1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/dbuf.h>
28#include <sys/dnode.h>
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_dataset.h>
35#include <sys/spa.h>
36#include <sys/zio.h>
37#include <sys/dmu_zfetch.h>
38
39static int free_range_compar(const void *node1, const void *node2);
40
41static kmem_cache_t *dnode_cache;
42
43static dnode_phys_t dnode_phys_zero;
44
45int zfs_default_bs = SPA_MINBLOCKSHIFT;
46int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
47
48/* ARGSUSED */
49static int
50dnode_cons(void *arg, void *unused, int kmflag)
51{
52	int i;
53	dnode_t *dn = unused;
54	bzero(dn, sizeof (dnode_t));
55
56	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
57	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
58	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
59	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
60
61	refcount_create(&dn->dn_holds);
62	refcount_create(&dn->dn_tx_holds);
63
64	for (i = 0; i < TXG_SIZE; i++) {
65		avl_create(&dn->dn_ranges[i], free_range_compar,
66		    sizeof (free_range_t),
67		    offsetof(struct free_range, fr_node));
68		list_create(&dn->dn_dirty_records[i],
69		    sizeof (dbuf_dirty_record_t),
70		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
71	}
72
73	list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
74	    offsetof(dmu_buf_impl_t, db_link));
75
76	return (0);
77}
78
79/* ARGSUSED */
80static void
81dnode_dest(void *arg, void *unused)
82{
83	int i;
84	dnode_t *dn = unused;
85
86	rw_destroy(&dn->dn_struct_rwlock);
87	mutex_destroy(&dn->dn_mtx);
88	mutex_destroy(&dn->dn_dbufs_mtx);
89	cv_destroy(&dn->dn_notxholds);
90	refcount_destroy(&dn->dn_holds);
91	refcount_destroy(&dn->dn_tx_holds);
92
93	for (i = 0; i < TXG_SIZE; i++) {
94		avl_destroy(&dn->dn_ranges[i]);
95		list_destroy(&dn->dn_dirty_records[i]);
96	}
97
98	list_destroy(&dn->dn_dbufs);
99}
100
101void
102dnode_init(void)
103{
104	dnode_cache = kmem_cache_create("dnode_t",
105	    sizeof (dnode_t),
106	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
107}
108
109void
110dnode_fini(void)
111{
112	kmem_cache_destroy(dnode_cache);
113}
114
115
116#ifdef ZFS_DEBUG
117void
118dnode_verify(dnode_t *dn)
119{
120	int drop_struct_lock = FALSE;
121
122	ASSERT(dn->dn_phys);
123	ASSERT(dn->dn_objset);
124
125	ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
126
127	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
128		return;
129
130	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
131		rw_enter(&dn->dn_struct_rwlock, RW_READER);
132		drop_struct_lock = TRUE;
133	}
134	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
135		int i;
136		ASSERT3U(dn->dn_indblkshift, >=, 0);
137		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
138		if (dn->dn_datablkshift) {
139			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
140			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
141			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
142		}
143		ASSERT3U(dn->dn_nlevels, <=, 30);
144		ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
145		ASSERT3U(dn->dn_nblkptr, >=, 1);
146		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
147		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
148		ASSERT3U(dn->dn_datablksz, ==,
149		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
150		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
151		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
152		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
153		for (i = 0; i < TXG_SIZE; i++) {
154			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
155		}
156	}
157	if (dn->dn_phys->dn_type != DMU_OT_NONE)
158		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
159	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
160	if (dn->dn_dbuf != NULL) {
161		ASSERT3P(dn->dn_phys, ==,
162		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
163		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
164	}
165	if (drop_struct_lock)
166		rw_exit(&dn->dn_struct_rwlock);
167}
168#endif
169
170void
171dnode_byteswap(dnode_phys_t *dnp)
172{
173	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
174	int i;
175
176	if (dnp->dn_type == DMU_OT_NONE) {
177		bzero(dnp, sizeof (dnode_phys_t));
178		return;
179	}
180
181	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
182	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
183	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
184	dnp->dn_used = BSWAP_64(dnp->dn_used);
185
186	/*
187	 * dn_nblkptr is only one byte, so it's OK to read it in either
188	 * byte order.  We can't read dn_bouslen.
189	 */
190	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
191	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
192	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
193		buf64[i] = BSWAP_64(buf64[i]);
194
195	/*
196	 * OK to check dn_bonuslen for zero, because it won't matter if
197	 * we have the wrong byte order.  This is necessary because the
198	 * dnode dnode is smaller than a regular dnode.
199	 */
200	if (dnp->dn_bonuslen != 0) {
201		/*
202		 * Note that the bonus length calculated here may be
203		 * longer than the actual bonus buffer.  This is because
204		 * we always put the bonus buffer after the last block
205		 * pointer (instead of packing it against the end of the
206		 * dnode buffer).
