1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c,v 1.10.2.1 2009/08/03 08:13:06 kensmith Exp $
22 */
23
24/*
25 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29/* #pragma ident	"%Z%%M%	%I%	%E% SMI" */
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#if !defined(sun)
71/* we need internal access to mutexes for state inspection */
72#define	__MUTEX_PRIVATE
73#define __RWLOCK_PRIVATE
74#endif
75
76#include <sys/errno.h>
77#if !defined(sun)
78#include <sys/time.h>
79#endif
80#include <sys/stat.h>
81#include <sys/conf.h>
82#include <sys/systm.h>
83#if defined(sun)
84#include <sys/modctl.h>
85#include <sys/ddi.h>
86#include <sys/sunddi.h>
87#endif
88#include <sys/cpuvar.h>
89#include <sys/kmem.h>
90#if defined(sun)
91#include <sys/strsubr.h>
92#endif
93#include <sys/sysmacros.h>
94#include <sys/dtrace_impl.h>
95#include <sys/atomic.h>
96#include <sys/cmn_err.h>
97#include <sys/mutex_impl.h>
98#include <sys/rwlock_impl.h>
99#include <sys/ctf_api.h>
100#if defined(sun)
101#include <sys/panic.h>
102#include <sys/priv_impl.h>
103#endif
104#include <sys/policy.h>
105#if defined(sun)
106#include <sys/cred_impl.h>
107#include <sys/procfs_isa.h>
108#endif
109#include <sys/taskq.h>
110#if defined(sun)
111#include <sys/mkdev.h>
112#include <sys/kdi.h>
113#endif
114#include <sys/zone.h>
115#include <sys/socket.h>
116#include <netinet/in.h>
117
118/* FreeBSD includes: */
119#if !defined(sun)
120
121#include <sys/ctype.h>
122#include <sys/limits.h>
123//#include <sys/kdb.h>
124#include <sys/kernel.h>
125#include <sys/malloc.h>
126#include <sys/sysctl.h>
127#include <sys/lock.h>
128#include <sys/mutex.h>
129#include <sys/rwlock.h>
130//#include <sys/sx.h>
131#include <sys/file.h>
132#include <sys/filedesc.h>
133#include <sys/dtrace_bsd.h>
134#include <sys/vmem.h>
135#include <sys/module.h>
136#include <sys/cpu.h>
137#include <netinet/in.h>
138#include "dtrace_cddl.h"
139#include "dtrace_debug.c"
140#endif
141
142#if !defined(sun)
143/* fake module entry for netbsd */
144module_t *mod_nbsd = NULL;
145#endif
146
147/*
148 * DTrace Tunable Variables
149 *
150 * The following variables may be tuned by adding a line to /etc/system that
151 * includes both the name of the DTrace module ("dtrace") and the name of the
152 * variable.  For example:
153 *
154 *   set dtrace:dtrace_destructive_disallow = 1
155 *
156 * In general, the only variables that one should be tuning this way are those
157 * that affect system-wide DTrace behavior, and for which the default behavior
158 * is undesirable.  Most of these variables are tunable on a per-consumer
159 * basis using DTrace options, and need not be tuned on a system-wide basis.
160 * When tuning these variables, avoid pathological values; while some attempt
161 * is made to verify the integrity of these variables, they are not considered
162 * part of the supported interface to DTrace, and they are therefore not
163 * checked comprehensively.  Further, these variables should not be tuned
164 * dynamically via "mdb -kw" or other means; they should only be tuned via
165 * /etc/system.
166 */
167int		dtrace_destructive_disallow = 0;
168dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
169size_t		dtrace_difo_maxsize = (256 * 1024);
170dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
171size_t		dtrace_global_maxsize = (16 * 1024);
172size_t		dtrace_actions_max = (16 * 1024);
173size_t		dtrace_retain_max = 1024;
174dtrace_optval_t	dtrace_helper_actions_max = 32;
175dtrace_optval_t	dtrace_helper_providers_max = 32;
176dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
177size_t		dtrace_strsize_default = 256;
178dtrace_optval_t	dtrace_cleanrate_default = 99009900;		/* 101 hz */
179dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
180dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
181dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
182dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
183dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
184dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
185dtrace_optval_t	dtrace_nspec_default = 1;
186dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
187dtrace_optval_t dtrace_stackframes_default = 20;
188dtrace_optval_t dtrace_ustackframes_default = 20;
189dtrace_optval_t dtrace_jstackframes_default = 50;
190dtrace_optval_t dtrace_jstackstrsize_default = 512;
191int		dtrace_msgdsize_max = 128;
192hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
193hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
194int		dtrace_devdepth_max = 32;
195int		dtrace_err_verbose;
196hrtime_t	dtrace_deadman_interval = NANOSEC;
197hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
198hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
199
200/*
201 * DTrace External Variables
202 *
203 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
204 * available to DTrace consumers via the backtick (`) syntax.  One of these,
205 * dtrace_zero, is made deliberately so:  it is provided as a source of
206 * well-known, zero-filled memory.  While this variable is not documented,
207 * it is used by some translators as an implementation detail.
208 */
209const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
210
211/*
212 * DTrace Internal Variables
213 */
214#if defined(sun)
215static dev_info_t	*dtrace_devi;		/* device info */
216#endif
217static vmem_t		*dtrace_arena;		/* probe ID arena */
218#if defined(sun)
219static vmem_t		*dtrace_minor;		/* minor number arena */
220static taskq_t		*dtrace_taskq;		/* task queue */
221#endif
222static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
223int			dtrace_probes_size=0;	/* size for kmem_free */
224static int		dtrace_nprobes;		/* number of probes */
225static dtrace_provider_t *dtrace_provider;	/* provider list */
226static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
227static int		dtrace_opens;		/* number of opens */
228static int		dtrace_helpers;		/* number of helpers */
229#if defined(sun)
230static void		*dtrace_softstate;	/* softstate pointer */
231#endif
232static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
233static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
234static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
235static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
236static int		dtrace_toxranges;	/* number of toxic ranges */
237static int		dtrace_toxranges_max;	/* size of toxic range array */
238static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
239static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
240static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
241static kthread_t	*dtrace_panicked;	/* panicking thread */
242static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
243static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
244static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
245static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
246static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
247#if !defined(sun)
248int		dtrace_in_probe;	/* non-zero if executing a probe */
249#if defined(__i386__) || defined(__amd64__)
250uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
251#endif
252#endif
253
254/*
255 * DTrace Locking
256 * DTrace is protected by three (relatively coarse-grained) locks:
257 *
258 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
259 *     including enabling state, probes, ECBs, consumer state, helper state,
260 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
261 *     probe context is lock-free -- synchronization is handled via the
262 *     dtrace_sync() cross call mechanism.
263 *
264 * (2) dtrace_provider_lock is required when manipulating provider state, or
265 *     when provider state must be held constant.
266 *
267 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
268 *     when meta provider state must be held constant.
269 *
270 * The lock ordering between these three locks is dtrace_meta_lock before
271 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
272 * several places where dtrace_provider_lock is held by the framework as it
273 * calls into the providers -- which then call back into the framework,
274 * grabbing dtrace_lock.)
275 *
276 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
277 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
278 * role as a coarse-grained lock; it is acquired before both of these locks.
279 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
280 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
281 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
282 * acquired _between_ dtrace_provider_lock and dtrace_lock.
283 */
284static kmutex_t		dtrace_lock;		/* probe state lock */
285static kmutex_t		dtrace_provider_lock;	/* provider state lock */
286static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
287
288#if !defined(sun)
289/* XXX FreeBSD hacks. */
290static kmutex_t		mod_lock;
291
292#define cr_suid		cr_svuid
293#define cr_sgid		cr_svgid
294#define	ipaddr_t	in_addr_t
295#define mod_modname	pathname
296#define vuprintf	vprintf
297#define ttoproc(_a)	((_a)->l_proc)
298#define crgetzoneid(_a)	0
299//#define	NCPU		MAXCPUS
300#define	NCPU		ncpu
301#define SNOCD		0
302#define CPU_ON_INTR(_a)	0
303
304#define PRIV_EFFECTIVE		(1 << 0)
305#define PRIV_DTRACE_KERNEL	(1 << 1)
306#define PRIV_DTRACE_PROC	(1 << 2)
307#define PRIV_DTRACE_USER	(1 << 3)
308#define PRIV_PROC_OWNER		(1 << 4)
309#define PRIV_PROC_ZONE		(1 << 5)
310#define PRIV_ALL		~0
311
312//SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
313#endif
314
315#if defined(sun)
316#define curcpu_id	CPU->cpu_id
317#else
318#define curcpu_id	cpu_number()
319#endif
320
321
322/*
323 * DTrace Provider Variables
324 *
325 * These are the variables relating to DTrace as a provider (that is, the
326 * provider of the BEGIN, END, and ERROR probes).
327 */
328static dtrace_pattr_t	dtrace_provider_attr = {
329{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
330{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
331{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
332{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
333{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
334};
335
336static void
337dtrace_nullop(void)
338{}
339
340static int
341dtrace_enable_nullop(void)
342{
343	return (0);
344}
345
346static dtrace_pops_t	dtrace_provider_ops = {
347	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
348#if defined(sun)
349	(void (*)(void *, modctl_t *))dtrace_nullop,
350#else
351	(void (*)(void *, dtrace_modctl_t *))dtrace_nullop,
352#endif
353	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
354	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
355	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357	NULL,
358	NULL,
359	NULL,
360	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
361};
362
363static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
364static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
365dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
366
367/*
368 * DTrace Helper Tracing Variables
369 */
370uint32_t dtrace_helptrace_next = 0;
371uint32_t dtrace_helptrace_nlocals;
372char	*dtrace_helptrace_buffer;
373int	dtrace_helptrace_bufsize = 512 * 1024;
374
375#ifdef DEBUG
376int	dtrace_helptrace_enabled = 1;
377#else
378int	dtrace_helptrace_enabled = 0;
379#endif
380
381/*
382 * DTrace Error Hashing
383 *
384 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
385 * table.  This is very useful for checking coverage of tests that are
386 * expected to induce DIF or DOF processing errors, and may be useful for
387 * debugging problems in the DIF code generator or in DOF generation .  The
388 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
389 */
390#ifdef DEBUG
391static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
392static const char *dtrace_errlast;
393static kthread_t *dtrace_errthread;
394static kmutex_t dtrace_errlock;
395#endif
396
397/*
398 * DTrace Macros and Constants
399 *
400 * These are various macros that are useful in various spots in the
401 * implementation, along with a few random constants that have no meaning
402 * outside of the implementation.  There is no real structure to this cpp
403 * mishmash -- but is there ever?
404 */
405#define	DTRACE_HASHSTR(hash, probe)	\
406	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
407
408#define	DTRACE_HASHNEXT(hash, probe)	\
409	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
410
411#define	DTRACE_HASHPREV(hash, probe)	\
412	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
413
414#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
415	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
416	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
417
418#define	DTRACE_AGGHASHSIZE_SLEW		17
419
420#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
421
422/*
423 * The key for a thread-local variable consists of the lower 61 bits of the
424 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
425 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
426 * equal to a variable identifier.  This is necessary (but not sufficient) to
427 * assure that global associative arrays never collide with thread-local
428 * variables.  To guarantee that they cannot collide, we must also define the
429 * order for keying dynamic variables.  That order is:
430 *
431 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
432 *
433 * Because the variable-key and the tls-key are in orthogonal spaces, there is
434 * no way for a global variable key signature to match a thread-local key
435 * signature.
436 */
437#if defined(sun)
438#define	DTRACE_TLS_THRKEY(where) { \
439	uint_t intr = 0; \
440	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
441	for (; actv; actv >>= 1) \
442		intr++; \
443	ASSERT(intr < (1 << 3)); \
444	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
445	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
446}
447#else
448#define	DTRACE_TLS_THRKEY(where) { \
449	uint_t intr = 0; \
450	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
451		    DIF_VARIABLE_MAX) & \
452		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453}
454#if 0
455#define	DTRACE_TLS_THRKEY(where) { \
456	solaris_cpu_t *_c = &solaris_cpu[curcpu_id]; \
457	uint_t intr = 0; \
458	uint_t actv = _c->cpu_intr_actv; \
459	for (; actv; actv >>= 1) \
460		intr++; \
461	ASSERT(intr < (1 << 3)); \
462	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
463		    DIF_VARIABLE_MAX) & \
464		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
465}
466#endif
467#endif
468
469#define	DT_BSWAP_8(x)	((x) & 0xff)
470#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
471#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
472#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
473
474#define	DT_MASK_LO 0x00000000FFFFFFFFULL
475
476#define	DTRACE_STORE(type, tomax, offset, what) \
477	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
478
479#ifndef __i386
480#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
481	if (addr & (size - 1)) {					\
482		*flags |= CPU_DTRACE_BADALIGN;				\
483		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;	\
484		return (0);						\
485	}
486#else
487#define	DTRACE_ALIGNCHECK(addr, size, flags)
488#endif
489
490/*
491 * Test whether a range of memory starting at testaddr of size testsz falls
492 * within the range of memory described by addr, sz.  We take care to avoid
493 * problems with overflow and underflow of the unsigned quantities, and
494 * disallow all negative sizes.  Ranges of size 0 are allowed.
495 */
496#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
497	((testaddr) - (baseaddr) < (basesz) && \
498	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
499	(testaddr) + (testsz) >= (testaddr))
500
501/*
502 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
503 * alloc_sz on the righthand side of the comparison in order to avoid overflow
504 * or underflow in the comparison with it.  This is simpler than the INRANGE
505 * check above, because we know that the dtms_scratch_ptr is valid in the
506 * range.  Allocations of size zero are allowed.
507 */
508#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
509	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
510	(mstate)->dtms_scratch_ptr >= (alloc_sz))
511
512#define	DTRACE_LOADFUNC(bits)						\
513/*CSTYLED*/								\
514uint##bits##_t								\
515dtrace_load##bits(uintptr_t addr)					\
516{									\
517	size_t size = bits / NBBY;					\
518	/*CSTYLED*/							\
519	uint##bits##_t rval;						\
520	int i;								\
521	volatile uint16_t *flags = (volatile uint16_t *)		\
522	    &cpu_core[curcpu_id].cpuc_dtrace_flags;			\
523									\
524	DTRACE_ALIGNCHECK(addr, size, flags);				\
525									\
526	for (i = 0; i < dtrace_toxranges; i++) {			\
527		if (addr >= dtrace_toxrange[i].dtt_limit)		\
528			continue;					\
529									\
530		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
531			continue;					\
532									\
533		/*							\
534		 * This address falls within a toxic region; return 0.	\
535		 */							\
536		*flags |= CPU_DTRACE_BADADDR;				\
537		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;		\
538		return (0);						\
539	}								\
540									\
541	*flags |= CPU_DTRACE_NOFAULT;					\
542	/*CSTYLED*/							\
543	rval = *((volatile uint##bits##_t *)addr);			\
544	*flags &= ~CPU_DTRACE_NOFAULT;					\
545									\
546	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
547}
548
549#ifdef _LP64
550#define	dtrace_loadptr	dtrace_load64
551#else
552#define	dtrace_loadptr	dtrace_load32
553#endif
554
555#define	DTRACE_DYNHASH_FREE	0
556#define	DTRACE_DYNHASH_SINK	1
557#define	DTRACE_DYNHASH_VALID	2
558
559#define	DTRACE_MATCH_FAIL	-1
560#define	DTRACE_MATCH_NEXT	0
561#define	DTRACE_MATCH_DONE	1
562#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
563#define	DTRACE_STATE_ALIGN	64
564
565#define	DTRACE_FLAGS2FLT(flags)						\
566	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
567	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
568	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
569	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
570	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
571	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
572	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
573	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
574	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
575	DTRACEFLT_UNKNOWN)
576
577#define	DTRACEACT_ISSTRING(act)						\
578	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
579	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
580
581/* Function prototype definitions: */
582static size_t dtrace_strlen(const char *, size_t);
583static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
584static void dtrace_enabling_provide(dtrace_provider_t *);
585static int dtrace_enabling_match(dtrace_enabling_t *, int *);
586static void dtrace_enabling_matchall(void);
587static dtrace_state_t *dtrace_anon_grab(void);
588#if defined(sun)
589static uint64_t dtrace_helper(int, dtrace_mstate_t *,
590    dtrace_state_t *, uint64_t, uint64_t);
591static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
592#endif
593static void dtrace_buffer_drop(dtrace_buffer_t *);
594static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
595    dtrace_state_t *, dtrace_mstate_t *);
596static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
597    dtrace_optval_t);
598static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
599#if defined(sun)
600static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
601#endif
602uint16_t dtrace_load16(uintptr_t);
603uint32_t dtrace_load32(uintptr_t);
604uint64_t dtrace_load64(uintptr_t);
605uint8_t dtrace_load8(uintptr_t);
606void dtrace_dynvar_clean(dtrace_dstate_t *);
607dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
608    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
609uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
610
611/*
612 * DTrace Probe Context Functions
613 *
614 * These functions are called from probe context.  Because probe context is
615 * any context in which C may be called, arbitrarily locks may be held,
616 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
617 * As a result, functions called from probe context may only call other DTrace
618 * support functions -- they may not interact at all with the system at large.
619 * (Note that the ASSERT macro is made probe-context safe by redefining it in
620 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
621 * loads are to be performed from probe context, they _must_ be in terms of
622 * the safe dtrace_load*() variants.
623 *
624 * Some functions in this block are not actually called from probe context;
625 * for these functions, there will be a comment above the function reading
626 * "Note:  not called from probe context."
627 */
628void
629dtrace_panic(const char *format, ...)
630{
631	va_list alist;
632
633	va_start(alist, format);
634	dtrace_vpanic(format, alist);
635	va_end(alist);
636}
637
638int
639dtrace_assfail(const char *a, const char *f, int l)
640{
641	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
642
643	/*
644	 * We just need something here that even the most clever compiler
645	 * cannot optimize away.
646	 */
647	return (a[(uintptr_t)f]);
648}
649
650/*
651 * Atomically increment a specified error counter from probe context.
652 */
653static void
654dtrace_error(uint32_t *counter)
655{
656	/*
657	 * Most counters stored to in probe context are per-CPU counters.
658	 * However, there are some error conditions that are sufficiently
659	 * arcane that they don't merit per-CPU storage.  If these counters
660	 * are incremented concurrently on different CPUs, scalability will be
661	 * adversely affected -- but we don't expect them to be white-hot in a
662	 * correctly constructed enabling...
663	 */
664	uint32_t oval, nval;
665
666	do {
667		oval = *counter;
668
669		if ((nval = oval + 1) == 0) {
670			/*
671			 * If the counter would wrap, set it to 1 -- assuring
672			 * that the counter is never zero when we have seen
673			 * errors.  (The counter must be 32-bits because we
674			 * aren't guaranteed a 64-bit compare&swap operation.)
675			 * To save this code both the infamy of being fingered
676			 * by a priggish news story and the indignity of being
677			 * the target of a neo-puritan witch trial, we're
678			 * carefully avoiding any colorful description of the
679			 * likelihood of this condition -- but suffice it to
680			 * say that it is only slightly more likely than the
681			 * overflow of predicate cache IDs, as discussed in
682			 * dtrace_predicate_create().
683			 */
684			nval = 1;
685		}
686	} while (dtrace_cas32(counter, oval, nval) != oval);
687}
688
689/*
690 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
691 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
692 */
693DTRACE_LOADFUNC(8)
694DTRACE_LOADFUNC(16)
695DTRACE_LOADFUNC(32)
696DTRACE_LOADFUNC(64)
697
698static int
699dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
700{
701	if (dest < mstate->dtms_scratch_base)
702		return (0);
703
704	if (dest + size < dest)
705		return (0);
706
707	if (dest + size > mstate->dtms_scratch_ptr)
708		return (0);
709
710	return (1);
711}
712
713static int
714dtrace_canstore_statvar(uint64_t addr, size_t sz,
715    dtrace_statvar_t **svars, int nsvars)
716{
717	int i;
718
719	for (i = 0; i < nsvars; i++) {
720		dtrace_statvar_t *svar = svars[i];
721
722		if (svar == NULL || svar->dtsv_size == 0)
723			continue;
724
725		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
726			return (1);
727	}
728
729	return (0);
730}
731
732/*
733 * Check to see if the address is within a memory region to which a store may
734 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
735 * region.  The caller of dtrace_canstore() is responsible for performing any
736 * alignment checks that are needed before stores are actually executed.
737 */
738static int
739dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
740    dtrace_vstate_t *vstate)
741{
742	/*
743	 * First, check to see if the address is in scratch space...
744	 */
745	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
746	    mstate->dtms_scratch_size))
747		return (1);
748
749	/*
750	 * Now check to see if it's a dynamic variable.  This check will pick
751	 * up both thread-local variables and any global dynamically-allocated
752	 * variables.
753	 */
754	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
755	    vstate->dtvs_dynvars.dtds_size)) {
756		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
757		uintptr_t base = (uintptr_t)dstate->dtds_base +
758		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
759		uintptr_t chunkoffs;
760
761		/*
762		 * Before we assume that we can store here, we need to make
763		 * sure that it isn't in our metadata -- storing to our
764		 * dynamic variable metadata would corrupt our state.  For
765		 * the range to not include any dynamic variable metadata,
766		 * it must:
767		 *
768		 *	(1) Start above the hash table that is at the base of
769		 *	the dynamic variable space
770		 *
771		 *	(2) Have a starting chunk offset that is beyond the
772		 *	dtrace_dynvar_t that is at the base of every chunk
773		 *
774		 *	(3) Not span a chunk boundary
775		 *
776		 */
777		if (addr < base)
778			return (0);
779
780		chunkoffs = (addr - base) % dstate->dtds_chunksize;
781
782		if (chunkoffs < sizeof (dtrace_dynvar_t))
783			return (0);
784
785		if (chunkoffs + sz > dstate->dtds_chunksize)
786			return (0);
787
788		return (1);
789	}
790
791	/*
792	 * Finally, check the static local and global variables.  These checks
793	 * take the longest, so we perform them last.
794	 */
795	if (dtrace_canstore_statvar(addr, sz,
796	    vstate->dtvs_locals, vstate->dtvs_nlocals))
797		return (1);
798
799	if (dtrace_canstore_statvar(addr, sz,
800	    vstate->dtvs_globals, vstate->dtvs_nglobals))
801		return (1);
802
803	return (0);
804}
805
806
807/*
808 * Convenience routine to check to see if the address is within a memory
809 * region in which a load may be issued given the user's privilege level;
810 * if not, it sets the appropriate error flags and loads 'addr' into the
811 * illegal value slot.
812 *
813 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
814 * appropriate memory access protection.
815 */
816static int
817dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
818    dtrace_vstate_t *vstate)
819{
820	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
821
822	/*
823	 * If we hold the privilege to read from kernel memory, then
824	 * everything is readable.
825	 */
826	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
827		return (1);
828
829	/*
830	 * You can obviously read that which you can store.
831	 */
832	if (dtrace_canstore(addr, sz, mstate, vstate))
833		return (1);
834
835	/*
836	 * We're allowed to read from our own string table.
837	 */
838	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
839	    mstate->dtms_difo->dtdo_strlen))
840		return (1);
841
842	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
843	*illval = addr;
844	return (0);
845}
846
847/*
848 * Convenience routine to check to see if a given string is within a memory
849 * region in which a load may be issued given the user's privilege level;
850 * this exists so that we don't need to issue unnecessary dtrace_strlen()
851 * calls in the event that the user has all privileges.
852 */
853static int
854dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
855    dtrace_vstate_t *vstate)
856{
857	size_t strsz;
858
859	/*
860	 * If we hold the privilege to read from kernel memory, then
861	 * everything is readable.
862	 */
863	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
864		return (1);
865
866	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
867	if (dtrace_canload(addr, strsz, mstate, vstate))
868		return (1);
869
870	return (0);
871}
872
873/*
874 * Convenience routine to check to see if a given variable is within a memory
875 * region in which a load may be issued given the user's privilege level.
876 */
877static int
878dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
879    dtrace_vstate_t *vstate)
880{
881	size_t sz;
882	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
883
884	/*
885	 * If we hold the privilege to read from kernel memory, then
886	 * everything is readable.
887	 */
888	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
889		return (1);
890
891	if (type->dtdt_kind == DIF_TYPE_STRING)
892		sz = dtrace_strlen(src,
893		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
894	else
895		sz = type->dtdt_size;
896
897	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
898}
899
900/*
901 * Compare two strings using safe loads.
902 */
903static int
904dtrace_strncmp(char *s1, char *s2, size_t limit)
905{
906	uint8_t c1, c2;
907	volatile uint16_t *flags;
908
909	if (s1 == s2 || limit == 0)
910		return (0);
911
912	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
913
914	do {
915		if (s1 == NULL) {
916			c1 = '\0';
917		} else {
918			c1 = dtrace_load8((uintptr_t)s1++);
919		}
920
921		if (s2 == NULL) {
922			c2 = '\0';
923		} else {
924			c2 = dtrace_load8((uintptr_t)s2++);
925		}
926
927		if (c1 != c2)
928			return (c1 - c2);
929	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
930
931	return (0);
932}
933
934/*
935 * Compute strlen(s) for a string using safe memory accesses.  The additional
936 * len parameter is used to specify a maximum length to ensure completion.
937 */
938static size_t
939dtrace_strlen(const char *s, size_t lim)
940{
941	uint_t len;
942
943	for (len = 0; len != lim; len++) {
944		if (dtrace_load8((uintptr_t)s++) == '\0')
945			break;
946	}
947
948	return (len);
949}
950
951/*
952 * Check if an address falls within a toxic region.
953 */
954static int
955dtrace_istoxic(uintptr_t kaddr, size_t size)
956{
957	uintptr_t taddr, tsize;
958	int i;
959
960	for (i = 0; i < dtrace_toxranges; i++) {
961		taddr = dtrace_toxrange[i].dtt_base;
962		tsize = dtrace_toxrange[i].dtt_limit - taddr;
963
964		if (kaddr - taddr < tsize) {
965			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
966			cpu_core[curcpu_id].cpuc_dtrace_illval = kaddr;
967			return (1);
968		}
969
970		if (taddr - kaddr < size) {
971			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
972			cpu_core[curcpu_id].cpuc_dtrace_illval = taddr;
973			return (1);
974		}
975	}
976
977	return (0);
978}
979
980/*
981 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
982 * memory specified by the DIF program.  The dst is assumed to be safe memory
983 * that we can store to directly because it is managed by DTrace.  As with
984 * standard bcopy, overlapping copies are handled properly.
985 */
986static void
987dtrace_bcopy(const void *src, void *dst, size_t len)
988{
989	if (len != 0) {
990		uint8_t *s1 = dst;
991		const uint8_t *s2 = src;
992
993		if (s1 <= s2) {
994			do {
995				*s1++ = dtrace_load8((uintptr_t)s2++);
996			} while (--len != 0);
997		} else {
998			s2 += len;
999			s1 += len;
1000
1001			do {
1002				*--s1 = dtrace_load8((uintptr_t)--s2);
1003			} while (--len != 0);
1004		}
1005	}
1006}
1007
1008/*
1009 * Copy src to dst using safe memory accesses, up to either the specified
1010 * length, or the point that a nul byte is encountered.  The src is assumed to
1011 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1012 * safe memory that we can store to directly because it is managed by DTrace.
1013 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1014 */
1015static void
1016dtrace_strcpy(const void *src, void *dst, size_t len)
1017{
1018	if (len != 0) {
1019		uint8_t *s1 = dst, c;
1020		const uint8_t *s2 = src;
1021
1022		do {
1023			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1024		} while (--len != 0 && c != '\0');
1025	}
1026}
1027
1028/*
1029 * Copy src to dst, deriving the size and type from the specified (BYREF)
1030 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1031 * program.  The dst is assumed to be DTrace variable memory that is of the
1032 * specified type; we assume that we can store to directly.
1033 */
1034static void
1035dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1036{
1037	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1038
1039	if (type->dtdt_kind == DIF_TYPE_STRING) {
1040		dtrace_strcpy(src, dst, type->dtdt_size);
1041	} else {
1042		dtrace_bcopy(src, dst, type->dtdt_size);
1043	}
1044}
1045
1046/*
1047 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1048 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1049 * safe memory that we can access directly because it is managed by DTrace.
1050 */
1051static int
1052dtrace_bcmp(const void *s1, const void *s2, size_t len)
1053{
1054	volatile uint16_t *flags;
1055
1056	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
1057
1058	if (s1 == s2)
1059		return (0);
1060
1061	if (s1 == NULL || s2 == NULL)
1062		return (1);
1063
1064	if (s1 != s2 && len != 0) {
1065		const uint8_t *ps1 = s1;
1066		const uint8_t *ps2 = s2;
1067
1068		do {
1069			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1070				return (1);
1071		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1072	}
1073	return (0);
1074}
1075
1076/*
1077 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1078 * is for safe DTrace-managed memory only.
1079 */
1080static void
1081dtrace_bzero(void *dst, size_t len)
1082{
1083	uchar_t *cp;
1084
1085	for (cp = dst; len != 0; len--)
1086		*cp++ = 0;
1087}
1088
1089static void
1090dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1091{
1092	uint64_t result[2];
1093
1094	result[0] = addend1[0] + addend2[0];
1095	result[1] = addend1[1] + addend2[1] +
1096	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1097
1098	sum[0] = result[0];
1099	sum[1] = result[1];
1100}
1101
1102/*
1103 * Shift the 128-bit value in a by b. If b is positive, shift left.
1104 * If b is negative, shift right.
1105 */
1106static void
1107dtrace_shift_128(uint64_t *a, int b)
1108{
1109	uint64_t mask;
1110
1111	if (b == 0)
1112		return;
1113
1114	if (b < 0) {
1115		b = -b;
1116		if (b >= 64) {
1117			a[0] = a[1] >> (b - 64);
1118			a[1] = 0;
1119		} else {
1120			a[0] >>= b;
1121			mask = 1LL << (64 - b);
1122			mask -= 1;
1123			a[0] |= ((a[1] & mask) << (64 - b));
1124			a[1] >>= b;
1125		}
1126	} else {
1127		if (b >= 64) {
1128			a[1] = a[0] << (b - 64);
1129			a[0] = 0;
1130		} else {
1131			a[1] <<= b;
1132			mask = a[0] >> (64 - b);
1133			a[1] |= mask;
1134			a[0] <<= b;
1135		}
1136	}
1137}
1138
1139/*
1140 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1141 * use native multiplication on those, and then re-combine into the
1142 * resulting 128-bit value.
