.
254 */
255void
256vdev_compact_children(vdev_t *pvd)
257{
258	vdev_t **newchild, *cvd;
259	int oldc = pvd->vdev_children;
260	int newc;
261
262	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264	for (int c = newc = 0; c < oldc; c++)
265		if (pvd->vdev_child[c])
266			newc++;
267
268	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269
270	for (int c = newc = 0; c < oldc; c++) {
271		if ((cvd = pvd->vdev_child[c]) != NULL) {
272			newchild[newc] = cvd;
273			cvd->vdev_id = newc++;
274		}
275	}
276
277	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278	pvd->vdev_child = newchild;
279	pvd->vdev_children = newc;
280}
281
282/*
283 * Allocate and minimally initialize a vdev_t.
284 */
285vdev_t *
286vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287{
288	vdev_t *vd;
289
290	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291
292	if (spa->spa_root_vdev == NULL) {
293		ASSERT(ops == &vdev_root_ops);
294		spa->spa_root_vdev = vd;
295	}
296
297	if (guid == 0 && ops != &vdev_hole_ops) {
298		if (spa->spa_root_vdev == vd) {
299			/*
300			 * The root vdev's guid will also be the pool guid,
301			 * which must be unique among all pools.
302			 */
303			guid = spa_generate_guid(NULL);
304		} else {
305			/*
306			 * Any other vdev's guid must be unique within the pool.
307			 */
308			guid = spa_generate_guid(spa);
309		}
310		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311	}
312
313	vd->vdev_spa = spa;
314	vd->vdev_id = id;
315	vd->vdev_guid = guid;
316	vd->vdev_guid_sum = guid;
317	vd->vdev_ops = ops;
318	vd->vdev_state = VDEV_STATE_CLOSED;
319	vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
322	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
323	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
324	for (int t = 0; t < DTL_TYPES; t++) {
325		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
326		    &vd->vdev_dtl_lock);
327	}
328	txg_list_create(&vd->vdev_ms_list,
329	    offsetof(struct metaslab, ms_txg_node));
330	txg_list_create(&vd->vdev_dtl_list,
331	    offsetof(struct vdev, vdev_dtl_node));
332	vd->vdev_stat.vs_timestamp = gethrtime();
333	vdev_queue_init(vd);
334	vdev_cache_init(vd);
335
336	return (vd);
337}
338
339/*
340 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
341 * creating a new vdev or loading an existing one - the behavior is slightly
342 * different for each case.
343 */
344int
345vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
346    int alloctype)
347{
348	vdev_ops_t *ops;
349	char *type;
350	uint64_t guid = 0, islog, nparity;
351	vdev_t *vd;
352
353	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
354
355	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
356		return (EINVAL);
357
358	if ((ops = vdev_getops(type)) == NULL)
359		return (EINVAL);
360
361	/*
362	 * If this is a load, get the vdev guid from the nvlist.
363	 * Otherwise, vdev_alloc_common() will generate one for us.
364	 */
365	if (alloctype == VDEV_ALLOC_LOAD) {
366		uint64_t label_id;
367
368		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
369		    label_id != id)
370			return (EINVAL);
371
372		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373			return (EINVAL);
374	} else if (alloctype == VDEV_ALLOC_SPARE) {
375		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376			return (EINVAL);
377	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
378		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379			return (EINVAL);
380	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
381		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382			return (EINVAL);
383	}
384
385	/*
386	 * The first allocated vdev must be of type 'root'.
387	 */
388	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
389		return (EINVAL);
390
391	/*
392	 * Determine whether we're a log vdev.
393	 */
394	islog = 0;
395	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
396	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
397		return (ENOTSUP);
398
399	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
400		return (ENOTSUP);
401
402	/*
403	 * Set the nparity property for RAID-Z vdevs.
404	 */
405	nparity = -1ULL;
406	if (ops == &vdev_raidz_ops) {
407		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408		    &nparity) == 0) {
409			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
410				return (EINVAL);
411			/*
412			 * Previous versions could only support 1 or 2 parity
413			 * device.
414			 */
415			if (nparity > 1 &&
416			    spa_version(spa) < SPA_VERSION_RAIDZ2)
417				return (ENOTSUP);
418			if (nparity > 2 &&
419			    spa_version(spa) < SPA_VERSION_RAIDZ3)
420				return (ENOTSUP);
421		} else {
422			/*
423			 * We require the parity to be specified for SPAs that
424			 * support multiple parity levels.
425			 */
426			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
427				return (EINVAL);
428			/*
429			 * Otherwise, we default to 1 parity device for RAID-Z.
430			 */
431			nparity = 1;
432		}
433	} else {
434		nparity = 0;
435	}
436	ASSERT(nparity != -1ULL);
437
438	vd = vdev_alloc_common(spa, id, guid, ops);
439
440	vd->vdev_islog = islog;
441	vd->vdev_nparity = nparity;
442
443	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444		vd->vdev_path = spa_strdup(vd->vdev_path);
445	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446		vd->vdev_devid = spa_strdup(vd->vdev_devid);
447	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448	    &vd->vdev_physpath) == 0)
449		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451		vd->vdev_fru = spa_strdup(vd->vdev_fru);
452
453	/*
454	 * Set the whole_disk property.  If it's not specified, leave the value
455	 * as -1.
456	 */
457	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458	    &vd->vdev_wholedisk) != 0)
459		vd->vdev_wholedisk = -1ULL;
460
461	/*
462	 * Look for the 'not present' flag.  This will only be set if the device
463	 * was not present at the time of import.
464	 */
465	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466	    &vd->vdev_not_present);
467
468	/*
469	 * Get the alignment requirement.
470	 */
471	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472
473	/*
474	 * Retrieve the vdev creation time.
475	 */
476	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
477	    &vd->vdev_crtxg);
478
479	/*
480	 * If we're a top-level vdev, try to load the allocation parameters.
481	 */
482	if (parent && !parent->vdev_parent &&
483	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
484		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
485		    &vd->vdev_ms_array);
486		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
487		    &vd->vdev_ms_shift);
488		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
489		    &vd->vdev_asize);
490	}
491
492	if (parent && !parent->vdev_parent) {
493		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
494		    alloctype == VDEV_ALLOC_ADD ||
495		    alloctype == VDEV_ALLOC_SPLIT ||
496		    alloctype == VDEV_ALLOC_ROOTPOOL);
497		vd->vdev_mg = metaslab_group_create(islog ?
498		    spa_log_class(spa) : spa_normal_class(spa), vd);
499	}
500
501	/*
502	 * If we're a leaf vdev, try to load the DTL object and other state.
503	 */
504	if (vd->vdev_ops->vdev_op_leaf &&
505	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
506	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
507		if (alloctype == VDEV_ALLOC_LOAD) {
508			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
509			    &vd->vdev_dtl_smo.smo_object);
510			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
511			    &vd->vdev_unspare);
512		}
513
514		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
515			uint64_t spare = 0;
516
517			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
518			    &spare) == 0 && spare)
519				spa_spare_add(vd);
520		}
521
522		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
523		    &vd->vdev_offline);
524
525		/*
526		 * When importing a pool, we want to ignore the persistent fault
527		 * state, as the diagnosis made on another system may not be
528		 * valid in the current context.  Local vdevs will
529		 * remain in the faulted state.
530		 */
531		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
532			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
533			    &vd->vdev_faulted);
534			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
535			    &vd->vdev_degraded);
536			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
537			    &vd->vdev_removed);
538
539			if (vd->vdev_faulted || vd->vdev_degraded) {
540				char *aux;
541
542				vd->vdev_label_aux =
543				    VDEV_AUX_ERR_EXCEEDED;
544				if (nvlist_lookup_string(nv,
545				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
546				    strcmp(aux, "external") == 0)
547					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
548			}
549		}
550	}
551
552	/*
553	 * Add ourselves to the parent's list of children.
554	 */
555	vdev_add_child(parent, vd);
556
557	*vdp = vd;
558
559	return (0);
560}
561
562void
563vdev_free(vdev_t *vd)
564{
565	spa_t *spa = vd->vdev_spa;
566
567	/*
568	 * vdev_free() implies closing the vdev first.  This is simpler than
569	 * trying to ensure complicated semantics for all callers.
570	 */
571	vdev_close(vd);
572
573	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
574	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
575
576	/*
577	 * Free all children.
578	 */
579	for (int c = 0; c < vd->vdev_children; c++)
580		vdev_free(vd->vdev_child[c]);
581
582	ASSERT(vd->vdev_child == NULL);
583	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
584
585	/*
586	 * Discard allocation state.
587	 */
588	if (vd->vdev_mg != NULL) {
589		vdev_metaslab_fini(vd);
590		metaslab_group_destroy(vd->vdev_mg);
591	}
592
593	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
594	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
595	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
596
597	/*
598	 * Remove this vdev from its parent's child list.
599	 */
600	vdev_remove_child(vd->vdev_parent, vd);
601
602	ASSERT(vd->vdev_parent == NULL);
603
604	/*
605	 * Clean up vdev structure.
606	 */
607	vdev_queue_fini(vd);
608	vdev_cache_fini(vd);
609
610	if (vd->vdev_path)
611		spa_strfree(vd->vdev_path);
612	if (vd->vdev_devid)
613		spa_strfree(vd->vdev_devid);
614	if (vd->vdev_physpath)
615		spa_strfree(vd->vdev_physpath);
616	if (vd->vdev_fru)
617		spa_strfree(vd->vdev_fru);
618
619	if (vd->vdev_isspare)
620		spa_spare_remove(vd);
621	if (vd->vdev_isl2cache)
622		spa_l2cache_remove(vd);
623
624	txg_list_destroy(&vd->vdev_ms_list);
625	txg_list_destroy(&vd->vdev_dtl_list);
626
627	mutex_enter(&vd->vdev_dtl_lock);
628	for (int t = 0; t < DTL_TYPES; t++) {
629		space_map_unload(&vd->vdev_dtl[t]);
630		space_map_destroy(&vd->vdev_dtl[t]);
631	}
632	mutex_exit(&vd->vdev_dtl_lock);
633
634	mutex_destroy(&vd->vdev_dtl_lock);
635	mutex_destroy(&vd->vdev_stat_lock);
636	mutex_destroy(&vd->vdev_probe_lock);
637
638	if (vd == spa->spa_root_vdev)
639		spa->spa_root_vdev = NULL;
640
641	kmem_free(vd, sizeof (vdev_t));
642}
643
644/*
645 * Transfer top-level vdev state from svd to tvd.