207		 */
208		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
209		size_t len = DN_MAX_BONUSLEN - off;
210		ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
211		dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
212	}
213}
214
215void
216dnode_buf_byteswap(void *vbuf, size_t size)
217{
218	dnode_phys_t *buf = vbuf;
219	int i;
220
221	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
222	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
223
224	size >>= DNODE_SHIFT;
225	for (i = 0; i < size; i++) {
226		dnode_byteswap(buf);
227		buf++;
228	}
229}
230
231static int
232free_range_compar(const void *node1, const void *node2)
233{
234	const free_range_t *rp1 = node1;
235	const free_range_t *rp2 = node2;
236
237	if (rp1->fr_blkid < rp2->fr_blkid)
238		return (-1);
239	else if (rp1->fr_blkid > rp2->fr_blkid)
240		return (1);
241	else return (0);
242}
243
244void
245dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
246{
247	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
248
249	dnode_setdirty(dn, tx);
250	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
251	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
252	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
253	dn->dn_bonuslen = newsize;
254	if (newsize == 0)
255		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
256	else
257		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
258	rw_exit(&dn->dn_struct_rwlock);
259}
260
261static void
262dnode_setdblksz(dnode_t *dn, int size)
263{
264	ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
265	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
266	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
267	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
268	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
269	dn->dn_datablksz = size;
270	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
271	dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
272}
273
274static dnode_t *
275dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
276    uint64_t object)
277{
278	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
279//	(void) dnode_cons(dn, NULL, 0); /* XXX */
280
281	dn->dn_objset = os;
282	dn->dn_object = object;
283	dn->dn_dbuf = db;
284	dn->dn_phys = dnp;
285
286	if (dnp->dn_datablkszsec)
287		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
288	dn->dn_indblkshift = dnp->dn_indblkshift;
289	dn->dn_nlevels = dnp->dn_nlevels;
290	dn->dn_type = dnp->dn_type;
291	dn->dn_nblkptr = dnp->dn_nblkptr;
292	dn->dn_checksum = dnp->dn_checksum;
293	dn->dn_compress = dnp->dn_compress;
294	dn->dn_bonustype = dnp->dn_bonustype;
295	dn->dn_bonuslen = dnp->dn_bonuslen;
296	dn->dn_maxblkid = dnp->dn_maxblkid;
297
298	dmu_zfetch_init(&dn->dn_zfetch, dn);
299
300	ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
301	mutex_enter(&os->os_lock);
302	list_insert_head(&os->os_dnodes, dn);
303	mutex_exit(&os->os_lock);
304
305	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
306	return (dn);
307}
308
309static void
310dnode_destroy(dnode_t *dn)
311{
312	objset_t *os = dn->dn_objset;
313
314#ifdef ZFS_DEBUG
315	int i;
316
317	for (i = 0; i < TXG_SIZE; i++) {
318		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
319		ASSERT(NULL == list_head(&dn->dn_dirty_records[i]));
320		ASSERT(0 == avl_numnodes(&dn->dn_ranges[i]));
321	}
322	ASSERT(NULL == list_head(&dn->dn_dbufs));
323#endif
324	ASSERT(dn->dn_oldphys == NULL);
325
326	mutex_enter(&os->os_lock);
327	list_remove(&os->os_dnodes, dn);
328	mutex_exit(&os->os_lock);
329
330	if (dn->dn_dirtyctx_firstset) {
331		kmem_free(dn->dn_dirtyctx_firstset, 1);
332		dn->dn_dirtyctx_firstset = NULL;
333	}
334	dmu_zfetch_rele(&dn->dn_zfetch);
335	if (dn->dn_bonus) {
336		mutex_enter(&dn->dn_bonus->db_mtx);
337		dbuf_evict(dn->dn_bonus);
338		dn->dn_bonus = NULL;
339	}
340	kmem_cache_free(dnode_cache, dn);
341	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
342}
343
344void
345dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
346    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
347{
348	int i;
349
350	if (blocksize == 0)
351		blocksize = 1 << zfs_default_bs;
352	else if (blocksize > SPA_MAXBLOCKSIZE)
353		blocksize = SPA_MAXBLOCKSIZE;
354	else
355		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
356
357	if (ibs == 0)
358		ibs = zfs_default_ibs;
359
360	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
361
362	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
363	    dn->dn_object, tx->tx_txg, blocksize, ibs);
364
365	ASSERT(dn->dn_type == DMU_OT_NONE);
366	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
367	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
368	ASSERT(ot != DMU_OT_NONE);
369	ASSERT3U(ot, <, DMU_OT_NUMTYPES);
370	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
371	    (bonustype != DMU_OT_NONE && bonuslen != 0));
372	ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
373	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
374	ASSERT(dn->dn_type == DMU_OT_NONE);
375	ASSERT3U(dn->dn_maxblkid, ==, 0);
376	ASSERT3U(dn->dn_allocated_txg, ==, 0);
377	ASSERT3U(dn->dn_assigned_txg, ==, 0);
378	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
379	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
380	ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
381
382	for (i = 0; i < TXG_SIZE; i++) {
383		ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