1143 *
1144 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1145 *     hi1 * hi2 << 64 +
1146 *     hi1 * lo2 << 32 +
1147 *     hi2 * lo1 << 32 +
1148 *     lo1 * lo2
1149 */
1150static void
1151dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1152{
1153	uint64_t hi1, hi2, lo1, lo2;
1154	uint64_t tmp[2];
1155
1156	hi1 = factor1 >> 32;
1157	hi2 = factor2 >> 32;
1158
1159	lo1 = factor1 & DT_MASK_LO;
1160	lo2 = factor2 & DT_MASK_LO;
1161
1162	product[0] = lo1 * lo2;
1163	product[1] = hi1 * hi2;
1164
1165	tmp[0] = hi1 * lo2;
1166	tmp[1] = 0;
1167	dtrace_shift_128(tmp, 32);
1168	dtrace_add_128(product, tmp, product);
1169
1170	tmp[0] = hi2 * lo1;
1171	tmp[1] = 0;
1172	dtrace_shift_128(tmp, 32);
1173	dtrace_add_128(product, tmp, product);
1174}
1175
1176/*
1177 * This privilege check should be used by actions and subroutines to
1178 * verify that the user credentials of the process that enabled the
1179 * invoking ECB match the target credentials
1180 */
1181static int
1182dtrace_priv_proc_common_user(dtrace_state_t *state)
1183{
1184	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1185
1186	/*
1187	 * We should always have a non-NULL state cred here, since if cred
1188	 * is null (anonymous tracing), we fast-path bypass this routine.
1189	 */
1190	ASSERT(s_cr != NULL);
1191
1192#if defined(sun)
1193	if ((cr = CRED()) != NULL &&
1194	    s_cr->cr_uid == cr->cr_uid &&
1195	    s_cr->cr_uid == cr->cr_ruid &&
1196	    s_cr->cr_uid == cr->cr_suid &&
1197	    s_cr->cr_gid == cr->cr_gid &&
1198	    s_cr->cr_gid == cr->cr_rgid &&
1199	    s_cr->cr_gid == cr->cr_sgid)
1200		return (1);
1201#else
1202	if ((cr = CRED()) != NULL) {
1203	    uid_t uid;
1204	    gid_t gid;
1205
1206	    uid = kauth_cred_getuid(s_cr);
1207	    gid = kauth_cred_getgid(s_cr);
1208
1209		if (uid == kauth_cred_getuid(cr) &&
1210		    uid == kauth_cred_geteuid(cr) &&
1211		    uid == kauth_cred_getsvuid(cr) &&
1212		    gid == kauth_cred_getgid(cr) &&
1213		    gid == kauth_cred_getegid(cr) &&
1214		    gid == kauth_cred_getsvgid(cr)) {
1215			return 1;
1216		}
1217	}
1218#endif
1219
1220	return (0);
1221}
1222
1223/*
1224 * This privilege check should be used by actions and subroutines to
1225 * verify that the zone of the process that enabled the invoking ECB
1226 * matches the target credentials
1227 */
1228static int
1229dtrace_priv_proc_common_zone(dtrace_state_t *state)
1230{
1231#if defined(sun)
1232	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1233
1234	/*
1235	 * We should always have a non-NULL state cred here, since if cred
1236	 * is null (anonymous tracing), we fast-path bypass this routine.
1237	 */
1238	ASSERT(s_cr != NULL);
1239
1240	if ((cr = CRED()) != NULL &&
1241	    s_cr->cr_zone == cr->cr_zone)
1242		return (1);
1243
1244	return (0);
1245#else
1246	return (1);
1247#endif
1248}
1249
1250/*
1251 * This privilege check should be used by actions and subroutines to
1252 * verify that the process has not setuid or changed credentials.
1253 */
1254static int
1255dtrace_priv_proc_common_nocd(void)
1256{
1257	proc_t *proc;
1258
1259	if ((proc = ttoproc(curthread)) != NULL &&
1260	    !(proc->p_flag & SNOCD))
1261		return (1);
1262
1263	return (0);
1264}
1265
1266static int
1267dtrace_priv_proc_destructive(dtrace_state_t *state)
1268{
1269	int action = state->dts_cred.dcr_action;
1270
1271	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1272	    dtrace_priv_proc_common_zone(state) == 0)
1273		goto bad;
1274
1275	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1276	    dtrace_priv_proc_common_user(state) == 0)
1277		goto bad;
1278
1279	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1280	    dtrace_priv_proc_common_nocd() == 0)
1281		goto bad;
1282
1283	return (1);
1284
1285bad:
1286	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1287
1288	return (0);
1289}
1290
1291static int
1292dtrace_priv_proc_control(dtrace_state_t *state)
1293{
1294	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1295		return (1);
1296
1297	if (dtrace_priv_proc_common_zone(state) &&
1298	    dtrace_priv_proc_common_user(state) &&
1299	    dtrace_priv_proc_common_nocd())
1300		return (1);
1301
1302	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1303
1304	return (0);
1305}
1306
1307static int
1308dtrace_priv_proc(dtrace_state_t *state)
1309{
1310	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1311		return (1);
1312
1313	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1314
1315	return (0);
1316}
1317
1318static int
1319dtrace_priv_kernel(dtrace_state_t *state)
1320{
1321	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1322		return (1);
1323
1324	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1325
1326	return (0);
1327}
1328
1329static int
1330dtrace_priv_kernel_destructive(dtrace_state_t *state)
1331{
1332	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1333		return (1);
1334
1335	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1336
1337	return (0);
1338}
1339
1340/*
1341 * Note:  not called from probe context.  This function is called
1342 * asynchronously (and at a regular interval) from outside of probe context to
1343 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1344 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1345 */
1346void
1347dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1348{
1349	dtrace_dynvar_t *dirty;
1350	dtrace_dstate_percpu_t *dcpu;
1351	int i, work = 0;
1352
1353	for (i = 0; i < NCPU; i++) {
1354		dcpu = &dstate->dtds_percpu[i];
1355
1356		ASSERT(dcpu->dtdsc_rinsing == NULL);
1357
1358		/*
1359		 * If the dirty list is NULL, there is no dirty work to do.
1360		 */
1361		if (dcpu->dtdsc_dirty == NULL)
1362			continue;
1363
1364		/*
1365		 * If the clean list is non-NULL, then we're not going to do
1366		 * any work for this CPU -- it means that there has not been
1367		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1368		 * since the last time we cleaned house.
1369		 */
1370		if (dcpu->dtdsc_clean != NULL)
1371			continue;
1372
1373		work = 1;
1374
1375		/*
1376		 * Atomically move the dirty list aside.
1377		 */
1378		do {
1379			dirty = dcpu->dtdsc_dirty;
1380
1381			/*
1382			 * Before we zap the dirty list, set the rinsing list.
1383			 * (This allows for a potential assertion in
1384			 * dtrace_dynvar():  if a free dynamic variable appears
1385			 * on a hash chain, either the dirty list or the
1386			 * rinsing list for some CPU must be non-NULL.)
1387			 */
1388			dcpu->dtdsc_rinsing = dirty;
1389			dtrace_membar_producer();
1390		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1391		    dirty, NULL) != dirty);
1392	}
1393
1394	if (!work) {
1395		/*
1396		 * We have no work to do; we can simply return.
1397		 */
1398		return;
1399	}
1400
1401	dtrace_sync();
1402
1403	for (i = 0; i < NCPU; i++) {
1404		dcpu = &dstate->dtds_percpu[i];
1405
1406		if (dcpu->dtdsc_rinsing == NULL)
1407			continue;
1408
1409		/*
1410		 * We are now guaranteed that no hash chain contains a pointer
1411		 * into this dirty list; we can make it clean.
1412		 */
1413		ASSERT(dcpu->dtdsc_clean == NULL);
1414		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1415		dcpu->dtdsc_rinsing = NULL;
1416	}
1417
1418	/*
1419	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1420	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1421	 * This prevents a race whereby a CPU incorrectly decides that
1422	 * the state should be something other than DTRACE_DSTATE_CLEAN
1423	 * after dtrace_dynvar_clean() has completed.
1424	 */
1425	dtrace_sync();
1426
1427	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1428}
1429
1430/*
1431 * Depending on the value of the op parameter, this function looks-up,
1432 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1433 * allocation is requested, this function will return a pointer to a
1434 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1435 * variable can be allocated.  If NULL is returned, the appropriate counter
1436 * will be incremented.
1437 */
1438dtrace_dynvar_t *
1439dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1440    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1441    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1442{
1443	uint64_t hashval = DTRACE_DYNHASH_VALID;
1444	dtrace_dynhash_t *hash = dstate->dtds_hash;
1445	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1446	processorid_t me = curcpu_id, xcpu = me;
1447	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1448	size_t bucket, ksize;
1449	size_t chunksize = dstate->dtds_chunksize;
1450	uintptr_t kdata, lock, nstate;
1451	uint_t i;
1452
1453	ASSERT(nkeys != 0);
1454
1455	/*
1456	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1457	 * algorithm.  For the by-value portions, we perform the algorithm in
1458	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1459	 * bit, and seems to have only a minute effect on distribution.  For
1460	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1461	 * over each referenced byte.  It's painful to do this, but it's much
1462	 * better than pathological hash distribution.  The efficacy of the
1463	 * hashing algorithm (and a comparison with other algorithms) may be
1464	 * found by running the ::dtrace_dynstat MDB dcmd.
1465	 */
1466	for (i = 0; i < nkeys; i++) {
1467		if (key[i].dttk_size == 0) {
1468			uint64_t val = key[i].dttk_value;
1469
1470			hashval += (val >> 48) & 0xffff;
1471			hashval += (hashval << 10);
1472			hashval ^= (hashval >> 6);
1473
1474			hashval += (val >> 32) & 0xffff;
1475			hashval += (hashval << 10);
1476			hashval ^= (hashval >> 6);
1477
1478			hashval += (val >> 16) & 0xffff;
1479			hashval += (hashval << 10);
1480			hashval ^= (hashval >> 6);
1481
1482			hashval += val & 0xffff;
1483			hashval += (hashval << 10);
1484			hashval ^= (hashval >> 6);
1485		} else {
1486			/*
1487			 * This is incredibly painful, but it beats the hell
1488			 * out of the alternative.
1489			 */
1490			uint64_t j, size = key[i].dttk_size;
1491			uintptr_t base = (uintptr_t)key[i].dttk_value;
1492
1493			if (!dtrace_canload(base, size, mstate, vstate))
1494				break;
1495
1496			for (j = 0; j < size; j++) {
1497				hashval += dtrace_load8(base + j);
1498				hashval += (hashval << 10);
1499				hashval ^= (hashval >> 6);
1500			}
1501		}
1502	}
1503
1504	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1505		return (NULL);
1506
1507	hashval += (hashval << 3);
1508	hashval ^= (hashval >> 11);
1509	hashval += (hashval << 15);
1510
1511	/*
1512	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1513	 * comes out to be one of our two sentinel hash values.  If this
1514	 * actually happens, we set the hashval to be a value known to be a
1515	 * non-sentinel value.
1516	 */
1517	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1518		hashval = DTRACE_DYNHASH_VALID;
1519
1520	/*
1521	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1522	 * important here, tricks can be pulled to reduce it.  (However, it's
1523	 * critical that hash collisions be kept to an absolute minimum;
1524	 * they're much more painful than a divide.)  It's better to have a
1525	 * solution that generates few collisions and still keeps things
1526	 * relatively simple.
1527	 */
1528	bucket = hashval % dstate->dtds_hashsize;
1529
1530	if (op == DTRACE_DYNVAR_DEALLOC) {
1531		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1532
1533		for (;;) {
1534			while ((lock = *lockp) & 1)
1535				continue;
1536
1537			if (dtrace_casptr((volatile void *)lockp,
1538			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1539				break;
1540		}
1541
1542		dtrace_membar_producer();
1543	}
1544
1545top:
1546	prev = NULL;
1547	lock = hash[bucket].dtdh_lock;
1548
1549	dtrace_membar_consumer();
1550
1551	start = hash[bucket].dtdh_chain;
1552	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1553	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1554	    op != DTRACE_DYNVAR_DEALLOC));
1555
1556	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1557		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1558		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1559
1560		if (dvar->dtdv_hashval != hashval) {
1561			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1562				/*
1563				 * We've reached the sink, and therefore the
1564				 * end of the hash chain; we can kick out of
1565				 * the loop knowing that we have seen a valid
1566				 * snapshot of state.
1567				 */
1568				ASSERT(dvar->dtdv_next == NULL);
1569				ASSERT(dvar == &dtrace_dynhash_sink);
1570				break;
1571			}
1572
1573			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1574				/*
1575				 * We've gone off the rails:  somewhere along
1576				 * the line, one of the members of this hash
1577				 * chain was deleted.  Note that we could also
1578				 * detect this by simply letting this loop run
1579				 * to completion, as we would eventually hit
1580				 * the end of the dirty list.  However, we
1581				 * want to avoid running the length of the
1582				 * dirty list unnecessarily (it might be quite
1583				 * long), so we catch this as early as
1584				 * possible by detecting the hash marker.  In
1585				 * this case, we simply set dvar to NULL and
1586				 * break; the conditional after the loop will
1587				 * send us back to top.
1588				 */
1589				dvar = NULL;
1590				break;
1591			}
1592
1593			goto next;
1594		}
1595
1596		if (dtuple->dtt_nkeys != nkeys)
1597			goto next;
1598
1599		for (i = 0; i < nkeys; i++, dkey++) {
1600			if (dkey->dttk_size != key[i].dttk_size)
1601				goto next; /* size or type mismatch */
1602
1603			if (dkey->dttk_size != 0) {
1604				if (dtrace_bcmp(
1605				    (void *)(uintptr_t)key[i].dttk_value,
1606				    (void *)(uintptr_t)dkey->dttk_value,
1607				    dkey->dttk_size))
1608					goto next;
1609			} else {
1610				if (dkey->dttk_value != key[i].dttk_value)
1611					goto next;
1612			}
1613		}
1614
1615		if (op != DTRACE_DYNVAR_DEALLOC)
1616			return (dvar);
1617
1618		ASSERT(dvar->dtdv_next == NULL ||
1619		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1620
1621		if (prev != NULL) {
1622			ASSERT(hash[bucket].dtdh_chain != dvar);
1623			ASSERT(start != dvar);
1624			ASSERT(prev->dtdv_next == dvar);
1625			prev->dtdv_next = dvar->dtdv_next;
1626		} else {
1627			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1628			    start, dvar->dtdv_next) != start) {
1629				/*
1630				 * We have failed to atomically swing the
1631				 * hash table head pointer, presumably because
1632				 * of a conflicting allocation on another CPU.
1633				 * We need to reread the hash chain and try
1634				 * again.
1635				 */
1636				goto top;
1637			}
1638		}
1639
1640		dtrace_membar_producer();
1641
1642		/*
1643		 * Now set the hash value to indicate that it's free.
1644		 */
1645		ASSERT(hash[bucket].dtdh_chain != dvar);
1646		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1647
1648		dtrace_membar_producer();
1649
1650		/*
1651		 * Set the next pointer to point at the dirty list, and
1652		 * atomically swing the dirty pointer to the newly freed dvar.
1653		 */
1654		do {
1655			next = dcpu->dtdsc_dirty;
1656			dvar->dtdv_next = next;
1657		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1658
1659		/*
1660		 * Finally, unlock this hash bucket.
1661		 */
1662		ASSERT(hash[bucket].dtdh_lock == lock);
1663		ASSERT(lock & 1);
1664		hash[bucket].dtdh_lock++;
1665
1666		return (NULL);
1667next:
1668		prev = dvar;
1669		continue;
1670	}
1671
1672	if (dvar == NULL) {
1673		/*
1674		 * If dvar is NULL, it is because we went off the rails:
1675		 * one of the elements that we traversed in the hash chain
1676		 * was deleted while we were traversing it.  In this case,
1677		 * we assert that we aren't doing a dealloc (deallocs lock
1678		 * the hash bucket to prevent themselves from racing with
1679		 * one another), and retry the hash chain traversal.
1680		 */
1681		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1682		goto top;
1683	}
1684
1685	if (op != DTRACE_DYNVAR_ALLOC) {
1686		/*
1687		 * If we are not to allocate a new variable, we want to
1688		 * return NULL now.  Before we return, check that the value
1689		 * of the lock word hasn't changed.  If it has, we may have
1690		 * seen an inconsistent snapshot.
1691		 */
1692		if (op == DTRACE_DYNVAR_NOALLOC) {
1693			if (hash[bucket].dtdh_lock != lock)
1694				goto top;
1695		} else {
1696			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1697			ASSERT(hash[bucket].dtdh_lock == lock);
1698			ASSERT(lock & 1);
1699			hash[bucket].dtdh_lock++;
1700		}
1701
1702		return (NULL);
1703	}
1704
1705	/*
1706	 * We need to allocate a new dynamic variable.  The size we need is the
1707	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1708	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1709	 * the size of any referred-to data (dsize).  We then round the final
1710	 * size up to the chunksize for allocation.
1711	 */
1712	for (ksize = 0, i = 0; i < nkeys; i++)
1713		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1714
1715	/*
1716	 * This should be pretty much impossible, but could happen if, say,
1717	 * strange DIF specified the tuple.  Ideally, this should be an
1718	 * assertion and not an error condition -- but that requires that the
1719	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1720	 * bullet-proof.  (That is, it must not be able to be fooled by
1721	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1722	 * solving this would presumably not amount to solving the Halting
1723	 * Problem -- but it still seems awfully hard.
1724	 */
1725	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1726	    ksize + dsize > chunksize) {
1727		dcpu->dtdsc_drops++;
1728		return (NULL);
1729	}
1730
1731	nstate = DTRACE_DSTATE_EMPTY;
1732
1733	do {
1734retry:
1735		free = dcpu->dtdsc_free;
1736
1737		if (free == NULL) {
1738			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1739			void *rval;
1740
1741			if (clean == NULL) {
1742				/*
1743				 * We're out of dynamic variable space on
1744				 * this CPU.  Unless we have tried all CPUs,
1745				 * we'll try to allocate from a different
1746				 * CPU.
1747				 */
1748				switch (dstate->dtds_state) {
1749				case DTRACE_DSTATE_CLEAN: {
1750					void *sp = &dstate->dtds_state;
1751
1752					if (++xcpu >= NCPU)
1753						xcpu = 0;
1754
1755					if (dcpu->dtdsc_dirty != NULL &&
1756					    nstate == DTRACE_DSTATE_EMPTY)
1757						nstate = DTRACE_DSTATE_DIRTY;
1758
1759					if (dcpu->dtdsc_rinsing != NULL)
1760						nstate = DTRACE_DSTATE_RINSING;
1761
1762					dcpu = &dstate->dtds_percpu[xcpu];
1763
1764					if (xcpu != me)
1765						goto retry;
1766
1767					(void) dtrace_cas32(sp,
1768					    DTRACE_DSTATE_CLEAN, nstate);
1769
1770					/*
1771					 * To increment the correct bean
1772					 * counter, take another lap.
1773					 */
1774					goto retry;
1775				}
1776
1777				case DTRACE_DSTATE_DIRTY:
1778					dcpu->dtdsc_dirty_drops++;
1779					break;
1780
1781				case DTRACE_DSTATE_RINSING:
1782					dcpu->dtdsc_rinsing_drops++;
1783					break;
1784
1785				case DTRACE_DSTATE_EMPTY:
1786					dcpu->dtdsc_drops++;
1787					break;
1788				}
1789
1790				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1791				return (NULL);
1792			}
1793
1794			/*
1795			 * The clean list appears to be non-empty.  We want to
1796			 * move the clean list to the free list; we start by
1797			 * moving the clean pointer aside.
1798			 */
1799			if (dtrace_casptr(&dcpu->dtdsc_clean,
1800			    clean, NULL) != clean) {
1801				/*
1802				 * We are in one of two situations:
1803				 *
1804				 *  (a)	The clean list was switched to the
1805				 *	free list by another CPU.
1806				 *
1807				 *  (b)	The clean list was added to by the
1808				 *	cleansing cyclic.
1809				 *
1810				 * In either of these situations, we can
1811				 * just reattempt the free list allocation.
1812				 */
1813				goto retry;
1814			}
1815
1816			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1817
1818			/*
1819			 * Now we'll move the clean list to the free list.
1820			 * It's impossible for this to fail:  the only way
1821			 * the free list can be updated is through this
1822			 * code path, and only one CPU can own the clean list.
1823			 * Thus, it would only be possible for this to fail if
1824			 * this code were racing with dtrace_dynvar_clean().
1825			 * (That is, if dtrace_dynvar_clean() updated the clean
1826			 * list, and we ended up racing to update the free
1827			 * list.)  This race is prevented by the dtrace_sync()
1828			 * in dtrace_dynvar_clean() -- which flushes the
1829			 * owners of the clean lists out before resetting
1830			 * the clean lists.
1831			 */
1832			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1833			ASSERT(rval == NULL);
1834			goto retry;
1835		}
1836
1837		dvar = free;
1838		new_free = dvar->dtdv_next;
1839	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1840
1841	/*
1842	 * We have now allocated a new chunk.  We copy the tuple keys into the
1843	 * tuple array and copy any referenced key data into the data space
1844	 * following the tuple array.  As we do this, we relocate dttk_value
1845	 * in the final tuple to point to the key data address in the chunk.
1846	 */
1847	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1848	dvar->dtdv_data = (void *)(kdata + ksize);
1849	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1850
1851	for (i = 0; i < nkeys; i++) {
1852		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1853		size_t kesize = key[i].dttk_size;
1854
1855		if (kesize != 0) {
1856			dtrace_bcopy(
1857			    (const void *)(uintptr_t)key[i].dttk_value,
1858			    (void *)kdata, kesize);
1859			dkey->dttk_value = kdata;
1860			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1861		} else {
1862			dkey->dttk_value = key[i].dttk_value;
1863		}
1864
1865		dkey->dttk_size = kesize;
1866	}
1867
1868	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1869	dvar->dtdv_hashval = hashval;
1870	dvar->dtdv_next = start;
1871
1872	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1873		return (dvar);
1874
1875	/*
1876	 * The cas has failed.  Either another CPU is adding an element to
1877	 * this hash chain, or another CPU is deleting an element from this
1878	 * hash chain.  The simplest way to deal with both of these cases
1879	 * (though not necessarily the most efficient) is to free our
1880	 * allocated block and tail-call ourselves.  Note that the free is
1881	 * to the dirty list and _not_ to the free list.  This is to prevent
1882	 * races with allocators, above.
1883	 */
1884	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1885
1886	dtrace_membar_producer();
1887
1888	do {
1889		free = dcpu->dtdsc_dirty;
1890		dvar->dtdv_next = free;
1891	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1892
1893	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1894}
1895
1896/*ARGSUSED*/
1897static void
1898dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1899{
1900	if ((int64_t)nval < (int64_t)*oval)
1901		*oval = nval;
1902}
1903
1904/*ARGSUSED*/
1905static void
1906dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1907{
1908	if ((int64_t)nval > (int64_t)*oval)
1909		*oval = nval;
1910}
1911
1912static void
1913dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1914{
1915	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1916	int64_t val = (int64_t)nval;
1917
1918	if (val < 0) {
1919		for (i = 0; i < zero; i++) {
1920			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1921				quanta[i] += incr;
1922				return;
1923			}
1924		}
1925	} else {
1926		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1927			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1928				quanta[i - 1] += incr;
1929				return;
1930			}
1931		}
1932
1933		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1934		return;
1935	}
1936
1937	ASSERT(0);
1938}
1939
1940static void
1941dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1942{
1943	uint64_t arg = *lquanta++;
1944	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1945	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1946	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1947	int32_t val = (int32_t)nval, level;
1948
1949	ASSERT(step != 0);
1950	ASSERT(levels != 0);
1951
1952	if (val < base) {
1953		/*
1954		 * This is an underflow.
1955		 */
1956		lquanta[0] += incr;
1957		return;
1958	}
1959
1960	level = (val - base) / step;
1961
1962	if (level < levels) {
1963		lquanta[level + 1] += incr;
1964		return;
1965	}
1966
1967	/*
1968	 * This is an overflow.
1969	 */
1970	lquanta[levels + 1] += incr;
1971}
1972
1973/*ARGSUSED*/
1974static void
1975dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1976{
1977	data[0]++;
1978	data[1] += nval;
1979}
1980
1981/*ARGSUSED*/
1982static void
1983dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1984{
1985	int64_t snval = (int64_t)nval;
1986	uint64_t tmp[2];
1987
1988	data[0]++;
1989	data[1] += nval;
1990
1991	/*
1992	 * What we want to say here is:
1993	 *
1994	 * data[2] += nval * nval;
1995	 *
1996	 * But given that nval is 64-bit, we could easily overflow, so
1997	 * we do this as 128-bit arithmetic.
1998	 */
1999	if (snval < 0)
2000		snval = -snval;
2001
2002	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2003	dtrace_add_128(data + 2, tmp, data + 2);
2004}
2005
2006/*ARGSUSED*/
2007static void
2008dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2009{
2010	*oval = *oval + 1;
2011}
2012
2013/*ARGSUSED*/
2014static void
2015dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2016{
2017	*oval += nval;
2018}
2019
2020/*
2021 * Aggregate given the tuple in the principal data buffer, and the aggregating
2022 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2023 * buffer is specified as the buf parameter.  This routine does not return
2024 * failure; if there is no space in the aggregation buffer, the data will be
2025 * dropped, and a corresponding counter incremented.
2026 */
2027static void
2028dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2029    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2030{
2031	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2032	uint32_t i, ndx, size, fsize;
2033	uint32_t align = sizeof (uint64_t) - 1;
2034	dtrace_aggbuffer_t *agb;
2035	dtrace_aggkey_t *key;
2036	uint32_t hashval = 0, limit, isstr;
2037	caddr_t tomax, data, kdata;
2038	dtrace_actkind_t action;
2039	dtrace_action_t *act;
2040	uintptr_t offs;
2041
2042	if (buf == NULL)
2043		return;
2044
2045	if (!agg->dtag_hasarg) {
2046		/*
2047		 * Currently, only quantize() and lquantize() take additional
2048		 * arguments, and they have the same semantics:  an increment
2049		 * value that defaults to 1 when not present.  If additional
2050		 * aggregating actions take arguments, the setting of the
2051		 * default argument value will presumably have to become more
2052		 * sophisticated...
2053		 */
2054		arg = 1;
2055	}
2056
2057	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2058	size = rec->dtrd_offset - agg->dtag_base;
2059	fsize = size + rec->dtrd_size;
2060
2061	ASSERT(dbuf->dtb_tomax != NULL);
2062	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2063
2064	if ((tomax = buf->dtb_tomax) == NULL) {
2065		dtrace_buffer_drop(buf);
2066		return;
2067	}
2068
2069	/*
2070	 * The metastructure is always at the bottom of the buffer.
2071	 */
2072	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2073	    sizeof (dtrace_aggbuffer_t));
2074
2075	if (buf->dtb_offset == 0) {
2076		/*
2077		 * We just kludge up approximately 1/8th of the size to be
2078		 * buckets.  If this guess ends up being routinely
2079		 * off-the-mark, we may need to dynamically readjust this
2080		 * based on past performance.
2081		 */
2082		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2083
2084		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2085		    (uintptr_t)tomax || hashsize == 0) {
2086			/*
2087			 * We've been given a ludicrously small buffer;
2088			 * increment our drop count and leave.
2089			 */
2090			dtrace_buffer_drop(buf);
2091			return;
2092		}
2093
2094		/*
2095		 * And now, a pathetic attempt to try to get a an odd (or
2096		 * perchance, a prime) hash size for better hash distribution.
2097		 */
2098		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2099			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2100
2101		agb->dtagb_hashsize = hashsize;
2102		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2103		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2104		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2105
2106		for (i = 0; i < agb->dtagb_hashsize; i++)
2107			agb->dtagb_hash[i] = NULL;
2108	}
2109
2110	ASSERT(agg->dtag_first != NULL);
2111	ASSERT(agg->dtag_first->dta_intuple);
2112
2113	/*
2114	 * Calculate the hash value based on the key.  Note that we _don't_
2115	 * include the aggid in the hashing (but we will store it as part of
2116	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2117	 * algorithm: a simple, quick algorithm that has no known funnels, and
2118	 * gets good distribution in practice.  The efficacy of the hashing
2119	 * algorithm (and a comparison with other algorithms) may be found by
2120	 * running the ::dtrace_aggstat MDB dcmd.
2121	 */
2122	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2123		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2124		limit = i + act->dta_rec.dtrd_size;
2125		ASSERT(limit <= size);
2126		isstr = DTRACEACT_ISSTRING(act);
2127
2128		for (; i < limit; i++) {
2129			hashval += data[i];
2130			hashval += (hashval << 10);
2131			hashval ^= (hashval >> 6);
2132
2133			if (isstr && data[i] == '\0')
2134				break;
2135		}
2136	}
2137
2138	hashval += (hashval << 3);
2139	hashval ^= (hashval >> 11);
2140	hashval += (hashval << 15);
2141
2142	/*
2143	 * Yes, the divide here is expensive -- but it's generally the least
2144	 * of the performance issues given the amount of data that we iterate
2145	 * over to compute hash values, compare data, etc.
2146	 */
2147	ndx = hashval % agb->dtagb_hashsize;
2148
2149	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2150		ASSERT((caddr_t)key >= tomax);
2151		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2152
2153		if (hashval != key->dtak_hashval || key->dtak_size != size)
2154			continue;
2155
2156		kdata = key->dtak_data;
2157		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2158
2159		for (act = agg->dtag_first; act->dta_intuple;
2160		    act = act->dta_next) {
2161			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2162			limit = i + act->dta_rec.dtrd_size;
2163			ASSERT(limit <= size);
2164			isstr = DTRACEACT_ISSTRING(act);
2165
2166			for (; i < limit; i++) {
2167				if (kdata[i] != data[i])
2168					goto next;
2169
2170				if (isstr && data[i] == '\0')
2171					break;
2172			}
2173		}
2174
2175		if (action != key->dtak_action) {
2176			/*
2177			 * We are aggregating on the same value in the same
2178			 * aggregation with two different aggregating actions.
2179			 * (This should have been picked up in the compiler,
2180			 * so we may be dealing with errant or devious DIF.)
2181			 * This is an error condition; we indicate as much,
2182			 * and return.
2183			 */
2184			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2185			return;
2186		}
2187
2188		/*
2189		 * This is a hit:  we need to apply the aggregator to
2190		 * the value at this key.
2191		 */
2192		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2193		return;
2194next:
2195		continue;
2196	}
2197
2198	/*
2199	 * We didn't find it.  We need to allocate some zero-filled space,
2200	 * link it into the hash table appropriately, and apply the aggregator
2201	 * to the (zero-filled) value.
2202	 */
2203	offs = buf->dtb_offset;
2204	while (offs & (align - 1))
2205		offs += sizeof (uint32_t);
2206
2207	/*
2208	 * If we don't have enough room to both allocate a new key _and_
2209	 * its associated data, increment the drop count and return.