646 */
647static void
648vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
649{
650	spa_t *spa = svd->vdev_spa;
651	metaslab_t *msp;
652	vdev_t *vd;
653	int t;
654
655	ASSERT(tvd == tvd->vdev_top);
656
657	tvd->vdev_ms_array = svd->vdev_ms_array;
658	tvd->vdev_ms_shift = svd->vdev_ms_shift;
659	tvd->vdev_ms_count = svd->vdev_ms_count;
660
661	svd->vdev_ms_array = 0;
662	svd->vdev_ms_shift = 0;
663	svd->vdev_ms_count = 0;
664
665	tvd->vdev_mg = svd->vdev_mg;
666	tvd->vdev_ms = svd->vdev_ms;
667
668	svd->vdev_mg = NULL;
669	svd->vdev_ms = NULL;
670
671	if (tvd->vdev_mg != NULL)
672		tvd->vdev_mg->mg_vd = tvd;
673
674	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
675	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
676	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
677
678	svd->vdev_stat.vs_alloc = 0;
679	svd->vdev_stat.vs_space = 0;
680	svd->vdev_stat.vs_dspace = 0;
681
682	for (t = 0; t < TXG_SIZE; t++) {
683		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
684			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
685		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
686			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
687		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
688			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
689	}
690
691	if (list_link_active(&svd->vdev_config_dirty_node)) {
692		vdev_config_clean(svd);
693		vdev_config_dirty(tvd);
694	}
695
696	if (list_link_active(&svd->vdev_state_dirty_node)) {
697		vdev_state_clean(svd);
698		vdev_state_dirty(tvd);
699	}
700
701	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
702	svd->vdev_deflate_ratio = 0;
703
704	tvd->vdev_islog = svd->vdev_islog;
705	svd->vdev_islog = 0;
706}
707
708static void
709vdev_top_update(vdev_t *tvd, vdev_t *vd)
710{
711	if (vd == NULL)
712		return;
713
714	vd->vdev_top = tvd;
715
716	for (int c = 0; c < vd->vdev_children; c++)
717		vdev_top_update(tvd, vd->vdev_child[c]);
718}
719
720/*
721 * Add a mirror/replacing vdev above an existing vdev.
722 */
723vdev_t *
724vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
725{
726	spa_t *spa = cvd->vdev_spa;
727	vdev_t *pvd = cvd->vdev_parent;
728	vdev_t *mvd;
729
730	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
731
732	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
733
734	mvd->vdev_asize = cvd->vdev_asize;
735	mvd->vdev_min_asize = cvd->vdev_min_asize;
736	mvd->vdev_ashift = cvd->vdev_ashift;
737	mvd->vdev_state = cvd->vdev_state;
738	mvd->vdev_crtxg = cvd->vdev_crtxg;
739
740	vdev_remove_child(pvd, cvd);
741	vdev_add_child(pvd, mvd);
742	cvd->vdev_id = mvd->vdev_children;
743	vdev_add_child(mvd, cvd);
744	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
745
746	if (mvd == mvd->vdev_top)
747		vdev_top_transfer(cvd, mvd);
748
749	return (mvd);
750}
751
752/*
753 * Remove a 1-way mirror/replacing vdev from the tree.
754 */
755void
756vdev_remove_parent(vdev_t *cvd)
757{
758	vdev_t *mvd = cvd->vdev_parent;
759	vdev_t *pvd = mvd->vdev_parent;
760
761	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
762
763	ASSERT(mvd->vdev_children == 1);
764	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
765	    mvd->vdev_ops == &vdev_replacing_ops ||
766	    mvd->vdev_ops == &vdev_spare_ops);
767	cvd->vdev_ashift = mvd->vdev_ashift;
768
769	vdev_remove_child(mvd, cvd);
770	vdev_remove_child(pvd, mvd);
771
772	/*
773	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
774	 * Otherwise, we could have detached an offline device, and when we
775	 * go to import the pool we'll think we have two top-level vdevs,
776	 * instead of a different version of the same top-level vdev.
777	 */
778	if (mvd->vdev_top == mvd) {
779		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
780		cvd->vdev_orig_guid = cvd->vdev_guid;
781		cvd->vdev_guid += guid_delta;
782		cvd->vdev_guid_sum += guid_delta;
783	}
784	cvd->vdev_id = mvd->vdev_id;
785	vdev_add_child(pvd, cvd);
786	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
787
788	if (cvd == cvd->vdev_top)
789		vdev_top_transfer(mvd, cvd);
790
791	ASSERT(mvd->vdev_children == 0);
792	vdev_free(mvd);
793}
794
795int
796vdev_metaslab_init(vdev_t *vd, uint64_t txg)
797{
798	spa_t *spa = vd->vdev_spa;
799	objset_t *mos = spa->spa_meta_objset;
800	uint64_t m;
801	uint64_t oldc = vd->vdev_ms_count;
802	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
803	metaslab_t **mspp;
804	int error;
805
806	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
807
808	/*
809	 * This vdev is not being allocated from yet or is a hole.
810	 */
811	if (vd->vdev_ms_shift == 0)
812		return (0);
813
814	ASSERT(!vd->vdev_ishole);
815
816	/*
817	 * Compute the raidz-deflation ratio.  Note, we hard-code
818	 * in 128k (1 << 17) because it is the current "typical" blocksize.
819	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
820	 * or we will inconsistently account for existing bp's.
821	 */
822	vd->vdev_deflate_ratio = (1 << 17) /
823	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
824
825	ASSERT(oldc <= newc);
826
827	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
828
829	if (oldc != 0) {
830		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
831		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
832	}
833
834	vd->vdev_ms = mspp;
835	vd->vdev_ms_count = newc;
836
837	for (m = oldc; m < newc; m++) {
838		space_map_obj_t smo = { 0, 0, 0 };
839		if (txg == 0) {
840			uint64_t object = 0;
841			error = dmu_read(mos, vd->vdev_ms_array,
842			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
843			    DMU_READ_PREFETCH);
844			if (error)
845				return (error);
846			if (object != 0) {
847				dmu_buf_t *db;
848				error = dmu_bonus_hold(mos, object, FTAG, &db);
849				if (error)
850					return (error);
851				ASSERT3U(db->db_size, >=, sizeof (smo));
852				bcopy(db->db_data, &smo, sizeof (smo));
853				ASSERT3U(smo.smo_object, ==, object);
854				dmu_buf_rele(db, FTAG);
855			}
856		}
857		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
858		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
859	}
860
861	if (txg == 0)
862		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
863
864	if (oldc == 0)
865		metaslab_group_activate(vd->vdev_mg);
866
867	if (txg == 0)
868		spa_config_exit(spa, SCL_ALLOC, FTAG);
869
870	return (0);
871}
872
873void
874vdev_metaslab_fini(vdev_t *vd)
875{
876	uint64_t m;
877	uint64_t count = vd->vdev_ms_count;
878
879	if (vd->vdev_ms != NULL) {
880		metaslab_group_passivate(vd->vdev_mg);
881		for (m = 0; m < count; m++)
882			if (vd->vdev_ms[m] != NULL)
883				metaslab_fini(vd->vdev_ms[m]);
884		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
885		vd->vdev_ms = NULL;
886	}
887}
888
889typedef struct vdev_probe_stats {
890	boolean_t	vps_readable;
891	boolean_t	vps_writeable;
892	int		vps_flags;
893} vdev_probe_stats_t;
894
895static void
896vdev_probe_done(zio_t *zio)
897{
898	spa_t *spa = zio->io_spa;
899	vdev_t *vd = zio->io_vd;
900	vdev_probe_stats_t *vps = zio->io_private;
901
902	ASSERT(vd->vdev_probe_zio != NULL);
903
904	if (zio->io_type == ZIO_TYPE_READ) {
905		if (zio->io_error == 0)
906			vps->vps_readable = 1;
907		if (zio->io_error == 0 && spa_writeable(spa)) {
908			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
909			    zio->io_offset, zio->io_size, zio->io_data,
910			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
911			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
912		} else {
913			zio_buf_free(zio->io_data, zio->io_size);
914		}
915	} else if (zio->io_type == ZIO_TYPE_WRITE) {
916		if (zio->io_error == 0)
917			vps->vps_writeable = 1;
918		zio_buf_free(zio->io_data, zio->io_size);
919	} else if (zio->io_type == ZIO_TYPE_NULL) {
920		zio_t *pio;
921
922		vd->vdev_cant_read |= !vps->vps_readable;
923		vd->vdev_cant_write |= !vps->vps_writeable;
924
925		if (vdev_readable(vd) &&
926		    (vdev_writeable(vd) || !spa_writeable(spa))) {
927			zio->io_error = 0;
928		} else {
929			ASSERT(zio->io_error != 0);
930			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
931			    spa, vd, NULL, 0, 0);
932			zio->io_error = ENXIO;
933		}
934
935		mutex_enter(&vd->vdev_probe_lock);
936		ASSERT(vd->vdev_probe_zio == zio);
937		vd->vdev_probe_zio = NULL;
938		mutex_exit(&vd->vdev_probe_lock);
939
940		while ((pio = zio_walk_parents(zio)) != NULL)
941			if (!vdev_accessible(vd, pio))
942				pio->io_error = ENXIO;
943
944		kmem_free(vps, sizeof (*vps));
945	}
946}
947
948/*
949 * Determine whether this device is accessible by reading and writing
950 * to several known locations: the pad regions of each vdev label
951 * but the first (which we leave alone in case it contains a VTOC).
952 */
953zio_t *
954vdev_probe(vdev_t *vd, zio_t *zio)
955{
956	spa_t *spa = vd->vdev_spa;
957	vdev_probe_stats_t *vps = NULL;
958	zio_t *pio;
959
960	ASSERT(vd->vdev_ops->vdev_op_leaf);
961
962	/*
963	 * Don't probe the probe.
964	 */
965	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
966		return (NULL);
967
968	/*
969	 * To prevent 'probe storms' when a device fails, we create
970	 * just one probe i/o at a time.  All zios that want to probe
971	 * this vdev will become parents of the probe io.