384		ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
385		ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
386		ASSERT3U(dn->dn_next_blksz[i], ==, 0);
387		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
388		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
389		ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
390	}
391
392	dn->dn_type = ot;
393	dnode_setdblksz(dn, blocksize);
394	dn->dn_indblkshift = ibs;
395	dn->dn_nlevels = 1;
396	dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
397	dn->dn_bonustype = bonustype;
398	dn->dn_bonuslen = bonuslen;
399	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
400	dn->dn_compress = ZIO_COMPRESS_INHERIT;
401	dn->dn_dirtyctx = 0;
402
403	dn->dn_free_txg = 0;
404	if (dn->dn_dirtyctx_firstset) {
405		kmem_free(dn->dn_dirtyctx_firstset, 1);
406		dn->dn_dirtyctx_firstset = NULL;
407	}
408
409	dn->dn_allocated_txg = tx->tx_txg;
410
411	dnode_setdirty(dn, tx);
412	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
413	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
414	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
415}
416
417void
418dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
419    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
420{
421	int nblkptr;
422
423	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
424	ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
425	ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
426	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
427	ASSERT(tx->tx_txg != 0);
428	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
429	    (bonustype != DMU_OT_NONE && bonuslen != 0));
430	ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
431	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
432
433	/* clean up any unreferenced dbufs */
434	dnode_evict_dbufs(dn);
435
436	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
437	dnode_setdirty(dn, tx);
438	if (dn->dn_datablksz != blocksize) {
439		/* change blocksize */
440		ASSERT(dn->dn_maxblkid == 0 &&
441		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
442		    dnode_block_freed(dn, 0)));
443		dnode_setdblksz(dn, blocksize);
444		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
445	}
446	if (dn->dn_bonuslen != bonuslen)
447		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
448	nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
449	if (dn->dn_nblkptr != nblkptr)
450		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
451	rw_exit(&dn->dn_struct_rwlock);
452
453	/* change type */
454	dn->dn_type = ot;
455
456	/* change bonus size and type */
457	mutex_enter(&dn->dn_mtx);
458	dn->dn_bonustype = bonustype;
459	dn->dn_bonuslen = bonuslen;
460	dn->dn_nblkptr = nblkptr;
461	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
462	dn->dn_compress = ZIO_COMPRESS_INHERIT;
463	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
464
465	/* fix up the bonus db_size */
466	if (dn->dn_bonus) {
467		dn->dn_bonus->db.db_size =
468		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
469		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
470	}
471
472	dn->dn_allocated_txg = tx->tx_txg;
473	mutex_exit(&dn->dn_mtx);
474}
475
476void
477dnode_special_close(dnode_t *dn)
478{
479	/*
480	 * Wait for final references to the dnode to clear.  This can
481	 * only happen if the arc is asyncronously evicting state that
482	 * has a hold on this dnode while we are trying to evict this
483	 * dnode.
484	 */
485	while (refcount_count(&dn->dn_holds) > 0)
486		delay(1);
487	dnode_destroy(dn);
488}
489
490dnode_t *
491dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object)
492{
493	dnode_t *dn = dnode_create(os, dnp, NULL, object);
494	DNODE_VERIFY(dn);
495	return (dn);
496}
497
498static void
499dnode_buf_pageout(dmu_buf_t *db, void *arg)
500{
501	dnode_t **children_dnodes = arg;
502	int i;
503	int epb = db->db_size >> DNODE_SHIFT;
504
505	for (i = 0; i < epb; i++) {
506		dnode_t *dn = children_dnodes[i];
507		int n;
508
509		if (dn == NULL)
510			continue;
511#ifdef ZFS_DEBUG
512		/*
513		 * If there are holds on this dnode, then there should
514		 * be holds on the dnode's containing dbuf as well; thus
515		 * it wouldn't be eligable for eviction and this function
516		 * would not have been called.
517		 */
518		ASSERT(refcount_is_zero(&dn->dn_holds));
519		ASSERT(list_head(&dn->dn_dbufs) == NULL);
520		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
521
522		for (n = 0; n < TXG_SIZE; n++)
523			ASSERT(!list_link_active(&dn->dn_dirty_link[n]));
524#endif
525		children_dnodes[i] = NULL;
526		dnode_destroy(dn);
527	}
528	kmem_free(children_dnodes, epb * sizeof (dnode_t *));
529}
530
531/*
532 * errors:
533 * EINVAL - invalid object number.
534 * EIO - i/o error.
535 * succeeds even for free dnodes.
536 */
537int
538dnode_hold_impl(objset_t *os, uint64_t object, int flag,
539    void *tag, dnode_t **dnp)
540{
541	int epb, idx, err;
542	int drop_struct_lock = FALSE;
543	int type;
544	uint64_t blk;
545	dnode_t *mdn, *dn;
546	dmu_buf_impl_t *db;
547	dnode_t **children_dnodes;
548
549	/*
550	 * If you are holding the spa config lock as writer, you shouldn't
551	 * be asking the DMU to do *anything*.
552	 */
553	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0);
554
555	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
556		dn = (object == DMU_USERUSED_OBJECT) ?