2210	 */
2211	if ((uintptr_t)tomax + offs + fsize >
2212	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2213		dtrace_buffer_drop(buf);
2214		return;
2215	}
2216
2217	/*CONSTCOND*/
2218	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2219	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2220	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2221
2222	key->dtak_data = kdata = tomax + offs;
2223	buf->dtb_offset = offs + fsize;
2224
2225	/*
2226	 * Now copy the data across.
2227	 */
2228	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2229
2230	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2231		kdata[i] = data[i];
2232
2233	/*
2234	 * Because strings are not zeroed out by default, we need to iterate
2235	 * looking for actions that store strings, and we need to explicitly
2236	 * pad these strings out with zeroes.
2237	 */
2238	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2239		int nul;
2240
2241		if (!DTRACEACT_ISSTRING(act))
2242			continue;
2243
2244		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2245		limit = i + act->dta_rec.dtrd_size;
2246		ASSERT(limit <= size);
2247
2248		for (nul = 0; i < limit; i++) {
2249			if (nul) {
2250				kdata[i] = '\0';
2251				continue;
2252			}
2253
2254			if (data[i] != '\0')
2255				continue;
2256
2257			nul = 1;
2258		}
2259	}
2260
2261	for (i = size; i < fsize; i++)
2262		kdata[i] = 0;
2263
2264	key->dtak_hashval = hashval;
2265	key->dtak_size = size;
2266	key->dtak_action = action;
2267	key->dtak_next = agb->dtagb_hash[ndx];
2268	agb->dtagb_hash[ndx] = key;
2269
2270	/*
2271	 * Finally, apply the aggregator.
2272	 */
2273	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2274	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2275}
2276
2277/*
2278 * Given consumer state, this routine finds a speculation in the INACTIVE
2279 * state and transitions it into the ACTIVE state.  If there is no speculation
2280 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2281 * incremented -- it is up to the caller to take appropriate action.
2282 */
2283static int
2284dtrace_speculation(dtrace_state_t *state)
2285{
2286	int i = 0;
2287	dtrace_speculation_state_t current;
2288	uint32_t *stat = &state->dts_speculations_unavail, count;
2289
2290	while (i < state->dts_nspeculations) {
2291		dtrace_speculation_t *spec = &state->dts_speculations[i];
2292
2293		current = spec->dtsp_state;
2294
2295		if (current != DTRACESPEC_INACTIVE) {
2296			if (current == DTRACESPEC_COMMITTINGMANY ||
2297			    current == DTRACESPEC_COMMITTING ||
2298			    current == DTRACESPEC_DISCARDING)
2299				stat = &state->dts_speculations_busy;
2300			i++;
2301			continue;
2302		}
2303
2304		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2305		    current, DTRACESPEC_ACTIVE) == current)
2306			return (i + 1);
2307	}
2308
2309	/*
2310	 * We couldn't find a speculation.  If we found as much as a single
2311	 * busy speculation buffer, we'll attribute this failure as "busy"
2312	 * instead of "unavail".
2313	 */
2314	do {
2315		count = *stat;
2316	} while (dtrace_cas32(stat, count, count + 1) != count);
2317
2318	return (0);
2319}
2320
2321/*
2322 * This routine commits an active speculation.  If the specified speculation
2323 * is not in a valid state to perform a commit(), this routine will silently do
2324 * nothing.  The state of the specified speculation is transitioned according
2325 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2326 */
2327static void
2328dtrace_speculation_commit(dtrace_state_t *state, processorid_t xcpu,
2329    dtrace_specid_t which)
2330{
2331	dtrace_speculation_t *spec;
2332	dtrace_buffer_t *src, *dest;
2333	uintptr_t daddr, saddr, dlimit;
2334	dtrace_speculation_state_t current, new = 0;
2335	intptr_t offs;
2336
2337	if (which == 0)
2338		return;
2339
2340	if (which > state->dts_nspeculations) {
2341		cpu_core[xcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2342		return;
2343	}
2344
2345	spec = &state->dts_speculations[which - 1];
2346	src = &spec->dtsp_buffer[xcpu];
2347	dest = &state->dts_buffer[xcpu];
2348
2349	do {
2350		current = spec->dtsp_state;
2351
2352		if (current == DTRACESPEC_COMMITTINGMANY)
2353			break;
2354
2355		switch (current) {
2356		case DTRACESPEC_INACTIVE:
2357		case DTRACESPEC_DISCARDING:
2358			return;
2359
2360		case DTRACESPEC_COMMITTING:
2361			/*
2362			 * This is only possible if we are (a) commit()'ing
2363			 * without having done a prior speculate() on this CPU
2364			 * and (b) racing with another commit() on a different
2365			 * CPU.  There's nothing to do -- we just assert that
2366			 * our offset is 0.
2367			 */
2368			ASSERT(src->dtb_offset == 0);
2369			return;
2370
2371		case DTRACESPEC_ACTIVE:
2372			new = DTRACESPEC_COMMITTING;
2373			break;
2374
2375		case DTRACESPEC_ACTIVEONE:
2376			/*
2377			 * This speculation is active on one CPU.  If our
2378			 * buffer offset is non-zero, we know that the one CPU
2379			 * must be us.  Otherwise, we are committing on a
2380			 * different CPU from the speculate(), and we must
2381			 * rely on being asynchronously cleaned.
2382			 */
2383			if (src->dtb_offset != 0) {
2384				new = DTRACESPEC_COMMITTING;
2385				break;
2386			}
2387			/*FALLTHROUGH*/
2388
2389		case DTRACESPEC_ACTIVEMANY:
2390			new = DTRACESPEC_COMMITTINGMANY;
2391			break;
2392
2393		default:
2394			ASSERT(0);
2395		}
2396	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2397	    current, new) != current);
2398
2399	/*
2400	 * We have set the state to indicate that we are committing this
2401	 * speculation.  Now reserve the necessary space in the destination
2402	 * buffer.
2403	 */
2404	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2405	    sizeof (uint64_t), state, NULL)) < 0) {
2406		dtrace_buffer_drop(dest);
2407		goto out;
2408	}
2409
2410	/*
2411	 * We have the space; copy the buffer across.  (Note that this is a
2412	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2413	 * a serious performance issue, a high-performance DTrace-specific
2414	 * bcopy() should obviously be invented.)
2415	 */
2416	daddr = (uintptr_t)dest->dtb_tomax + offs;
2417	dlimit = daddr + src->dtb_offset;
2418	saddr = (uintptr_t)src->dtb_tomax;
2419
2420	/*
2421	 * First, the aligned portion.
2422	 */
2423	while (dlimit - daddr >= sizeof (uint64_t)) {
2424		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2425
2426		daddr += sizeof (uint64_t);
2427		saddr += sizeof (uint64_t);
2428	}
2429
2430	/*
2431	 * Now any left-over bit...
2432	 */
2433	while (dlimit - daddr)
2434		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2435
2436	/*
2437	 * Finally, commit the reserved space in the destination buffer.
2438	 */
2439	dest->dtb_offset = offs + src->dtb_offset;
2440
2441out:
2442	/*
2443	 * If we're lucky enough to be the only active CPU on this speculation
2444	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2445	 */
2446	if (current == DTRACESPEC_ACTIVE ||
2447	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2448		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2449		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2450
2451		ASSERT(rval == DTRACESPEC_COMMITTING);
2452	}
2453
2454	src->dtb_offset = 0;
2455	src->dtb_xamot_drops += src->dtb_drops;
2456	src->dtb_drops = 0;
2457}
2458
2459/*
2460 * This routine discards an active speculation.  If the specified speculation
2461 * is not in a valid state to perform a discard(), this routine will silently
2462 * do nothing.  The state of the specified speculation is transitioned
2463 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2464 */
2465static void
2466dtrace_speculation_discard(dtrace_state_t *state, processorid_t xcpu,
2467    dtrace_specid_t which)
2468{
2469	dtrace_speculation_t *spec;
2470	dtrace_speculation_state_t current, new = 0;
2471	dtrace_buffer_t *buf;
2472
2473	if (which == 0)
2474		return;
2475
2476	if (which > state->dts_nspeculations) {
2477		cpu_core[xcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2478		return;
2479	}
2480
2481	spec = &state->dts_speculations[which - 1];
2482	buf = &spec->dtsp_buffer[xcpu];
2483
2484	do {
2485		current = spec->dtsp_state;
2486
2487		switch (current) {
2488		case DTRACESPEC_INACTIVE:
2489		case DTRACESPEC_COMMITTINGMANY:
2490		case DTRACESPEC_COMMITTING:
2491		case DTRACESPEC_DISCARDING:
2492			return;
2493
2494		case DTRACESPEC_ACTIVE:
2495		case DTRACESPEC_ACTIVEMANY:
2496			new = DTRACESPEC_DISCARDING;
2497			break;
2498
2499		case DTRACESPEC_ACTIVEONE:
2500			if (buf->dtb_offset != 0) {
2501				new = DTRACESPEC_INACTIVE;
2502			} else {
2503				new = DTRACESPEC_DISCARDING;
2504			}
2505			break;
2506
2507		default:
2508			ASSERT(0);
2509		}
2510	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2511	    current, new) != current);
2512
2513	buf->dtb_offset = 0;
2514	buf->dtb_drops = 0;
2515}
2516
2517/*
2518 * Note:  not called from probe context.  This function is called
2519 * asynchronously from cross call context to clean any speculations that are
2520 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2521 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2522 * speculation.
2523 */
2524static void
2525dtrace_speculation_clean_here(dtrace_state_t *state)
2526{
2527	dtrace_icookie_t cookie;
2528	processorid_t xcpu = curcpu_id;
2529	dtrace_buffer_t *dest = &state->dts_buffer[xcpu];
2530	dtrace_specid_t i;
2531
2532	cookie = dtrace_interrupt_disable();
2533
2534	if (dest->dtb_tomax == NULL) {
2535		dtrace_interrupt_enable(cookie);
2536		return;
2537	}
2538
2539	for (i = 0; i < state->dts_nspeculations; i++) {
2540		dtrace_speculation_t *spec = &state->dts_speculations[i];
2541		dtrace_buffer_t *src = &spec->dtsp_buffer[xcpu];
2542
2543		if (src->dtb_tomax == NULL)
2544			continue;
2545
2546		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2547			src->dtb_offset = 0;
2548			continue;
2549		}
2550
2551		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2552			continue;
2553
2554		if (src->dtb_offset == 0)
2555			continue;
2556
2557		dtrace_speculation_commit(state, xcpu, i + 1);
2558	}
2559
2560	dtrace_interrupt_enable(cookie);
2561}
2562
2563/*
2564 * Note:  not called from probe context.  This function is called
2565 * asynchronously (and at a regular interval) to clean any speculations that
2566 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2567 * is work to be done, it cross calls all CPUs to perform that work;
2568 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2569 * INACTIVE state until they have been cleaned by all CPUs.
2570 */
2571static void
2572dtrace_speculation_clean(dtrace_state_t *state)
2573{
2574	int work = 0, rv;
2575	dtrace_specid_t i;
2576
2577	for (i = 0; i < state->dts_nspeculations; i++) {
2578		dtrace_speculation_t *spec = &state->dts_speculations[i];
2579
2580		ASSERT(!spec->dtsp_cleaning);
2581
2582		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2583		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2584			continue;
2585
2586		work++;
2587		spec->dtsp_cleaning = 1;
2588	}
2589
2590	if (!work)
2591		return;
2592
2593	dtrace_xcall(DTRACE_CPUALL,
2594	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2595
2596	/*
2597	 * We now know that all CPUs have committed or discarded their
2598	 * speculation buffers, as appropriate.  We can now set the state
2599	 * to inactive.
2600	 */
2601	for (i = 0; i < state->dts_nspeculations; i++) {
2602		dtrace_speculation_t *spec = &state->dts_speculations[i];
2603		dtrace_speculation_state_t current, new;
2604
2605		if (!spec->dtsp_cleaning)
2606			continue;
2607
2608		current = spec->dtsp_state;
2609		ASSERT(current == DTRACESPEC_DISCARDING ||
2610		    current == DTRACESPEC_COMMITTINGMANY);
2611
2612		new = DTRACESPEC_INACTIVE;
2613
2614		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2615		ASSERT(rv == current);
2616		spec->dtsp_cleaning = 0;
2617	}
2618}
2619
2620/*
2621 * Called as part of a speculate() to get the speculative buffer associated
2622 * with a given speculation.  Returns NULL if the specified speculation is not
2623 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2624 * the active CPU is not the specified CPU -- the speculation will be
2625 * atomically transitioned into the ACTIVEMANY state.
2626 */
2627static dtrace_buffer_t *
2628dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2629    dtrace_specid_t which)
2630{
2631	dtrace_speculation_t *spec;
2632	dtrace_speculation_state_t current, new = 0;
2633	dtrace_buffer_t *buf;
2634
2635	if (which == 0)
2636		return (NULL);
2637
2638	if (which > state->dts_nspeculations) {
2639		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2640		return (NULL);
2641	}
2642
2643	spec = &state->dts_speculations[which - 1];
2644	buf = &spec->dtsp_buffer[cpuid];
2645
2646	do {
2647		current = spec->dtsp_state;
2648
2649		switch (current) {
2650		case DTRACESPEC_INACTIVE:
2651		case DTRACESPEC_COMMITTINGMANY:
2652		case DTRACESPEC_DISCARDING:
2653			return (NULL);
2654
2655		case DTRACESPEC_COMMITTING:
2656			ASSERT(buf->dtb_offset == 0);
2657			return (NULL);
2658
2659		case DTRACESPEC_ACTIVEONE:
2660			/*
2661			 * This speculation is currently active on one CPU.
2662			 * Check the offset in the buffer; if it's non-zero,
2663			 * that CPU must be us (and we leave the state alone).
2664			 * If it's zero, assume that we're starting on a new
2665			 * CPU -- and change the state to indicate that the
2666			 * speculation is active on more than one CPU.
2667			 */
2668			if (buf->dtb_offset != 0)
2669				return (buf);
2670
2671			new = DTRACESPEC_ACTIVEMANY;
2672			break;
2673
2674		case DTRACESPEC_ACTIVEMANY:
2675			return (buf);
2676
2677		case DTRACESPEC_ACTIVE:
2678			new = DTRACESPEC_ACTIVEONE;
2679			break;
2680
2681		default:
2682			ASSERT(0);
2683		}
2684	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2685	    current, new) != current);
2686
2687	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2688	return (buf);
2689}
2690
2691/*
2692 * Return a string.  In the event that the user lacks the privilege to access
2693 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2694 * don't fail access checking.
2695 *
2696 * dtrace_dif_variable() uses this routine as a helper for various
2697 * builtin values such as 'execname' and 'probefunc.'
2698 */
2699uintptr_t
2700dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2701    dtrace_mstate_t *mstate)
2702{
2703	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2704	uintptr_t ret;
2705	size_t strsz;
2706
2707	/*
2708	 * The easy case: this probe is allowed to read all of memory, so
2709	 * we can just return this as a vanilla pointer.
2710	 */
2711	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2712		return (addr);
2713
2714	/*
2715	 * This is the tougher case: we copy the string in question from
2716	 * kernel memory into scratch memory and return it that way: this
2717	 * ensures that we won't trip up when access checking tests the
2718	 * BYREF return value.
2719	 */
2720	strsz = dtrace_strlen((char *)addr, size) + 1;
2721
2722	if (mstate->dtms_scratch_ptr + strsz >
2723	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2724		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2725		return (0);
2726	}
2727
2728	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2729	    strsz);
2730	ret = mstate->dtms_scratch_ptr;
2731	mstate->dtms_scratch_ptr += strsz;
2732	return (ret);
2733}
2734
2735#ifdef notyet
2736/*
2737 * Return a string from a memoy address which is known to have one or
2738 * more concatenated, individually zero terminated, sub-strings.
2739 * In the event that the user lacks the privilege to access
2740 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2741 * don't fail access checking.
2742 *
2743 * dtrace_dif_variable() uses this routine as a helper for various
2744 * builtin values such as 'execargs'.
2745 */
2746static uintptr_t
2747dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2748    dtrace_mstate_t *mstate)
2749{
2750	char *p;
2751	size_t i;
2752	uintptr_t ret;
2753
2754	if (mstate->dtms_scratch_ptr + strsz >
2755	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2756		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2757		return (0);
2758	}
2759
2760	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2761	    strsz);
2762
2763	/* Replace sub-string termination characters with a space. */
2764	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2765	    p++, i++)
2766		if (*p == '\0')
2767			*p = ' ';
2768
2769	ret = mstate->dtms_scratch_ptr;
2770	mstate->dtms_scratch_ptr += strsz;
2771	return (ret);
2772}
2773#endif
2774
2775/*
2776 * This function implements the DIF emulator's variable lookups.  The emulator
2777 * passes a reserved variable identifier and optional built-in array index.
2778 */
2779static uint64_t
2780dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2781    uint64_t ndx)
2782{
2783	/*
2784	 * If we're accessing one of the uncached arguments, we'll turn this
2785	 * into a reference in the args array.
2786	 */
2787	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2788		ndx = v - DIF_VAR_ARG0;
2789		v = DIF_VAR_ARGS;
2790	}
2791
2792	switch (v) {
2793	case DIF_VAR_ARGS:
2794		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2795		if (ndx >= sizeof (mstate->dtms_arg) /
2796		    sizeof (mstate->dtms_arg[0])) {
2797			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2798			dtrace_provider_t *pv;
2799			uint64_t val;
2800
2801			pv = mstate->dtms_probe->dtpr_provider;
2802			if (pv->dtpv_pops.dtps_getargval != NULL)
2803				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2804				    mstate->dtms_probe->dtpr_id,
2805				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2806			else
2807				val = dtrace_getarg(ndx, aframes);
2808
2809			/*
2810			 * This is regrettably required to keep the compiler
2811			 * from tail-optimizing the call to dtrace_getarg().
2812			 * The condition always evaluates to true, but the
2813			 * compiler has no way of figuring that out a priori.
2814			 * (None of this would be necessary if the compiler
2815			 * could be relied upon to _always_ tail-optimize
2816			 * the call to dtrace_getarg() -- but it can't.)
2817			 */
2818			if (mstate->dtms_probe != NULL)
2819				return (val);
2820
2821			ASSERT(0);
2822		}
2823
2824		return (mstate->dtms_arg[ndx]);
2825
2826#if defined(sun)
2827	case DIF_VAR_UREGS: {
2828		klwp_t *lwp;
2829
2830		if (!dtrace_priv_proc(state))
2831			return (0);
2832
2833		if ((lwp = curthread->t_lwp) == NULL) {
2834			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2835			cpu_core[curcpu_id].cpuc_dtrace_illval = NULL;
2836			return (0);
2837		}
2838
2839		return (dtrace_getreg(lwp->lwp_regs, ndx));
2840		return (0);
2841	}
2842#endif
2843
2844	case DIF_VAR_CURTHREAD:
2845		if (!dtrace_priv_kernel(state))
2846			return (0);
2847		return ((uint64_t)(uintptr_t)curthread);
2848
2849	case DIF_VAR_TIMESTAMP:
2850		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2851			mstate->dtms_timestamp = dtrace_gethrtime();
2852			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2853		}
2854		return (mstate->dtms_timestamp);
2855
2856	case DIF_VAR_VTIMESTAMP:
2857		ASSERT(dtrace_vtime_references != 0);
2858		return (curthread->t_dtrace_vtime);
2859
2860	case DIF_VAR_WALLTIMESTAMP:
2861		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2862			mstate->dtms_walltimestamp = dtrace_gethrestime();
2863			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2864		}
2865		return (mstate->dtms_walltimestamp);
2866
2867#if defined(sun)
2868	case DIF_VAR_IPL:
2869		if (!dtrace_priv_kernel(state))
2870			return (0);
2871		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2872			mstate->dtms_ipl = dtrace_getipl();
2873			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2874		}
2875		return (mstate->dtms_ipl);
2876#endif
2877
2878	case DIF_VAR_EPID:
2879		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2880		return (mstate->dtms_epid);
2881
2882	case DIF_VAR_ID:
2883		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2884		return (mstate->dtms_probe->dtpr_id);
2885
2886	case DIF_VAR_STACKDEPTH:
2887		if (!dtrace_priv_kernel(state))
2888			return (0);
2889		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2890			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2891
2892			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2893			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2894		}
2895		return (mstate->dtms_stackdepth);
2896
2897#if defined(sun)
2898	case DIF_VAR_USTACKDEPTH:
2899		if (!dtrace_priv_proc(state))
2900			return (0);
2901		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2902			/*
2903			 * See comment in DIF_VAR_PID.
2904			 */
2905			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2906			    CPU_ON_INTR(CPU)) {
2907				mstate->dtms_ustackdepth = 0;
2908			} else {
2909				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2910				mstate->dtms_ustackdepth =
2911				    dtrace_getustackdepth();
2912				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2913			}
2914			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2915		}
2916		return (mstate->dtms_ustackdepth);
2917#endif
2918
2919	case DIF_VAR_CALLER:
2920		if (!dtrace_priv_kernel(state))
2921			return (0);
2922		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2923			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2924
2925			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2926				/*
2927				 * If this is an unanchored probe, we are
2928				 * required to go through the slow path:
2929				 * dtrace_caller() only guarantees correct
2930				 * results for anchored probes.
2931				 */
2932				pc_t caller[2] = {0, 0};
2933
2934				dtrace_getpcstack(caller, 2, aframes,
2935				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2936				mstate->dtms_caller = caller[1];
2937			} else if ((mstate->dtms_caller =
2938			    dtrace_caller(aframes)) == -1) {
2939				/*
2940				 * We have failed to do this the quick way;
2941				 * we must resort to the slower approach of
2942				 * calling dtrace_getpcstack().
2943				 */
2944				pc_t caller = 0;
2945
2946				dtrace_getpcstack(&caller, 1, aframes, NULL);
2947				mstate->dtms_caller = caller;
2948			}
2949
2950			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2951		}
2952		return (mstate->dtms_caller);
2953
2954#if defined(sun)
2955	case DIF_VAR_UCALLER:
2956		if (!dtrace_priv_proc(state))
2957			return (0);
2958
2959		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2960			uint64_t ustack[3];
2961
2962			/*
2963			 * dtrace_getupcstack() fills in the first uint64_t
2964			 * with the current PID.  The second uint64_t will
2965			 * be the program counter at user-level.  The third
2966			 * uint64_t will contain the caller, which is what
2967			 * we're after.
2968			 */
2969			ustack[2] = 0;
2970			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2971			dtrace_getupcstack(ustack, 3);
2972			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2973			mstate->dtms_ucaller = ustack[2];
2974			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2975		}
2976
2977		return (mstate->dtms_ucaller);
2978#endif
2979
2980	case DIF_VAR_PROBEPROV:
2981		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2982		return (dtrace_dif_varstr(
2983		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2984		    state, mstate));
2985
2986	case DIF_VAR_PROBEMOD:
2987		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2988		return (dtrace_dif_varstr(
2989		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2990		    state, mstate));
2991
2992	case DIF_VAR_PROBEFUNC:
2993		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2994		return (dtrace_dif_varstr(
2995		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2996		    state, mstate));
2997
2998	case DIF_VAR_PROBENAME:
2999		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3000		return (dtrace_dif_varstr(
3001		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3002		    state, mstate));
3003
3004	case DIF_VAR_PID:
3005		if (!dtrace_priv_proc(state))
3006			return (0);
3007
3008#if defined(sun)
3009		/*
3010		 * Note that we are assuming that an unanchored probe is
3011		 * always due to a high-level interrupt.  (And we're assuming
3012		 * that there is only a single high level interrupt.)
3013		 */
3014		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3015			return (pid0.pid_id);
3016
3017		/*
3018		 * It is always safe to dereference one's own t_procp pointer:
3019		 * it always points to a valid, allocated proc structure.
3020		 * Further, it is always safe to dereference the p_pidp member
3021		 * of one's own proc structure.  (These are truisms becuase
3022		 * threads and processes don't clean up their own state --
3023		 * they leave that task to whomever reaps them.)
3024		 */
3025		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3026#else
3027		return ((uint64_t)curproc->p_pid);
3028#endif
3029
3030	case DIF_VAR_PPID:
3031		if (!dtrace_priv_proc(state))
3032			return (0);
3033
3034#if defined(sun)
3035		/*
3036		 * See comment in DIF_VAR_PID.
3037		 */
3038		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3039			return (pid0.pid_id);
3040
3041		/*
3042		 * It is always safe to dereference one's own t_procp pointer:
3043		 * it always points to a valid, allocated proc structure.
3044		 * (This is true because threads don't clean up their own
3045		 * state -- they leave that task to whomever reaps them.)
3046		 */
3047		return ((uint64_t)curthread->t_procp->p_ppid);
3048#else
3049		return ((uint64_t)curproc->p_pptr->p_pid);
3050#endif
3051
3052	case DIF_VAR_TID:
3053#if defined(sun)
3054		/*
3055		 * See comment in DIF_VAR_PID.
3056		 */
3057		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3058			return (0);
3059#endif
3060
3061		return ((uint64_t)curthread->t_tid);
3062
3063	case DIF_VAR_EXECARGS: {
3064#if 0
3065		struct pargs *p_args = curthread->td_proc->p_args;
3066
3067		if (p_args == NULL)
3068			return(0);
3069
3070		return (dtrace_dif_varstrz(
3071		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3072#endif
3073		/* XXX FreeBSD extension */
3074		return 0;
3075	}
3076
3077	case DIF_VAR_EXECNAME:
3078#if defined(sun)
3079		if (!dtrace_priv_proc(state))
3080			return (0);
3081
3082		/*
3083		 * See comment in DIF_VAR_PID.
3084		 */
3085		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3086			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3087
3088		/*
3089		 * It is always safe to dereference one's own t_procp pointer:
3090		 * it always points to a valid, allocated proc structure.
3091		 * (This is true because threads don't clean up their own
3092		 * state -- they leave that task to whomever reaps them.)
3093		 */
3094		return (dtrace_dif_varstr(
3095		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3096		    state, mstate));
3097#else
3098		return (dtrace_dif_varstr(
3099		    (uintptr_t) curthread->l_proc->p_comm, state, mstate));
3100#endif
3101
3102	case DIF_VAR_ZONENAME:
3103#if defined(sun)
3104		if (!dtrace_priv_proc(state))
3105			return (0);
3106
3107		/*
3108		 * See comment in DIF_VAR_PID.
3109		 */
3110		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3111			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3112
3113		/*
3114		 * It is always safe to dereference one's own t_procp pointer:
3115		 * it always points to a valid, allocated proc structure.
3116		 * (This is true because threads don't clean up their own
3117		 * state -- they leave that task to whomever reaps them.)
3118		 */
3119		return (dtrace_dif_varstr(
3120		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3121		    state, mstate));
3122#else
3123		return (0);
3124#endif
3125
3126	case DIF_VAR_UID:
3127		if (!dtrace_priv_proc(state))
3128			return (0);
3129
3130#if defined(sun)
3131		/*
3132		 * See comment in DIF_VAR_PID.
3133		 */
3134		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3135			return ((uint64_t)p0.p_cred->cr_uid);
3136
3137		/*
3138		 * It is always safe to dereference one's own t_procp pointer:
3139		 * it always points to a valid, allocated proc structure.
3140		 * (This is true because threads don't clean up their own
3141		 * state -- they leave that task to whomever reaps them.)
3142		 *
3143		 * Additionally, it is safe to dereference one's own process
3144		 * credential, since this is never NULL after process birth.
3145		 */
3146		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3147#else
3148		return (uint64_t)kauth_cred_getuid(curthread->t_procp->p_cred);
3149#endif
3150
3151	case DIF_VAR_GID:
3152		if (!dtrace_priv_proc(state))
3153			return (0);
3154
3155#if defined(sun)
3156		/*
3157		 * See comment in DIF_VAR_PID.
3158		 */
3159		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3160			return ((uint64_t)p0.p_cred->cr_gid);
3161
3162		/*
3163		 * It is always safe to dereference one's own t_procp pointer:
3164		 * it always points to a valid, allocated proc structure.
3165		 * (This is true because threads don't clean up their own
3166		 * state -- they leave that task to whomever reaps them.)
3167		 *
3168		 * Additionally, it is safe to dereference one's own process
3169		 * credential, since this is never NULL after process birth.
3170		 */
3171		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3172#else
3173		return (uint64_t)kauth_cred_getgid(curthread->t_procp->p_cred);
3174#endif
3175
3176	case DIF_VAR_ERRNO: {
3177#if defined(sun)
3178		klwp_t *lwp;
3179		if (!dtrace_priv_proc(state))
3180			return (0);
3181
3182		/*
3183		 * See comment in DIF_VAR_PID.
3184		 */
3185		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3186			return (0);
3187
3188		/*
3189		 * It is always safe to dereference one's own t_lwp pointer in
3190		 * the event that this pointer is non-NULL.  (This is true
3191		 * because threads and lwps don't clean up their own state --
3192		 * they leave that task to whomever reaps them.)
3193		 */
3194		if ((lwp = curthread->t_lwp) == NULL)
3195			return (0);
3196
3197		return ((uint64_t)lwp->lwp_errno);
3198#else
3199#if 0
3200		return (curthread->l_errno);
3201#else
3202		return 0;	/* XXX TBD errno support at lwp level? */
3203#endif
3204#endif
3205	}
3206	default:
3207		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3208		return (0);
3209	}
3210}
3211
3212/*
3213 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3214 * Notice that we don't bother validating the proper number of arguments or
3215 * their types in the tuple stack.  This isn't needed because all argument
3216 * interpretation is safe because of our load safety -- the worst that can
3217 * happen is that a bogus program can obtain bogus results.