972	 */
973	mutex_enter(&vd->vdev_probe_lock);
974
975	if ((pio = vd->vdev_probe_zio) == NULL) {
976		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
977
978		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
979		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
980		    ZIO_FLAG_TRYHARD;
981
982		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
983			/*
984			 * vdev_cant_read and vdev_cant_write can only
985			 * transition from TRUE to FALSE when we have the
986			 * SCL_ZIO lock as writer; otherwise they can only
987			 * transition from FALSE to TRUE.  This ensures that
988			 * any zio looking at these values can assume that
989			 * failures persist for the life of the I/O.  That's
990			 * important because when a device has intermittent
991			 * connectivity problems, we want to ensure that
992			 * they're ascribed to the device (ENXIO) and not
993			 * the zio (EIO).
994			 *
995			 * Since we hold SCL_ZIO as writer here, clear both
996			 * values so the probe can reevaluate from first
997			 * principles.
998			 */
999			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1000			vd->vdev_cant_read = B_FALSE;
1001			vd->vdev_cant_write = B_FALSE;
1002		}
1003
1004		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1005		    vdev_probe_done, vps,
1006		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1007
1008		if (zio != NULL) {
1009			vd->vdev_probe_wanted = B_TRUE;
1010			spa_async_request(spa, SPA_ASYNC_PROBE);
1011		}
1012	}
1013
1014	if (zio != NULL)
1015		zio_add_child(zio, pio);
1016
1017	mutex_exit(&vd->vdev_probe_lock);
1018
1019	if (vps == NULL) {
1020		ASSERT(zio != NULL);
1021		return (NULL);
1022	}
1023
1024	for (int l = 1; l < VDEV_LABELS; l++) {
1025		zio_nowait(zio_read_phys(pio, vd,
1026		    vdev_label_offset(vd->vdev_psize, l,
1027		    offsetof(vdev_label_t, vl_pad2)),
1028		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1029		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1030		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1031	}
1032
1033	if (zio == NULL)
1034		return (pio);
1035
1036	zio_nowait(pio);
1037	return (NULL);
1038}
1039
1040static void
1041vdev_open_child(void *arg)
1042{
1043	vdev_t *vd = arg;
1044
1045	vd->vdev_open_thread = curthread;
1046	vd->vdev_open_error = vdev_open(vd);
1047	vd->vdev_open_thread = NULL;
1048}
1049
1050boolean_t
1051vdev_uses_zvols(vdev_t *vd)
1052{
1053	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1054	    strlen(ZVOL_DIR)) == 0)
1055		return (B_TRUE);
1056	for (int c = 0; c < vd->vdev_children; c++)
1057		if (vdev_uses_zvols(vd->vdev_child[c]))
1058			return (B_TRUE);
1059	return (B_FALSE);
1060}
1061
1062void
1063vdev_open_children(vdev_t *vd)
1064{
1065	taskq_t *tq;
1066	int children = vd->vdev_children;
1067
1068	/*
1069	 * in order to handle pools on top of zvols, do the opens
1070	 * in a single thread so that the same thread holds the
1071	 * spa_namespace_lock
1072	 */
1073	if (vdev_uses_zvols(vd)) {
1074		for (int c = 0; c < children; c++)
1075			vd->vdev_child[c]->vdev_open_error =
1076			    vdev_open(vd->vdev_child[c]);
1077		return;
1078	}
1079	tq = taskq_create("vdev_open", children, minclsyspri,
1080	    children, children, TASKQ_PREPOPULATE);
1081
1082	for (int c = 0; c < children; c++)
1083		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1084		    TQ_SLEEP) != 0);
1085
1086	taskq_destroy(tq);
1087}
1088
1089/*
1090 * Prepare a virtual device for access.
1091 */
1092int
1093vdev_open(vdev_t *vd)
1094{
1095	spa_t *spa = vd->vdev_spa;
1096	int error;
1097	uint64_t osize = 0;
1098	uint64_t asize, psize;
1099	uint64_t ashift = 0;
1100
1101	ASSERT(vd->vdev_open_thread == curthread ||
1102	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1103	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1104	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1105	    vd->vdev_state == VDEV_STATE_OFFLINE);
1106
1107	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1108	vd->vdev_cant_read = B_FALSE;
1109	vd->vdev_cant_write = B_FALSE;
1110	vd->vdev_min_asize = vdev_get_min_asize(vd);
1111
1112	/*
1113	 * If this vdev is not removed, check its fault status.  If it's
1114	 * faulted, bail out of the open.
1115	 */
1116	if (!vd->vdev_removed && vd->vdev_faulted) {
1117		ASSERT(vd->vdev_children == 0);
1118		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1119		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1120		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1121		    vd->vdev_label_aux);
1122		return (ENXIO);
1123	} else if (vd->vdev_offline) {
1124		ASSERT(vd->vdev_children == 0);
1125		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1126		return (ENXIO);
1127	}
1128
1129	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1130
1131	/*
1132	 * Reset the vdev_reopening flag so that we actually close
1133	 * the vdev on error.
1134	 */
1135	vd->vdev_reopening = B_FALSE;
1136	if (zio_injection_enabled && error == 0)
1137		error = zio_handle_device_injection(vd, NULL, ENXIO);
1138
1139	if (error) {
1140		if (vd->vdev_removed &&
1141		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1142			vd->vdev_removed = B_FALSE;
1143
1144		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1145		    vd->vdev_stat.vs_aux);
1146		return (error);
1147	}
1148
1149	vd->vdev_removed = B_FALSE;
1150
1151	/*
1152	 * Recheck the faulted flag now that we have confirmed that
1153	 * the vdev is accessible.  If we're faulted, bail.
1154	 */
1155	if (vd->vdev_faulted) {
1156		ASSERT(vd->vdev_children == 0);
1157		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1158		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1159		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1160		    vd->vdev_label_aux);
1161		return (ENXIO);
1162	}
1163
1164	if (vd->vdev_degraded) {
1165		ASSERT(vd->vdev_children == 0);
1166		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1167		    VDEV_AUX_ERR_EXCEEDED);
1168	} else {
1169		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1170	}
1171
1172	/*
1173	 * For hole or missing vdevs we just return success.
1174	 */
1175	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1176		return (0);
1177
1178	for (int c = 0; c < vd->vdev_children; c++) {
1179		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1180			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1181			    VDEV_AUX_NONE);
1182			break;
1183		}
1184	}
1185
1186	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1187
1188	if (vd->vdev_children == 0) {
1189		if (osize < SPA_MINDEVSIZE) {
1190			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1191			    VDEV_AUX_TOO_SMALL);
1192			return (EOVERFLOW);
1193		}
1194		psize = osize;
1195		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1196	} else {
1197		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1198		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1199			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1200			    VDEV_AUX_TOO_SMALL);
1201			return (EOVERFLOW);
1202		}
1203		psize = 0;
1204		asize = osize;
1205	}
1206
1207	vd->vdev_psize = psize;
1208
1209	/*
1210	 * Make sure the allocatable size hasn't shrunk.
1211	 */
1212	if (asize < vd->vdev_min_asize) {
1213		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214		    VDEV_AUX_BAD_LABEL);
1215		return (EINVAL);
1216	}
1217
1218	if (vd->vdev_asize == 0) {
1219		/*
1220		 * This is the first-ever open, so use the computed values.
1221		 * For testing purposes, a higher ashift can be requested.
1222		 */
1223		vd->vdev_asize = asize;
1224		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1225	} else {
1226		/*
1227		 * Make sure the alignment requirement hasn't increased.
1228		 */
1229		if (ashift > vd->vdev_top->vdev_ashift) {
1230			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231			    VDEV_AUX_BAD_LABEL);
1232			return (EINVAL);
1233		}
1234	}
1235
1236	/*
1237	 * If all children are healthy and the asize has increased,
1238	 * then we've experienced dynamic LUN growth.  If automatic
1239	 * expansion is enabled then use the additional space.
1240	 */
1241	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1242	    (vd->vdev_expanding || spa->spa_autoexpand))
1243		vd->vdev_asize = asize;
1244
1245	vdev_set_min_asize(vd);
1246
1247	/*
1248	 * Ensure we can issue some IO before declaring the
1249	 * vdev open for business.
1250	 */
1251	if (vd->vdev_ops->vdev_op_leaf &&
1252	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1253		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254		    VDEV_AUX_IO_FAILURE);
1255		return (error);
1256	}
1257
1258	/*
1259	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1260	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1261	 * since this would just restart the scrub we are already doing.
1262	 */
1263	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1264	    vdev_resilver_needed(vd, NULL, NULL))
1265		spa_async_request(spa, SPA_ASYNC_RESILVER);
1266
1267	return (0);
1268}
1269
1270/*
1271 * Called once the vdevs are all opened, this routine validates the label
1272 * contents.  This needs to be done before vdev_load() so that we don't
1273 * inadvertently do repair I/Os to the wrong device.
1274 *
1275 * This function will only return failure if one of the vdevs indicates that it
1276 * has since been destroyed or exported.  This is only possible if
1277 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1278 * will be updated but the function will return 0.
1279 */
1280int
1281vdev_validate(vdev_t *vd)
1282{
1283	spa_t *spa = vd->vdev_spa;
1284	nvlist_t *label;
1285	uint64_t guid = 0, top_guid;
1286	uint64_t state;
1287
1288	for (int c = 0; c < vd->vdev_children; c++)
1289		if (vdev_validate(vd->vdev_child[c]) != 0)
1290			return (EBADF);
1291
1292	/*
1293	 * If the device has already failed, or was marked offline, don't do
1294	 * any further validation.  Otherwise, label I/O will fail and we will
1295	 * overwrite the previous state.
1296	 */
1297	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1298		uint64_t aux_guid = 0;
1299		nvlist_t *nvl;
1300
1301		if ((label = vdev_label_read_config(vd)) == NULL) {
1302			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303			    VDEV_AUX_BAD_LABEL);
1304			return (0);
1305		}
1306
1307		/*
1308		 * Determine if this vdev has been split off into another
1309		 * pool.  If so, then refuse to open it.
1310		 */
1311		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1312		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1313			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1314			    VDEV_AUX_SPLIT_POOL);
1315			nvlist_free(label);
1316			return (0);
1317		}
1318
1319		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1320		    &guid) != 0 || guid != spa_guid(spa)) {
1321			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1322			    VDEV_AUX_CORRUPT_DATA);
1323			nvlist_free(label);
1324			return (0);
1325		}
1326
1327		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1328		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1329		    &aux_guid) != 0)
1330			aux_guid = 0;
1331
1332		/*
1333		 * If this vdev just became a top-level vdev because its
1334		 * sibling was detached, it will have adopted the parent's
1335		 * vdev guid -- but the label may or may not be on disk yet.