557		    os->os_userused_dnode : os->os_groupused_dnode;
558		if (dn == NULL)
559			return (ENOENT);
560		type = dn->dn_type;
561		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
562			return (ENOENT);
563		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
564			return (EEXIST);
565		DNODE_VERIFY(dn);
566		(void) refcount_add(&dn->dn_holds, tag);
567		*dnp = dn;
568		return (0);
569	}
570
571	if (object == 0 || object >= DN_MAX_OBJECT)
572		return (EINVAL);
573
574	mdn = os->os_meta_dnode;
575
576	DNODE_VERIFY(mdn);
577
578	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
579		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
580		drop_struct_lock = TRUE;
581	}
582
583	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
584
585	db = dbuf_hold(mdn, blk, FTAG);
586	if (drop_struct_lock)
587		rw_exit(&mdn->dn_struct_rwlock);
588	if (db == NULL)
589		return (EIO);
590	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
591	if (err) {
592		dbuf_rele(db, FTAG);
593		return (err);
594	}
595
596	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
597	epb = db->db.db_size >> DNODE_SHIFT;
598
599	idx = object & (epb-1);
600
601	children_dnodes = dmu_buf_get_user(&db->db);
602	if (children_dnodes == NULL) {
603		dnode_t **winner;
604		children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *),
605		    KM_SLEEP);
606		if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
607		    dnode_buf_pageout)) {
608			kmem_free(children_dnodes, epb * sizeof (dnode_t *));
609			children_dnodes = winner;
610		}
611	}
612
613	if ((dn = children_dnodes[idx]) == NULL) {
614		dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx;
615		dnode_t *winner;
616
617		dn = dnode_create(os, dnp, db, object);
618		winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn);
619		if (winner != NULL) {
620			dnode_destroy(dn);
621			dn = winner;
622		}
623	}
624
625	mutex_enter(&dn->dn_mtx);
626	type = dn->dn_type;
627	if (dn->dn_free_txg ||
628	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
629	    ((flag & DNODE_MUST_BE_FREE) &&
630	    (type != DMU_OT_NONE || dn->dn_oldphys))) {
631		mutex_exit(&dn->dn_mtx);
632		dbuf_rele(db, FTAG);
633		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
634	}
635	mutex_exit(&dn->dn_mtx);
636
637	if (refcount_add(&dn->dn_holds, tag) == 1)
638		dbuf_add_ref(db, dn);
639
640	DNODE_VERIFY(dn);
641	ASSERT3P(dn->dn_dbuf, ==, db);
642	ASSERT3U(dn->dn_object, ==, object);
643	dbuf_rele(db, FTAG);
644
645	*dnp = dn;
646	return (0);
647}
648
649/*
650 * Return held dnode if the object is allocated, NULL if not.
651 */
652int
653dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
654{
655	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
656}
657
658/*
659 * Can only add a reference if there is already at least one
660 * reference on the dnode.  Returns FALSE if unable to add a
661 * new reference.
662 */
663boolean_t
664dnode_add_ref(dnode_t *dn, void *tag)
665{
666	mutex_enter(&dn->dn_mtx);
667	if (refcount_is_zero(&dn->dn_holds)) {
668		mutex_exit(&dn->dn_mtx);
669		return (FALSE);
670	}
671	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
672	mutex_exit(&dn->dn_mtx);
673	return (TRUE);
674}
675
676void
677dnode_rele(dnode_t *dn, void *tag)
678{
679	uint64_t refs;
680
681	mutex_enter(&dn->dn_mtx);
682	refs = refcount_remove(&dn->dn_holds, tag);
683	mutex_exit(&dn->dn_mtx);
684	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
685	if (refs == 0 && dn->dn_dbuf)
686		dbuf_rele(dn->dn_dbuf, dn);
687}
688
689void
690dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
691{
692	objset_t *os = dn->dn_objset;
693	uint64_t txg = tx->tx_txg;
694
695	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
696		dsl_dataset_dirty(os->os_dsl_dataset, tx);
697		return;
698	}
699
700	DNODE_VERIFY(dn);
701
702#ifdef ZFS_DEBUG
703	mutex_enter(&dn->dn_mtx);
704	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
705	/* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */
706	mutex_exit(&dn->dn_mtx);
707#endif
708
709	mutex_enter(&os->os_lock);
710
711	/*
712	 * If we are already marked dirty, we're done.
713	 */
714	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
715		mutex_exit(&os->os_lock);
716		return;
717	}
718
719	ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
720	ASSERT(dn->dn_datablksz != 0);
721	ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
722	ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
723
724	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
725	    dn->dn_object, txg);
726
727	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
728		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
729	} else {
730		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
731	}
732
733	mutex_exit(&os->os_lock);
734
735	/*
736	 * The dnode maintains a hold on its containing dbuf as
737	 * long as there are holds on it.  Each instantiated child
738	 * dbuf maintaines a hold on the dnode.  When the last child
739	 * drops its hold, the dnode will drop its hold on the
740	 * containing dbuf. We add a "dirty hold" here so that the
741	 * dnode will hang around after we finish processing its
742	 * children.
743	 */
744	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
745
746	(void) dbuf_dirty(dn->dn_dbuf, tx);
747
748	dsl_dataset_dirty(os->os_dsl_dataset, tx);
749}
750
751void
752dnode_free(dnode_t *dn, dmu_tx_t *tx)
753{
754	int txgoff = tx->tx_txg & TXG_MASK;
755
756	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
757
758	/* we should be the only holder... hopefully */
759	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
760
761	mutex_enter(&dn->dn_mtx);
762	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
763		mutex_exit(&dn->dn_mtx);
764		return;
765	}
766	dn->dn_free_txg = tx->tx_txg;
767	mutex_exit(&dn->dn_mtx);
768
769	/*
770	 * If the dnode is already dirty, it needs to be moved from
771	 * the dirty list to the free list.