3218 */
3219static void
3220dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3221    dtrace_key_t *tupregs, int nargs,
3222    dtrace_mstate_t *mstate, dtrace_state_t *state)
3223{
3224	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
3225	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
3226	dtrace_vstate_t *vstate = &state->dts_vstate;
3227
3228#if defined(sun)
3229	union {
3230		mutex_impl_t mi;
3231		uint64_t mx;
3232	} m;
3233
3234	union {
3235		krwlock_t ri;
3236		uintptr_t rw;
3237	} r;
3238#else
3239	union {
3240		kmutex_t mi;
3241		uint64_t mx;
3242	} m;
3243
3244	union {
3245		krwlock_t ri;
3246		uintptr_t rw;
3247	} r;
3248#endif
3249
3250	switch (subr) {
3251	case DIF_SUBR_RAND:
3252		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3253		break;
3254
3255#if defined(sun)
3256	case DIF_SUBR_MUTEX_OWNED:
3257		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3258		    mstate, vstate)) {
3259			regs[rd] = 0;
3260			break;
3261		}
3262
3263		m.mx = dtrace_load64(tupregs[0].dttk_value);
3264		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3265			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3266		else
3267			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3268		break;
3269
3270	case DIF_SUBR_MUTEX_OWNER:
3271		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3272		    mstate, vstate)) {
3273			regs[rd] = 0;
3274			break;
3275		}
3276
3277		m.mx = dtrace_load64(tupregs[0].dttk_value);
3278		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3279		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3280			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3281		else
3282			regs[rd] = 0;
3283		break;
3284
3285	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3286		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3287		    mstate, vstate)) {
3288			regs[rd] = 0;
3289			break;
3290		}
3291
3292		m.mx = dtrace_load64(tupregs[0].dttk_value);
3293		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3294		break;
3295
3296	case DIF_SUBR_MUTEX_TYPE_SPIN:
3297		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3298		    mstate, vstate)) {
3299			regs[rd] = 0;
3300			break;
3301		}
3302
3303		m.mx = dtrace_load64(tupregs[0].dttk_value);
3304		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3305		break;
3306
3307	case DIF_SUBR_RW_READ_HELD: {
3308		uintptr_t tmp;
3309
3310		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3311		    mstate, vstate)) {
3312			regs[rd] = 0;
3313			break;
3314		}
3315
3316		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3317		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3318		break;
3319	}
3320
3321	case DIF_SUBR_RW_WRITE_HELD:
3322		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3323		    mstate, vstate)) {
3324			regs[rd] = 0;
3325			break;
3326		}
3327
3328		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3329		regs[rd] = _RW_WRITE_HELD(&r.ri);
3330		break;
3331
3332	case DIF_SUBR_RW_ISWRITER:
3333		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3334		    mstate, vstate)) {
3335			regs[rd] = 0;
3336			break;
3337		}
3338
3339		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3340		regs[rd] = _RW_ISWRITER(&r.ri);
3341		break;
3342
3343#else
3344	case DIF_SUBR_MUTEX_OWNED:
3345		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3346		    mstate, vstate)) {
3347			regs[rd] = 0;
3348			break;
3349		}
3350
3351		m.mx = dtrace_load64(tupregs[0].dttk_value);
3352		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3353			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3354		else
3355			regs[rd] = __SIMPLELOCK_LOCKED_P(&m.mi.mtx_lock);
3356		break;
3357
3358	case DIF_SUBR_MUTEX_OWNER:
3359		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3360		    mstate, vstate)) {
3361			regs[rd] = 0;
3362			break;
3363		}
3364
3365		m.mx = dtrace_load64(tupregs[0].dttk_value);
3366		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3367		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3368			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3369		else
3370			regs[rd] = 0;
3371		break;
3372
3373	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3374		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3375		    mstate, vstate)) {
3376			regs[rd] = 0;
3377			break;
3378		}
3379
3380		m.mx = dtrace_load64(tupregs[0].dttk_value);
3381		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3382		break;
3383
3384	case DIF_SUBR_MUTEX_TYPE_SPIN:
3385		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3386		    mstate, vstate)) {
3387			regs[rd] = 0;
3388			break;
3389		}
3390
3391		m.mx = dtrace_load64(tupregs[0].dttk_value);
3392		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3393		break;
3394
3395	case DIF_SUBR_RW_READ_HELD: {
3396		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3397		    mstate, vstate)) {
3398			regs[rd] = 0;
3399			break;
3400		}
3401
3402		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3403		regs[rd] = _RW_READ_HELD(&r.ri);
3404		break;
3405	}
3406
3407	case DIF_SUBR_RW_WRITE_HELD:
3408		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3409		    mstate, vstate)) {
3410			regs[rd] = 0;
3411			break;
3412		}
3413
3414		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3415		regs[rd] = _RW_WRITE_HELD(&r.ri);
3416		break;
3417
3418	case DIF_SUBR_RW_ISWRITER:
3419		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3420		    mstate, vstate)) {
3421			regs[rd] = 0;
3422			break;
3423		}
3424
3425		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3426		regs[rd] = _RW_ISWRITER(&r.ri);
3427		break;
3428
3429#endif /* ! defined(sun) */
3430
3431	case DIF_SUBR_BCOPY: {
3432		/*
3433		 * We need to be sure that the destination is in the scratch
3434		 * region -- no other region is allowed.
3435		 */
3436		uintptr_t src = tupregs[0].dttk_value;
3437		uintptr_t dest = tupregs[1].dttk_value;
3438		size_t size = tupregs[2].dttk_value;
3439
3440		if (!dtrace_inscratch(dest, size, mstate)) {
3441			*flags |= CPU_DTRACE_BADADDR;
3442			*illval = regs[rd];
3443			break;
3444		}
3445
3446		if (!dtrace_canload(src, size, mstate, vstate)) {
3447			regs[rd] = 0;
3448			break;
3449		}
3450
3451		dtrace_bcopy((void *)src, (void *)dest, size);
3452		break;
3453	}
3454
3455	case DIF_SUBR_ALLOCA:
3456	case DIF_SUBR_COPYIN: {
3457		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3458		uint64_t size =
3459		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3460		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3461
3462		/*
3463		 * This action doesn't require any credential checks since
3464		 * probes will not activate in user contexts to which the
3465		 * enabling user does not have permissions.
3466		 */
3467
3468		/*
3469		 * Rounding up the user allocation size could have overflowed
3470		 * a large, bogus allocation (like -1ULL) to 0.
3471		 */
3472		if (scratch_size < size ||
3473		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3474			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3475			regs[rd] = 0;
3476			break;
3477		}
3478
3479		if (subr == DIF_SUBR_COPYIN) {
3480			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3481			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3482			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3483		}
3484
3485		mstate->dtms_scratch_ptr += scratch_size;
3486		regs[rd] = dest;
3487		break;
3488	}
3489
3490	case DIF_SUBR_COPYINTO: {
3491		uint64_t size = tupregs[1].dttk_value;
3492		uintptr_t dest = tupregs[2].dttk_value;
3493
3494		/*
3495		 * This action doesn't require any credential checks since
3496		 * probes will not activate in user contexts to which the
3497		 * enabling user does not have permissions.
3498		 */
3499		if (!dtrace_inscratch(dest, size, mstate)) {
3500			*flags |= CPU_DTRACE_BADADDR;
3501			*illval = regs[rd];
3502			break;
3503		}
3504
3505		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3506		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3507		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3508		break;
3509	}
3510
3511	case DIF_SUBR_COPYINSTR: {
3512		uintptr_t dest = mstate->dtms_scratch_ptr;
3513		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3514
3515		if (nargs > 1 && tupregs[1].dttk_value < size)
3516			size = tupregs[1].dttk_value + 1;
3517
3518		/*
3519		 * This action doesn't require any credential checks since
3520		 * probes will not activate in user contexts to which the
3521		 * enabling user does not have permissions.
3522		 */
3523		if (!DTRACE_INSCRATCH(mstate, size)) {
3524			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3525			regs[rd] = 0;
3526			break;
3527		}
3528
3529		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3530		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3531		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3532
3533		((char *)dest)[size - 1] = '\0';
3534		mstate->dtms_scratch_ptr += size;
3535		regs[rd] = dest;
3536		break;
3537	}
3538
3539#if defined(sun)
3540	case DIF_SUBR_MSGSIZE:
3541	case DIF_SUBR_MSGDSIZE: {
3542		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3543		uintptr_t wptr, rptr;
3544		size_t count = 0;
3545		int cont = 0;
3546
3547		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3548
3549			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3550			    vstate)) {
3551				regs[rd] = 0;
3552				break;
3553			}
3554
3555			wptr = dtrace_loadptr(baddr +
3556			    offsetof(mblk_t, b_wptr));
3557
3558			rptr = dtrace_loadptr(baddr +
3559			    offsetof(mblk_t, b_rptr));
3560
3561			if (wptr < rptr) {
3562				*flags |= CPU_DTRACE_BADADDR;
3563				*illval = tupregs[0].dttk_value;
3564				break;
3565			}
3566
3567			daddr = dtrace_loadptr(baddr +
3568			    offsetof(mblk_t, b_datap));
3569
3570			baddr = dtrace_loadptr(baddr +
3571			    offsetof(mblk_t, b_cont));
3572
3573			/*
3574			 * We want to prevent against denial-of-service here,
3575			 * so we're only going to search the list for
3576			 * dtrace_msgdsize_max mblks.
3577			 */
3578			if (cont++ > dtrace_msgdsize_max) {
3579				*flags |= CPU_DTRACE_ILLOP;
3580				break;
3581			}
3582
3583			if (subr == DIF_SUBR_MSGDSIZE) {
3584				if (dtrace_load8(daddr +
3585				    offsetof(dblk_t, db_type)) != M_DATA)
3586					continue;
3587			}
3588
3589			count += wptr - rptr;
3590		}
3591
3592		if (!(*flags & CPU_DTRACE_FAULT))
3593			regs[rd] = count;
3594
3595		break;
3596	}
3597#endif
3598
3599	case DIF_SUBR_PROGENYOF: {
3600		pid_t pid = tupregs[0].dttk_value;
3601		proc_t *p;
3602		int rval = 0;
3603
3604		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3605
3606		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3607#if defined(sun)
3608			if (p->p_pidp->pid_id == pid) {
3609#else
3610			if (p->p_pid == pid) {
3611#endif
3612				rval = 1;
3613				break;
3614			}
3615		}
3616
3617		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3618
3619		regs[rd] = rval;
3620		break;
3621	}
3622
3623	case DIF_SUBR_SPECULATION:
3624		regs[rd] = dtrace_speculation(state);
3625		break;
3626
3627	case DIF_SUBR_COPYOUT: {
3628		uintptr_t kaddr = tupregs[0].dttk_value;
3629		uintptr_t uaddr = tupregs[1].dttk_value;
3630		uint64_t size = tupregs[2].dttk_value;
3631
3632		if (!dtrace_destructive_disallow &&
3633		    dtrace_priv_proc_control(state) &&
3634		    !dtrace_istoxic(kaddr, size)) {
3635			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3636			dtrace_copyout(kaddr, uaddr, size, flags);
3637			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3638		}
3639		break;
3640	}
3641
3642	case DIF_SUBR_COPYOUTSTR: {
3643		uintptr_t kaddr = tupregs[0].dttk_value;
3644		uintptr_t uaddr = tupregs[1].dttk_value;
3645		uint64_t size = tupregs[2].dttk_value;
3646
3647		if (!dtrace_destructive_disallow &&
3648		    dtrace_priv_proc_control(state) &&
3649		    !dtrace_istoxic(kaddr, size)) {
3650			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3651			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3652			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3653		}
3654		break;
3655	}
3656
3657	case DIF_SUBR_STRLEN: {
3658		size_t sz;
3659		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3660		sz = dtrace_strlen((char *)addr,
3661		    state->dts_options[DTRACEOPT_STRSIZE]);
3662
3663		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3664			regs[rd] = 0;
3665			break;
3666		}
3667
3668		regs[rd] = sz;
3669
3670		break;
3671	}
3672
3673	case DIF_SUBR_STRCHR:
3674	case DIF_SUBR_STRRCHR: {
3675		/*
3676		 * We're going to iterate over the string looking for the
3677		 * specified character.  We will iterate until we have reached
3678		 * the string length or we have found the character.  If this
3679		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3680		 * of the specified character instead of the first.
3681		 */
3682		uintptr_t saddr = tupregs[0].dttk_value;
3683		uintptr_t addr = tupregs[0].dttk_value;
3684		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3685		char c, target = (char)tupregs[1].dttk_value;
3686
3687		for (regs[rd] = 0; addr < limit; addr++) {
3688			if ((c = dtrace_load8(addr)) == target) {
3689				regs[rd] = addr;
3690
3691				if (subr == DIF_SUBR_STRCHR)
3692					break;
3693			}
3694
3695			if (c == '\0')
3696				break;
3697		}
3698
3699		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3700			regs[rd] = 0;
3701			break;
3702		}
3703
3704		break;
3705	}
3706
3707	case DIF_SUBR_STRSTR:
3708	case DIF_SUBR_INDEX:
3709	case DIF_SUBR_RINDEX: {
3710		/*
3711		 * We're going to iterate over the string looking for the
3712		 * specified string.  We will iterate until we have reached
3713		 * the string length or we have found the string.  (Yes, this
3714		 * is done in the most naive way possible -- but considering
3715		 * that the string we're searching for is likely to be
3716		 * relatively short, the complexity of Rabin-Karp or similar
3717		 * hardly seems merited.)
3718		 */
3719		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3720		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3721		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3722		size_t len = dtrace_strlen(addr, size);
3723		size_t sublen = dtrace_strlen(substr, size);
3724		char *limit = addr + len, *orig = addr;
3725		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3726		int inc = 1;
3727
3728		regs[rd] = notfound;
3729
3730		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3731			regs[rd] = 0;
3732			break;
3733		}
3734
3735		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3736		    vstate)) {
3737			regs[rd] = 0;
3738			break;
3739		}
3740
3741		/*
3742		 * strstr() and index()/rindex() have similar semantics if
3743		 * both strings are the empty string: strstr() returns a
3744		 * pointer to the (empty) string, and index() and rindex()
3745		 * both return index 0 (regardless of any position argument).
3746		 */
3747		if (sublen == 0 && len == 0) {
3748			if (subr == DIF_SUBR_STRSTR)
3749				regs[rd] = (uintptr_t)addr;
3750			else
3751				regs[rd] = 0;
3752			break;
3753		}
3754
3755		if (subr != DIF_SUBR_STRSTR) {
3756			if (subr == DIF_SUBR_RINDEX) {
3757				limit = orig - 1;
3758				addr += len;
3759				inc = -1;
3760			}
3761
3762			/*
3763			 * Both index() and rindex() take an optional position
3764			 * argument that denotes the starting position.
3765			 */
3766			if (nargs == 3) {
3767				int64_t pos = (int64_t)tupregs[2].dttk_value;
3768
3769				/*
3770				 * If the position argument to index() is
3771				 * negative, Perl implicitly clamps it at
3772				 * zero.  This semantic is a little surprising
3773				 * given the special meaning of negative
3774				 * positions to similar Perl functions like
3775				 * substr(), but it appears to reflect a
3776				 * notion that index() can start from a
3777				 * negative index and increment its way up to
3778				 * the string.  Given this notion, Perl's
3779				 * rindex() is at least self-consistent in
3780				 * that it implicitly clamps positions greater
3781				 * than the string length to be the string
3782				 * length.  Where Perl completely loses
3783				 * coherence, however, is when the specified
3784				 * substring is the empty string ("").  In
3785				 * this case, even if the position is
3786				 * negative, rindex() returns 0 -- and even if
3787				 * the position is greater than the length,
3788				 * index() returns the string length.  These
3789				 * semantics violate the notion that index()
3790				 * should never return a value less than the
3791				 * specified position and that rindex() should
3792				 * never return a value greater than the
3793				 * specified position.  (One assumes that
3794				 * these semantics are artifacts of Perl's
3795				 * implementation and not the results of
3796				 * deliberate design -- it beggars belief that
3797				 * even Larry Wall could desire such oddness.)
3798				 * While in the abstract one would wish for
3799				 * consistent position semantics across
3800				 * substr(), index() and rindex() -- or at the
3801				 * very least self-consistent position
3802				 * semantics for index() and rindex() -- we
3803				 * instead opt to keep with the extant Perl
3804				 * semantics, in all their broken glory.  (Do
3805				 * we have more desire to maintain Perl's
3806				 * semantics than Perl does?  Probably.)
3807				 */
3808				if (subr == DIF_SUBR_RINDEX) {
3809					if (pos < 0) {
3810						if (sublen == 0)
3811							regs[rd] = 0;
3812						break;
3813					}
3814
3815					if (pos > len)
3816						pos = len;
3817				} else {
3818					if (pos < 0)
3819						pos = 0;
3820
3821					if (pos >= len) {
3822						if (sublen == 0)
3823							regs[rd] = len;
3824						break;
3825					}
3826				}
3827
3828				addr = orig + pos;
3829			}
3830		}
3831
3832		for (regs[rd] = notfound; addr != limit; addr += inc) {
3833			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3834				if (subr != DIF_SUBR_STRSTR) {
3835					/*
3836					 * As D index() and rindex() are
3837					 * modeled on Perl (and not on awk),
3838					 * we return a zero-based (and not a
3839					 * one-based) index.  (For you Perl
3840					 * weenies: no, we're not going to add
3841					 * $[ -- and shouldn't you be at a con
3842					 * or something?)
3843					 */
3844					regs[rd] = (uintptr_t)(addr - orig);
3845					break;
3846				}
3847
3848				ASSERT(subr == DIF_SUBR_STRSTR);
3849				regs[rd] = (uintptr_t)addr;
3850				break;
3851			}
3852		}
3853
3854		break;
3855	}
3856
3857	case DIF_SUBR_STRTOK: {
3858		uintptr_t addr = tupregs[0].dttk_value;
3859		uintptr_t tokaddr = tupregs[1].dttk_value;
3860		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3861		uintptr_t limit, toklimit = tokaddr + size;
3862		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3863		char *dest = (char *)mstate->dtms_scratch_ptr;
3864		int i;
3865
3866		/*
3867		 * Check both the token buffer and (later) the input buffer,
3868		 * since both could be non-scratch addresses.
3869		 */
3870		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3871			regs[rd] = 0;
3872			break;
3873		}
3874
3875		if (!DTRACE_INSCRATCH(mstate, size)) {
3876			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3877			regs[rd] = 0;
3878			break;
3879		}
3880
3881		if (addr == 0) {
3882			/*
3883			 * If the address specified is NULL, we use our saved
3884			 * strtok pointer from the mstate.  Note that this
3885			 * means that the saved strtok pointer is _only_
3886			 * valid within multiple enablings of the same probe --
3887			 * it behaves like an implicit clause-local variable.
3888			 */
3889			addr = mstate->dtms_strtok;
3890		} else {
3891			/*
3892			 * If the user-specified address is non-NULL we must
3893			 * access check it.  This is the only time we have
3894			 * a chance to do so, since this address may reside
3895			 * in the string table of this clause-- future calls
3896			 * (when we fetch addr from mstate->dtms_strtok)
3897			 * would fail this access check.
3898			 */
3899			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3900				regs[rd] = 0;
3901				break;
3902			}
3903		}
3904
3905		/*
3906		 * First, zero the token map, and then process the token
3907		 * string -- setting a bit in the map for every character
3908		 * found in the token string.
3909		 */
3910		for (i = 0; i < sizeof (tokmap); i++)
3911			tokmap[i] = 0;
3912
3913		for (; tokaddr < toklimit; tokaddr++) {
3914			if ((c = dtrace_load8(tokaddr)) == '\0')
3915				break;
3916
3917			ASSERT((c >> 3) < sizeof (tokmap));
3918			tokmap[c >> 3] |= (1 << (c & 0x7));
3919		}
3920
3921		for (limit = addr + size; addr < limit; addr++) {
3922			/*
3923			 * We're looking for a character that is _not_ contained
3924			 * in the token string.
3925			 */
3926			if ((c = dtrace_load8(addr)) == '\0')
3927				break;
3928
3929			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3930				break;
3931		}
3932
3933		if (c == '\0') {
3934			/*
3935			 * We reached the end of the string without finding
3936			 * any character that was not in the token string.
3937			 * We return NULL in this case, and we set the saved
3938			 * address to NULL as well.
3939			 */
3940			regs[rd] = 0;
3941			mstate->dtms_strtok = 0;
3942			break;
3943		}
3944
3945		/*
3946		 * From here on, we're copying into the destination string.
3947		 */
3948		for (i = 0; addr < limit && i < size - 1; addr++) {
3949			if ((c = dtrace_load8(addr)) == '\0')
3950				break;
3951
3952			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3953				break;
3954
3955			ASSERT(i < size);
3956			dest[i++] = c;
3957		}
3958
3959		ASSERT(i < size);
3960		dest[i] = '\0';
3961		regs[rd] = (uintptr_t)dest;
3962		mstate->dtms_scratch_ptr += size;
3963		mstate->dtms_strtok = addr;
3964		break;
3965	}
3966
3967	case DIF_SUBR_SUBSTR: {
3968		uintptr_t s = tupregs[0].dttk_value;
3969		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3970		char *d = (char *)mstate->dtms_scratch_ptr;
3971		int64_t index = (int64_t)tupregs[1].dttk_value;
3972		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3973		size_t len = dtrace_strlen((char *)s, size);
3974		int64_t i = 0;
3975
3976		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3977			regs[rd] = 0;
3978			break;
3979		}
3980
3981		if (!DTRACE_INSCRATCH(mstate, size)) {
3982			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3983			regs[rd] = 0;
3984			break;
3985		}
3986
3987		if (nargs <= 2)
3988			remaining = (int64_t)size;
3989
3990		if (index < 0) {
3991			index += len;
3992
3993			if (index < 0 && index + remaining > 0) {
3994				remaining += index;
3995				index = 0;
3996			}
3997		}
3998
3999		if (index >= len || index < 0) {
4000			remaining = 0;
4001		} else if (remaining < 0) {
4002			remaining += len - index;
4003		} else if (index + remaining > size) {
4004			remaining = size - index;
4005		}
4006
4007		for (i = 0; i < remaining; i++) {
4008			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4009				break;
4010		}
4011
4012		d[i] = '\0';
4013
4014		mstate->dtms_scratch_ptr += size;
4015		regs[rd] = (uintptr_t)d;
4016		break;
4017	}
4018
4019#if defined(sun)
4020	case DIF_SUBR_GETMAJOR:
4021#ifdef _LP64
4022		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4023#else
4024		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4025#endif
4026		break;
4027
4028	case DIF_SUBR_GETMINOR:
4029#ifdef _LP64
4030		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4031#else
4032		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4033#endif
4034		break;
4035
4036	case DIF_SUBR_DDI_PATHNAME: {
4037		/*
4038		 * This one is a galactic mess.  We are going to roughly
4039		 * emulate ddi_pathname(), but it's made more complicated
4040		 * by the fact that we (a) want to include the minor name and
4041		 * (b) must proceed iteratively instead of recursively.
4042		 */
4043		uintptr_t dest = mstate->dtms_scratch_ptr;
4044		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4045		char *start = (char *)dest, *end = start + size - 1;
4046		uintptr_t daddr = tupregs[0].dttk_value;
4047		int64_t minor = (int64_t)tupregs[1].dttk_value;
4048		char *s;
4049		int i, len, depth = 0;
4050
4051		/*
4052		 * Due to all the pointer jumping we do and context we must
4053		 * rely upon, we just mandate that the user must have kernel
4054		 * read privileges to use this routine.
4055		 */
4056		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4057			*flags |= CPU_DTRACE_KPRIV;
4058			*illval = daddr;
4059			regs[rd] = 0;
4060		}
4061
4062		if (!DTRACE_INSCRATCH(mstate, size)) {
4063			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4064			regs[rd] = 0;
4065			break;
4066		}
4067
4068		*end = '\0';
4069
4070		/*
4071		 * We want to have a name for the minor.  In order to do this,
4072		 * we need to walk the minor list from the devinfo.  We want
4073		 * to be sure that we don't infinitely walk a circular list,
4074		 * so we check for circularity by sending a scout pointer
4075		 * ahead two elements for every element that we iterate over;
4076		 * if the list is circular, these will ultimately point to the
4077		 * same element.  You may recognize this little trick as the
4078		 * answer to a stupid interview question -- one that always
4079		 * seems to be asked by those who had to have it laboriously
4080		 * explained to them, and who can't even concisely describe
4081		 * the conditions under which one would be forced to resort to
4082		 * this technique.  Needless to say, those conditions are
4083		 * found here -- and probably only here.  Is this the only use
4084		 * of this infamous trick in shipping, production code?  If it
4085		 * isn't, it probably should be...
4086		 */
4087		if (minor != -1) {
4088			uintptr_t maddr = dtrace_loadptr(daddr +
4089			    offsetof(struct dev_info, devi_minor));
4090
4091			uintptr_t next = offsetof(struct ddi_minor_data, next);
4092			uintptr_t name = offsetof(struct ddi_minor_data,
4093			    d_minor) + offsetof(struct ddi_minor, name);
4094			uintptr_t dev = offsetof(struct ddi_minor_data,
4095			    d_minor) + offsetof(struct ddi_minor, dev);
4096			uintptr_t scout;
4097
4098			if (maddr != NULL)
4099				scout = dtrace_loadptr(maddr + next);
4100
4101			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4102				uint64_t m;
4103#ifdef _LP64
4104				m = dtrace_load64(maddr + dev) & MAXMIN64;
4105#else
4106				m = dtrace_load32(maddr + dev) & MAXMIN;
4107#endif
4108				if (m != minor) {
4109					maddr = dtrace_loadptr(maddr + next);
4110
4111					if (scout == NULL)
4112						continue;
4113
4114					scout = dtrace_loadptr(scout + next);
4115
4116					if (scout == NULL)
4117						continue;
4118
4119					scout = dtrace_loadptr(scout + next);
4120
4121					if (scout == NULL)
4122						continue;
4123
4124					if (scout == maddr) {
4125						*flags |= CPU_DTRACE_ILLOP;
4126						break;
4127					}
4128
4129					continue;
4130				}
4131
4132				/*
4133				 * We have the minor data.  Now we need to
4134				 * copy the minor's name into the end of the
4135				 * pathname.
4136				 */
4137				s = (char *)dtrace_loadptr(maddr + name);
4138				len = dtrace_strlen(s, size);
4139
4140				if (*flags & CPU_DTRACE_FAULT)
4141					break;
4142
4143				if (len != 0) {
4144					if ((end -= (len + 1)) < start)
4145						break;
4146
4147					*end = ':';
4148				}
4149
4150				for (i = 1; i <= len; i++)
4151					end[i] = dtrace_load8((uintptr_t)s++);
4152				break;
4153			}
4154		}
4155
4156		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4157			ddi_node_state_t devi_state;
4158
4159			devi_state = dtrace_load32(daddr +
4160			    offsetof(struct dev_info, devi_node_state));
4161
4162			if (*flags & CPU_DTRACE_FAULT)
4163				break;
4164
4165			if (devi_state >= DS_INITIALIZED) {
4166				s = (char *)dtrace_loadptr(daddr +
4167				    offsetof(struct dev_info, devi_addr));
4168				len = dtrace_strlen(s, size);
4169
4170				if (*flags & CPU_DTRACE_FAULT)
4171					break;
4172
4173				if (len != 0) {
4174					if ((end -= (len + 1)) < start)
4175						break;
4176
4177					*end = '@';
4178				}
4179
4180				for (i = 1; i <= len; i++)
4181					end[i] = dtrace_load8((uintptr_t)s++);
4182			}
4183
4184			/*
4185			 * Now for the node name...
4186			 */
4187			s = (char *)dtrace_loadptr(daddr +
4188			    offsetof(struct dev_info, devi_node_name));
4189
4190			daddr = dtrace_loadptr(daddr +
4191			    offsetof(struct dev_info, devi_parent));
4192
4193			/*
4194			 * If our parent is NULL (that is, if we're the root
4195			 * node), we're going to use the special path
4196			 * "devices".
4197			 */
4198			if (daddr == 0)
4199				s = "devices";
4200
4201			len = dtrace_strlen(s, size);
4202			if (*flags & CPU_DTRACE_FAULT)
4203				break;
4204
4205			if ((end -= (len + 1)) < start)
4206				break;
4207
4208			for (i = 1; i <= len; i++)
4209				end[i] = dtrace_load8((uintptr_t)s++);
4210			*end = '/';
4211
4212			if (depth++ > dtrace_devdepth_max) {
4213				*flags |= CPU_DTRACE_ILLOP;
4214				break;
4215			}
4216		}
4217
4218		if (end < start)
4219			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4220
4221		if (daddr == 0) {
4222			regs[rd] = (uintptr_t)end;
4223			mstate->dtms_scratch_ptr += size;
4224		}
4225
4226		break;
4227	}
4228#endif
4229
4230	case DIF_SUBR_STRJOIN: {
4231		char *d = (char *)mstate->dtms_scratch_ptr;
4232		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4233		uintptr_t s1 = tupregs[0].dttk_value;
4234		uintptr_t s2 = tupregs[1].dttk_value;
4235		int i = 0;
4236
4237		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4238		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4239			regs[rd] = 0;
4240			break;
4241		}
4242
4243		if (!DTRACE_INSCRATCH(mstate, size)) {
4244			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4245			regs[rd] = 0;
4246			break;
4247		}
4248
4249		for (;;) {
4250			if (i >= size) {
4251				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4252				regs[rd] = 0;
4253				break;
4254			}
4255
4256			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4257				i--;
4258				break;
4259			}
4260		}
4261
4262		for (;;) {
4263			if (i >= size) {
4264				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4265				regs[rd] = 0;
4266				break;
4267			}
4268
4269			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4270				break;
4271		}
4272
4273		if (i < size) {
4274			mstate->dtms_scratch_ptr += i;
4275			regs[rd] = (uintptr_t)d;
4276		}
4277
4278		break;
4279	}
4280
4281	case DIF_SUBR_LLTOSTR: {
4282		int64_t i = (int64_t)tupregs[0].dttk_value;
4283		int64_t val = i < 0 ? i * -1 : i;
4284		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4285		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4286
4287		if (!DTRACE_INSCRATCH(mstate, size)) {
4288			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4289			regs[rd] = 0;
4290			break;
4291		}
4292
4293		for (*end-- = '\0'; val; val /= 10)
4294			*end-- = '0' + (val % 10);
4295
4296		if (i == 0)
4297			*end-- = '0';
4298
4299		if (i < 0)
4300			*end-- = '-';
4301
4302		regs[rd] = (uintptr_t)end + 1;
4303		mstate->dtms_scratch_ptr += size;
4304		break;
4305	}
4306
4307	case DIF_SUBR_HTONS:
4308	case DIF_SUBR_NTOHS:
4309#if BYTE_ORDER == BIG_ENDIAN
4310		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4311#else
4312		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4313#endif
4314		break;
4315
4316
4317	case DIF_SUBR_HTONL:
4318	case DIF_SUBR_NTOHL:
4319#if BYTE_ORDER == BIG_ENDIAN
4320		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4321#else
4322		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4323#endif
4324		break;
4325
4326
4327	case DIF_SUBR_HTONLL:
4328	case DIF_SUBR_NTOHLL:
4329#if BYTE_ORDER == BIG_ENDIAN
4330		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4331#else
4332		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4333#endif
4334		break;
4335
4336
4337	case DIF_SUBR_DIRNAME:
4338	case DIF_SUBR_BASENAME: {
4339		char *dest = (char *)mstate->dtms_scratch_ptr;
4340		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4341		uintptr_t src = tupregs[0].dttk_value;
4342		int i, j, len = dtrace_strlen((char *)src, size);
4343		int lastbase = -1, firstbase = -1, lastdir = -1;
4344		int start, end;
4345
4346		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4347			regs[rd] = 0;
4348			break;
4349		}
4350
4351		if (!DTRACE_INSCRATCH(mstate, size)) {
4352			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4353			regs[rd] = 0;
4354			break;
4355		}
4356
4357		/*
4358		 * The basename and dirname for a zero-length string is
4359		 * defined to be "."