1336		 * Fortunately, either version of the label will have the
1337		 * same top guid, so if we're a top-level vdev, we can
1338		 * safely compare to that instead.
1339		 *
1340		 * If we split this vdev off instead, then we also check the
1341		 * original pool's guid.  We don't want to consider the vdev
1342		 * corrupt if it is partway through a split operation.
1343		 */
1344		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1345		    &guid) != 0 ||
1346		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1347		    &top_guid) != 0 ||
1348		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1349		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1350			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1351			    VDEV_AUX_CORRUPT_DATA);
1352			nvlist_free(label);
1353			return (0);
1354		}
1355
1356		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1357		    &state) != 0) {
1358			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1359			    VDEV_AUX_CORRUPT_DATA);
1360			nvlist_free(label);
1361			return (0);
1362		}
1363
1364		nvlist_free(label);
1365
1366		/*
1367		 * If spa->spa_load_verbatim is true, no need to check the
1368		 * state of the pool.
1369		 */
1370		if (!spa->spa_load_verbatim &&
1371		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1372		    state != POOL_STATE_ACTIVE)
1373			return (EBADF);
1374
1375		/*
1376		 * If we were able to open and validate a vdev that was
1377		 * previously marked permanently unavailable, clear that state
1378		 * now.
1379		 */
1380		if (vd->vdev_not_present)
1381			vd->vdev_not_present = 0;
1382	}
1383
1384	return (0);
1385}
1386
1387/*
1388 * Close a virtual device.
1389 */
1390void
1391vdev_close(vdev_t *vd)
1392{
1393	spa_t *spa = vd->vdev_spa;
1394	vdev_t *pvd = vd->vdev_parent;
1395
1396	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1397
1398	/*
1399	 * If our parent is reopening, then we are as well, unless we are
1400	 * going offline.
1401	 */
1402	if (pvd != NULL && pvd->vdev_reopening)
1403		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1404
1405	vd->vdev_ops->vdev_op_close(vd);
1406
1407	vdev_cache_purge(vd);
1408
1409	/*
1410	 * We record the previous state before we close it, so that if we are
1411	 * doing a reopen(), we don't generate FMA ereports if we notice that
1412	 * it's still faulted.
1413	 */
1414	vd->vdev_prevstate = vd->vdev_state;
1415
1416	if (vd->vdev_offline)
1417		vd->vdev_state = VDEV_STATE_OFFLINE;
1418	else
1419		vd->vdev_state = VDEV_STATE_CLOSED;
1420	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1421}
1422
1423/*
1424 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1425 * reopen leaf vdevs which had previously been opened as they might deadlock
1426 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1427 * If the leaf has never been opened then open it, as usual.
1428 */
1429void
1430vdev_reopen(vdev_t *vd)
1431{
1432	spa_t *spa = vd->vdev_spa;
1433
1434	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1435
1436	/* set the reopening flag unless we're taking the vdev offline */
1437	vd->vdev_reopening = !vd->vdev_offline;
1438	vdev_close(vd);
1439	(void) vdev_open(vd);
1440
1441	/*
1442	 * Call vdev_validate() here to make sure we have the same device.
1443	 * Otherwise, a device with an invalid label could be successfully
1444	 * opened in response to vdev_reopen().
1445	 */
1446	if (vd->vdev_aux) {
1447		(void) vdev_validate_aux(vd);
1448		if (vdev_readable(vd) && vdev_writeable(vd) &&
1449		    vd->vdev_aux == &spa->spa_l2cache &&
1450		    !l2arc_vdev_present(vd))
1451			l2arc_add_vdev(spa, vd);
1452	} else {
1453		(void) vdev_validate(vd);
1454	}
1455
1456	/*
1457	 * Reassess parent vdev's health.
1458	 */
1459	vdev_propagate_state(vd);
1460}
1461
1462int
1463vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1464{
1465	int error;
1466
1467	/*
1468	 * Normally, partial opens (e.g. of a mirror) are allowed.
1469	 * For a create, however, we want to fail the request if
1470	 * there are any components we can't open.
1471	 */
1472	error = vdev_open(vd);
1473
1474	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1475		vdev_close(vd);
1476		return (error ? error : ENXIO);
1477	}
1478
1479	/*
1480	 * Recursively initialize all labels.
1481	 */
1482	if ((error = vdev_label_init(vd, txg, isreplacing ?
1483	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1484		vdev_close(vd);
1485		return (error);
1486	}
1487
1488	return (0);
1489}
1490
1491void
1492vdev_metaslab_set_size(vdev_t *vd)
1493{
1494	/*
1495	 * Aim for roughly 200 metaslabs per vdev.
1496	 */
1497	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1498	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1499}
1500
1501void
1502vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1503{
1504	ASSERT(vd == vd->vdev_top);
1505	ASSERT(!vd->vdev_ishole);
1506	ASSERT(ISP2(flags));
1507
1508	if (flags & VDD_METASLAB)
1509		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1510
1511	if (flags & VDD_DTL)
1512		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1513
1514	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1515}
1516
1517/*
1518 * DTLs.
1519 *
1520 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1521 * the vdev has less than perfect replication.  There are three kinds of DTL:
1522 *
1523 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1524 *
1525 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1526 *
1527 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1528 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1529 *	txgs that was scrubbed.
1530 *
1531 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1532 *	persistent errors or just some device being offline.
1533 *	Unlike the other three, the DTL_OUTAGE map is not generally
1534 *	maintained; it's only computed when needed, typically to
1535 *	determine whether a device can be detached.
1536 *
1537 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1538 * either has the data or it doesn't.
1539 *
1540 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1541 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1542 * if any child is less than fully replicated, then so is its parent.
1543 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1544 * comprising only those txgs which appear in 'maxfaults' or more children;
1545 * those are the txgs we don't have enough replication to read.  For example,
1546 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1547 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1548 * two child DTL_MISSING maps.
1549 *
1550 * It should be clear from the above that to compute the DTLs and outage maps
1551 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1552 * Therefore, that is all we keep on disk.  When loading the pool, or after
1553 * a configuration change, we generate all other DTLs from first principles.
1554 */
1555void
1556vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1557{
1558	space_map_t *sm = &vd->vdev_dtl[t];
1559
1560	ASSERT(t < DTL_TYPES);
1561	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1562
1563	mutex_enter(sm->sm_lock);
1564	if (!space_map_contains(sm, txg, size))
1565		space_map_add(sm, txg, size);
1566	mutex_exit(sm->sm_lock);
1567}
1568
1569boolean_t
1570vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1571{
1572	space_map_t *sm = &vd->vdev_dtl[t];
1573	boolean_t dirty = B_FALSE;
1574
1575	ASSERT(t < DTL_TYPES);
1576	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1577
1578	mutex_enter(sm->sm_lock);
1579	if (sm->sm_space != 0)
1580		dirty = space_map_contains(sm, txg, size);
1581	mutex_exit(sm->sm_lock);
1582
1583	return (dirty);
1584}
1585
1586boolean_t
1587vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1588{
1589	space_map_t *sm = &vd->vdev_dtl[t];
1590	boolean_t empty;
1591
1592	mutex_enter(sm->sm_lock);
1593	empty = (sm->sm_space == 0);
1594	mutex_exit(sm->sm_lock);
1595
1596	return (empty);
1597}
1598
1599/*
1600 * Reassess DTLs after a config change or scrub completion.
1601 */
1602void
1603vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1604{
1605	spa_t *spa = vd->vdev_spa;
1606	avl_tree_t reftree;
1607	int minref;
1608
1609	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1610
1611	for (int c = 0; c < vd->vdev_children; c++)
1612		vdev_dtl_reassess(vd->vdev_child[c], txg,
1613		    scrub_txg, scrub_done);
1614
1615	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1616		return;
1617
1618	if (vd->vdev_ops->vdev_op_leaf) {
1619		mutex_enter(&vd->vdev_dtl_lock);
1620		if (scrub_txg != 0 &&
1621		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1622			/* XXX should check scrub_done? */
1623			/*
1624			 * We completed a scrub up to scrub_txg.  If we
1625			 * did it without rebooting, then the scrub dtl
1626			 * will be valid, so excise the old region and
1627			 * fold in the scrub dtl.  Otherwise, leave the
1628			 * dtl as-is if there was an error.
1629			 *
1630			 * There's little trick here: to excise the beginning
1631			 * of the DTL_MISSING map, we put it into a reference
1632			 * tree and then add a segment with refcnt -1 that
1633			 * covers the range [0, scrub_txg).  This means
1634			 * that each txg in that range has refcnt -1 or 0.
1635			 * We then add DTL_SCRUB with a refcnt of 2, so that
1636			 * entries in the range [0, scrub_txg) will have a
1637			 * positive refcnt -- either 1 or 2.  We then convert
1638			 * the reference tree into the new DTL_MISSING map.