772	 */
773	mutex_enter(&dn->dn_objset->os_lock);
774	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
775		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
776		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
777		mutex_exit(&dn->dn_objset->os_lock);
778	} else {
779		mutex_exit(&dn->dn_objset->os_lock);
780		dnode_setdirty(dn, tx);
781	}
782}
783
784/*
785 * Try to change the block size for the indicated dnode.  This can only
786 * succeed if there are no blocks allocated or dirty beyond first block
787 */
788int
789dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
790{
791	dmu_buf_impl_t *db, *db_next;
792	int err;
793
794	if (size == 0)
795		size = SPA_MINBLOCKSIZE;
796	if (size > SPA_MAXBLOCKSIZE)
797		size = SPA_MAXBLOCKSIZE;
798	else
799		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
800
801	if (ibs == dn->dn_indblkshift)
802		ibs = 0;
803
804	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
805		return (0);
806
807	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
808
809	/* Check for any allocated blocks beyond the first */
810	if (dn->dn_phys->dn_maxblkid != 0)
811		goto fail;
812
813	mutex_enter(&dn->dn_dbufs_mtx);
814	for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
815		db_next = list_next(&dn->dn_dbufs, db);
816
817		if (db->db_blkid != 0 && db->db_blkid != DB_BONUS_BLKID) {
818			mutex_exit(&dn->dn_dbufs_mtx);
819			goto fail;
820		}
821	}
822	mutex_exit(&dn->dn_dbufs_mtx);
823
824	if (ibs && dn->dn_nlevels != 1)
825		goto fail;
826
827	/* resize the old block */
828	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
829	if (err == 0)
830		dbuf_new_size(db, size, tx);
831	else if (err != ENOENT)
832		goto fail;
833
834	dnode_setdblksz(dn, size);
835	dnode_setdirty(dn, tx);
836	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
837	if (ibs) {
838		dn->dn_indblkshift = ibs;
839		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
840	}
841	/* rele after we have fixed the blocksize in the dnode */
842	if (db)
843		dbuf_rele(db, FTAG);
844
845	rw_exit(&dn->dn_struct_rwlock);
846	return (0);
847
848fail:
849	rw_exit(&dn->dn_struct_rwlock);
850	return (ENOTSUP);
851}
852
853/* read-holding callers must not rely on the lock being continuously held */
854void
855dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
856{
857	uint64_t txgoff = tx->tx_txg & TXG_MASK;
858	int epbs, new_nlevels;
859	uint64_t sz;
860
861	ASSERT(blkid != DB_BONUS_BLKID);
862
863	ASSERT(have_read ?
864	    RW_READ_HELD(&dn->dn_struct_rwlock) :
865	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
866
867	/*
868	 * if we have a read-lock, check to see if we need to do any work
869	 * before upgrading to a write-lock.
870	 */
871	if (have_read) {
872		if (blkid <= dn->dn_maxblkid)
873			return;
874
875		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
876			rw_exit(&dn->dn_struct_rwlock);
877			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
878		}
879	}
880
881	if (blkid <= dn->dn_maxblkid)
882		goto out;
883
884	dn->dn_maxblkid = blkid;
885
886	/*
887	 * Compute the number of levels necessary to support the new maxblkid.
888	 */
889	new_nlevels = 1;
890	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
891	for (sz = dn->dn_nblkptr;
892	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
893		new_nlevels++;
894
895	if (new_nlevels > dn->dn_nlevels) {
896		int old_nlevels = dn->dn_nlevels;
897		dmu_buf_impl_t *db;
898		list_t *list;
899		dbuf_dirty_record_t *new, *dr, *dr_next;
900
901		dn->dn_nlevels = new_nlevels;
902
903		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
904		dn->dn_next_nlevels[txgoff] = new_nlevels;
905
906		/* dirty the left indirects */
907		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
908		new = dbuf_dirty(db, tx);
909		dbuf_rele(db, FTAG);
910
911		/* transfer the dirty records to the new indirect */
912		mutex_enter(&dn->dn_mtx);
913		mutex_enter(&new->dt.di.dr_mtx);
914		list = &dn->dn_dirty_records[txgoff];
915		for (dr = list_head(list); dr; dr = dr_next) {
916			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
917			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
918			    dr->dr_dbuf->db_blkid != DB_BONUS_BLKID) {
919				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
920				list_remove(&dn->dn_dirty_records[txgoff], dr);
921				list_insert_tail(&new->dt.di.dr_children, dr);
922				dr->dr_parent = new;
923			}
924		}
925		mutex_exit(&new->dt.di.dr_mtx);
926		mutex_exit(&dn->dn_mtx);
927	}
928
929out:
930	if (have_read)
931		rw_downgrade(&dn->dn_struct_rwlock);
932}
933
934void
935dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
936{
937	avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
938	avl_index_t where;
939	free_range_t *rp;
940	free_range_t rp_tofind;
941	uint64_t endblk = blkid + nblks;
942
943	ASSERT(MUTEX_HELD(&dn->dn_mtx));
944	ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
945
946	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
947	    blkid, nblks, tx->tx_txg);
948	rp_tofind.fr_blkid = blkid;
949	rp = avl_find(tree, &rp_tofind, &where);
950	if (rp == NULL)
951		rp = avl_nearest(tree, where, AVL_BEFORE);
952	if (rp == NULL)
953		rp = avl_nearest(tree, where, AVL_AFTER);
954
955	while (rp && (rp->fr_blkid <= blkid + nblks)) {
956		uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
957		free_range_t *nrp = AVL_NEXT(tree, rp);
958