4360		 */
4361		if (len == 0) {
4362			len = 1;
4363			src = (uintptr_t)".";
4364		}
4365
4366		/*
4367		 * Start from the back of the string, moving back toward the
4368		 * front until we see a character that isn't a slash.  That
4369		 * character is the last character in the basename.
4370		 */
4371		for (i = len - 1; i >= 0; i--) {
4372			if (dtrace_load8(src + i) != '/')
4373				break;
4374		}
4375
4376		if (i >= 0)
4377			lastbase = i;
4378
4379		/*
4380		 * Starting from the last character in the basename, move
4381		 * towards the front until we find a slash.  The character
4382		 * that we processed immediately before that is the first
4383		 * character in the basename.
4384		 */
4385		for (; i >= 0; i--) {
4386			if (dtrace_load8(src + i) == '/')
4387				break;
4388		}
4389
4390		if (i >= 0)
4391			firstbase = i + 1;
4392
4393		/*
4394		 * Now keep going until we find a non-slash character.  That
4395		 * character is the last character in the dirname.
4396		 */
4397		for (; i >= 0; i--) {
4398			if (dtrace_load8(src + i) != '/')
4399				break;
4400		}
4401
4402		if (i >= 0)
4403			lastdir = i;
4404
4405		ASSERT(!(lastbase == -1 && firstbase != -1));
4406		ASSERT(!(firstbase == -1 && lastdir != -1));
4407
4408		if (lastbase == -1) {
4409			/*
4410			 * We didn't find a non-slash character.  We know that
4411			 * the length is non-zero, so the whole string must be
4412			 * slashes.  In either the dirname or the basename
4413			 * case, we return '/'.
4414			 */
4415			ASSERT(firstbase == -1);
4416			firstbase = lastbase = lastdir = 0;
4417		}
4418
4419		if (firstbase == -1) {
4420			/*
4421			 * The entire string consists only of a basename
4422			 * component.  If we're looking for dirname, we need
4423			 * to change our string to be just "."; if we're
4424			 * looking for a basename, we'll just set the first
4425			 * character of the basename to be 0.
4426			 */
4427			if (subr == DIF_SUBR_DIRNAME) {
4428				ASSERT(lastdir == -1);
4429				src = (uintptr_t)".";
4430				lastdir = 0;
4431			} else {
4432				firstbase = 0;
4433			}
4434		}
4435
4436		if (subr == DIF_SUBR_DIRNAME) {
4437			if (lastdir == -1) {
4438				/*
4439				 * We know that we have a slash in the name --
4440				 * or lastdir would be set to 0, above.  And
4441				 * because lastdir is -1, we know that this
4442				 * slash must be the first character.  (That
4443				 * is, the full string must be of the form
4444				 * "/basename".)  In this case, the last
4445				 * character of the directory name is 0.
4446				 */
4447				lastdir = 0;
4448			}
4449
4450			start = 0;
4451			end = lastdir;
4452		} else {
4453			ASSERT(subr == DIF_SUBR_BASENAME);
4454			ASSERT(firstbase != -1 && lastbase != -1);
4455			start = firstbase;
4456			end = lastbase;
4457		}
4458
4459		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4460			dest[j] = dtrace_load8(src + i);
4461
4462		dest[j] = '\0';
4463		regs[rd] = (uintptr_t)dest;
4464		mstate->dtms_scratch_ptr += size;
4465		break;
4466	}
4467
4468	case DIF_SUBR_CLEANPATH: {
4469		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4470		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4471		uintptr_t src = tupregs[0].dttk_value;
4472		int i = 0, j = 0;
4473
4474		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4475			regs[rd] = 0;
4476			break;
4477		}
4478
4479		if (!DTRACE_INSCRATCH(mstate, size)) {
4480			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4481			regs[rd] = 0;
4482			break;
4483		}
4484
4485		/*
4486		 * Move forward, loading each character.
4487		 */
4488		do {
4489			c = dtrace_load8(src + i++);
4490next:
4491			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4492				break;
4493
4494			if (c != '/') {
4495				dest[j++] = c;
4496				continue;
4497			}
4498
4499			c = dtrace_load8(src + i++);
4500
4501			if (c == '/') {
4502				/*
4503				 * We have two slashes -- we can just advance
4504				 * to the next character.
4505				 */
4506				goto next;
4507			}
4508
4509			if (c != '.') {
4510				/*
4511				 * This is not "." and it's not ".." -- we can
4512				 * just store the "/" and this character and
4513				 * drive on.
4514				 */
4515				dest[j++] = '/';
4516				dest[j++] = c;
4517				continue;
4518			}
4519
4520			c = dtrace_load8(src + i++);
4521
4522			if (c == '/') {
4523				/*
4524				 * This is a "/./" component.  We're not going
4525				 * to store anything in the destination buffer;
4526				 * we're just going to go to the next component.
4527				 */
4528				goto next;
4529			}
4530
4531			if (c != '.') {
4532				/*
4533				 * This is not ".." -- we can just store the
4534				 * "/." and this character and continue
4535				 * processing.
4536				 */
4537				dest[j++] = '/';
4538				dest[j++] = '.';
4539				dest[j++] = c;
4540				continue;
4541			}
4542
4543			c = dtrace_load8(src + i++);
4544
4545			if (c != '/' && c != '\0') {
4546				/*
4547				 * This is not ".." -- it's "..[mumble]".
4548				 * We'll store the "/.." and this character
4549				 * and continue processing.
4550				 */
4551				dest[j++] = '/';
4552				dest[j++] = '.';
4553				dest[j++] = '.';
4554				dest[j++] = c;
4555				continue;
4556			}
4557
4558			/*
4559			 * This is "/../" or "/..\0".  We need to back up
4560			 * our destination pointer until we find a "/".
4561			 */
4562			i--;
4563			while (j != 0 && dest[--j] != '/')
4564				continue;
4565
4566			if (c == '\0')
4567				dest[++j] = '/';
4568		} while (c != '\0');
4569
4570		dest[j] = '\0';
4571		regs[rd] = (uintptr_t)dest;
4572		mstate->dtms_scratch_ptr += size;
4573		break;
4574	}
4575
4576	case DIF_SUBR_INET_NTOA:
4577	case DIF_SUBR_INET_NTOA6:
4578	case DIF_SUBR_INET_NTOP: {
4579		size_t size;
4580		int af, argi, i;
4581		char *base, *end;
4582
4583		if (subr == DIF_SUBR_INET_NTOP) {
4584			af = (int)tupregs[0].dttk_value;
4585			argi = 1;
4586		} else {
4587			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4588			argi = 0;
4589		}
4590
4591		if (af == AF_INET) {
4592			ipaddr_t ip4;
4593			uint8_t *ptr8, val;
4594
4595			/*
4596			 * Safely load the IPv4 address.
4597			 */
4598			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4599
4600			/*
4601			 * Check an IPv4 string will fit in scratch.
4602			 */
4603			size = INET_ADDRSTRLEN;
4604			if (!DTRACE_INSCRATCH(mstate, size)) {
4605				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4606				regs[rd] = 0;
4607				break;
4608			}
4609			base = (char *)mstate->dtms_scratch_ptr;
4610			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4611
4612			/*
4613			 * Stringify as a dotted decimal quad.
4614			 */
4615			*end-- = '\0';
4616			ptr8 = (uint8_t *)&ip4;
4617			for (i = 3; i >= 0; i--) {
4618				val = ptr8[i];
4619
4620				if (val == 0) {
4621					*end-- = '0';
4622				} else {
4623					for (; val; val /= 10) {
4624						*end-- = '0' + (val % 10);
4625					}
4626				}
4627
4628				if (i > 0)
4629					*end-- = '.';
4630			}
4631			ASSERT(end + 1 >= base);
4632
4633		} else if (af == AF_INET6) {
4634			struct in6_addr ip6;
4635			int firstzero, tryzero, numzero, v6end;
4636			uint16_t val;
4637			const char digits[] = "0123456789abcdef";
4638
4639			/*
4640			 * Stringify using RFC 1884 convention 2 - 16 bit
4641			 * hexadecimal values with a zero-run compression.
4642			 * Lower case hexadecimal digits are used.
4643			 * 	eg, fe80::214:4fff:fe0b:76c8.
4644			 * The IPv4 embedded form is returned for inet_ntop,
4645			 * just the IPv4 string is returned for inet_ntoa6.
4646			 */
4647
4648			/*
4649			 * Safely load the IPv6 address.
4650			 */
4651			dtrace_bcopy(
4652			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4653			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4654
4655			/*
4656			 * Check an IPv6 string will fit in scratch.
4657			 */
4658			size = INET6_ADDRSTRLEN;
4659			if (!DTRACE_INSCRATCH(mstate, size)) {
4660				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4661				regs[rd] = 0;
4662				break;
4663			}
4664			base = (char *)mstate->dtms_scratch_ptr;
4665			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4666			*end-- = '\0';
4667
4668			/*
4669			 * Find the longest run of 16 bit zero values
4670			 * for the single allowed zero compression - "::".
4671			 */
4672			firstzero = -1;
4673			tryzero = -1;
4674			numzero = 1;
4675			for (i = 0; i < sizeof (struct in6_addr); i++) {
4676#if defined(sun)
4677				if (ip6._S6_un._S6_u8[i] == 0 &&
4678#else
4679				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4680#endif
4681				    tryzero == -1 && i % 2 == 0) {
4682					tryzero = i;
4683					continue;
4684				}
4685
4686				if (tryzero != -1 &&
4687#if defined(sun)
4688				    (ip6._S6_un._S6_u8[i] != 0 ||
4689#else
4690				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4691#endif
4692				    i == sizeof (struct in6_addr) - 1)) {
4693
4694					if (i - tryzero <= numzero) {
4695						tryzero = -1;
4696						continue;
4697					}
4698
4699					firstzero = tryzero;
4700					numzero = i - i % 2 - tryzero;
4701					tryzero = -1;
4702
4703#if defined(sun)
4704					if (ip6._S6_un._S6_u8[i] == 0 &&
4705#else
4706					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4707#endif
4708					    i == sizeof (struct in6_addr) - 1)
4709						numzero += 2;
4710				}
4711			}
4712			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4713
4714			/*
4715			 * Check for an IPv4 embedded address.
4716			 */
4717			v6end = sizeof (struct in6_addr) - 2;
4718			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4719			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4720				for (i = sizeof (struct in6_addr) - 1;
4721				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4722					ASSERT(end >= base);
4723
4724#if defined(sun)
4725					val = ip6._S6_un._S6_u8[i];
4726#else
4727					val = ip6.__u6_addr.__u6_addr8[i];
4728#endif
4729
4730					if (val == 0) {
4731						*end-- = '0';
4732					} else {
4733						for (; val; val /= 10) {
4734							*end-- = '0' + val % 10;
4735						}
4736					}
4737
4738					if (i > DTRACE_V4MAPPED_OFFSET)
4739						*end-- = '.';
4740				}
4741
4742				if (subr == DIF_SUBR_INET_NTOA6)
4743					goto inetout;
4744
4745				/*
4746				 * Set v6end to skip the IPv4 address that
4747				 * we have already stringified.
4748				 */
4749				v6end = 10;
4750			}
4751
4752			/*
4753			 * Build the IPv6 string by working through the
4754			 * address in reverse.
4755			 */
4756			for (i = v6end; i >= 0; i -= 2) {
4757				ASSERT(end >= base);
4758
4759				if (i == firstzero + numzero - 2) {
4760					*end-- = ':';
4761					*end-- = ':';
4762					i -= numzero - 2;
4763					continue;
4764				}
4765
4766				if (i < 14 && i != firstzero - 2)
4767					*end-- = ':';
4768
4769#if defined(sun)
4770				val = (ip6._S6_un._S6_u8[i] << 8) +
4771				    ip6._S6_un._S6_u8[i + 1];
4772#else
4773				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4774				    ip6.__u6_addr.__u6_addr8[i + 1];
4775#endif
4776
4777				if (val == 0) {
4778					*end-- = '0';
4779				} else {
4780					for (; val; val /= 16) {
4781						*end-- = digits[val % 16];
4782					}
4783				}
4784			}
4785			ASSERT(end + 1 >= base);
4786
4787		} else {
4788			/*
4789			 * The user didn't use AH_INET or AH_INET6.
4790			 */
4791			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4792			regs[rd] = 0;
4793			break;
4794		}
4795
4796inetout:	regs[rd] = (uintptr_t)end + 1;
4797		mstate->dtms_scratch_ptr += size;
4798		break;
4799	}
4800
4801	case DIF_SUBR_MEMREF: {
4802		uintptr_t size = 2 * sizeof(uintptr_t);
4803		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4804		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4805
4806		/* address and length */
4807		memref[0] = tupregs[0].dttk_value;
4808		memref[1] = tupregs[1].dttk_value;
4809
4810		regs[rd] = (uintptr_t) memref;
4811		mstate->dtms_scratch_ptr += scratch_size;
4812		break;
4813	}
4814
4815	case DIF_SUBR_TYPEREF: {
4816		uintptr_t size = 4 * sizeof(uintptr_t);
4817		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4818		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4819
4820		/* address, num_elements, type_str, type_len */
4821		typeref[0] = tupregs[0].dttk_value;
4822		typeref[1] = tupregs[1].dttk_value;
4823		typeref[2] = tupregs[2].dttk_value;
4824		typeref[3] = tupregs[3].dttk_value;
4825
4826		regs[rd] = (uintptr_t) typeref;
4827		mstate->dtms_scratch_ptr += scratch_size;
4828		break;
4829	}
4830	}
4831}
4832
4833/*
4834 * Emulate the execution of DTrace IR instructions specified by the given
4835 * DIF object.  This function is deliberately void of assertions as all of
4836 * the necessary checks are handled by a call to dtrace_difo_validate().
4837 */
4838static uint64_t
4839dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4840    dtrace_vstate_t *vstate, dtrace_state_t *state)
4841{
4842	const dif_instr_t *text = difo->dtdo_buf;
4843	const uint_t textlen = difo->dtdo_len;
4844	const char *strtab = difo->dtdo_strtab;
4845	const uint64_t *inttab = difo->dtdo_inttab;
4846
4847	uint64_t rval = 0;
4848	dtrace_statvar_t *svar;
4849	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4850	dtrace_difv_t *v;
4851	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
4852	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
4853
4854	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4855	uint64_t regs[DIF_DIR_NREGS];
4856	uint64_t *tmp;
4857
4858	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4859	int64_t cc_r;
4860	uint_t pc = 0, id, opc = 0;
4861	uint8_t ttop = 0;
4862	dif_instr_t instr;
4863	uint_t r1, r2, rd;
4864
4865	/*
4866	 * We stash the current DIF object into the machine state: we need it
4867	 * for subsequent access checking.
4868	 */
4869	mstate->dtms_difo = difo;
4870
4871	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4872
4873	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4874		opc = pc;
4875
4876		instr = text[pc++];
4877		r1 = DIF_INSTR_R1(instr);
4878		r2 = DIF_INSTR_R2(instr);
4879		rd = DIF_INSTR_RD(instr);
4880
4881		switch (DIF_INSTR_OP(instr)) {
4882		case DIF_OP_OR:
4883			regs[rd] = regs[r1] | regs[r2];
4884			break;
4885		case DIF_OP_XOR:
4886			regs[rd] = regs[r1] ^ regs[r2];
4887			break;
4888		case DIF_OP_AND:
4889			regs[rd] = regs[r1] & regs[r2];
4890			break;
4891		case DIF_OP_SLL:
4892			regs[rd] = regs[r1] << regs[r2];
4893			break;
4894		case DIF_OP_SRL:
4895			regs[rd] = regs[r1] >> regs[r2];
4896			break;
4897		case DIF_OP_SUB:
4898			regs[rd] = regs[r1] - regs[r2];
4899			break;
4900		case DIF_OP_ADD:
4901			regs[rd] = regs[r1] + regs[r2];
4902			break;
4903		case DIF_OP_MUL:
4904			regs[rd] = regs[r1] * regs[r2];
4905			break;
4906		case DIF_OP_SDIV:
4907			if (regs[r2] == 0) {
4908				regs[rd] = 0;
4909				*flags |= CPU_DTRACE_DIVZERO;
4910			} else {
4911				regs[rd] = (int64_t)regs[r1] /
4912				    (int64_t)regs[r2];
4913			}
4914			break;
4915
4916		case DIF_OP_UDIV:
4917			if (regs[r2] == 0) {
4918				regs[rd] = 0;
4919				*flags |= CPU_DTRACE_DIVZERO;
4920			} else {
4921				regs[rd] = regs[r1] / regs[r2];
4922			}
4923			break;
4924
4925		case DIF_OP_SREM:
4926			if (regs[r2] == 0) {
4927				regs[rd] = 0;
4928				*flags |= CPU_DTRACE_DIVZERO;
4929			} else {
4930				regs[rd] = (int64_t)regs[r1] %
4931				    (int64_t)regs[r2];
4932			}
4933			break;
4934
4935		case DIF_OP_UREM:
4936			if (regs[r2] == 0) {
4937				regs[rd] = 0;
4938				*flags |= CPU_DTRACE_DIVZERO;
4939			} else {
4940				regs[rd] = regs[r1] % regs[r2];
4941			}
4942			break;
4943
4944		case DIF_OP_NOT:
4945			regs[rd] = ~regs[r1];
4946			break;
4947		case DIF_OP_MOV:
4948			regs[rd] = regs[r1];
4949			break;
4950		case DIF_OP_CMP:
4951			cc_r = regs[r1] - regs[r2];
4952			cc_n = cc_r < 0;
4953			cc_z = cc_r == 0;
4954			cc_v = 0;
4955			cc_c = regs[r1] < regs[r2];
4956			break;
4957		case DIF_OP_TST:
4958			cc_n = cc_v = cc_c = 0;
4959			cc_z = regs[r1] == 0;
4960			break;
4961		case DIF_OP_BA:
4962			pc = DIF_INSTR_LABEL(instr);
4963			break;
4964		case DIF_OP_BE:
4965			if (cc_z)
4966				pc = DIF_INSTR_LABEL(instr);
4967			break;
4968		case DIF_OP_BNE:
4969			if (cc_z == 0)
4970				pc = DIF_INSTR_LABEL(instr);
4971			break;
4972		case DIF_OP_BG:
4973			if ((cc_z | (cc_n ^ cc_v)) == 0)
4974				pc = DIF_INSTR_LABEL(instr);
4975			break;
4976		case DIF_OP_BGU:
4977			if ((cc_c | cc_z) == 0)
4978				pc = DIF_INSTR_LABEL(instr);
4979			break;
4980		case DIF_OP_BGE:
4981			if ((cc_n ^ cc_v) == 0)
4982				pc = DIF_INSTR_LABEL(instr);
4983			break;
4984		case DIF_OP_BGEU:
4985			if (cc_c == 0)
4986				pc = DIF_INSTR_LABEL(instr);
4987			break;
4988		case DIF_OP_BL:
4989			if (cc_n ^ cc_v)
4990				pc = DIF_INSTR_LABEL(instr);
4991			break;
4992		case DIF_OP_BLU:
4993			if (cc_c)
4994				pc = DIF_INSTR_LABEL(instr);
4995			break;
4996		case DIF_OP_BLE:
4997			if (cc_z | (cc_n ^ cc_v))
4998				pc = DIF_INSTR_LABEL(instr);
4999			break;
5000		case DIF_OP_BLEU:
5001			if (cc_c | cc_z)
5002				pc = DIF_INSTR_LABEL(instr);
5003			break;
5004		case DIF_OP_RLDSB:
5005			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5006				*flags |= CPU_DTRACE_KPRIV;
5007				*illval = regs[r1];
5008				break;
5009			}
5010			/*FALLTHROUGH*/
5011		case DIF_OP_LDSB:
5012			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5013			break;
5014		case DIF_OP_RLDSH:
5015			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5016				*flags |= CPU_DTRACE_KPRIV;
5017				*illval = regs[r1];
5018				break;
5019			}
5020			/*FALLTHROUGH*/
5021		case DIF_OP_LDSH:
5022			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5023			break;
5024		case DIF_OP_RLDSW:
5025			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5026				*flags |= CPU_DTRACE_KPRIV;
5027				*illval = regs[r1];
5028				break;
5029			}
5030			/*FALLTHROUGH*/
5031		case DIF_OP_LDSW:
5032			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5033			break;
5034		case DIF_OP_RLDUB:
5035			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5036				*flags |= CPU_DTRACE_KPRIV;
5037				*illval = regs[r1];
5038				break;
5039			}
5040			/*FALLTHROUGH*/
5041		case DIF_OP_LDUB:
5042			regs[rd] = dtrace_load8(regs[r1]);
5043			break;
5044		case DIF_OP_RLDUH:
5045			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5046				*flags |= CPU_DTRACE_KPRIV;
5047				*illval = regs[r1];
5048				break;
5049			}
5050			/*FALLTHROUGH*/
5051		case DIF_OP_LDUH:
5052			regs[rd] = dtrace_load16(regs[r1]);
5053			break;
5054		case DIF_OP_RLDUW:
5055			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5056				*flags |= CPU_DTRACE_KPRIV;
5057				*illval = regs[r1];
5058				break;
5059			}
5060			/*FALLTHROUGH*/
5061		case DIF_OP_LDUW:
5062			regs[rd] = dtrace_load32(regs[r1]);
5063			break;
5064		case DIF_OP_RLDX:
5065			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5066				*flags |= CPU_DTRACE_KPRIV;
5067				*illval = regs[r1];
5068				break;
5069			}
5070			/*FALLTHROUGH*/
5071		case DIF_OP_LDX:
5072			regs[rd] = dtrace_load64(regs[r1]);
5073			break;
5074		case DIF_OP_ULDSB:
5075			regs[rd] = (int8_t)
5076			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5077			break;
5078		case DIF_OP_ULDSH:
5079			regs[rd] = (int16_t)
5080			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5081			break;
5082		case DIF_OP_ULDSW:
5083			regs[rd] = (int32_t)
5084			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5085			break;
5086		case DIF_OP_ULDUB:
5087			regs[rd] =
5088			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5089			break;
5090		case DIF_OP_ULDUH:
5091			regs[rd] =
5092			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5093			break;
5094		case DIF_OP_ULDUW:
5095			regs[rd] =
5096			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5097			break;
5098		case DIF_OP_ULDX:
5099			regs[rd] =
5100			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5101			break;
5102		case DIF_OP_RET:
5103			rval = regs[rd];
5104			pc = textlen;
5105			break;
5106		case DIF_OP_NOP:
5107			break;
5108		case DIF_OP_SETX:
5109			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5110			break;
5111		case DIF_OP_SETS:
5112			regs[rd] = (uint64_t)(uintptr_t)
5113			    (strtab + DIF_INSTR_STRING(instr));
5114			break;
5115		case DIF_OP_SCMP: {
5116			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5117			uintptr_t s1 = regs[r1];
5118			uintptr_t s2 = regs[r2];
5119
5120			if (s1 != 0 &&
5121			    !dtrace_strcanload(s1, sz, mstate, vstate))
5122				break;
5123			if (s2 != 0 &&
5124			    !dtrace_strcanload(s2, sz, mstate, vstate))
5125				break;
5126
5127			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5128
5129			cc_n = cc_r < 0;
5130			cc_z = cc_r == 0;
5131			cc_v = cc_c = 0;
5132			break;
5133		}
5134		case DIF_OP_LDGA:
5135			regs[rd] = dtrace_dif_variable(mstate, state,
5136			    r1, regs[r2]);
5137			break;
5138		case DIF_OP_LDGS:
5139			id = DIF_INSTR_VAR(instr);
5140
5141			if (id >= DIF_VAR_OTHER_UBASE) {
5142				uintptr_t a;
5143
5144				id -= DIF_VAR_OTHER_UBASE;
5145				svar = vstate->dtvs_globals[id];
5146				ASSERT(svar != NULL);
5147				v = &svar->dtsv_var;
5148
5149				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5150					regs[rd] = svar->dtsv_data;
5151					break;
5152				}
5153
5154				a = (uintptr_t)svar->dtsv_data;
5155
5156				if (*(uint8_t *)a == UINT8_MAX) {
5157					/*
5158					 * If the 0th byte is set to UINT8_MAX
5159					 * then this is to be treated as a
5160					 * reference to a NULL variable.
5161					 */
5162					regs[rd] = 0;
5163				} else {
5164					regs[rd] = a + sizeof (uint64_t);
5165				}
5166
5167				break;
5168			}
5169
5170			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5171			break;
5172
5173		case DIF_OP_STGS:
5174			id = DIF_INSTR_VAR(instr);
5175
5176			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5177			id -= DIF_VAR_OTHER_UBASE;
5178
5179			svar = vstate->dtvs_globals[id];
5180			ASSERT(svar != NULL);
5181			v = &svar->dtsv_var;
5182
5183			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5184				uintptr_t a = (uintptr_t)svar->dtsv_data;
5185
5186				ASSERT(a != 0);
5187				ASSERT(svar->dtsv_size != 0);
5188
5189				if (regs[rd] == 0) {
5190					*(uint8_t *)a = UINT8_MAX;
5191					break;
5192				} else {
5193					*(uint8_t *)a = 0;
5194					a += sizeof (uint64_t);
5195				}
5196				if (!dtrace_vcanload(
5197				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5198				    mstate, vstate))
5199					break;
5200
5201				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5202				    (void *)a, &v->dtdv_type);
5203				break;
5204			}
5205
5206			svar->dtsv_data = regs[rd];
5207			break;
5208
5209		case DIF_OP_LDTA:
5210			/*
5211			 * There are no DTrace built-in thread-local arrays at
5212			 * present.  This opcode is saved for future work.
5213			 */
5214			*flags |= CPU_DTRACE_ILLOP;
5215			regs[rd] = 0;
5216			break;
5217
5218		case DIF_OP_LDLS:
5219			id = DIF_INSTR_VAR(instr);
5220
5221			if (id < DIF_VAR_OTHER_UBASE) {
5222				/*
5223				 * For now, this has no meaning.
5224				 */
5225				regs[rd] = 0;
5226				break;
5227			}
5228
5229			id -= DIF_VAR_OTHER_UBASE;
5230
5231			ASSERT(id < vstate->dtvs_nlocals);
5232			ASSERT(vstate->dtvs_locals != NULL);
5233
5234			svar = vstate->dtvs_locals[id];
5235			ASSERT(svar != NULL);
5236			v = &svar->dtsv_var;
5237
5238			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5239				uintptr_t a = (uintptr_t)svar->dtsv_data;
5240				size_t sz = v->dtdv_type.dtdt_size;
5241
5242				sz += sizeof (uint64_t);
5243				ASSERT(svar->dtsv_size == NCPU * sz);
5244				a += curcpu_id * sz;
5245
5246				if (*(uint8_t *)a == UINT8_MAX) {
5247					/*
5248					 * If the 0th byte is set to UINT8_MAX
5249					 * then this is to be treated as a
5250					 * reference to a NULL variable.
5251					 */
5252					regs[rd] = 0;
5253				} else {
5254					regs[rd] = a + sizeof (uint64_t);
5255				}
5256
5257				break;
5258			}
5259
5260			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5261			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5262			regs[rd] = tmp[curcpu_id];
5263			break;
5264
5265		case DIF_OP_STLS:
5266			id = DIF_INSTR_VAR(instr);
5267
5268			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5269			id -= DIF_VAR_OTHER_UBASE;
5270			ASSERT(id < vstate->dtvs_nlocals);
5271
5272			ASSERT(vstate->dtvs_locals != NULL);
5273			svar = vstate->dtvs_locals[id];
5274			ASSERT(svar != NULL);
5275			v = &svar->dtsv_var;
5276
5277			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5278				uintptr_t a = (uintptr_t)svar->dtsv_data;
5279				size_t sz = v->dtdv_type.dtdt_size;
5280
5281				sz += sizeof (uint64_t);
5282				ASSERT(svar->dtsv_size == NCPU * sz);
5283				a += curcpu_id * sz;
5284
5285				if (regs[rd] == 0) {
5286					*(uint8_t *)a = UINT8_MAX;
5287					break;
5288				} else {
5289					*(uint8_t *)a = 0;
5290					a += sizeof (uint64_t);
5291				}
5292
5293				if (!dtrace_vcanload(
5294				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5295				    mstate, vstate))
5296					break;
5297
5298				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5299				    (void *)a, &v->dtdv_type);
5300				break;
5301			}
5302
5303			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5304			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5305			tmp[curcpu_id] = regs[rd];
5306			break;
5307
5308		case DIF_OP_LDTS: {
5309			dtrace_dynvar_t *dvar;
5310			dtrace_key_t *key;
5311
5312			id = DIF_INSTR_VAR(instr);
5313			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5314			id -= DIF_VAR_OTHER_UBASE;
5315			v = &vstate->dtvs_tlocals[id];
5316
5317			key = &tupregs[DIF_DTR_NREGS];
5318			key[0].dttk_value = (uint64_t)id;
5319			key[0].dttk_size = 0;
5320			DTRACE_TLS_THRKEY(key[1].dttk_value);
5321			key[1].dttk_size = 0;
5322
5323			dvar = dtrace_dynvar(dstate, 2, key,
5324			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5325			    mstate, vstate);
5326
5327			if (dvar == NULL) {
5328				regs[rd] = 0;
5329				break;
5330			}
5331
5332			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5333				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5334			} else {
5335				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5336			}
5337
5338			break;
5339		}
5340
5341		case DIF_OP_STTS: {
5342			dtrace_dynvar_t *dvar;
5343			dtrace_key_t *key;
5344
5345			id = DIF_INSTR_VAR(instr);
5346			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5347			id -= DIF_VAR_OTHER_UBASE;
5348
5349			key = &tupregs[DIF_DTR_NREGS];
5350			key[0].dttk_value = (uint64_t)id;
5351			key[0].dttk_size = 0;
5352			DTRACE_TLS_THRKEY(key[1].dttk_value);
5353			key[1].dttk_size = 0;
5354			v = &vstate->dtvs_tlocals[id];
5355
5356			dvar = dtrace_dynvar(dstate, 2, key,
5357			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5358			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5359			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5360			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5361
5362			/*
5363			 * Given that we're storing to thread-local data,
5364			 * we need to flush our predicate cache.