1639			 */
1640			space_map_ref_create(&reftree);
1641			space_map_ref_add_map(&reftree,
1642			    &vd->vdev_dtl[DTL_MISSING], 1);
1643			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1644			space_map_ref_add_map(&reftree,
1645			    &vd->vdev_dtl[DTL_SCRUB], 2);
1646			space_map_ref_generate_map(&reftree,
1647			    &vd->vdev_dtl[DTL_MISSING], 1);
1648			space_map_ref_destroy(&reftree);
1649		}
1650		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1651		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1652		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1653		if (scrub_done)
1654			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1655		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1656		if (!vdev_readable(vd))
1657			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1658		else
1659			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1660			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1661		mutex_exit(&vd->vdev_dtl_lock);
1662
1663		if (txg != 0)
1664			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1665		return;
1666	}
1667
1668	mutex_enter(&vd->vdev_dtl_lock);
1669	for (int t = 0; t < DTL_TYPES; t++) {
1670		/* account for child's outage in parent's missing map */
1671		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1672		if (t == DTL_SCRUB)
1673			continue;			/* leaf vdevs only */
1674		if (t == DTL_PARTIAL)
1675			minref = 1;			/* i.e. non-zero */
1676		else if (vd->vdev_nparity != 0)
1677			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1678		else
1679			minref = vd->vdev_children;	/* any kind of mirror */
1680		space_map_ref_create(&reftree);
1681		for (int c = 0; c < vd->vdev_children; c++) {
1682			vdev_t *cvd = vd->vdev_child[c];
1683			mutex_enter(&cvd->vdev_dtl_lock);
1684			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1685			mutex_exit(&cvd->vdev_dtl_lock);
1686		}
1687		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1688		space_map_ref_destroy(&reftree);
1689	}
1690	mutex_exit(&vd->vdev_dtl_lock);
1691}
1692
1693static int
1694vdev_dtl_load(vdev_t *vd)
1695{
1696	spa_t *spa = vd->vdev_spa;
1697	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1698	objset_t *mos = spa->spa_meta_objset;
1699	dmu_buf_t *db;
1700	int error;
1701
1702	ASSERT(vd->vdev_children == 0);
1703
1704	if (smo->smo_object == 0)
1705		return (0);
1706
1707	ASSERT(!vd->vdev_ishole);
1708
1709	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1710		return (error);
1711
1712	ASSERT3U(db->db_size, >=, sizeof (*smo));
1713	bcopy(db->db_data, smo, sizeof (*smo));
1714	dmu_buf_rele(db, FTAG);
1715
1716	mutex_enter(&vd->vdev_dtl_lock);
1717	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1718	    NULL, SM_ALLOC, smo, mos);
1719	mutex_exit(&vd->vdev_dtl_lock);
1720
1721	return (error);
1722}
1723
1724void
1725vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1726{
1727	spa_t *spa = vd->vdev_spa;
1728	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1729	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1730	objset_t *mos = spa->spa_meta_objset;
1731	space_map_t smsync;
1732	kmutex_t smlock;
1733	dmu_buf_t *db;
1734	dmu_tx_t *tx;
1735
1736	ASSERT(!vd->vdev_ishole);
1737
1738	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1739
1740	if (vd->vdev_detached) {
1741		if (smo->smo_object != 0) {
1742			int err = dmu_object_free(mos, smo->smo_object, tx);
1743			ASSERT3U(err, ==, 0);
1744			smo->smo_object = 0;
1745		}
1746		dmu_tx_commit(tx);
1747		return;
1748	}
1749
1750	if (smo->smo_object == 0) {
1751		ASSERT(smo->smo_objsize == 0);
1752		ASSERT(smo->smo_alloc == 0);
1753		smo->smo_object = dmu_object_alloc(mos,
1754		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1755		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1756		ASSERT(smo->smo_object != 0);
1757		vdev_config_dirty(vd->vdev_top);
1758	}
1759
1760	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1761
1762	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1763	    &smlock);
1764
1765	mutex_enter(&smlock);
1766
1767	mutex_enter(&vd->vdev_dtl_lock);
1768	space_map_walk(sm, space_map_add, &smsync);
1769	mutex_exit(&vd->vdev_dtl_lock);
1770
1771	space_map_truncate(smo, mos, tx);
1772	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1773
1774	space_map_destroy(&smsync);
1775
1776	mutex_exit(&smlock);
1777	mutex_destroy(&smlock);
1778
1779	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1780	dmu_buf_will_dirty(db, tx);
1781	ASSERT3U(db->db_size, >=, sizeof (*smo));
1782	bcopy(smo, db->db_data, sizeof (*smo));
1783	dmu_buf_rele(db, FTAG);
1784
1785	dmu_tx_commit(tx);
1786}
1787
1788/*
1789 * Determine whether the specified vdev can be offlined/detached/removed
1790 * without losing data.
1791 */
1792boolean_t
1793vdev_dtl_required(vdev_t *vd)
1794{
1795	spa_t *spa = vd->vdev_spa;
1796	vdev_t *tvd = vd->vdev_top;
1797	uint8_t cant_read = vd->vdev_cant_read;
1798	boolean_t required;
1799
1800	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1801
1802	if (vd == spa->spa_root_vdev || vd == tvd)
1803		return (B_TRUE);
1804
1805	/*
1806	 * Temporarily mark the device as unreadable, and then determine
1807	 * whether this results in any DTL outages in the top-level vdev.
1808	 * If not, we can safely offline/detach/remove the device.
1809	 */
1810	vd->vdev_cant_read = B_TRUE;
1811	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1812	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1813	vd->vdev_cant_read = cant_read;
1814	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1815
1816	return (required);
1817}
1818
1819/*
1820 * Determine if resilver is needed, and if so the txg range.
1821 */
1822boolean_t
1823vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1824{
1825	boolean_t needed = B_FALSE;
1826	uint64_t thismin = UINT64_MAX;
1827	uint64_t thismax = 0;
1828
1829	if (vd->vdev_children == 0) {
1830		mutex_enter(&vd->vdev_dtl_lock);
1831		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1832		    vdev_writeable(vd)) {
1833			space_seg_t *ss;
1834
1835			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1836			thismin = ss->ss_start - 1;
1837			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1838			thismax = ss->ss_end;
1839			needed = B_TRUE;
1840		}
1841		mutex_exit(&vd->vdev_dtl_lock);
1842	} else {
1843		for (int c = 0; c < vd->vdev_children; c++) {
1844			vdev_t *cvd = vd->vdev_child[c];
1845			uint64_t cmin, cmax;
1846
1847			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1848				thismin = MIN(thismin, cmin);
1849				thismax = MAX(thismax, cmax);
1850				needed = B_TRUE;
1851			}
1852		}
1853	}
1854
1855	if (needed && minp) {
1856		*minp = thismin;
1857		*maxp = thismax;
1858	}
1859	return (needed);
1860}
1861
1862void
1863vdev_load(vdev_t *vd)
1864{
1865	/*
1866	 * Recursively load all children.
1867	 */
1868	for (int c = 0; c < vd->vdev_children; c++)
1869		vdev_load(vd->vdev_child[c]);
1870
1871	/*
1872	 * If this is a top-level vdev, initialize its metaslabs.
1873	 */
1874	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1875	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1876	    vdev_metaslab_init(vd, 0) != 0))
1877		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1878		    VDEV_AUX_CORRUPT_DATA);
1879
1880	/*
1881	 * If this is a leaf vdev, load its DTL.
1882	 */
1883	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1884		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1885		    VDEV_AUX_CORRUPT_DATA);
1886}
1887
1888/*
1889 * The special vdev case is used for hot spares and l2cache devices.  Its
1890 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1891 * we make sure that we can open the underlying device, then try to read the
1892 * label, and make sure that the label is sane and that it hasn't been
1893 * repurposed to another pool.
1894 */
1895int
1896vdev_validate_aux(vdev_t *vd)
1897{
1898	nvlist_t *label;
1899	uint64_t guid, version;
1900	uint64_t state;
1901
1902	if (!vdev_readable(vd))
1903		return (0);
1904
1905	if ((label = vdev_label_read_config(vd)) == NULL) {
1906		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1907		    VDEV_AUX_CORRUPT_DATA);
1908		return (-1);
1909	}
1910
1911	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1912	    version > SPA_VERSION ||
1913	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1914	    guid != vd->vdev_guid ||
1915	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1916		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1917		    VDEV_AUX_CORRUPT_DATA);
1918		nvlist_free(label);
1919		return (-1);
1920	}
1921
1922	/*
1923	 * We don't actually check the pool state here.  If it's in fact in
1924	 * use by another pool, we update this fact on the fly when requested.
1925	 */
1926	nvlist_free(label);
1927	return (0);
1928}
1929
1930void
1931vdev_remove(vdev_t *vd, uint64_t txg)
1932{
1933	spa_t *spa = vd->vdev_spa;
1934	objset_t *mos = spa->spa_meta_objset;
1935	dmu_tx_t *tx;
1936
1937	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1938
1939	if (vd->vdev_dtl_smo.smo_object) {
1940		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1941		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1942		vd->vdev_dtl_smo.smo_object = 0;
1943	}
1944
1945	if (vd->vdev_ms != NULL) {
1946		for (int m = 0; m < vd->vdev_ms_count; m++) {
1947			metaslab_t *msp = vd->vdev_ms[m];
1948
1949			if (msp == NULL || msp->ms_smo.smo_object == 0)
1950				continue;
1951
1952			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1953			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1954			msp->ms_smo.smo_object = 0;
1955		}
1956	}
1957
1958	if (vd->vdev_ms_array) {
1959		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1960		vd->vdev_ms_array = 0;
1961		vd->vdev_ms_shift = 0;
1962	}
1963	dmu_tx_commit(tx);
1964}
1965
1966void
1967vdev_sync_done(vdev_t *vd, uint64_t txg)
1968{
1969	metaslab_t *msp;
1970	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
1971
1972	ASSERT(!vd->vdev_ishole);
1973
1974	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1975		metaslab_sync_done(msp, txg);
1976
1977	if (reassess)
1978		metaslab_sync_reassess(vd->vdev_mg);
1979}
1980
1981void
1982vdev_sync(vdev_t *vd, uint64_t txg)
1983{
1984	spa_t *spa = vd->vdev_spa;
1985	vdev_t *lvd;
1986	metaslab_t *msp;
1987	dmu_tx_t *tx;
1988
1989	ASSERT(!vd->vdev_ishole);
1990
1991	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1992		ASSERT(vd == vd->vdev_top);
1993		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1994		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1995		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1996		ASSERT(vd->vdev_ms_array != 0);
1997		vdev_config_dirty(vd);
1998		dmu_tx_commit(tx);
1999	}
2000
2001	if (vd->vdev_removing)
2002		vdev_remove(vd, txg);
2003
2004	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2005		metaslab_sync(msp, txg);
2006		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2007	}
2008
2009	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2010		vdev_dtl_sync(lvd, txg);
2011
2012	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2013}
2014
2015uint64_t
2016vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2017{
2018	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2019}
2020
2021/*
2022 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2023 * not be opened, and no I/O is attempted.
2024 */
2025int
2026vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2027{
2028	vdev_t *vd;
2029
2030	spa_vdev_state_enter(spa, SCL_NONE);
2031
2032	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2033		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2034
2035	if (!vd->vdev_ops->vdev_op_leaf)
2036		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2037
2038	/*
2039	 * We don't directly use the aux state here, but if we do a
2040	 * vdev_reopen(), we need this value to be present to remember why we
2041	 * were faulted.
2042	 */
2043	vd->vdev_label_aux = aux;
2044
2045	/*
2046	 * Faulted state takes precedence over degraded.
2047	 */
2048	vd->vdev_faulted = 1ULL;
2049	vd->vdev_degraded = 0ULL;
2050	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2051
2052	/*
2053	 * If marking the vdev as faulted cause the top-level vdev to become
2054	 * unavailable, then back off and simply mark the vdev as degraded
2055	 * instead.