959		if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
960			/* clear this entire range */
961			avl_remove(tree, rp);
962			kmem_free(rp, sizeof (free_range_t));
963		} else if (blkid <= rp->fr_blkid &&
964		    endblk > rp->fr_blkid && endblk < fr_endblk) {
965			/* clear the beginning of this range */
966			rp->fr_blkid = endblk;
967			rp->fr_nblks = fr_endblk - endblk;
968		} else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
969		    endblk >= fr_endblk) {
970			/* clear the end of this range */
971			rp->fr_nblks = blkid - rp->fr_blkid;
972		} else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
973			/* clear a chunk out of this range */
974			free_range_t *new_rp =
975			    kmem_alloc(sizeof (free_range_t), KM_SLEEP);
976
977			new_rp->fr_blkid = endblk;
978			new_rp->fr_nblks = fr_endblk - endblk;
979			avl_insert_here(tree, new_rp, rp, AVL_AFTER);
980			rp->fr_nblks = blkid - rp->fr_blkid;
981		}
982		/* there may be no overlap */
983		rp = nrp;
984	}
985}
986
987void
988dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
989{
990	dmu_buf_impl_t *db;
991	uint64_t blkoff, blkid, nblks;
992	int blksz, blkshift, head, tail;
993	int trunc = FALSE;
994	int epbs;
995
996	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
997	blksz = dn->dn_datablksz;
998	blkshift = dn->dn_datablkshift;
999	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1000
1001	if (len == -1ULL) {
1002		len = UINT64_MAX - off;
1003		trunc = TRUE;
1004	}
1005
1006	/*
1007	 * First, block align the region to free:
1008	 */
1009	if (ISP2(blksz)) {
1010		head = P2NPHASE(off, blksz);
1011		blkoff = P2PHASE(off, blksz);
1012		if ((off >> blkshift) > dn->dn_maxblkid)
1013			goto out;
1014	} else {
1015		ASSERT(dn->dn_maxblkid == 0);
1016		if (off == 0 && len >= blksz) {
1017			/* Freeing the whole block; fast-track this request */
1018			blkid = 0;
1019			nblks = 1;
1020			goto done;
1021		} else if (off >= blksz) {
1022			/* Freeing past end-of-data */
1023			goto out;
1024		} else {
1025			/* Freeing part of the block. */
1026			head = blksz - off;
1027			ASSERT3U(head, >, 0);
1028		}
1029		blkoff = off;
1030	}
1031	/* zero out any partial block data at the start of the range */
1032	if (head) {
1033		ASSERT3U(blkoff + head, ==, blksz);
1034		if (len < head)
1035			head = len;
1036		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1037		    FTAG, &db) == 0) {
1038			caddr_t data;
1039
1040			/* don't dirty if it isn't on disk and isn't dirty */
1041			if (db->db_last_dirty ||
1042			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1043				rw_exit(&dn->dn_struct_rwlock);
1044				dbuf_will_dirty(db, tx);
1045				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1046				data = db->db.db_data;
1047				bzero(data + blkoff, head);
1048			}
1049			dbuf_rele(db, FTAG);
1050		}
1051		off += head;
1052		len -= head;
1053	}
1054
1055	/* If the range was less than one block, we're done */
1056	if (len == 0)
1057		goto out;
1058
1059	/* If the remaining range is past end of file, we're done */
1060	if ((off >> blkshift) > dn->dn_maxblkid)
1061		goto out;
1062
1063	ASSERT(ISP2(blksz));
1064	if (trunc)
1065		tail = 0;
1066	else
1067		tail = P2PHASE(len, blksz);
1068
1069	ASSERT3U(P2PHASE(off, blksz), ==, 0);
1070	/* zero out any partial block data at the end of the range */
1071	if (tail) {
1072		if (len < tail)
1073			tail = len;
1074		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1075		    TRUE, FTAG, &db) == 0) {
1076			/* don't dirty if not on disk and not dirty */
1077			if (db->db_last_dirty ||
1078			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1079				rw_exit(&dn->dn_struct_rwlock);
1080				dbuf_will_dirty(db, tx);
1081				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1082				bzero(db->db.db_data, tail);
1083			}
1084			dbuf_rele(db, FTAG);
1085		}
1086		len -= tail;
1087	}
1088
1089	/* If the range did not include a full block, we are done */
1090	if (len == 0)
1091		goto out;
1092
1093	ASSERT(IS_P2ALIGNED(off, blksz));
1094	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1095	blkid = off >> blkshift;
1096	nblks = len >> blkshift;
1097	if (trunc)
1098		nblks += 1;
1099
1100	/*
1101	 * Read in and mark all the level-1 indirects dirty,
1102	 * so that they will stay in memory until syncing phase.
1103	 * Always dirty the first and last indirect to make sure
1104	 * we dirty all the partial indirects.
1105	 */
1106	if (dn->dn_nlevels > 1) {
1107		uint64_t i, first, last;
1108		int shift = epbs + dn->dn_datablkshift;
1109
1110		first = blkid >> epbs;
1111		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1112			dbuf_will_dirty(db, tx);
1113			dbuf_rele(db, FTAG);
1114		}
1115		if (trunc)
1116			last = dn->dn_maxblkid >> epbs;
1117		else
1118			last = (blkid + nblks - 1) >> epbs;
1119		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1120			dbuf_will_dirty(db, tx);
1121			dbuf_rele(db, FTAG);
1122		}
1123		for (i = first + 1; i < last; i++) {
1124			uint64_t ibyte = i << shift;
1125			int err;
1126
1127			err = dnode_next_offset(dn,
1128			    DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1129			i = ibyte >> shift;
1130			if (err == ESRCH || i >= last)
1131				break;
1132			ASSERT(err == 0);
1133			db = dbuf_hold_level(dn, 1, i, FTAG);
1134			if (db) {
1135				dbuf_will_dirty(db, tx);
1136				dbuf_rele(db, FTAG);
1137			}
1138		}
1139	}
1140done:
1141	/*
1142	 * Add this range to the dnode range list.