5365			 */
5366			curthread->t_predcache = 0;
5367
5368			if (dvar == NULL)
5369				break;
5370
5371			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5372				if (!dtrace_vcanload(
5373				    (void *)(uintptr_t)regs[rd],
5374				    &v->dtdv_type, mstate, vstate))
5375					break;
5376
5377				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5378				    dvar->dtdv_data, &v->dtdv_type);
5379			} else {
5380				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5381			}
5382
5383			break;
5384		}
5385
5386		case DIF_OP_SRA:
5387			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5388			break;
5389
5390		case DIF_OP_CALL:
5391			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5392			    regs, tupregs, ttop, mstate, state);
5393			break;
5394
5395		case DIF_OP_PUSHTR:
5396			if (ttop == DIF_DTR_NREGS) {
5397				*flags |= CPU_DTRACE_TUPOFLOW;
5398				break;
5399			}
5400
5401			if (r1 == DIF_TYPE_STRING) {
5402				/*
5403				 * If this is a string type and the size is 0,
5404				 * we'll use the system-wide default string
5405				 * size.  Note that we are _not_ looking at
5406				 * the value of the DTRACEOPT_STRSIZE option;
5407				 * had this been set, we would expect to have
5408				 * a non-zero size value in the "pushtr".
5409				 */
5410				tupregs[ttop].dttk_size =
5411				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5412				    regs[r2] ? regs[r2] :
5413				    dtrace_strsize_default) + 1;
5414			} else {
5415				tupregs[ttop].dttk_size = regs[r2];
5416			}
5417
5418			tupregs[ttop++].dttk_value = regs[rd];
5419			break;
5420
5421		case DIF_OP_PUSHTV:
5422			if (ttop == DIF_DTR_NREGS) {
5423				*flags |= CPU_DTRACE_TUPOFLOW;
5424				break;
5425			}
5426
5427			tupregs[ttop].dttk_value = regs[rd];
5428			tupregs[ttop++].dttk_size = 0;
5429			break;
5430
5431		case DIF_OP_POPTS:
5432			if (ttop != 0)
5433				ttop--;
5434			break;
5435
5436		case DIF_OP_FLUSHTS:
5437			ttop = 0;
5438			break;
5439
5440		case DIF_OP_LDGAA:
5441		case DIF_OP_LDTAA: {
5442			dtrace_dynvar_t *dvar;
5443			dtrace_key_t *key = tupregs;
5444			uint_t nkeys = ttop;
5445
5446			id = DIF_INSTR_VAR(instr);
5447			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5448			id -= DIF_VAR_OTHER_UBASE;
5449
5450			key[nkeys].dttk_value = (uint64_t)id;
5451			key[nkeys++].dttk_size = 0;
5452
5453			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5454				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5455				key[nkeys++].dttk_size = 0;
5456				v = &vstate->dtvs_tlocals[id];
5457			} else {
5458				v = &vstate->dtvs_globals[id]->dtsv_var;
5459			}
5460
5461			dvar = dtrace_dynvar(dstate, nkeys, key,
5462			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5463			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5464			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5465
5466			if (dvar == NULL) {
5467				regs[rd] = 0;
5468				break;
5469			}
5470
5471			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5472				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5473			} else {
5474				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5475			}
5476
5477			break;
5478		}
5479
5480		case DIF_OP_STGAA:
5481		case DIF_OP_STTAA: {
5482			dtrace_dynvar_t *dvar;
5483			dtrace_key_t *key = tupregs;
5484			uint_t nkeys = ttop;
5485
5486			id = DIF_INSTR_VAR(instr);
5487			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5488			id -= DIF_VAR_OTHER_UBASE;
5489
5490			key[nkeys].dttk_value = (uint64_t)id;
5491			key[nkeys++].dttk_size = 0;
5492
5493			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5494				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5495				key[nkeys++].dttk_size = 0;
5496				v = &vstate->dtvs_tlocals[id];
5497			} else {
5498				v = &vstate->dtvs_globals[id]->dtsv_var;
5499			}
5500
5501			dvar = dtrace_dynvar(dstate, nkeys, key,
5502			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5503			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5504			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5505			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5506
5507			if (dvar == NULL)
5508				break;
5509
5510			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5511				if (!dtrace_vcanload(
5512				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5513				    mstate, vstate))
5514					break;
5515
5516				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5517				    dvar->dtdv_data, &v->dtdv_type);
5518			} else {
5519				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5520			}
5521
5522			break;
5523		}
5524
5525		case DIF_OP_ALLOCS: {
5526			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5527			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5528
5529			/*
5530			 * Rounding up the user allocation size could have
5531			 * overflowed large, bogus allocations (like -1ULL) to
5532			 * 0.
5533			 */
5534			if (size < regs[r1] ||
5535			    !DTRACE_INSCRATCH(mstate, size)) {
5536				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5537				regs[rd] = 0;
5538				break;
5539			}
5540
5541			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5542			mstate->dtms_scratch_ptr += size;
5543			regs[rd] = ptr;
5544			break;
5545		}
5546
5547		case DIF_OP_COPYS:
5548			if (!dtrace_canstore(regs[rd], regs[r2],
5549			    mstate, vstate)) {
5550				*flags |= CPU_DTRACE_BADADDR;
5551				*illval = regs[rd];
5552				break;
5553			}
5554			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5555				break;
5556
5557			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5558			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5559			break;
5560
5561		case DIF_OP_STB:
5562			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5563				*flags |= CPU_DTRACE_BADADDR;
5564				*illval = regs[rd];
5565				break;
5566			}
5567			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5568			break;
5569
5570		case DIF_OP_STH:
5571			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5572				*flags |= CPU_DTRACE_BADADDR;
5573				*illval = regs[rd];
5574				break;
5575			}
5576			if (regs[rd] & 1) {
5577				*flags |= CPU_DTRACE_BADALIGN;
5578				*illval = regs[rd];
5579				break;
5580			}
5581			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5582			break;
5583
5584		case DIF_OP_STW:
5585			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5586				*flags |= CPU_DTRACE_BADADDR;
5587				*illval = regs[rd];
5588				break;
5589			}
5590			if (regs[rd] & 3) {
5591				*flags |= CPU_DTRACE_BADALIGN;
5592				*illval = regs[rd];
5593				break;
5594			}
5595			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5596			break;
5597
5598		case DIF_OP_STX:
5599			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5600				*flags |= CPU_DTRACE_BADADDR;
5601				*illval = regs[rd];
5602				break;
5603			}
5604			if (regs[rd] & 7) {
5605				*flags |= CPU_DTRACE_BADALIGN;
5606				*illval = regs[rd];
5607				break;
5608			}
5609			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5610			break;
5611		}
5612	}
5613
5614	if (!(*flags & CPU_DTRACE_FAULT))
5615		return (rval);
5616
5617	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5618	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5619
5620	return (0);
5621}
5622
5623static void
5624dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5625{
5626	dtrace_probe_t *probe = ecb->dte_probe;
5627	dtrace_provider_t *prov = probe->dtpr_provider;
5628	char c[DTRACE_FULLNAMELEN + 80], *str;
5629	const char *msg = "dtrace: breakpoint action at probe ";
5630	const char *ecbmsg = " (ecb ";
5631	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5632	uintptr_t val = (uintptr_t)ecb;
5633	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5634
5635	if (dtrace_destructive_disallow)
5636		return;
5637
5638	/*
5639	 * It's impossible to be taking action on the NULL probe.
5640	 */
5641	ASSERT(probe != NULL);
5642
5643	/*
5644	 * This is a poor man's (destitute man's?) sprintf():  we want to
5645	 * print the provider name, module name, function name and name of
5646	 * the probe, along with the hex address of the ECB with the breakpoint
5647	 * action -- all of which we must place in the character buffer by
5648	 * hand.
5649	 */
5650	while (*msg != '\0')
5651		c[i++] = *msg++;
5652
5653	for (str = prov->dtpv_name; *str != '\0'; str++)
5654		c[i++] = *str;
5655	c[i++] = ':';
5656
5657	for (str = probe->dtpr_mod; *str != '\0'; str++)
5658		c[i++] = *str;
5659	c[i++] = ':';
5660
5661	for (str = probe->dtpr_func; *str != '\0'; str++)
5662		c[i++] = *str;
5663	c[i++] = ':';
5664
5665	for (str = probe->dtpr_name; *str != '\0'; str++)
5666		c[i++] = *str;
5667
5668	while (*ecbmsg != '\0')
5669		c[i++] = *ecbmsg++;
5670
5671	while (shift >= 0) {
5672		mask = (uintptr_t)0xf << shift;
5673
5674		if (val >= ((uintptr_t)1 << shift))
5675			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5676		shift -= 4;
5677	}
5678
5679	c[i++] = ')';
5680	c[i] = '\0';
5681
5682#if defined(sun)
5683	debug_enter(c);
5684#else
5685#ifdef DDB
5686	db_printf("%s\n", c);
5687	Debugger();
5688#else
5689	printf("%s ignored\n", c);
5690#endif /* DDB */
5691#endif
5692}
5693
5694static void
5695dtrace_action_panic(dtrace_ecb_t *ecb)
5696{
5697	dtrace_probe_t *probe = ecb->dte_probe;
5698
5699	/*
5700	 * It's impossible to be taking action on the NULL probe.
5701	 */
5702	ASSERT(probe != NULL);
5703
5704	if (dtrace_destructive_disallow)
5705		return;
5706
5707	if (dtrace_panicked != NULL)
5708		return;
5709
5710	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5711		return;
5712
5713	/*
5714	 * We won the right to panic.  (We want to be sure that only one
5715	 * thread calls panic() from dtrace_probe(), and that panic() is
5716	 * called exactly once.)
5717	 */
5718	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5719	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5720	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5721}
5722
5723static void
5724dtrace_action_raise(uint64_t sig)
5725{
5726	if (dtrace_destructive_disallow)
5727		return;
5728
5729	if (sig >= NSIG) {
5730		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5731		return;
5732	}
5733
5734#if defined(sun)
5735	/*
5736	 * raise() has a queue depth of 1 -- we ignore all subsequent
5737	 * invocations of the raise() action.
5738	 */
5739	if (curthread->t_dtrace_sig == 0)
5740		curthread->t_dtrace_sig = (uint8_t)sig;
5741
5742	curthread->t_sig_check = 1;
5743	aston(curthread);
5744#else
5745	struct proc *p = curproc;
5746	mutex_enter(proc_lock);
5747	psignal(p, sig);
5748	mutex_exit(proc_lock);
5749#endif
5750}
5751
5752static void
5753dtrace_action_stop(void)
5754{
5755	if (dtrace_destructive_disallow)
5756		return;
5757
5758#if defined(sun)
5759	if (!curthread->t_dtrace_stop) {
5760		curthread->t_dtrace_stop = 1;
5761		curthread->t_sig_check = 1;
5762		aston(curthread);
5763	}
5764#else
5765	struct proc *p = curproc;
5766	mutex_enter(proc_lock);
5767	psignal(p, SIGSTOP);
5768	mutex_exit(proc_lock);
5769#endif
5770}
5771
5772static void
5773dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5774{
5775#if 0	/* XXX TBD - needs solaris_cpu */
5776	hrtime_t now;
5777	volatile uint16_t *flags;
5778#if defined(sun)
5779	cpu_t *cpu = CPU;
5780#else
5781	cpu_t *cpu = &solaris_cpu[curcpu_id];
5782#endif
5783
5784	if (dtrace_destructive_disallow)
5785		return;
5786
5787	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5788
5789	now = dtrace_gethrtime();
5790
5791	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5792		/*
5793		 * We need to advance the mark to the current time.
5794		 */
5795		cpu->cpu_dtrace_chillmark = now;
5796		cpu->cpu_dtrace_chilled = 0;
5797	}
5798
5799	/*
5800	 * Now check to see if the requested chill time would take us over
5801	 * the maximum amount of time allowed in the chill interval.  (Or
5802	 * worse, if the calculation itself induces overflow.)
5803	 */
5804	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5805	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5806		*flags |= CPU_DTRACE_ILLOP;
5807		return;
5808	}
5809
5810	while (dtrace_gethrtime() - now < val)
5811		continue;
5812
5813	/*
5814	 * Normally, we assure that the value of the variable "timestamp" does
5815	 * not change within an ECB.  The presence of chill() represents an
5816	 * exception to this rule, however.
5817	 */
5818	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5819	cpu->cpu_dtrace_chilled += val;
5820#endif
5821}
5822
5823#if defined(sun)
5824static void
5825dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5826    uint64_t *buf, uint64_t arg)
5827{
5828	int nframes = DTRACE_USTACK_NFRAMES(arg);
5829	int strsize = DTRACE_USTACK_STRSIZE(arg);
5830	uint64_t *pcs = &buf[1], *fps;
5831	char *str = (char *)&pcs[nframes];
5832	int size, offs = 0, i, j;
5833	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5834	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
5835	char *sym;
5836
5837	/*
5838	 * Should be taking a faster path if string space has not been
5839	 * allocated.
5840	 */
5841	ASSERT(strsize != 0);
5842
5843	/*
5844	 * We will first allocate some temporary space for the frame pointers.
5845	 */
5846	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5847	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5848	    (nframes * sizeof (uint64_t));
5849
5850	if (!DTRACE_INSCRATCH(mstate, size)) {
5851		/*
5852		 * Not enough room for our frame pointers -- need to indicate
5853		 * that we ran out of scratch space.
5854		 */
5855		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5856		return;
5857	}
5858
5859	mstate->dtms_scratch_ptr += size;
5860	saved = mstate->dtms_scratch_ptr;
5861
5862	/*
5863	 * Now get a stack with both program counters and frame pointers.
5864	 */
5865	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5866	dtrace_getufpstack(buf, fps, nframes + 1);
5867	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5868
5869	/*
5870	 * If that faulted, we're cooked.
5871	 */
5872	if (*flags & CPU_DTRACE_FAULT)
5873		goto out;
5874
5875	/*
5876	 * Now we want to walk up the stack, calling the USTACK helper.  For
5877	 * each iteration, we restore the scratch pointer.
5878	 */
5879	for (i = 0; i < nframes; i++) {
5880		mstate->dtms_scratch_ptr = saved;
5881
5882		if (offs >= strsize)
5883			break;
5884
5885		sym = (char *)(uintptr_t)dtrace_helper(
5886		    DTRACE_HELPER_ACTION_USTACK,
5887		    mstate, state, pcs[i], fps[i]);
5888
5889		/*
5890		 * If we faulted while running the helper, we're going to
5891		 * clear the fault and null out the corresponding string.
5892		 */
5893		if (*flags & CPU_DTRACE_FAULT) {
5894			*flags &= ~CPU_DTRACE_FAULT;
5895			str[offs++] = '\0';
5896			continue;
5897		}
5898
5899		if (sym == NULL) {
5900			str[offs++] = '\0';
5901			continue;
5902		}
5903
5904		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5905
5906		/*
5907		 * Now copy in the string that the helper returned to us.
5908		 */
5909		for (j = 0; offs + j < strsize; j++) {
5910			if ((str[offs + j] = sym[j]) == '\0')
5911				break;
5912		}
5913
5914		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5915
5916		offs += j + 1;
5917	}
5918
5919	if (offs >= strsize) {
5920		/*
5921		 * If we didn't have room for all of the strings, we don't
5922		 * abort processing -- this needn't be a fatal error -- but we
5923		 * still want to increment a counter (dts_stkstroverflows) to
5924		 * allow this condition to be warned about.  (If this is from
5925		 * a jstack() action, it is easily tuned via jstackstrsize.)
5926		 */
5927		dtrace_error(&state->dts_stkstroverflows);
5928	}
5929
5930	while (offs < strsize)
5931		str[offs++] = '\0';
5932
5933out:
5934	mstate->dtms_scratch_ptr = old;
5935}
5936#endif
5937
5938/*
5939 * If you're looking for the epicenter of DTrace, you just found it.  This
5940 * is the function called by the provider to fire a probe -- from which all
5941 * subsequent probe-context DTrace activity emanates.
5942 */
5943void
5944dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5945    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5946{
5947	processorid_t cpuid;
5948	dtrace_icookie_t cookie;
5949	dtrace_probe_t *probe;
5950	dtrace_mstate_t mstate;
5951	dtrace_ecb_t *ecb;
5952	dtrace_action_t *act;
5953	intptr_t offs;
5954	size_t size;
5955	int vtime, onintr;
5956	volatile uint16_t *flags;
5957	hrtime_t now;
5958
5959#if defined(sun)
5960	/*
5961	 * Kick out immediately if this CPU is still being born (in which case
5962	 * curthread will be set to -1) or the current thread can't allow
5963	 * probes in its current context.
5964	 */
5965	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5966		return;
5967#endif
5968
5969	cookie = dtrace_interrupt_disable();
5970	probe = dtrace_probes[id - 1];
5971	cpuid = curcpu_id;
5972	onintr = CPU_ON_INTR(CPU);
5973
5974	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5975	    probe->dtpr_predcache == curthread->t_predcache) {
5976		/*
5977		 * We have hit in the predicate cache; we know that
5978		 * this predicate would evaluate to be false.
5979		 */
5980		dtrace_interrupt_enable(cookie);
5981		return;
5982	}
5983
5984#if defined(sun)
5985	if (panic_quiesce) {
5986#else
5987	if (panicstr != NULL) {
5988#endif
5989		/*
5990		 * We don't trace anything if we're panicking.
5991		 */
5992		dtrace_interrupt_enable(cookie);
5993		return;
5994	}
5995
5996	now = dtrace_gethrtime();
5997	vtime = dtrace_vtime_references != 0;
5998
5999	if (vtime && curthread->t_dtrace_start)
6000		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6001
6002	mstate.dtms_difo = NULL;
6003	mstate.dtms_probe = probe;
6004	mstate.dtms_strtok = 0;
6005	mstate.dtms_arg[0] = arg0;
6006	mstate.dtms_arg[1] = arg1;
6007	mstate.dtms_arg[2] = arg2;
6008	mstate.dtms_arg[3] = arg3;
6009	mstate.dtms_arg[4] = arg4;
6010
6011	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6012
6013	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6014		dtrace_predicate_t *pred = ecb->dte_predicate;
6015		dtrace_state_t *state = ecb->dte_state;
6016		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6017		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6018		dtrace_vstate_t *vstate = &state->dts_vstate;
6019		dtrace_provider_t *prov = probe->dtpr_provider;
6020		int committed = 0;
6021		caddr_t tomax;
6022
6023		/*
6024		 * A little subtlety with the following (seemingly innocuous)
6025		 * declaration of the automatic 'val':  by looking at the
6026		 * code, you might think that it could be declared in the
6027		 * action processing loop, below.  (That is, it's only used in
6028		 * the action processing loop.)  However, it must be declared
6029		 * out of that scope because in the case of DIF expression
6030		 * arguments to aggregating actions, one iteration of the
6031		 * action loop will use the last iteration's value.
6032		 */
6033		uint64_t val = 0;
6034
6035		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6036		*flags &= ~CPU_DTRACE_ERROR;
6037
6038		if (prov == dtrace_provider) {
6039			/*
6040			 * If dtrace itself is the provider of this probe,
6041			 * we're only going to continue processing the ECB if
6042			 * arg0 (the dtrace_state_t) is equal to the ECB's
6043			 * creating state.  (This prevents disjoint consumers
6044			 * from seeing one another's metaprobes.)
6045			 */
6046			if (arg0 != (uint64_t)(uintptr_t)state)
6047				continue;
6048		}
6049
6050		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6051			/*
6052			 * We're not currently active.  If our provider isn't
6053			 * the dtrace pseudo provider, we're not interested.
6054			 */
6055			if (prov != dtrace_provider)
6056				continue;
6057
6058			/*
6059			 * Now we must further check if we are in the BEGIN
6060			 * probe.  If we are, we will only continue processing
6061			 * if we're still in WARMUP -- if one BEGIN enabling
6062			 * has invoked the exit() action, we don't want to
6063			 * evaluate subsequent BEGIN enablings.
6064			 */
6065			if (probe->dtpr_id == dtrace_probeid_begin &&
6066			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6067				ASSERT(state->dts_activity ==
6068				    DTRACE_ACTIVITY_DRAINING);
6069				continue;
6070			}
6071		}
6072
6073		if (ecb->dte_cond) {
6074			/*
6075			 * If the dte_cond bits indicate that this
6076			 * consumer is only allowed to see user-mode firings
6077			 * of this probe, call the provider's dtps_usermode()
6078			 * entry point to check that the probe was fired
6079			 * while in a user context. Skip this ECB if that's
6080			 * not the case.
6081			 */
6082			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6083			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6084			    probe->dtpr_id, probe->dtpr_arg) == 0)
6085				continue;
6086
6087#if defined(sun)
6088			/*
6089			 * This is more subtle than it looks. We have to be
6090			 * absolutely certain that CRED() isn't going to
6091			 * change out from under us so it's only legit to
6092			 * examine that structure if we're in constrained
6093			 * situations. Currently, the only times we'll this
6094			 * check is if a non-super-user has enabled the
6095			 * profile or syscall providers -- providers that
6096			 * allow visibility of all processes. For the
6097			 * profile case, the check above will ensure that
6098			 * we're examining a user context.
6099			 */
6100			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6101				cred_t *cr;
6102				cred_t *s_cr =
6103				    ecb->dte_state->dts_cred.dcr_cred;
6104				proc_t *proc;
6105
6106				ASSERT(s_cr != NULL);
6107
6108				if ((cr = CRED()) == NULL ||
6109				    s_cr->cr_uid != cr->cr_uid ||
6110				    s_cr->cr_uid != cr->cr_ruid ||
6111				    s_cr->cr_uid != cr->cr_suid ||
6112				    s_cr->cr_gid != cr->cr_gid ||
6113				    s_cr->cr_gid != cr->cr_rgid ||
6114				    s_cr->cr_gid != cr->cr_sgid ||
6115				    (proc = ttoproc(curthread)) == NULL ||
6116				    (proc->p_flag & SNOCD))
6117					continue;
6118			}
6119
6120			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6121				cred_t *cr;
6122				cred_t *s_cr =
6123				    ecb->dte_state->dts_cred.dcr_cred;
6124
6125				ASSERT(s_cr != NULL);
6126
6127				if ((cr = CRED()) == NULL ||
6128				    s_cr->cr_zone->zone_id !=
6129				    cr->cr_zone->zone_id)
6130					continue;
6131			}
6132#endif
6133		}
6134
6135		if (now - state->dts_alive > dtrace_deadman_timeout) {
6136			/*
6137			 * We seem to be dead.  Unless we (a) have kernel
6138			 * destructive permissions (b) have expicitly enabled
6139			 * destructive actions and (c) destructive actions have
6140			 * not been disabled, we're going to transition into
6141			 * the KILLED state, from which no further processing
6142			 * on this state will be performed.
6143			 */
6144			if (!dtrace_priv_kernel_destructive(state) ||
6145			    !state->dts_cred.dcr_destructive ||
6146			    dtrace_destructive_disallow) {
6147				void *activity = &state->dts_activity;
6148				dtrace_activity_t current;
6149
6150				do {
6151					current = state->dts_activity;
6152				} while (dtrace_cas32(activity, current,
6153				    DTRACE_ACTIVITY_KILLED) != current);
6154
6155				continue;
6156			}
6157		}
6158
6159		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6160		    ecb->dte_alignment, state, &mstate)) < 0)
6161			continue;
6162
6163		tomax = buf->dtb_tomax;
6164		ASSERT(tomax != NULL);
6165
6166		if (ecb->dte_size != 0)
6167			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6168
6169		mstate.dtms_epid = ecb->dte_epid;
6170		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6171
6172		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6173			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6174		else
6175			mstate.dtms_access = 0;
6176
6177		if (pred != NULL) {
6178			dtrace_difo_t *dp = pred->dtp_difo;
6179			int rval;
6180
6181			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6182
6183			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6184				dtrace_cacheid_t cid = probe->dtpr_predcache;
6185
6186				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6187					/*
6188					 * Update the predicate cache...
6189					 */
6190					ASSERT(cid == pred->dtp_cacheid);
6191					curthread->t_predcache = cid;
6192				}
6193
6194				continue;
6195			}
6196		}
6197
6198		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6199		    act != NULL; act = act->dta_next) {
6200			size_t valoffs;
6201			dtrace_difo_t *dp;
6202			dtrace_recdesc_t *rec = &act->dta_rec;
6203
6204			size = rec->dtrd_size;
6205			valoffs = offs + rec->dtrd_offset;
6206
6207			if (DTRACEACT_ISAGG(act->dta_kind)) {
6208				uint64_t v = 0xbad;
6209				dtrace_aggregation_t *agg;
6210
6211				agg = (dtrace_aggregation_t *)act;
6212
6213				if ((dp = act->dta_difo) != NULL)
6214					v = dtrace_dif_emulate(dp,
6215					    &mstate, vstate, state);
6216
6217				if (*flags & CPU_DTRACE_ERROR)
6218					continue;
6219
6220				/*
6221				 * Note that we always pass the expression
6222				 * value from the previous iteration of the
6223				 * action loop.  This value will only be used
6224				 * if there is an expression argument to the
6225				 * aggregating action, denoted by the
6226				 * dtag_hasarg field.
6227				 */
6228				dtrace_aggregate(agg, buf,
6229				    offs, aggbuf, v, val);
6230				continue;
6231			}
6232
6233			switch (act->dta_kind) {
6234			case DTRACEACT_STOP:
6235				if (dtrace_priv_proc_destructive(state))
6236					dtrace_action_stop();
6237				continue;
6238
6239			case DTRACEACT_BREAKPOINT:
6240				if (dtrace_priv_kernel_destructive(state))
6241					dtrace_action_breakpoint(ecb);
6242				continue;
6243
6244			case DTRACEACT_PANIC:
6245				if (dtrace_priv_kernel_destructive(state))
6246					dtrace_action_panic(ecb);
6247				continue;
6248
6249			case DTRACEACT_STACK:
6250				if (!dtrace_priv_kernel(state))
6251					continue;
6252
6253				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6254				    size / sizeof (pc_t), probe->dtpr_aframes,
6255				    DTRACE_ANCHORED(probe) ? NULL :
6256				    (uint32_t *)arg0);
6257				continue;
6258
6259#if defined(sun)
6260			case DTRACEACT_JSTACK:
6261			case DTRACEACT_USTACK:
6262				if (!dtrace_priv_proc(state))
6263					continue;
6264
6265				/*
6266				 * See comment in DIF_VAR_PID.
6267				 */
6268				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6269				    CPU_ON_INTR(CPU)) {
6270					int depth = DTRACE_USTACK_NFRAMES(
6271					    rec->dtrd_arg) + 1;
6272
6273					dtrace_bzero((void *)(tomax + valoffs),
6274					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6275					    + depth * sizeof (uint64_t));
6276
6277					continue;
6278				}
6279
6280				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6281				    curproc->p_dtrace_helpers != NULL) {
6282					/*
6283					 * This is the slow path -- we have
6284					 * allocated string space, and we're
6285					 * getting the stack of a process that
6286					 * has helpers.  Call into a separate
6287					 * routine to perform this processing.
6288					 */
6289					dtrace_action_ustack(&mstate, state,
6290					    (uint64_t *)(tomax + valoffs),
6291					    rec->dtrd_arg);
6292					continue;
6293				}
6294
6295				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6296				dtrace_getupcstack((uint64_t *)
6297				    (tomax + valoffs),
6298				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6299				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6300				continue;
6301#endif
6302
6303			default:
6304				break;
6305			}
6306
6307			dp = act->dta_difo;
6308			ASSERT(dp != NULL);
6309
6310			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6311
6312			if (*flags & CPU_DTRACE_ERROR)
6313				continue;
6314
6315			switch (act->dta_kind) {
6316			case DTRACEACT_SPECULATE:
6317				ASSERT(buf == &state->dts_buffer[cpuid]);
6318				buf = dtrace_speculation_buffer(state,
6319				    cpuid, val);
6320
6321				if (buf == NULL) {
6322					*flags |= CPU_DTRACE_DROP;
6323					continue;
6324				}
6325
6326				offs = dtrace_buffer_reserve(buf,
6327				    ecb->dte_needed, ecb->dte_alignment,
6328				    state, NULL);
6329
6330				if (offs < 0) {
6331					*flags |= CPU_DTRACE_DROP;
6332					continue;
6333				}
6334
6335				tomax = buf->dtb_tomax;
6336				ASSERT(tomax != NULL);
6337
6338				if (ecb->dte_size != 0)
6339					DTRACE_STORE(uint32_t, tomax, offs,
6340					    ecb->dte_epid);
6341				continue;
6342
6343			case DTRACEACT_PRINTM: {
6344				/* The DIF returns a 'memref'. */
6345				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6346
6347				/* Get the size from the memref. */
6348				size = memref[1];
6349
6350				/*
6351				 * Check if the size exceeds the allocated
6352				 * buffer size.
6353				 */
6354				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6355					/* Flag a drop! */
6356					*flags |= CPU_DTRACE_DROP;
6357					continue;
6358				}
6359
6360				/* Store the size in the buffer first. */
6361				DTRACE_STORE(uintptr_t, tomax,
6362				    valoffs, size);
6363
6364				/*
6365				 * Offset the buffer address to the start
6366				 * of the data.
6367				 */
6368				valoffs += sizeof(uintptr_t);
6369
6370				/*
6371				 * Reset to the memory address rather than
6372				 * the memref array, then let the BYREF
6373				 * code below do the work to store the
6374				 * memory data in the buffer.
6375				 */
6376				val = memref[0];
6377				break;
6378			}
6379
6380			case DTRACEACT_PRINTT: {
6381				/* The DIF returns a 'typeref'. */
6382				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6383				char c = '\0' + 1;
6384				size_t s;
6385
6386				/*
6387				 * Get the type string length and round it
6388				 * up so that the data that follows is
6389				 * aligned for easy access.
6390				 */
6391				size_t typs = strlen((char *) typeref[2]) + 1;
6392				typs = roundup(typs,  sizeof(uintptr_t));
6393
6394				/*
6395				 *Get the size from the typeref using the
6396				 * number of elements and the type size.
6397				 */
6398				size = typeref[1] * typeref[3];
6399
6400				/*
6401				 * Check if the size exceeds the allocated
6402				 * buffer size.
6403				 */
6404				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6405					/* Flag a drop! */
6406					*flags |= CPU_DTRACE_DROP;
6407
6408				}
6409
6410				/* Store the size in the buffer first. */
6411				DTRACE_STORE(uintptr_t, tomax,
6412				    valoffs, size);
6413				valoffs += sizeof(uintptr_t);
6414
6415				/* Store the type size in the buffer. */
6416				DTRACE_STORE(uintptr_t, tomax,
6417				    valoffs, typeref[3]);
6418				valoffs += sizeof(uintptr_t);
6419
6420				val = typeref[2];
6421
6422				for (s = 0; s < typs; s++) {
6423					if (c != '\0')
6424						c = dtrace_load8(val++);
6425
6426					DTRACE_STORE(uint8_t, tomax,
6427					    valoffs++, c);
6428				}
6429
6430				/*
6431				 * Reset to the memory address rather than
6432				 * the typeref array, then let the BYREF
6433				 * code below do the work to store the
6434				 * memory data in the buffer.