2056	 */
2057	if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog &&
2058	    vd->vdev_aux == NULL) {
2059		vd->vdev_degraded = 1ULL;
2060		vd->vdev_faulted = 0ULL;
2061
2062		/*
2063		 * If we reopen the device and it's not dead, only then do we
2064		 * mark it degraded.
2065		 */
2066		vdev_reopen(vd);
2067
2068		if (vdev_readable(vd))
2069			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2070	}
2071
2072	return (spa_vdev_state_exit(spa, vd, 0));
2073}
2074
2075/*
2076 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2077 * user that something is wrong.  The vdev continues to operate as normal as far
2078 * as I/O is concerned.
2079 */
2080int
2081vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2082{
2083	vdev_t *vd;
2084
2085	spa_vdev_state_enter(spa, SCL_NONE);
2086
2087	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2088		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2089
2090	if (!vd->vdev_ops->vdev_op_leaf)
2091		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2092
2093	/*
2094	 * If the vdev is already faulted, then don't do anything.
2095	 */
2096	if (vd->vdev_faulted || vd->vdev_degraded)
2097		return (spa_vdev_state_exit(spa, NULL, 0));
2098
2099	vd->vdev_degraded = 1ULL;
2100	if (!vdev_is_dead(vd))
2101		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2102		    aux);
2103
2104	return (spa_vdev_state_exit(spa, vd, 0));
2105}
2106
2107/*
2108 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2109 * any attached spare device should be detached when the device finishes
2110 * resilvering.  Second, the online should be treated like a 'test' online case,
2111 * so no FMA events are generated if the device fails to open.
2112 */
2113int
2114vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2115{
2116	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2117
2118	spa_vdev_state_enter(spa, SCL_NONE);
2119
2120	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2121		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2122
2123	if (!vd->vdev_ops->vdev_op_leaf)
2124		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2125
2126	tvd = vd->vdev_top;
2127	vd->vdev_offline = B_FALSE;
2128	vd->vdev_tmpoffline = B_FALSE;
2129	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2130	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2131
2132	/* XXX - L2ARC 1.0 does not support expansion */
2133	if (!vd->vdev_aux) {
2134		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2135			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2136	}
2137
2138	vdev_reopen(tvd);
2139	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2140
2141	if (!vd->vdev_aux) {
2142		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2143			pvd->vdev_expanding = B_FALSE;
2144	}
2145
2146	if (newstate)
2147		*newstate = vd->vdev_state;
2148	if ((flags & ZFS_ONLINE_UNSPARE) &&
2149	    !vdev_is_dead(vd) && vd->vdev_parent &&
2150	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2151	    vd->vdev_parent->vdev_child[0] == vd)
2152		vd->vdev_unspare = B_TRUE;
2153
2154	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2155
2156		/* XXX - L2ARC 1.0 does not support expansion */
2157		if (vd->vdev_aux)
2158			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2159		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2160	}
2161	return (spa_vdev_state_exit(spa, vd, 0));
2162}
2163
2164static int
2165vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2166{
2167	vdev_t *vd, *tvd;
2168	int error = 0;
2169	uint64_t generation;
2170	metaslab_group_t *mg;
2171
2172top:
2173	spa_vdev_state_enter(spa, SCL_ALLOC);
2174
2175	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2176		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2177
2178	if (!vd->vdev_ops->vdev_op_leaf)
2179		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2180
2181	tvd = vd->vdev_top;
2182	mg = tvd->vdev_mg;
2183	generation = spa->spa_config_generation + 1;
2184
2185	/*
2186	 * If the device isn't already offline, try to offline it.
2187	 */
2188	if (!vd->vdev_offline) {
2189		/*
2190		 * If this device has the only valid copy of some data,
2191		 * don't allow it to be offlined. Log devices are always
2192		 * expendable.
2193		 */
2194		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2195		    vdev_dtl_required(vd))
2196			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2197
2198		/*
2199		 * If the top-level is a slog and it has had allocations
2200		 * then proceed.  We check that the vdev's metaslab group
2201		 * is not NULL since it's possible that we may have just
2202		 * added this vdev but not yet initialized its metaslabs.
2203		 */
2204		if (tvd->vdev_islog && mg != NULL) {
2205			/*
2206			 * Prevent any future allocations.
2207			 */
2208			metaslab_group_passivate(mg);
2209			(void) spa_vdev_state_exit(spa, vd, 0);
2210
2211			error = spa_offline_log(spa);
2212
2213			spa_vdev_state_enter(spa, SCL_ALLOC);
2214
2215			/*
2216			 * Check to see if the config has changed.
2217			 */
2218			if (error || generation != spa->spa_config_generation) {
2219				metaslab_group_activate(mg);
2220				if (error)
2221					return (spa_vdev_state_exit(spa,
2222					    vd, error));
2223				(void) spa_vdev_state_exit(spa, vd, 0);
2224				goto top;
2225			}
2226			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2227		}
2228
2229		/*
2230		 * Offline this device and reopen its top-level vdev.
2231		 * If the top-level vdev is a log device then just offline
2232		 * it. Otherwise, if this action results in the top-level
2233		 * vdev becoming unusable, undo it and fail the request.
2234		 */
2235		vd->vdev_offline = B_TRUE;
2236		vdev_reopen(tvd);
2237
2238		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2239		    vdev_is_dead(tvd)) {
2240			vd->vdev_offline = B_FALSE;
2241			vdev_reopen(tvd);
2242			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2243		}
2244
2245		/*
2246		 * Add the device back into the metaslab rotor so that
2247		 * once we online the device it's open for business.
2248		 */
2249		if (tvd->vdev_islog && mg != NULL)
2250			metaslab_group_activate(mg);
2251	}
2252
2253	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2254
2255	return (spa_vdev_state_exit(spa, vd, 0));
2256}
2257
2258int
2259vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2260{
2261	int error;
2262
2263	mutex_enter(&spa->spa_vdev_top_lock);
2264	error = vdev_offline_locked(spa, guid, flags);
2265	mutex_exit(&spa->spa_vdev_top_lock);
2266
2267	return (error);
2268}
2269
2270/*
2271 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2272 * vdev_offline(), we assume the spa config is locked.  We also clear all
2273 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2274 */
2275void
2276vdev_clear(spa_t *spa, vdev_t *vd)
2277{
2278	vdev_t *rvd = spa->spa_root_vdev;
2279
2280	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2281
2282	if (vd == NULL)
2283		vd = rvd;
2284
2285	vd->vdev_stat.vs_read_errors = 0;
2286	vd->vdev_stat.vs_write_errors = 0;
2287	vd->vdev_stat.vs_checksum_errors = 0;
2288
2289	for (int c = 0; c < vd->vdev_children; c++)
2290		vdev_clear(spa, vd->vdev_child[c]);
2291
2292	/*
2293	 * If we're in the FAULTED state or have experienced failed I/O, then
2294	 * clear the persistent state and attempt to reopen the device.  We
2295	 * also mark the vdev config dirty, so that the new faulted state is
2296	 * written out to disk.
2297	 */
2298	if (vd->vdev_faulted || vd->vdev_degraded ||
2299	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2300
2301		/*
2302		 * When reopening in reponse to a clear event, it may be due to
2303		 * a fmadm repair request.  In this case, if the device is
2304		 * still broken, we want to still post the ereport again.
2305		 */
2306		vd->vdev_forcefault = B_TRUE;
2307
2308		vd->vdev_faulted = vd->vdev_degraded = 0;
2309		vd->vdev_cant_read = B_FALSE;
2310		vd->vdev_cant_write = B_FALSE;
2311
2312		vdev_reopen(vd);
2313
2314		vd->vdev_forcefault = B_FALSE;
2315
2316		if (vd != rvd)
2317			vdev_state_dirty(vd->vdev_top);
2318
2319		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2320			spa_async_request(spa, SPA_ASYNC_RESILVER);
2321
2322		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2323	}
2324
2325	/*
2326	 * When clearing a FMA-diagnosed fault, we always want to
2327	 * unspare the device, as we assume that the original spare was
2328	 * done in response to the FMA fault.
2329	 */
2330	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2331	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2332	    vd->vdev_parent->vdev_child[0] == vd)
2333		vd->vdev_unspare = B_TRUE;
2334}
2335
2336boolean_t
2337vdev_is_dead(vdev_t *vd)
2338{
2339	/*
2340	 * Holes and missing devices are always considered "dead".
2341	 * This simplifies the code since we don't have to check for
2342	 * these types of devices in the various code paths.
2343	 * Instead we rely on the fact that we skip over dead devices
2344	 * before issuing I/O to them.
2345	 */
2346	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2347	    vd->vdev_ops == &vdev_missing_ops);
2348}
2349
2350boolean_t
2351vdev_readable(vdev_t *vd)
2352{
2353	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2354}
2355
2356boolean_t
2357vdev_writeable(vdev_t *vd)
2358{
2359	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2360}
2361
2362boolean_t
2363vdev_allocatable(vdev_t *vd)
2364{
2365	uint64_t state = vd->vdev_state;
2366
2367	/*
2368	 * We currently allow allocations from vdevs which may be in the
2369	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2370	 * fails to reopen then we'll catch it later when we're holding
2371	 * the proper locks.  Note that we have to get the vdev state
2372	 * in a local variable because although it changes atomically,
2373	 * we're asking two separate questions about it.
2374	 */
2375	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2376	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2377}
2378
2379boolean_t
2380vdev_accessible(vdev_t *vd, zio_t *zio)
2381{
2382	ASSERT(zio->io_vd == vd);
2383
2384	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2385		return (B_FALSE);
2386
2387	if (zio->io_type == ZIO_TYPE_READ)
2388		return (!vd->vdev_cant_read);
2389
2390	if (zio->io_type == ZIO_TYPE_WRITE)
2391		return (!vd->vdev_cant_write);
2392
2393	return (B_TRUE);
2394}
2395
2396/*
2397 * Get statistics for the given vdev.
2398 */
2399void
2400vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2401{
2402	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2403
2404	mutex_enter(&vd->vdev_stat_lock);
2405	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2406	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2407	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2408	vs->vs_state = vd->vdev_state;
2409	vs->vs_rsize = vdev_get_min_asize(vd);
2410	if (vd->vdev_ops->vdev_op_leaf)
2411		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2412	mutex_exit(&vd->vdev_stat_lock);
2413
2414	/*
2415	 * If we're getting stats on the root vdev, aggregate the I/O counts
2416	 * over all top-level vdevs (i.e. the direct children of the root).