1143	 * We will finish up this free operation in the syncing phase.
1144	 */
1145	mutex_enter(&dn->dn_mtx);
1146	dnode_clear_range(dn, blkid, nblks, tx);
1147	{
1148		free_range_t *rp, *found;
1149		avl_index_t where;
1150		avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1151
1152		/* Add new range to dn_ranges */
1153		rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1154		rp->fr_blkid = blkid;
1155		rp->fr_nblks = nblks;
1156		found = avl_find(tree, rp, &where);
1157		ASSERT(found == NULL);
1158		avl_insert(tree, rp, where);
1159		dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1160		    blkid, nblks, tx->tx_txg);
1161	}
1162	mutex_exit(&dn->dn_mtx);
1163
1164	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1165	dnode_setdirty(dn, tx);
1166out:
1167	if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1168		dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1169
1170	rw_exit(&dn->dn_struct_rwlock);
1171}
1172
1173/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1174uint64_t
1175dnode_block_freed(dnode_t *dn, uint64_t blkid)
1176{
1177	free_range_t range_tofind;
1178	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1179	int i;
1180
1181	if (blkid == DB_BONUS_BLKID)
1182		return (FALSE);
1183
1184	/*
1185	 * If we're in the process of opening the pool, dp will not be
1186	 * set yet, but there shouldn't be anything dirty.
1187	 */
1188	if (dp == NULL)
1189		return (FALSE);
1190
1191	if (dn->dn_free_txg)
1192		return (TRUE);
1193
1194	range_tofind.fr_blkid = blkid;
1195	mutex_enter(&dn->dn_mtx);
1196	for (i = 0; i < TXG_SIZE; i++) {
1197		free_range_t *range_found;
1198		avl_index_t idx;
1199
1200		range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1201		if (range_found) {
1202			ASSERT(range_found->fr_nblks > 0);
1203			break;
1204		}
1205		range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1206		if (range_found &&
1207		    range_found->fr_blkid + range_found->fr_nblks > blkid)
1208			break;
1209	}
1210	mutex_exit(&dn->dn_mtx);
1211	return (i < TXG_SIZE);
1212}
1213
1214/* call from syncing context when we actually write/free space for this dnode */
1215void
1216dnode_diduse_space(dnode_t *dn, int64_t delta)
1217{
1218	uint64_t space;
1219	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1220	    dn, dn->dn_phys,
1221	    (u_longlong_t)dn->dn_phys->dn_used,
1222	    (longlong_t)delta);
1223
1224	mutex_enter(&dn->dn_mtx);
1225	space = DN_USED_BYTES(dn->dn_phys);
1226	if (delta > 0) {
1227		ASSERT3U(space + delta, >=, space); /* no overflow */
1228	} else {
1229		ASSERT3U(space, >=, -delta); /* no underflow */
1230	}
1231	space += delta;
1232	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1233		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1234		ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1235		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1236	} else {
1237		dn->dn_phys->dn_used = space;
1238		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1239	}
1240	mutex_exit(&dn->dn_mtx);
1241}
1242
1243/*
1244 * Call when we think we're going to write/free space in open context.
1245 * Be conservative (ie. OK to write less than this or free more than
1246 * this, but don't write more or free less).
1247 */
1248void
1249dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1250{
1251	objset_t *os = dn->dn_objset;
1252	dsl_dataset_t *ds = os->os_dsl_dataset;
1253
1254	if (space > 0)
1255		space = spa_get_asize(os->os_spa, space);
1256
1257	if (ds)
1258		dsl_dir_willuse_space(ds->ds_dir, space, tx);
1259
1260	dmu_tx_willuse_space(tx, space);
1261}
1262
1263/*
1264 * This function scans a block at the indicated "level" looking for
1265 * a hole or data (depending on 'flags').  If level > 0, then we are
1266 * scanning an indirect block looking at its pointers.  If level == 0,
1267 * then we are looking at a block of dnodes.  If we don't find what we
1268 * are looking for in the block, we return ESRCH.  Otherwise, return
1269 * with *offset pointing to the beginning (if searching forwards) or
1270 * end (if searching backwards) of the range covered by the block
1271 * pointer we matched on (or dnode).
1272 *
1273 * The basic search algorithm used below by dnode_next_offset() is to
1274 * use this function to search up the block tree (widen the search) until
1275 * we find something (i.e., we don't return ESRCH) and then search back
1276 * down the tree (narrow the search) until we reach our original search
1277 * level.