6435				 */
6436				val = typeref[0];
6437				break;
6438			}
6439
6440			case DTRACEACT_CHILL:
6441				if (dtrace_priv_kernel_destructive(state))
6442					dtrace_action_chill(&mstate, val);
6443				continue;
6444
6445			case DTRACEACT_RAISE:
6446				if (dtrace_priv_proc_destructive(state))
6447					dtrace_action_raise(val);
6448				continue;
6449
6450			case DTRACEACT_COMMIT:
6451				ASSERT(!committed);
6452
6453				/*
6454				 * We need to commit our buffer state.
6455				 */
6456				if (ecb->dte_size)
6457					buf->dtb_offset = offs + ecb->dte_size;
6458				buf = &state->dts_buffer[cpuid];
6459				dtrace_speculation_commit(state, cpuid, val);
6460				committed = 1;
6461				continue;
6462
6463			case DTRACEACT_DISCARD:
6464				dtrace_speculation_discard(state, cpuid, val);
6465				continue;
6466
6467			case DTRACEACT_DIFEXPR:
6468			case DTRACEACT_LIBACT:
6469			case DTRACEACT_PRINTF:
6470			case DTRACEACT_PRINTA:
6471			case DTRACEACT_SYSTEM:
6472			case DTRACEACT_FREOPEN:
6473				break;
6474
6475			case DTRACEACT_SYM:
6476			case DTRACEACT_MOD:
6477				if (!dtrace_priv_kernel(state))
6478					continue;
6479				break;
6480
6481			case DTRACEACT_USYM:
6482			case DTRACEACT_UMOD:
6483			case DTRACEACT_UADDR: {
6484#if defined(sun)
6485				struct pid *pid = curthread->t_procp->p_pidp;
6486#endif
6487				if (!dtrace_priv_proc(state))
6488					continue;
6489
6490				DTRACE_STORE(uint64_t, tomax,
6491#if defined(sun)
6492				    valoffs, (uint64_t)pid->pid_id);
6493#else
6494				    valoffs, (uint64_t) curproc->p_pid);
6495#endif
6496				DTRACE_STORE(uint64_t, tomax,
6497				    valoffs + sizeof (uint64_t), val);
6498
6499				continue;
6500			}
6501
6502			case DTRACEACT_EXIT: {
6503				/*
6504				 * For the exit action, we are going to attempt
6505				 * to atomically set our activity to be
6506				 * draining.  If this fails (either because
6507				 * another CPU has beat us to the exit action,
6508				 * or because our current activity is something
6509				 * other than ACTIVE or WARMUP), we will
6510				 * continue.  This assures that the exit action
6511				 * can be successfully recorded at most once
6512				 * when we're in the ACTIVE state.  If we're
6513				 * encountering the exit() action while in
6514				 * COOLDOWN, however, we want to honor the new
6515				 * status code.  (We know that we're the only
6516				 * thread in COOLDOWN, so there is no race.)
6517				 */
6518				void *activity = &state->dts_activity;
6519				dtrace_activity_t current = state->dts_activity;
6520
6521				if (current == DTRACE_ACTIVITY_COOLDOWN)
6522					break;
6523
6524				if (current != DTRACE_ACTIVITY_WARMUP)
6525					current = DTRACE_ACTIVITY_ACTIVE;
6526
6527				if (dtrace_cas32(activity, current,
6528				    DTRACE_ACTIVITY_DRAINING) != current) {
6529					*flags |= CPU_DTRACE_DROP;
6530					continue;
6531				}
6532
6533				break;
6534			}
6535
6536			default:
6537				ASSERT(0);
6538			}
6539
6540			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6541				uintptr_t end = valoffs + size;
6542
6543				if (!dtrace_vcanload((void *)(uintptr_t)val,
6544				    &dp->dtdo_rtype, &mstate, vstate))
6545					continue;
6546
6547				/*
6548				 * If this is a string, we're going to only
6549				 * load until we find the zero byte -- after
6550				 * which we'll store zero bytes.
6551				 */
6552				if (dp->dtdo_rtype.dtdt_kind ==
6553				    DIF_TYPE_STRING) {
6554					char c = '\0' + 1;
6555					int intuple = act->dta_intuple;
6556					size_t s;
6557
6558					for (s = 0; s < size; s++) {
6559						if (c != '\0')
6560							c = dtrace_load8(val++);
6561
6562						DTRACE_STORE(uint8_t, tomax,
6563						    valoffs++, c);
6564
6565						if (c == '\0' && intuple)
6566							break;
6567					}
6568
6569					continue;
6570				}
6571
6572				while (valoffs < end) {
6573					DTRACE_STORE(uint8_t, tomax, valoffs++,
6574					    dtrace_load8(val++));
6575				}
6576
6577				continue;
6578			}
6579
6580			switch (size) {
6581			case 0:
6582				break;
6583
6584			case sizeof (uint8_t):
6585				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6586				break;
6587			case sizeof (uint16_t):
6588				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6589				break;
6590			case sizeof (uint32_t):
6591				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6592				break;
6593			case sizeof (uint64_t):
6594				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6595				break;
6596			default:
6597				/*
6598				 * Any other size should have been returned by
6599				 * reference, not by value.
6600				 */
6601				ASSERT(0);
6602				break;
6603			}
6604		}
6605
6606		if (*flags & CPU_DTRACE_DROP)
6607			continue;
6608
6609		if (*flags & CPU_DTRACE_FAULT) {
6610			int ndx;
6611			dtrace_action_t *err;
6612
6613			buf->dtb_errors++;
6614
6615			if (probe->dtpr_id == dtrace_probeid_error) {
6616				/*
6617				 * There's nothing we can do -- we had an
6618				 * error on the error probe.  We bump an
6619				 * error counter to at least indicate that
6620				 * this condition happened.
6621				 */
6622				dtrace_error(&state->dts_dblerrors);
6623				continue;
6624			}
6625
6626			if (vtime) {
6627				/*
6628				 * Before recursing on dtrace_probe(), we
6629				 * need to explicitly clear out our start
6630				 * time to prevent it from being accumulated
6631				 * into t_dtrace_vtime.
6632				 */
6633				curthread->t_dtrace_start = 0;
6634			}
6635
6636			/*
6637			 * Iterate over the actions to figure out which action
6638			 * we were processing when we experienced the error.
6639			 * Note that act points _past_ the faulting action; if
6640			 * act is ecb->dte_action, the fault was in the
6641			 * predicate, if it's ecb->dte_action->dta_next it's
6642			 * in action #1, and so on.
6643			 */
6644			for (err = ecb->dte_action, ndx = 0;
6645			    err != act; err = err->dta_next, ndx++)
6646				continue;
6647
6648			dtrace_probe_error(state, ecb->dte_epid, ndx,
6649			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6650			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6651			    cpu_core[cpuid].cpuc_dtrace_illval);
6652
6653			continue;
6654		}
6655
6656		if (!committed)
6657			buf->dtb_offset = offs + ecb->dte_size;
6658	}
6659
6660	if (vtime)
6661		curthread->t_dtrace_start = dtrace_gethrtime();
6662
6663	dtrace_interrupt_enable(cookie);
6664}
6665
6666/*
6667 * DTrace Probe Hashing Functions
6668 *
6669 * The functions in this section (and indeed, the functions in remaining
6670 * sections) are not _called_ from probe context.  (Any exceptions to this are
6671 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6672 * DTrace framework to look-up probes in, add probes to and remove probes from
6673 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6674 * probe tuple -- allowing for fast lookups, regardless of what was
6675 * specified.)
6676 */
6677static uint_t
6678dtrace_hash_str(const char *p)
6679{
6680	unsigned int g;
6681	uint_t hval = 0;
6682
6683	while (*p) {
6684		hval = (hval << 4) + *p++;
6685		if ((g = (hval & 0xf0000000)) != 0)
6686			hval ^= g >> 24;
6687		hval &= ~g;
6688	}
6689	return (hval);
6690}
6691
6692static dtrace_hash_t *
6693dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6694{
6695	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6696
6697	hash->dth_stroffs = stroffs;
6698	hash->dth_nextoffs = nextoffs;
6699	hash->dth_prevoffs = prevoffs;
6700
6701	hash->dth_size = 1;
6702	hash->dth_mask = hash->dth_size - 1;
6703
6704	hash->dth_tab = kmem_zalloc(hash->dth_size *
6705	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6706
6707	return (hash);
6708}
6709
6710static void
6711dtrace_hash_destroy(dtrace_hash_t *hash)
6712{
6713#ifdef DEBUG
6714	int i;
6715
6716	for (i = 0; i < hash->dth_size; i++)
6717		ASSERT(hash->dth_tab[i] == NULL);
6718#endif
6719
6720	kmem_free(hash->dth_tab,
6721	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6722	kmem_free(hash, sizeof (dtrace_hash_t));
6723}
6724
6725static void
6726dtrace_hash_resize(dtrace_hash_t *hash)
6727{
6728	int size = hash->dth_size, i, ndx;
6729	int new_size = hash->dth_size << 1;
6730	int new_mask = new_size - 1;
6731	dtrace_hashbucket_t **new_tab, *bucket, *next;
6732
6733	ASSERT((new_size & new_mask) == 0);
6734
6735	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6736
6737	for (i = 0; i < size; i++) {
6738		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6739			dtrace_probe_t *probe = bucket->dthb_chain;
6740
6741			ASSERT(probe != NULL);
6742			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6743
6744			next = bucket->dthb_next;
6745			bucket->dthb_next = new_tab[ndx];
6746			new_tab[ndx] = bucket;
6747		}
6748	}
6749
6750	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6751	hash->dth_tab = new_tab;
6752	hash->dth_size = new_size;
6753	hash->dth_mask = new_mask;
6754}
6755
6756static void
6757dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6758{
6759	int hashval = DTRACE_HASHSTR(hash, new);
6760	int ndx = hashval & hash->dth_mask;
6761	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6762	dtrace_probe_t **nextp, **prevp;
6763
6764	for (; bucket != NULL; bucket = bucket->dthb_next) {
6765		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6766			goto add;
6767	}
6768
6769	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6770		dtrace_hash_resize(hash);
6771		dtrace_hash_add(hash, new);
6772		return;
6773	}
6774
6775	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6776	bucket->dthb_next = hash->dth_tab[ndx];
6777	hash->dth_tab[ndx] = bucket;
6778	hash->dth_nbuckets++;
6779
6780add:
6781	nextp = DTRACE_HASHNEXT(hash, new);
6782	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6783	*nextp = bucket->dthb_chain;
6784
6785	if (bucket->dthb_chain != NULL) {
6786		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6787		ASSERT(*prevp == NULL);
6788		*prevp = new;
6789	}
6790
6791	bucket->dthb_chain = new;
6792	bucket->dthb_len++;
6793}
6794
6795static dtrace_probe_t *
6796dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6797{
6798	int hashval = DTRACE_HASHSTR(hash, template);
6799	int ndx = hashval & hash->dth_mask;
6800	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6801
6802	for (; bucket != NULL; bucket = bucket->dthb_next) {
6803		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6804			return (bucket->dthb_chain);
6805	}
6806
6807	return (NULL);
6808}
6809
6810static int
6811dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6812{
6813	int hashval = DTRACE_HASHSTR(hash, template);
6814	int ndx = hashval & hash->dth_mask;
6815	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6816
6817	for (; bucket != NULL; bucket = bucket->dthb_next) {
6818		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6819			return (bucket->dthb_len);
6820	}
6821
6822	return (0);
6823}
6824
6825static void
6826dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6827{
6828	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6829	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6830
6831	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6832	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6833
6834	/*
6835	 * Find the bucket that we're removing this probe from.
6836	 */
6837	for (; bucket != NULL; bucket = bucket->dthb_next) {
6838		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6839			break;
6840	}
6841
6842	ASSERT(bucket != NULL);
6843
6844	if (*prevp == NULL) {
6845		if (*nextp == NULL) {
6846			/*
6847			 * The removed probe was the only probe on this
6848			 * bucket; we need to remove the bucket.
6849			 */
6850			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6851
6852			ASSERT(bucket->dthb_chain == probe);
6853			ASSERT(b != NULL);
6854
6855			if (b == bucket) {
6856				hash->dth_tab[ndx] = bucket->dthb_next;
6857			} else {
6858				while (b->dthb_next != bucket)
6859					b = b->dthb_next;
6860				b->dthb_next = bucket->dthb_next;
6861			}
6862
6863			ASSERT(hash->dth_nbuckets > 0);
6864			hash->dth_nbuckets--;
6865			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6866			return;
6867		}
6868
6869		bucket->dthb_chain = *nextp;
6870	} else {
6871		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6872	}
6873
6874	if (*nextp != NULL)
6875		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6876}
6877
6878/*
6879 * DTrace Utility Functions
6880 *
6881 * These are random utility functions that are _not_ called from probe context.
6882 */
6883static int
6884dtrace_badattr(const dtrace_attribute_t *a)
6885{
6886	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6887	    a->dtat_data > DTRACE_STABILITY_MAX ||
6888	    a->dtat_class > DTRACE_CLASS_MAX);
6889}
6890
6891/*
6892 * Return a duplicate copy of a string.  If the specified string is NULL,
6893 * this function returns a zero-length string.
6894 */
6895static char *
6896dtrace_strdup(const char *str)
6897{
6898	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6899
6900	if (str != NULL)
6901		(void) strcpy(new, str);
6902
6903	return (new);
6904}
6905
6906#define	DTRACE_ISALPHA(c)	\
6907	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6908
6909static int
6910dtrace_badname(const char *s)
6911{
6912	char c;
6913
6914	if (s == NULL || (c = *s++) == '\0')
6915		return (0);
6916
6917	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6918		return (1);
6919
6920	while ((c = *s++) != '\0') {
6921		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6922		    c != '-' && c != '_' && c != '.' && c != '`')
6923			return (1);
6924	}
6925
6926	return (0);
6927}
6928
6929static void
6930dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6931{
6932	uint32_t priv;
6933
6934#if defined(sun)
6935	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6936		/*
6937		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter,
6938		 * but for GCC they do.
6939		 */
6940		*uidp = 0;
6941		*zoneidp = 0;
6942
6943		priv = DTRACE_PRIV_ALL;
6944	} else {
6945		*uidp = crgetuid(cr);
6946		*zoneidp = crgetzoneid(cr);
6947
6948		priv = 0;
6949		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6950			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6951		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6952			priv |= DTRACE_PRIV_USER;
6953		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6954			priv |= DTRACE_PRIV_PROC;
6955		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6956			priv |= DTRACE_PRIV_OWNER;
6957		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6958			priv |= DTRACE_PRIV_ZONEOWNER;
6959	}
6960#else
6961	priv = DTRACE_PRIV_ALL;
6962	*uidp = 0;
6963	*zoneidp = 0;
6964#endif
6965
6966	*privp = priv;
6967}
6968
6969#ifdef DTRACE_ERRDEBUG
6970static void
6971dtrace_errdebug(const char *str)
6972{
6973	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6974	int occupied = 0;
6975
6976	mutex_enter(&dtrace_errlock);
6977	dtrace_errlast = str;
6978	dtrace_errthread = curthread;
6979
6980	while (occupied++ < DTRACE_ERRHASHSZ) {
6981		if (dtrace_errhash[hval].dter_msg == str) {
6982			dtrace_errhash[hval].dter_count++;
6983			goto out;
6984		}
6985
6986		if (dtrace_errhash[hval].dter_msg != NULL) {
6987			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6988			continue;
6989		}
6990
6991		dtrace_errhash[hval].dter_msg = str;
6992		dtrace_errhash[hval].dter_count = 1;
6993		goto out;
6994	}
6995
6996	panic("dtrace: undersized error hash");
6997out:
6998	mutex_exit(&dtrace_errlock);
6999}
7000#endif
7001
7002/*
7003 * DTrace Matching Functions
7004 *
7005 * These functions are used to match groups of probes, given some elements of
7006 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7007 */
7008static int
7009dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7010    zoneid_t zoneid)
7011{
7012	if (priv != DTRACE_PRIV_ALL) {
7013		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7014		uint32_t match = priv & ppriv;
7015
7016		/*
7017		 * No PRIV_DTRACE_* privileges...
7018		 */
7019		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7020		    DTRACE_PRIV_KERNEL)) == 0)
7021			return (0);
7022
7023		/*
7024		 * No matching bits, but there were bits to match...
7025		 */
7026		if (match == 0 && ppriv != 0)
7027			return (0);
7028
7029		/*
7030		 * Need to have permissions to the process, but don't...
7031		 */
7032		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7033		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7034			return (0);
7035		}
7036
7037		/*
7038		 * Need to be in the same zone unless we possess the
7039		 * privilege to examine all zones.
7040		 */
7041		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7042		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7043			return (0);
7044		}
7045	}
7046
7047	return (1);
7048}
7049
7050/*
7051 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7052 * consists of input pattern strings and an ops-vector to evaluate them.
7053 * This function returns >0 for match, 0 for no match, and <0 for error.
7054 */
7055static int
7056dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7057    uint32_t priv, uid_t uid, zoneid_t zoneid)
7058{
7059	dtrace_provider_t *pvp = prp->dtpr_provider;
7060	int rv;
7061
7062	if (pvp->dtpv_defunct)
7063		return (0);
7064
7065	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7066		return (rv);
7067
7068	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7069		return (rv);
7070
7071	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7072		return (rv);
7073
7074	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7075		return (rv);
7076
7077	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7078		return (0);
7079
7080	return (rv);
7081}
7082
7083/*
7084 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7085 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7086 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7087 * In addition, all of the recursion cases except for '*' matching have been
7088 * unwound.  For '*', we still implement recursive evaluation, but a depth
7089 * counter is maintained and matching is aborted if we recurse too deep.
7090 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7091 */
7092static int
7093dtrace_match_glob(const char *s, const char *p, int depth)
7094{
7095	const char *olds;
7096	char s1, c;
7097	int gs;
7098
7099	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7100		return (-1);
7101
7102	if (s == NULL)
7103		s = ""; /* treat NULL as empty string */
7104
7105top:
7106	olds = s;
7107	s1 = *s++;
7108
7109	if (p == NULL)
7110		return (0);
7111
7112	if ((c = *p++) == '\0')
7113		return (s1 == '\0');
7114
7115	switch (c) {
7116	case '[': {
7117		int ok = 0, notflag = 0;
7118		char lc = '\0';
7119
7120		if (s1 == '\0')
7121			return (0);
7122
7123		if (*p == '!') {
7124			notflag = 1;
7125			p++;
7126		}
7127
7128		if ((c = *p++) == '\0')
7129			return (0);
7130
7131		do {
7132			if (c == '-' && lc != '\0' && *p != ']') {
7133				if ((c = *p++) == '\0')
7134					return (0);
7135				if (c == '\\' && (c = *p++) == '\0')
7136					return (0);
7137
7138				if (notflag) {
7139					if (s1 < lc || s1 > c)
7140						ok++;
7141					else
7142						return (0);
7143				} else if (lc <= s1 && s1 <= c)
7144					ok++;
7145
7146			} else if (c == '\\' && (c = *p++) == '\0')
7147				return (0);
7148
7149			lc = c; /* save left-hand 'c' for next iteration */
7150
7151			if (notflag) {
7152				if (s1 != c)
7153					ok++;
7154				else
7155					return (0);
7156			} else if (s1 == c)
7157				ok++;
7158
7159			if ((c = *p++) == '\0')
7160				return (0);
7161
7162		} while (c != ']');
7163
7164		if (ok)
7165			goto top;
7166
7167		return (0);
7168	}
7169
7170	case '\\':
7171		if ((c = *p++) == '\0')
7172			return (0);
7173		/*FALLTHRU*/
7174
7175	default:
7176		if (c != s1)
7177			return (0);
7178		/*FALLTHRU*/
7179
7180	case '?':
7181		if (s1 != '\0')
7182			goto top;
7183		return (0);
7184
7185	case '*':
7186		while (*p == '*')
7187			p++; /* consecutive *'s are identical to a single one */
7188
7189		if (*p == '\0')
7190			return (1);
7191
7192		for (s = olds; *s != '\0'; s++) {
7193			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7194				return (gs);
7195		}
7196
7197		return (0);
7198	}
7199}
7200
7201/*ARGSUSED*/
7202static int
7203dtrace_match_string(const char *s, const char *p, int depth)
7204{
7205	return (s != NULL && strcmp(s, p) == 0);
7206}
7207
7208/*ARGSUSED*/
7209static int
7210dtrace_match_nul(const char *s, const char *p, int depth)
7211{
7212	return (1); /* always match the empty pattern */
7213}
7214
7215/*ARGSUSED*/
7216static int
7217dtrace_match_nonzero(const char *s, const char *p, int depth)
7218{
7219	return (s != NULL && s[0] != '\0');
7220}
7221
7222static int
7223dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7224    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7225{
7226	dtrace_probe_t template, *probe;
7227	dtrace_hash_t *hash = NULL;
7228	int len, rc, best = INT_MAX, nmatched = 0;
7229	dtrace_id_t i;
7230
7231	ASSERT(MUTEX_HELD(&dtrace_lock));
7232
7233	/*
7234	 * If the probe ID is specified in the key, just lookup by ID and
7235	 * invoke the match callback once if a matching probe is found.
7236	 */
7237	if (pkp->dtpk_id != DTRACE_IDNONE) {
7238		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7239		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7240			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7241				return (DTRACE_MATCH_FAIL);
7242			nmatched++;
7243		}
7244		return (nmatched);
7245	}
7246
7247	template.dtpr_mod = (char *)pkp->dtpk_mod;
7248	template.dtpr_func = (char *)pkp->dtpk_func;
7249	template.dtpr_name = (char *)pkp->dtpk_name;
7250
7251	/*
7252	 * We want to find the most distinct of the module name, function
7253	 * name, and name.  So for each one that is not a glob pattern or
7254	 * empty string, we perform a lookup in the corresponding hash and
7255	 * use the hash table with the fewest collisions to do our search.
7256	 */
7257	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7258	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7259		best = len;
7260		hash = dtrace_bymod;
7261	}
7262
7263	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7264	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7265		best = len;
7266		hash = dtrace_byfunc;
7267	}
7268
7269	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7270	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7271		best = len;
7272		hash = dtrace_byname;
7273	}
7274
7275	/*
7276	 * If we did not select a hash table, iterate over every probe and
7277	 * invoke our callback for each one that matches our input probe key.
7278	 */
7279	if (hash == NULL) {
7280		for (i = 0; i < dtrace_nprobes; i++) {
7281			if ((probe = dtrace_probes[i]) == NULL ||
7282			    dtrace_match_probe(probe, pkp, priv, uid,
7283			    zoneid) <= 0)
7284				continue;
7285
7286			nmatched++;
7287
7288			if ((rc = (*matched)(probe, arg)) !=
7289			    DTRACE_MATCH_NEXT) {
7290				if (rc == DTRACE_MATCH_FAIL)
7291					return (DTRACE_MATCH_FAIL);
7292				break;
7293			}
7294		}
7295
7296		return (nmatched);
7297	}
7298
7299	/*
7300	 * If we selected a hash table, iterate over each probe of the same key
7301	 * name and invoke the callback for every probe that matches the other
7302	 * attributes of our input probe key.
7303	 */
7304	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7305	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7306
7307		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7308			continue;
7309
7310		nmatched++;
7311
7312		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7313			if (rc == DTRACE_MATCH_FAIL)
7314				return (DTRACE_MATCH_FAIL);
7315			break;
7316		}
7317	}
7318
7319	return (nmatched);
7320}
7321
7322/*
7323 * Return the function pointer dtrace_probecmp() should use to compare the
7324 * specified pattern with a string.  For NULL or empty patterns, we select
7325 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7326 * For non-empty non-glob strings, we use dtrace_match_string().
7327 */
7328static dtrace_probekey_f *
7329dtrace_probekey_func(const char *p)
7330{
7331	char c;
7332
7333	if (p == NULL || *p == '\0')
7334		return (&dtrace_match_nul);
7335
7336	while ((c = *p++) != '\0') {
7337		if (c == '[' || c == '?' || c == '*' || c == '\\')
7338			return (&dtrace_match_glob);
7339	}
7340
7341	return (&dtrace_match_string);
7342}
7343
7344/*
7345 * Build a probe comparison key for use with dtrace_match_probe() from the
7346 * given probe description.  By convention, a null key only matches anchored
7347 * probes: if each field is the empty string, reset dtpk_fmatch to
7348 * dtrace_match_nonzero().
7349 */
7350static void
7351dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7352{
7353	pkp->dtpk_prov = pdp->dtpd_provider;
7354	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7355
7356	pkp->dtpk_mod = pdp->dtpd_mod;
7357	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7358
7359	pkp->dtpk_func = pdp->dtpd_func;
7360	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7361
7362	pkp->dtpk_name = pdp->dtpd_name;
7363	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7364
7365	pkp->dtpk_id = pdp->dtpd_id;
7366
7367	if (pkp->dtpk_id == DTRACE_IDNONE &&
7368	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7369	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7370	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7371	    pkp->dtpk_nmatch == &dtrace_match_nul)
7372		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7373}
7374
7375/*
7376 * DTrace Provider-to-Framework API Functions
7377 *
7378 * These functions implement much of the Provider-to-Framework API, as
7379 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7380 * the functions in the API for probe management (found below), and
7381 * dtrace_probe() itself (found above).
7382 */
7383
7384/*
7385 * Register the calling provider with the DTrace framework.  This should
7386 * generally be called by DTrace providers in their attach(9E) entry point.
7387 */
7388int
7389dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7390    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7391{
7392	dtrace_provider_t *provider;
7393
7394	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7395		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7396		    "arguments", name ? name : "<NULL>");
7397		return (EINVAL);
7398	}
7399
7400	if (name[0] == '\0' || dtrace_badname(name)) {
7401		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7402		    "provider name", name);
7403		return (EINVAL);
7404	}
7405
7406	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7407	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7408	    pops->dtps_destroy == NULL ||
7409	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7410		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7411		    "provider ops", name);
7412		return (EINVAL);
7413	}
7414
7415	if (dtrace_badattr(&pap->dtpa_provider) ||
7416	    dtrace_badattr(&pap->dtpa_mod) ||
7417	    dtrace_badattr(&pap->dtpa_func) ||
7418	    dtrace_badattr(&pap->dtpa_name) ||
7419	    dtrace_badattr(&pap->dtpa_args)) {
7420		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7421		    "provider attributes", name);
7422		return (EINVAL);
7423	}
7424
7425	if (priv & ~DTRACE_PRIV_ALL) {
7426		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7427		    "privilege attributes", name);
7428		return (EINVAL);
7429	}
7430
7431	if ((priv & DTRACE_PRIV_KERNEL) &&
7432	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7433	    pops->dtps_usermode == NULL) {
7434		cmn_err(CE_WARN, "failed to register provider '%s': need "
7435		    "dtps_usermode() op for given privilege attributes", name);
7436		return (EINVAL);
7437	}
7438
7439	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7440	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7441	(void) strcpy(provider->dtpv_name, name);
7442
7443	provider->dtpv_attr = *pap;
7444	provider->dtpv_priv.dtpp_flags = priv;
7445	if (cr != NULL) {
7446		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7447		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7448	}
7449	provider->dtpv_pops = *pops;
7450
7451	if (pops->dtps_provide == NULL) {
7452		ASSERT(pops->dtps_provide_module != NULL);
7453		provider->dtpv_pops.dtps_provide =
7454		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7455	}
7456
7457	if (pops->dtps_provide_module == NULL) {
7458		ASSERT(pops->dtps_provide != NULL);
7459#if defined(sun)
7460		provider->dtpv_pops.dtps_provide_module =
7461		    (void (*)(void *, modctl_t *))dtrace_nullop;
7462#else
7463		provider->dtpv_pops.dtps_provide_module =
7464		    (void (*)(void *, dtrace_modctl_t *))dtrace_nullop;
7465#endif
7466	}
7467
7468	if (pops->dtps_suspend == NULL) {
7469		ASSERT(pops->dtps_resume == NULL);
7470		provider->dtpv_pops.dtps_suspend =
7471		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7472		provider->dtpv_pops.dtps_resume =
7473		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7474	}
7475
7476	provider->dtpv_arg = arg;
7477	*idp = (dtrace_provider_id_t)provider;
7478
7479	if (pops == &dtrace_provider_ops) {
7480		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7481		ASSERT(MUTEX_HELD(&dtrace_lock));
7482		ASSERT(dtrace_anon.dta_enabling == NULL);
7483
7484		/*
7485		 * We make sure that the DTrace provider is at the head of
7486		 * the provider chain.
7487		 */
7488		provider->dtpv_next = dtrace_provider;
7489		dtrace_provider = provider;
7490		return (0);
7491	}
7492
7493	mutex_enter(&dtrace_provider_lock);
7494	mutex_enter(&dtrace_lock);
7495
7496	/*
7497	 * If there is at least one provider registered, we'll add this
7498	 * provider after the first provider.
7499	 */
7500	if (dtrace_provider != NULL) {
7501		provider->dtpv_next = dtrace_provider->dtpv_next;
7502		dtrace_provider->dtpv_next = provider;
7503	} else {
7504		dtrace_provider = provider;
7505	}
7506
7507	if (dtrace_retained != NULL) {
7508		dtrace_enabling_provide(provider);
7509
7510		/*
7511		 * Now we need to call dtrace_enabling_matchall() -- which
7512		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7513		 * to drop all of our locks before calling into it...
7514		 */
7515		mutex_exit(&dtrace_lock);
7516		mutex_exit(&dtrace_provider_lock);
7517		dtrace_enabling_matchall();
7518
7519		return (0);
7520	}
7521
7522	mutex_exit(&dtrace_lock);
7523	mutex_exit(&dtrace_provider_lock);
7524
7525	return (0);
7526}
7527
7528/*
7529 * Unregister the specified provider from the DTrace framework.  This should
7530 * generally be called by DTrace providers in their detach(9E) entry point.
7531 */
7532int
7533dtrace_unregister(dtrace_provider_id_t id)
7534{
7535	dtrace_provider_t *old = (dtrace_provider_t *)id;
7536	dtrace_provider_t *prev = NULL;
7537	int i, self = 0;
7538	dtrace_probe_t *probe, *first = NULL;
7539
7540	if (old->dtpv_pops.dtps_enable ==
7541	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7542		/*
7543		 * If DTrace itself is the provider, we're called with locks
7544		 * already held.
7545		 */
7546		ASSERT(old == dtrace_provider);
7547#if defined(sun)
7548		ASSERT(dtrace_devi != NULL);
7549#endif
7550		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7551		ASSERT(MUTEX_HELD(&dtrace_lock));
7552		self = 1;
7553
7554		if (dtrace_provider->dtpv_next != NULL) {
7555			/*
7556			 * There's another provider here; return failure.