2417	 */
2418	if (vd == rvd) {
2419		for (int c = 0; c < rvd->vdev_children; c++) {
2420			vdev_t *cvd = rvd->vdev_child[c];
2421			vdev_stat_t *cvs = &cvd->vdev_stat;
2422
2423			mutex_enter(&vd->vdev_stat_lock);
2424			for (int t = 0; t < ZIO_TYPES; t++) {
2425				vs->vs_ops[t] += cvs->vs_ops[t];
2426				vs->vs_bytes[t] += cvs->vs_bytes[t];
2427			}
2428			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2429			mutex_exit(&vd->vdev_stat_lock);
2430		}
2431	}
2432}
2433
2434void
2435vdev_clear_stats(vdev_t *vd)
2436{
2437	mutex_enter(&vd->vdev_stat_lock);
2438	vd->vdev_stat.vs_space = 0;
2439	vd->vdev_stat.vs_dspace = 0;
2440	vd->vdev_stat.vs_alloc = 0;
2441	mutex_exit(&vd->vdev_stat_lock);
2442}
2443
2444void
2445vdev_stat_update(zio_t *zio, uint64_t psize)
2446{
2447	spa_t *spa = zio->io_spa;
2448	vdev_t *rvd = spa->spa_root_vdev;
2449	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2450	vdev_t *pvd;
2451	uint64_t txg = zio->io_txg;
2452	vdev_stat_t *vs = &vd->vdev_stat;
2453	zio_type_t type = zio->io_type;
2454	int flags = zio->io_flags;
2455
2456	/*
2457	 * If this i/o is a gang leader, it didn't do any actual work.
2458	 */
2459	if (zio->io_gang_tree)
2460		return;
2461
2462	if (zio->io_error == 0) {
2463		/*
2464		 * If this is a root i/o, don't count it -- we've already
2465		 * counted the top-level vdevs, and vdev_get_stats() will
2466		 * aggregate them when asked.  This reduces contention on
2467		 * the root vdev_stat_lock and implicitly handles blocks
2468		 * that compress away to holes, for which there is no i/o.
2469		 * (Holes never create vdev children, so all the counters
2470		 * remain zero, which is what we want.)
2471		 *
2472		 * Note: this only applies to successful i/o (io_error == 0)
2473		 * because unlike i/o counts, errors are not additive.
2474		 * When reading a ditto block, for example, failure of
2475		 * one top-level vdev does not imply a root-level error.
2476		 */
2477		if (vd == rvd)
2478			return;
2479
2480		ASSERT(vd == zio->io_vd);
2481
2482		if (flags & ZIO_FLAG_IO_BYPASS)
2483			return;
2484
2485		mutex_enter(&vd->vdev_stat_lock);
2486
2487		if (flags & ZIO_FLAG_IO_REPAIR) {
2488			if (flags & ZIO_FLAG_SCRUB_THREAD)
2489				vs->vs_scrub_repaired += psize;
2490			if (flags & ZIO_FLAG_SELF_HEAL)
2491				vs->vs_self_healed += psize;
2492		}
2493
2494		vs->vs_ops[type]++;
2495		vs->vs_bytes[type] += psize;
2496
2497		mutex_exit(&vd->vdev_stat_lock);
2498		return;
2499	}
2500
2501	if (flags & ZIO_FLAG_SPECULATIVE)
2502		return;
2503
2504	/*
2505	 * If this is an I/O error that is going to be retried, then ignore the
2506	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2507	 * hard errors, when in reality they can happen for any number of
2508	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2509	 */
2510	if (zio->io_error == EIO &&
2511	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2512		return;
2513
2514	/*
2515	 * Intent logs writes won't propagate their error to the root
2516	 * I/O so don't mark these types of failures as pool-level
2517	 * errors.
2518	 */
2519	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2520		return;
2521
2522	mutex_enter(&vd->vdev_stat_lock);
2523	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2524		if (zio->io_error == ECKSUM)
2525			vs->vs_checksum_errors++;
2526		else
2527			vs->vs_read_errors++;
2528	}
2529	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2530		vs->vs_write_errors++;
2531	mutex_exit(&vd->vdev_stat_lock);
2532
2533	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2534	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2535	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2536	    spa->spa_claiming)) {
2537		/*
2538		 * This is either a normal write (not a repair), or it's
2539		 * a repair induced by the scrub thread, or it's a repair
2540		 * made by zil_claim() during spa_load() in the first txg.
2541		 * In the normal case, we commit the DTL change in the same
2542		 * txg as the block was born.  In the scrub-induced repair
2543		 * case, we know that scrubs run in first-pass syncing context,
2544		 * so we commit the DTL change in spa_syncing_txg(spa).
2545		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2546		 *
2547		 * We currently do not make DTL entries for failed spontaneous
2548		 * self-healing writes triggered by normal (non-scrubbing)
2549		 * reads, because we have no transactional context in which to
2550		 * do so -- and it's not clear that it'd be desirable anyway.
2551		 */
2552		if (vd->vdev_ops->vdev_op_leaf) {
2553			uint64_t commit_txg = txg;
2554			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2555				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2556				ASSERT(spa_sync_pass(spa) == 1);
2557				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2558				commit_txg = spa_syncing_txg(spa);
2559			} else if (spa->spa_claiming) {
2560				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2561				commit_txg = spa_first_txg(spa);
2562			}
2563			ASSERT(commit_txg >= spa_syncing_txg(spa));
2564			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2565				return;
2566			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2567				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2568			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2569		}
2570		if (vd != rvd)
2571			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2572	}
2573}
2574
2575void
2576vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2577{
2578	vdev_stat_t *vs = &vd->vdev_stat;
2579
2580	for (int c = 0; c < vd->vdev_children; c++)
2581		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2582
2583	mutex_enter(&vd->vdev_stat_lock);
2584
2585	if (type == POOL_SCRUB_NONE) {
2586		/*
2587		 * Update completion and end time.  Leave everything else alone
2588		 * so we can report what happened during the previous scrub.
2589		 */
2590		vs->vs_scrub_complete = complete;
2591		vs->vs_scrub_end = gethrestime_sec();
2592	} else {
2593		vs->vs_scrub_type = type;
2594		vs->vs_scrub_complete = 0;
2595		vs->vs_scrub_examined = 0;
2596		vs->vs_scrub_repaired = 0;
2597		vs->vs_scrub_start = gethrestime_sec();
2598		vs->vs_scrub_end = 0;
2599	}
2600
2601	mutex_exit(&vd->vdev_stat_lock);
2602}
2603
2604/*
2605 * Update the in-core space usage stats for this vdev, its metaslab class,
2606 * and the root vdev.
2607 */
2608void
2609vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2610    int64_t space_delta)
2611{
2612	int64_t dspace_delta = space_delta;
2613	spa_t *spa = vd->vdev_spa;
2614	vdev_t *rvd = spa->spa_root_vdev;
2615	metaslab_group_t *mg = vd->vdev_mg;
2616	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2617
2618	ASSERT(vd == vd->vdev_top);
2619
2620	/*
2621	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2622	 * factor.  We must calculate this here and not at the root vdev
2623	 * because the root vdev's psize-to-asize is simply the max of its
2624	 * childrens', thus not accurate enough for us.
2625	 */
2626	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2627	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2628	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2629	    vd->vdev_deflate_ratio;
2630
2631	mutex_enter(&vd->vdev_stat_lock);
2632	vd->vdev_stat.vs_alloc += alloc_delta;
2633	vd->vdev_stat.vs_space += space_delta;
2634	vd->vdev_stat.vs_dspace += dspace_delta;
2635	mutex_exit(&vd->vdev_stat_lock);
2636
2637	if (mc == spa_normal_class(spa)) {
2638		mutex_enter(&rvd->vdev_stat_lock);
2639		rvd->vdev_stat.vs_alloc += alloc_delta;
2640		rvd->vdev_stat.vs_space += space_delta;
2641		rvd->vdev_stat.vs_dspace += dspace_delta;
2642		mutex_exit(&rvd->vdev_stat_lock);
2643	}
2644
2645	if (mc != NULL) {
2646		ASSERT(rvd == vd->vdev_parent);
2647		ASSERT(vd->vdev_ms_count != 0);
2648
2649		metaslab_class_space_update(mc,
2650		    alloc_delta, defer_delta, space_delta, dspace_delta);
2651	}
2652}
2653
2654/*
2655 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2656 * so that it will be written out next time the vdev configuration is synced.
2657 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2658 */
2659void
2660vdev_config_dirty(vdev_t *vd)
2661{
2662	spa_t *spa = vd->vdev_spa;
2663	vdev_t *rvd = spa->spa_root_vdev;
2664	int c;
2665
2666	/*
2667	 * If this is an aux vdev (as with l2cache and spare devices), then we
2668	 * update the vdev config manually and set the sync flag.
2669	 */
2670	if (vd->vdev_aux != NULL) {
2671		spa_aux_vdev_t *sav = vd->vdev_aux;
2672		nvlist_t **aux;
2673		uint_t naux;
2674
2675		for (c = 0; c < sav->sav_count; c++) {
2676			if (sav->sav_vdevs[c] == vd)
2677				break;
2678		}
2679
2680		if (c == sav->sav_count) {
2681			/*
2682			 * We're being removed.  There's nothing more to do.
2683			 */
2684			ASSERT(sav->sav_sync == B_TRUE);
2685			return;
2686		}
2687
2688		sav->sav_sync = B_TRUE;
2689
2690		if (nvlist_lookup_nvlist_array(sav->sav_config,
2691		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2692			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2693			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2694		}
2695
2696		ASSERT(c < naux);
2697
2698		/*
2699		 * Setting the nvlist in the middle if the array is a little
2700		 * sketchy, but it will work.
2701		 */
2702		nvlist_free(aux[c]);
2703		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2704
2705		return;
2706	}
2707
2708	/*
2709	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2710	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2711	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2712	 * so this is sufficient to ensure mutual exclusion.
2713	 */
2714	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2715	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2716	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2717
2718	if (vd == rvd) {
2719		for (c = 0; c < rvd->vdev_children; c++)
2720			vdev_config_dirty(rvd->vdev_child[c]);
2721	} else {
2722		ASSERT(vd == vd->vdev_top);
2723
2724		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2725		    !vd->vdev_ishole)
2726			list_insert_head(&spa->spa_config_dirty_list, vd);
2727	}
2728}
2729
2730void
2731vdev_config_clean(vdev_t *vd)
2732{
2733	spa_t *spa = vd->vdev_spa;
2734
2735	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2736	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2737	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2738
2739	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2740	list_remove(&spa->spa_config_dirty_list, vd);
2741}
2742
2743/*
2744 * Mark a top-level vdev's state as dirty, so that the next pass of
2745 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2746 * the state changes from larger config changes because they require
2747 * much less locking, and are often needed for administrative actions.