1278 */
1279static int
1280dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1281	int lvl, uint64_t blkfill, uint64_t txg)
1282{
1283	dmu_buf_impl_t *db = NULL;
1284	void *data = NULL;
1285	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1286	uint64_t epb = 1ULL << epbs;
1287	uint64_t minfill, maxfill;
1288	boolean_t hole;
1289	int i, inc, error, span;
1290
1291	dprintf("probing object %llu offset %llx level %d of %u\n",
1292	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1293
1294	hole = ((flags & DNODE_FIND_HOLE) != 0);
1295	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1296	ASSERT(txg == 0 || !hole);
1297
1298	if (lvl == dn->dn_phys->dn_nlevels) {
1299		error = 0;
1300		epb = dn->dn_phys->dn_nblkptr;
1301		data = dn->dn_phys->dn_blkptr;
1302	} else {
1303		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1304		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1305		if (error) {
1306			if (error != ENOENT)
1307				return (error);
1308			if (hole)
1309				return (0);
1310			/*
1311			 * This can only happen when we are searching up
1312			 * the block tree for data.  We don't really need to
1313			 * adjust the offset, as we will just end up looking
1314			 * at the pointer to this block in its parent, and its
1315			 * going to be unallocated, so we will skip over it.
1316			 */
1317			return (ESRCH);
1318		}
1319		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1320		if (error) {
1321			dbuf_rele(db, FTAG);
1322			return (error);
1323		}
1324		data = db->db.db_data;
1325	}
1326
1327	if (db && txg &&
1328	    (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1329		/*
1330		 * This can only happen when we are searching up the tree
1331		 * and these conditions mean that we need to keep climbing.
1332		 */
1333		error = ESRCH;
1334	} else if (lvl == 0) {
1335		dnode_phys_t *dnp = data;
1336		span = DNODE_SHIFT;
1337		ASSERT(dn->dn_type == DMU_OT_DNODE);
1338
1339		for (i = (*offset >> span) & (blkfill - 1);
1340		    i >= 0 && i < blkfill; i += inc) {
1341			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1342				break;
1343			*offset += (1ULL << span) * inc;
1344		}
1345		if (i < 0 || i == blkfill)
1346			error = ESRCH;
1347	} else {
1348		blkptr_t *bp = data;
1349		uint64_t start = *offset;
1350		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1351		minfill = 0;
1352		maxfill = blkfill << ((lvl - 1) * epbs);
1353
1354		if (hole)
1355			maxfill--;
1356		else
1357			minfill++;
1358
1359		*offset = *offset >> span;
1360		for (i = BF64_GET(*offset, 0, epbs);
1361		    i >= 0 && i < epb; i += inc) {
1362			if (bp[i].blk_fill >= minfill &&
1363			    bp[i].blk_fill <= maxfill &&
1364			    (hole || bp[i].blk_birth > txg))
1365				break;
1366			if (inc > 0 || *offset > 0)
1367				*offset += inc;
1368		}
1369		*offset = *offset << span;
1370		if (inc < 0) {
1371			/* traversing backwards; position offset at the end */
1372			ASSERT3U(*offset, <=, start);
1373			*offset = MIN(*offset + (1ULL << span) - 1, start);
1374		} else if (*offset < start) {
1375			*offset = start;
1376		}
1377		if (i < 0 || i >= epb)
1378			error = ESRCH;
1379	}
1380
1381	if (db)
1382		dbuf_rele(db, FTAG);
1383
1384	return (error);
1385}
1386
1387/*
1388 * Find the next hole, data, or sparse region at or after *offset.
1389 * The value 'blkfill' tells us how many items we expect to find
1390 * in an L0 data block; this value is 1 for normal objects,
1391 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1392 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1393 *
1394 * Examples:
1395 *
1396 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1397 *	Finds the next/previous hole/data in a file.
1398 *	Used in dmu_offset_next().
1399 *
1400 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1401 *	Finds the next free/allocated dnode an objset's meta-dnode.
1402 *	Only finds objects that have new contents since txg (ie.
1403 *	bonus buffer changes and content removal are ignored).
1404 *	Used in dmu_object_next().
1405 *
1406 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1407 *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1408 *	Used in dmu_object_alloc().
1409 */
1410int
1411dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1412    int minlvl, uint64_t blkfill, uint64_t txg)
1413{
1414	uint64_t initial_offset = *offset;
1415	int lvl, maxlvl;
1416	int error = 0;
1417
1418	if (!(flags & DNODE_FIND_HAVELOCK))
1419		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1420
1421	if (dn->dn_phys->dn_nlevels == 0) {
1422		error = ESRCH;
1423		goto out;
1424	}
1425
1426	if (dn->dn_datablkshift == 0) {
1427		if (*offset < dn->dn_datablksz) {
1428			if (flags & DNODE_FIND_HOLE)
1429				*offset = dn->dn_datablksz;
1430		} else {
1431			error = ESRCH;
1432		}
1433		goto out;
1434	}
1435
1436	maxlvl = dn->dn_phys->dn_nlevels;
1437
1438	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1439		error = dnode_next_offset_level(dn,
1440		    flags, offset, lvl, blkfill, txg);
1441		if (error != ESRCH)
1442			break;
1443	}
1444
1445	while (error == 0 && --lvl >= minlvl) {
1446		error = dnode_next_offset_level(dn,
1447		    flags, offset, lvl, blkfill, txg);
1448	}
1449
1450	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1451	    initial_offset < *offset : initial_offset > *offset))
1452		error = ESRCH;
1453out:
1454	if (!(flags & DNODE_FIND_HAVELOCK))
1455		rw_exit(&dn->dn_struct_rwlock);
1456
1457	return (error);
1458}
1459