2748 */
2749void
2750vdev_state_dirty(vdev_t *vd)
2751{
2752	spa_t *spa = vd->vdev_spa;
2753
2754	ASSERT(vd == vd->vdev_top);
2755
2756	/*
2757	 * The state list is protected by the SCL_STATE lock.  The caller
2758	 * must either hold SCL_STATE as writer, or must be the sync thread
2759	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2760	 * so this is sufficient to ensure mutual exclusion.
2761	 */
2762	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2763	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2764	    spa_config_held(spa, SCL_STATE, RW_READER)));
2765
2766	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2767		list_insert_head(&spa->spa_state_dirty_list, vd);
2768}
2769
2770void
2771vdev_state_clean(vdev_t *vd)
2772{
2773	spa_t *spa = vd->vdev_spa;
2774
2775	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2776	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2777	    spa_config_held(spa, SCL_STATE, RW_READER)));
2778
2779	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2780	list_remove(&spa->spa_state_dirty_list, vd);
2781}
2782
2783/*
2784 * Propagate vdev state up from children to parent.
2785 */
2786void
2787vdev_propagate_state(vdev_t *vd)
2788{
2789	spa_t *spa = vd->vdev_spa;
2790	vdev_t *rvd = spa->spa_root_vdev;
2791	int degraded = 0, faulted = 0;
2792	int corrupted = 0;
2793	vdev_t *child;
2794
2795	if (vd->vdev_children > 0) {
2796		for (int c = 0; c < vd->vdev_children; c++) {
2797			child = vd->vdev_child[c];
2798
2799			/*
2800			 * Don't factor holes into the decision.
2801			 */
2802			if (child->vdev_ishole)
2803				continue;
2804
2805			if (!vdev_readable(child) ||
2806			    (!vdev_writeable(child) && spa_writeable(spa))) {
2807				/*
2808				 * Root special: if there is a top-level log
2809				 * device, treat the root vdev as if it were
2810				 * degraded.
2811				 */
2812				if (child->vdev_islog && vd == rvd)
2813					degraded++;
2814				else
2815					faulted++;
2816			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2817				degraded++;
2818			}
2819
2820			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2821				corrupted++;
2822		}
2823
2824		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2825
2826		/*
2827		 * Root special: if there is a top-level vdev that cannot be
2828		 * opened due to corrupted metadata, then propagate the root
2829		 * vdev's aux state as 'corrupt' rather than 'insufficient
2830		 * replicas'.
2831		 */
2832		if (corrupted && vd == rvd &&
2833		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2834			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2835			    VDEV_AUX_CORRUPT_DATA);
2836	}
2837
2838	if (vd->vdev_parent)
2839		vdev_propagate_state(vd->vdev_parent);
2840}
2841
2842/*
2843 * Set a vdev's state.  If this is during an open, we don't update the parent
2844 * state, because we're in the process of opening children depth-first.
2845 * Otherwise, we propagate the change to the parent.
2846 *
2847 * If this routine places a device in a faulted state, an appropriate ereport is
2848 * generated.
2849 */
2850void
2851vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2852{
2853	uint64_t save_state;
2854	spa_t *spa = vd->vdev_spa;
2855
2856	if (state == vd->vdev_state) {
2857		vd->vdev_stat.vs_aux = aux;
2858		return;
2859	}
2860
2861	save_state = vd->vdev_state;
2862
2863	vd->vdev_state = state;
2864	vd->vdev_stat.vs_aux = aux;
2865
2866	/*
2867	 * If we are setting the vdev state to anything but an open state, then
2868	 * always close the underlying device.  Otherwise, we keep accessible
2869	 * but invalid devices open forever.  We don't call vdev_close() itself,
2870	 * because that implies some extra checks (offline, etc) that we don't
2871	 * want here.  This is limited to leaf devices, because otherwise
2872	 * closing the device will affect other children.
2873	 */
2874	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2875		vd->vdev_ops->vdev_op_close(vd);
2876
2877	/*
2878	 * If we have brought this vdev back into service, we need
2879	 * to notify fmd so that it can gracefully repair any outstanding
2880	 * cases due to a missing device.  We do this in all cases, even those
2881	 * that probably don't correlate to a repaired fault.  This is sure to
2882	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2883	 * this is a transient state it's OK, as the retire agent will
2884	 * double-check the state of the vdev before repairing it.
2885	 */
2886	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2887	    vd->vdev_prevstate != state)
2888		zfs_post_state_change(spa, vd);
2889
2890	if (vd->vdev_removed &&
2891	    state == VDEV_STATE_CANT_OPEN &&
2892	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2893		/*
2894		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2895		 * device was previously marked removed and someone attempted to
2896		 * reopen it.  If this failed due to a nonexistent device, then
2897		 * keep the device in the REMOVED state.  We also let this be if
2898		 * it is one of our special test online cases, which is only
2899		 * attempting to online the device and shouldn't generate an FMA
2900		 * fault.
2901		 */
2902		vd->vdev_state = VDEV_STATE_REMOVED;
2903		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2904	} else if (state == VDEV_STATE_REMOVED) {
2905		vd->vdev_removed = B_TRUE;
2906	} else if (state == VDEV_STATE_CANT_OPEN) {
2907		/*
2908		 * If we fail to open a vdev during an import, we mark it as
2909		 * "not available", which signifies that it was never there to
2910		 * begin with.  Failure to open such a device is not considered
2911		 * an error.
2912		 */
2913		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2914		    vd->vdev_ops->vdev_op_leaf)
2915			vd->vdev_not_present = 1;
2916
2917		/*
2918		 * Post the appropriate ereport.  If the 'prevstate' field is
2919		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2920		 * that this is part of a vdev_reopen().  In this case, we don't
2921		 * want to post the ereport if the device was already in the
2922		 * CANT_OPEN state beforehand.
2923		 *
2924		 * If the 'checkremove' flag is set, then this is an attempt to
2925		 * online the device in response to an insertion event.  If we
2926		 * hit this case, then we have detected an insertion event for a
2927		 * faulted or offline device that wasn't in the removed state.
2928		 * In this scenario, we don't post an ereport because we are
2929		 * about to replace the device, or attempt an online with
2930		 * vdev_forcefault, which will generate the fault for us.
2931		 */
2932		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2933		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2934		    vd != spa->spa_root_vdev) {
2935			const char *class;
2936
2937			switch (aux) {
2938			case VDEV_AUX_OPEN_FAILED:
2939				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2940				break;
2941			case VDEV_AUX_CORRUPT_DATA:
2942				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2943				break;
2944			case VDEV_AUX_NO_REPLICAS:
2945				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2946				break;
2947			case VDEV_AUX_BAD_GUID_SUM:
2948				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2949				break;
2950			case VDEV_AUX_TOO_SMALL:
2951				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2952				break;
2953			case VDEV_AUX_BAD_LABEL:
2954				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2955				break;
2956			case VDEV_AUX_IO_FAILURE:
2957				class = FM_EREPORT_ZFS_IO_FAILURE;
2958				break;
2959			default:
2960				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2961			}
2962
2963			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2964		}
2965
2966		/* Erase any notion of persistent removed state */
2967		vd->vdev_removed = B_FALSE;
2968	} else {
2969		vd->vdev_removed = B_FALSE;
2970	}
2971
2972	if (!isopen && vd->vdev_parent)
2973		vdev_propagate_state(vd->vdev_parent);
2974}
2975
2976/*
2977 * Check the vdev configuration to ensure that it's capable of supporting
2978 * a root pool. Currently, we do not support RAID-Z or partial configuration.
2979 * In addition, only a single top-level vdev is allowed and none of the leaves
2980 * can be wholedisks.
2981 */
2982boolean_t
2983vdev_is_bootable(vdev_t *vd)
2984{
2985	if (!vd->vdev_ops->vdev_op_leaf) {
2986		char *vdev_type = vd->vdev_ops->vdev_op_type;
2987
2988		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2989		    vd->vdev_children > 1) {
2990			return (B_FALSE);
2991		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2992		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2993			return (B_FALSE);
2994		}
2995	} else if (vd->vdev_wholedisk == 1) {
2996		return (B_FALSE);
2997	}
2998
2999	for (int c = 0; c < vd->vdev_children; c++) {
3000		if (!vdev_is_bootable(vd->vdev_child[c]))
3001			return (B_FALSE);
3002	}
3003	return (B_TRUE);
3004}
3005
3006/*
3007 * Load the state from the original vdev tree (ovd) which
3008 * we've retrieved from the MOS config object. If the original
3009 * vdev was offline then we transfer that state to the device
3010 * in the current vdev tree (nvd).
3011 */
3012void
3013vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3014{
3015	spa_t *spa = nvd->vdev_spa;
3016
3017	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3018	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3019
3020	for (int c = 0; c < nvd->vdev_children; c++)
3021		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3022
3023	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3024		/*
3025		 * It would be nice to call vdev_offline()
3026		 * directly but the pool isn't fully loaded and
3027		 * the txg threads have not been started yet.
3028		 */
3029		nvd->vdev_offline = ovd->vdev_offline;
3030		vdev_reopen(nvd->vdev_top);
3031	}
3032}
3033
3034/*
3035 * Expand a vdev if possible.
3036 */
3037void
3038vdev_expand(vdev_t *vd, uint64_t txg)
3039{
3040	ASSERT(vd->vdev_top == vd);
3041	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3042
3043	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3044		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3045		vdev_config_dirty(vd);
3046	}
3047}
3048
3049/*
3050 * Split a vdev.
3051 */
3052void
3053vdev_split(vdev_t *vd)
3054{
3055	vdev_t *cvd, *pvd = vd->vdev_parent;
3056
3057	vdev_remove_child(pvd, vd);
3058	vdev_compact_children(pvd);
3059
3060	cvd = pvd->vdev_child[0];
3061	if (pvd->vdev_children == 1) {
3062		vdev_remove_parent(cvd);
3063		cvd->vdev_splitting = B_TRUE;
3064	}
3065	vdev_propagate_state(cvd);
3066}
3067