7557			 */
7558			return (EBUSY);
7559		}
7560	} else {
7561		mutex_enter(&dtrace_provider_lock);
7562		mutex_enter(&mod_lock);
7563		mutex_enter(&dtrace_lock);
7564	}
7565
7566	/*
7567	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7568	 * probes, we refuse to let providers slither away, unless this
7569	 * provider has already been explicitly invalidated.
7570	 */
7571	if (!old->dtpv_defunct &&
7572	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7573	    dtrace_anon.dta_state->dts_necbs > 0))) {
7574		if (!self) {
7575			mutex_exit(&dtrace_lock);
7576			mutex_exit(&mod_lock);
7577			mutex_exit(&dtrace_provider_lock);
7578		}
7579		return (EBUSY);
7580	}
7581
7582	/*
7583	 * Attempt to destroy the probes associated with this provider.
7584	 */
7585	for (i = 0; i < dtrace_nprobes; i++) {
7586		if ((probe = dtrace_probes[i]) == NULL)
7587			continue;
7588
7589		if (probe->dtpr_provider != old)
7590			continue;
7591
7592		if (probe->dtpr_ecb == NULL)
7593			continue;
7594
7595		/*
7596		 * We have at least one ECB; we can't remove this provider.
7597		 */
7598		if (!self) {
7599			mutex_exit(&dtrace_lock);
7600			mutex_exit(&mod_lock);
7601			mutex_exit(&dtrace_provider_lock);
7602		}
7603		return (EBUSY);
7604	}
7605
7606	/*
7607	 * All of the probes for this provider are disabled; we can safely
7608	 * remove all of them from their hash chains and from the probe array.
7609	 */
7610	for (i = 0; i < dtrace_nprobes; i++) {
7611		if ((probe = dtrace_probes[i]) == NULL)
7612			continue;
7613
7614		if (probe->dtpr_provider != old)
7615			continue;
7616
7617		dtrace_probes[i] = NULL;
7618
7619		dtrace_hash_remove(dtrace_bymod, probe);
7620		dtrace_hash_remove(dtrace_byfunc, probe);
7621		dtrace_hash_remove(dtrace_byname, probe);
7622
7623		if (first == NULL) {
7624			first = probe;
7625			probe->dtpr_nextmod = NULL;
7626		} else {
7627			probe->dtpr_nextmod = first;
7628			first = probe;
7629		}
7630	}
7631
7632	/*
7633	 * The provider's probes have been removed from the hash chains and
7634	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7635	 * everyone has cleared out from any probe array processing.
7636	 */
7637	dtrace_sync();
7638
7639	for (probe = first; probe != NULL; probe = first) {
7640		first = probe->dtpr_nextmod;
7641
7642		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7643		    probe->dtpr_arg);
7644		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7645		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7646		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7647#if defined(sun)
7648		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7649#else
7650		vmem_free(dtrace_arena, (uintptr_t)(probe->dtpr_id), 1);
7651#endif
7652		kmem_free(probe, sizeof (dtrace_probe_t));
7653	}
7654
7655	if ((prev = dtrace_provider) == old) {
7656#if defined(sun)
7657		ASSERT(self || dtrace_devi == NULL);
7658		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7659#endif
7660		dtrace_provider = old->dtpv_next;
7661	} else {
7662		while (prev != NULL && prev->dtpv_next != old)
7663			prev = prev->dtpv_next;
7664
7665		if (prev == NULL) {
7666			panic("attempt to unregister non-existent "
7667			    "dtrace provider %p\n", (void *)id);
7668		}
7669
7670		prev->dtpv_next = old->dtpv_next;
7671	}
7672
7673	if (!self) {
7674		mutex_exit(&dtrace_lock);
7675		mutex_exit(&mod_lock);
7676		mutex_exit(&dtrace_provider_lock);
7677	}
7678
7679	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7680	kmem_free(old, sizeof (dtrace_provider_t));
7681
7682	return (0);
7683}
7684
7685/*
7686 * Invalidate the specified provider.  All subsequent probe lookups for the
7687 * specified provider will fail, but its probes will not be removed.
7688 */
7689void
7690dtrace_invalidate(dtrace_provider_id_t id)
7691{
7692	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7693
7694	ASSERT(pvp->dtpv_pops.dtps_enable !=
7695	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7696
7697	mutex_enter(&dtrace_provider_lock);
7698	mutex_enter(&dtrace_lock);
7699
7700	pvp->dtpv_defunct = 1;
7701
7702	mutex_exit(&dtrace_lock);
7703	mutex_exit(&dtrace_provider_lock);
7704}
7705
7706/*
7707 * Indicate whether or not DTrace has attached.
7708 */
7709int
7710dtrace_attached(void)
7711{
7712	/*
7713	 * dtrace_provider will be non-NULL iff the DTrace driver has
7714	 * attached.  (It's non-NULL because DTrace is always itself a
7715	 * provider.)
7716	 */
7717	return (dtrace_provider != NULL);
7718}
7719
7720/*
7721 * Remove all the unenabled probes for the given provider.  This function is
7722 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7723 * -- just as many of its associated probes as it can.
7724 */
7725int
7726dtrace_condense(dtrace_provider_id_t id)
7727{
7728	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7729	int i;
7730	dtrace_probe_t *probe;
7731
7732	/*
7733	 * Make sure this isn't the dtrace provider itself.
7734	 */
7735	ASSERT(prov->dtpv_pops.dtps_enable !=
7736	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7737
7738	mutex_enter(&dtrace_provider_lock);
7739	mutex_enter(&dtrace_lock);
7740
7741	/*
7742	 * Attempt to destroy the probes associated with this provider.
7743	 */
7744	for (i = 0; i < dtrace_nprobes; i++) {
7745		if ((probe = dtrace_probes[i]) == NULL)
7746			continue;
7747
7748		if (probe->dtpr_provider != prov)
7749			continue;
7750
7751		if (probe->dtpr_ecb != NULL)
7752			continue;
7753
7754		dtrace_probes[i] = NULL;
7755
7756		dtrace_hash_remove(dtrace_bymod, probe);
7757		dtrace_hash_remove(dtrace_byfunc, probe);
7758		dtrace_hash_remove(dtrace_byname, probe);
7759
7760		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7761		    probe->dtpr_arg);
7762		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7763		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7764		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7765		kmem_free(probe, sizeof (dtrace_probe_t));
7766#if defined(sun)
7767		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7768#else
7769		vmem_free(dtrace_arena, ((uintptr_t)i + 1), 1);
7770#endif
7771	}
7772
7773	mutex_exit(&dtrace_lock);
7774	mutex_exit(&dtrace_provider_lock);
7775
7776	return (0);
7777}
7778
7779/*
7780 * DTrace Probe Management Functions
7781 *
7782 * The functions in this section perform the DTrace probe management,
7783 * including functions to create probes, look-up probes, and call into the
7784 * providers to request that probes be provided.  Some of these functions are
7785 * in the Provider-to-Framework API; these functions can be identified by the
7786 * fact that they are not declared "static".
7787 */
7788
7789/*
7790 * Create a probe with the specified module name, function name, and name.
7791 */
7792dtrace_id_t
7793dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7794    const char *func, const char *name, int aframes, void *arg)
7795{
7796	dtrace_probe_t *probe, **probes;
7797	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7798	dtrace_id_t id;
7799	vmem_addr_t offset;
7800
7801	if (provider == dtrace_provider) {
7802		ASSERT(MUTEX_HELD(&dtrace_lock));
7803	} else {
7804		mutex_enter(&dtrace_lock);
7805	}
7806
7807	if (vmem_alloc(dtrace_arena, 1, VM_BESTFIT | VM_SLEEP, &offset) != 0)
7808		ASSERT(0);
7809	id = (dtrace_id_t)(uintptr_t)offset;
7810	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7811
7812	probe->dtpr_id = id;
7813	probe->dtpr_gen = dtrace_probegen++;
7814	probe->dtpr_mod = dtrace_strdup(mod);
7815	probe->dtpr_func = dtrace_strdup(func);
7816	probe->dtpr_name = dtrace_strdup(name);
7817	probe->dtpr_arg = arg;
7818	probe->dtpr_aframes = aframes;
7819	probe->dtpr_provider = provider;
7820
7821	dtrace_hash_add(dtrace_bymod, probe);
7822	dtrace_hash_add(dtrace_byfunc, probe);
7823	dtrace_hash_add(dtrace_byname, probe);
7824
7825	if (id - 1 >= dtrace_nprobes) {
7826		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7827		size_t nsize = osize << 1;
7828
7829		if (nsize == 0) {
7830			ASSERT(osize == 0);
7831			ASSERT(dtrace_probes == NULL);
7832			nsize = sizeof (dtrace_probe_t *);
7833		}
7834
7835		probes = kmem_zalloc(nsize, KM_SLEEP);
7836		dtrace_probes_size = nsize;
7837
7838		if (dtrace_probes == NULL) {
7839			ASSERT(osize == 0);
7840			dtrace_probes = probes;
7841			dtrace_nprobes = 1;
7842		} else {
7843			dtrace_probe_t **oprobes = dtrace_probes;
7844
7845			bcopy(oprobes, probes, osize);
7846			dtrace_membar_producer();
7847			dtrace_probes = probes;
7848
7849			dtrace_sync();
7850
7851			/*
7852			 * All CPUs are now seeing the new probes array; we can
7853			 * safely free the old array.
7854			 */
7855			kmem_free(oprobes, osize);
7856			dtrace_nprobes <<= 1;
7857		}
7858
7859		ASSERT(id - 1 < dtrace_nprobes);
7860	}
7861
7862	ASSERT(dtrace_probes[id - 1] == NULL);
7863	dtrace_probes[id - 1] = probe;
7864
7865	if (provider != dtrace_provider)
7866		mutex_exit(&dtrace_lock);
7867
7868	return (id);
7869}
7870
7871static dtrace_probe_t *
7872dtrace_probe_lookup_id(dtrace_id_t id)
7873{
7874	ASSERT(MUTEX_HELD(&dtrace_lock));
7875
7876	if (id == 0 || id > dtrace_nprobes)
7877		return (NULL);
7878
7879	return (dtrace_probes[id - 1]);
7880}
7881
7882static int
7883dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7884{
7885	*((dtrace_id_t *)arg) = probe->dtpr_id;
7886
7887	return (DTRACE_MATCH_DONE);
7888}
7889
7890/*
7891 * Look up a probe based on provider and one or more of module name, function
7892 * name and probe name.
7893 */
7894dtrace_id_t
7895dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7896    char *func, char *name)
7897{
7898	dtrace_probekey_t pkey;
7899	dtrace_id_t id;
7900	int match;
7901
7902	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7903	pkey.dtpk_pmatch = &dtrace_match_string;
7904	pkey.dtpk_mod = mod;
7905	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7906	pkey.dtpk_func = func;
7907	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7908	pkey.dtpk_name = name;
7909	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7910	pkey.dtpk_id = DTRACE_IDNONE;
7911
7912	mutex_enter(&dtrace_lock);
7913	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7914	    dtrace_probe_lookup_match, &id);
7915	mutex_exit(&dtrace_lock);
7916
7917	ASSERT(match == 1 || match == 0);
7918	return (match ? id : 0);
7919}
7920
7921/*
7922 * Returns the probe argument associated with the specified probe.
7923 */
7924void *
7925dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7926{
7927	dtrace_probe_t *probe;
7928	void *rval = NULL;
7929
7930	mutex_enter(&dtrace_lock);
7931
7932	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7933	    probe->dtpr_provider == (dtrace_provider_t *)id)
7934		rval = probe->dtpr_arg;
7935
7936	mutex_exit(&dtrace_lock);
7937
7938	return (rval);
7939}
7940
7941/*
7942 * Copy a probe into a probe description.
7943 */
7944static void
7945dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7946{
7947	bzero(pdp, sizeof (dtrace_probedesc_t));
7948	pdp->dtpd_id = prp->dtpr_id;
7949
7950	(void) strncpy(pdp->dtpd_provider,
7951	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7952
7953	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7954	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7955	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7956}
7957
7958#ifdef notyet	/* XXX TBD */
7959#if !defined(sun)
7960static int
7961dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7962{
7963	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7964
7965	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7966
7967	return(0);
7968}
7969#endif
7970#endif /* notyet */
7971
7972
7973/*
7974 * Called to indicate that a probe -- or probes -- should be provided by a
7975 * specfied provider.  If the specified description is NULL, the provider will
7976 * be told to provide all of its probes.  (This is done whenever a new
7977 * consumer comes along, or whenever a retained enabling is to be matched.) If
7978 * the specified description is non-NULL, the provider is given the
7979 * opportunity to dynamically provide the specified probe, allowing providers
7980 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7981 * probes.)  If the provider is NULL, the operations will be applied to all
7982 * providers; if the provider is non-NULL the operations will only be applied
7983 * to the specified provider.  The dtrace_provider_lock must be held, and the
7984 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7985 * will need to grab the dtrace_lock when it reenters the framework through
7986 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7987 */
7988static void
7989dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7990{
7991#if defined(sun)
7992	modctl_t *ctl;
7993#else
7994	module_t *mod;
7995#endif
7996	int all = 0;
7997
7998	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7999
8000	if (prv == NULL) {
8001		all = 1;
8002		prv = dtrace_provider;
8003	}
8004
8005	do {
8006		/*
8007		 * First, call the blanket provide operation.
8008		 */
8009		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8010
8011		/*
8012		 * Now call the per-module provide operation.  We will grab
8013		 * mod_lock to prevent the list from being modified.  Note
8014		 * that this also prevents the mod_busy bits from changing.
8015		 * (mod_busy can only be changed with mod_lock held.)
8016		 */
8017		mutex_enter(&mod_lock);
8018
8019#if defined(sun)
8020		ctl = &modules;
8021		do {
8022			if (ctl->mod_busy || ctl->mod_mp == NULL)
8023				continue;
8024
8025			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8026
8027		} while ((ctl = ctl->mod_next) != &modules);
8028#else
8029
8030		/* Fake netbsd module first */
8031		if (mod_nbsd == NULL) {
8032		    mod_nbsd = kmem_zalloc(sizeof(*mod_nbsd), KM_SLEEP);
8033		    mod_nbsd->mod_info = kmem_zalloc(sizeof(modinfo_t), KM_SLEEP);
8034		    mod_nbsd->mod_refcnt = 1;
8035		    *((char **)(intptr_t)&mod_nbsd->mod_info->mi_name) = __UNCONST("netbsd");
8036		}
8037
8038		kernconfig_lock();
8039		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod_nbsd);
8040		TAILQ_FOREACH(mod, &module_list, mod_chain) {
8041			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod);
8042		}
8043		kernconfig_unlock();
8044#endif
8045
8046		mutex_exit(&mod_lock);
8047	} while (all && (prv = prv->dtpv_next) != NULL);
8048}
8049
8050#if defined(sun)
8051/*
8052 * Iterate over each probe, and call the Framework-to-Provider API function
8053 * denoted by offs.
8054 */
8055static void
8056dtrace_probe_foreach(uintptr_t offs)
8057{
8058	dtrace_provider_t *prov;
8059	void (*func)(void *, dtrace_id_t, void *);
8060	dtrace_probe_t *probe;
8061	dtrace_icookie_t cookie;
8062	int i;
8063
8064	/*
8065	 * We disable interrupts to walk through the probe array.  This is
8066	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8067	 * won't see stale data.
8068	 */
8069	cookie = dtrace_interrupt_disable();
8070
8071	for (i = 0; i < dtrace_nprobes; i++) {
8072		if ((probe = dtrace_probes[i]) == NULL)
8073			continue;
8074
8075		if (probe->dtpr_ecb == NULL) {
8076			/*
8077			 * This probe isn't enabled -- don't call the function.
8078			 */
8079			continue;
8080		}
8081
8082		prov = probe->dtpr_provider;
8083		func = *((void(**)(void *, dtrace_id_t, void *))
8084		    ((uintptr_t)&prov->dtpv_pops + offs));
8085
8086		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8087	}
8088
8089	dtrace_interrupt_enable(cookie);
8090}
8091#endif
8092
8093static int
8094dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8095{
8096	dtrace_probekey_t pkey;
8097	uint32_t priv;
8098	uid_t uid;
8099	zoneid_t zoneid;
8100
8101	ASSERT(MUTEX_HELD(&dtrace_lock));
8102	dtrace_ecb_create_cache = NULL;
8103
8104	if (desc == NULL) {
8105		/*
8106		 * If we're passed a NULL description, we're being asked to
8107		 * create an ECB with a NULL probe.
8108		 */
8109		(void) dtrace_ecb_create_enable(NULL, enab);
8110		return (0);
8111	}
8112
8113	dtrace_probekey(desc, &pkey);
8114	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8115	    &priv, &uid, &zoneid);
8116
8117	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8118	    enab));
8119}
8120
8121/*
8122 * DTrace Helper Provider Functions
8123 */
8124static void
8125dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8126{
8127	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8128	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8129	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8130}
8131
8132static void
8133dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8134    const dof_provider_t *dofprov, char *strtab)
8135{
8136	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8137	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8138	    dofprov->dofpv_provattr);
8139	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8140	    dofprov->dofpv_modattr);
8141	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8142	    dofprov->dofpv_funcattr);
8143	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8144	    dofprov->dofpv_nameattr);
8145	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8146	    dofprov->dofpv_argsattr);
8147}
8148
8149static void
8150dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8151{
8152	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8153	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8154	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8155	dof_provider_t *provider;
8156	dof_probe_t *probe;
8157	uint32_t *off, *enoff;
8158	uint8_t *arg;
8159	char *strtab;
8160	uint_t i, nprobes;
8161	dtrace_helper_provdesc_t dhpv;
8162	dtrace_helper_probedesc_t dhpb;
8163	dtrace_meta_t *meta = dtrace_meta_pid;
8164	dtrace_mops_t *mops = &meta->dtm_mops;
8165	void *parg;
8166
8167	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8168	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8169	    provider->dofpv_strtab * dof->dofh_secsize);
8170	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8171	    provider->dofpv_probes * dof->dofh_secsize);
8172	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8173	    provider->dofpv_prargs * dof->dofh_secsize);
8174	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8175	    provider->dofpv_proffs * dof->dofh_secsize);
8176
8177	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8178	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8179	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8180	enoff = NULL;
8181
8182	/*
8183	 * See dtrace_helper_provider_validate().
8184	 */
8185	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8186	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8187		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8188		    provider->dofpv_prenoffs * dof->dofh_secsize);
8189		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8190	}
8191
8192	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8193
8194	/*
8195	 * Create the provider.
8196	 */
8197	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8198
8199	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8200		return;
8201
8202	meta->dtm_count++;
8203
8204	/*
8205	 * Create the probes.
8206	 */
8207	for (i = 0; i < nprobes; i++) {
8208		probe = (dof_probe_t *)(uintptr_t)(daddr +
8209		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8210
8211		dhpb.dthpb_mod = dhp->dofhp_mod;
8212		dhpb.dthpb_func = strtab + probe->dofpr_func;
8213		dhpb.dthpb_name = strtab + probe->dofpr_name;
8214		dhpb.dthpb_base = probe->dofpr_addr;
8215		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8216		dhpb.dthpb_noffs = probe->dofpr_noffs;
8217		if (enoff != NULL) {
8218			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8219			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8220		} else {
8221			dhpb.dthpb_enoffs = NULL;
8222			dhpb.dthpb_nenoffs = 0;
8223		}
8224		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8225		dhpb.dthpb_nargc = probe->dofpr_nargc;
8226		dhpb.dthpb_xargc = probe->dofpr_xargc;
8227		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8228		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8229
8230		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8231	}
8232}
8233
8234static void
8235dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8236{
8237	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8238	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8239	int i;
8240
8241	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8242
8243	for (i = 0; i < dof->dofh_secnum; i++) {
8244		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8245		    dof->dofh_secoff + i * dof->dofh_secsize);
8246
8247		if (sec->dofs_type != DOF_SECT_PROVIDER)
8248			continue;
8249
8250		dtrace_helper_provide_one(dhp, sec, pid);
8251	}
8252
8253	/*
8254	 * We may have just created probes, so we must now rematch against
8255	 * any retained enablings.  Note that this call will acquire both
8256	 * cpu_lock and dtrace_lock; the fact that we are holding
8257	 * dtrace_meta_lock now is what defines the ordering with respect to
8258	 * these three locks.
8259	 */
8260	dtrace_enabling_matchall();
8261}
8262
8263#if defined(sun)
8264static void
8265dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8266{
8267	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8268	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8269	dof_sec_t *str_sec;
8270	dof_provider_t *provider;
8271	char *strtab;
8272	dtrace_helper_provdesc_t dhpv;
8273	dtrace_meta_t *meta = dtrace_meta_pid;
8274	dtrace_mops_t *mops = &meta->dtm_mops;
8275
8276	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8277	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8278	    provider->dofpv_strtab * dof->dofh_secsize);
8279
8280	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8281
8282	/*
8283	 * Create the provider.
8284	 */
8285	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8286
8287	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8288
8289	meta->dtm_count--;
8290}
8291
8292static void
8293dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8294{
8295	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8296	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8297	int i;
8298
8299	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8300
8301	for (i = 0; i < dof->dofh_secnum; i++) {
8302		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8303		    dof->dofh_secoff + i * dof->dofh_secsize);
8304
8305		if (sec->dofs_type != DOF_SECT_PROVIDER)
8306			continue;
8307
8308		dtrace_helper_provider_remove_one(dhp, sec, pid);
8309	}
8310}
8311#endif
8312
8313/*
8314 * DTrace Meta Provider-to-Framework API Functions
8315 *
8316 * These functions implement the Meta Provider-to-Framework API, as described
8317 * in <sys/dtrace.h>.
8318 */
8319int
8320dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8321    dtrace_meta_provider_id_t *idp)
8322{
8323	dtrace_meta_t *meta;
8324	dtrace_helpers_t *help, *next;
8325	int i;
8326
8327	*idp = DTRACE_METAPROVNONE;
8328
8329	/*
8330	 * We strictly don't need the name, but we hold onto it for
8331	 * debuggability. All hail error queues!
8332	 */
8333	if (name == NULL) {
8334		cmn_err(CE_WARN, "failed to register meta-provider: "
8335		    "invalid name");
8336		return (EINVAL);
8337	}
8338
8339	if (mops == NULL ||
8340	    mops->dtms_create_probe == NULL ||
8341	    mops->dtms_provide_pid == NULL ||
8342	    mops->dtms_remove_pid == NULL) {
8343		cmn_err(CE_WARN, "failed to register meta-register %s: "
8344		    "invalid ops", name);
8345		return (EINVAL);
8346	}
8347
8348	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8349	meta->dtm_mops = *mops;
8350	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8351	(void) strcpy(meta->dtm_name, name);
8352	meta->dtm_arg = arg;
8353
8354	mutex_enter(&dtrace_meta_lock);
8355	mutex_enter(&dtrace_lock);
8356
8357	if (dtrace_meta_pid != NULL) {
8358		mutex_exit(&dtrace_lock);
8359		mutex_exit(&dtrace_meta_lock);
8360		cmn_err(CE_WARN, "failed to register meta-register %s: "
8361		    "user-land meta-provider exists", name);
8362		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8363		kmem_free(meta, sizeof (dtrace_meta_t));
8364		return (EINVAL);
8365	}
8366
8367	dtrace_meta_pid = meta;
8368	*idp = (dtrace_meta_provider_id_t)meta;
8369
8370	/*
8371	 * If there are providers and probes ready to go, pass them
8372	 * off to the new meta provider now.
8373	 */
8374
8375	help = dtrace_deferred_pid;
8376	dtrace_deferred_pid = NULL;
8377
8378	mutex_exit(&dtrace_lock);
8379
8380	while (help != NULL) {
8381		for (i = 0; i < help->dthps_nprovs; i++) {
8382			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8383			    help->dthps_pid);
8384		}
8385
8386		next = help->dthps_next;
8387		help->dthps_next = NULL;
8388		help->dthps_prev = NULL;
8389		help->dthps_deferred = 0;
8390		help = next;
8391	}
8392
8393	mutex_exit(&dtrace_meta_lock);
8394
8395	return (0);
8396}
8397
8398int
8399dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8400{
8401	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8402
8403	mutex_enter(&dtrace_meta_lock);
8404	mutex_enter(&dtrace_lock);
8405
8406	if (old == dtrace_meta_pid) {
8407		pp = &dtrace_meta_pid;
8408	} else {
8409		panic("attempt to unregister non-existent "
8410		    "dtrace meta-provider %p\n", (void *)old);
8411	}
8412
8413	if (old->dtm_count != 0) {
8414		mutex_exit(&dtrace_lock);
8415		mutex_exit(&dtrace_meta_lock);
8416		return (EBUSY);
8417	}
8418
8419	*pp = NULL;
8420
8421	mutex_exit(&dtrace_lock);
8422	mutex_exit(&dtrace_meta_lock);
8423
8424	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8425	kmem_free(old, sizeof (dtrace_meta_t));
8426
8427	return (0);
8428}
8429
8430
8431/*
8432 * DTrace DIF Object Functions
8433 */
8434static int
8435dtrace_difo_err(uint_t pc, const char *format, ...)
8436{
8437	if (dtrace_err_verbose) {
8438		va_list alist;
8439
8440		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8441		va_start(alist, format);
8442		(void) vuprintf(format, alist);
8443		va_end(alist);
8444	}
8445
8446#ifdef DTRACE_ERRDEBUG
8447	dtrace_errdebug(format);
8448#endif
8449	return (1);
8450}
8451
8452/*
8453 * Validate a DTrace DIF object by checking the IR instructions.  The following
8454 * rules are currently enforced by dtrace_difo_validate():
8455 *
8456 * 1. Each instruction must have a valid opcode
8457 * 2. Each register, string, variable, or subroutine reference must be valid
8458 * 3. No instruction can modify register %r0 (must be zero)
8459 * 4. All instruction reserved bits must be set to zero
8460 * 5. The last instruction must be a "ret" instruction
8461 * 6. All branch targets must reference a valid instruction _after_ the branch
8462 */
8463static int
8464dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8465    cred_t *cr)
8466{
8467	int err = 0, i;
8468	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8469	int kcheckload;
8470	uint_t pc;
8471
8472	kcheckload = cr == NULL ||
8473	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8474
8475	dp->dtdo_destructive = 0;
8476
8477	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8478		dif_instr_t instr = dp->dtdo_buf[pc];
8479
8480		uint_t r1 = DIF_INSTR_R1(instr);
8481		uint_t r2 = DIF_INSTR_R2(instr);
8482		uint_t rd = DIF_INSTR_RD(instr);
8483		uint_t rs = DIF_INSTR_RS(instr);
8484		uint_t label = DIF_INSTR_LABEL(instr);
8485		uint_t v = DIF_INSTR_VAR(instr);
8486		uint_t subr = DIF_INSTR_SUBR(instr);
8487		uint_t type = DIF_INSTR_TYPE(instr);
8488		uint_t op = DIF_INSTR_OP(instr);
8489
8490		switch (op) {
8491		case DIF_OP_OR:
8492		case DIF_OP_XOR:
8493		case DIF_OP_AND:
8494		case DIF_OP_SLL:
8495		case DIF_OP_SRL:
8496		case DIF_OP_SRA:
8497		case DIF_OP_SUB:
8498		case DIF_OP_ADD:
8499		case DIF_OP_MUL:
8500		case DIF_OP_SDIV:
8501		case DIF_OP_UDIV:
8502		case DIF_OP_SREM:
8503		case DIF_OP_UREM:
8504		case DIF_OP_COPYS:
8505			if (r1 >= nregs)
8506				err += efunc(pc, "invalid register %u\n", r1);
8507			if (r2 >= nregs)
8508				err += efunc(pc, "invalid register %u\n", r2);
8509			if (rd >= nregs)
8510				err += efunc(pc, "invalid register %u\n", rd);
8511			if (rd == 0)
8512				err += efunc(pc, "cannot write to %r0\n");
8513			break;
8514		case DIF_OP_NOT:
8515		case DIF_OP_MOV:
8516		case DIF_OP_ALLOCS:
8517			if (r1 >= nregs)
8518				err += efunc(pc, "invalid register %u\n", r1);
8519			if (r2 != 0)
8520				err += efunc(pc, "non-zero reserved bits\n");
8521			if (rd >= nregs)
8522				err += efunc(pc, "invalid register %u\n", rd);
8523			if (rd == 0)
8524				err += efunc(pc, "cannot write to %r0\n");
8525			break;
8526		case DIF_OP_LDSB:
8527		case DIF_OP_LDSH:
8528		case DIF_OP_LDSW:
8529		case DIF_OP_LDUB:
8530		case DIF_OP_LDUH:
8531		case DIF_OP_LDUW:
8532		case DIF_OP_LDX:
8533			if (r1 >= nregs)
8534				err += efunc(pc, "invalid register %u\n", r1);
8535			if (r2 != 0)
8536				err += efunc(pc, "non-zero reserved bits\n");
8537			if (rd >= nregs)
8538				err += efunc(pc, "invalid register %u\n", rd);
8539			if (rd == 0)
8540				err += efunc(pc, "cannot write to %r0\n");
8541			if (kcheckload)
8542				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8543				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8544			break;
8545		case DIF_OP_RLDSB:
8546		case DIF_OP_RLDSH:
8547		case DIF_OP_RLDSW:
8548		case DIF_OP_RLDUB:
8549		case DIF_OP_RLDUH:
8550		case DIF_OP_RLDUW:
8551		case DIF_OP_RLDX:
8552			if (r1 >= nregs)
8553				err += efunc(pc, "invalid register %u\n", r1);
8554			if (r2 != 0)
8555				err += efunc(pc, "non-zero reserved bits\n");
8556			if (rd >= nregs)
8557				err += efunc(pc, "invalid register %u\n", rd);
8558			if (rd == 0)
8559				err += efunc(pc, "cannot write to %r0\n");
8560			break;
8561		case DIF_OP_ULDSB:
8562		case DIF_OP_ULDSH:
8563		case DIF_OP_ULDSW:
8564		case DIF_OP_ULDUB:
8565		case DIF_OP_ULDUH:
8566		case DIF_OP_ULDUW:
8567		case DIF_OP_ULDX:
8568			if (r1 >= nregs)
8569				err += efunc(pc, "invalid register %u\n", r1);
8570			if (r2 != 0)
8571				err += efunc(pc, "non-zero reserved bits\n");
8572			if (rd >= nregs)
8573				err += efunc(pc, "invalid register %u\n", rd);
8574			if (rd == 0)
8575				err += efunc(pc, "cannot write to %r0\n");
8576			break;
8577		case DIF_OP_STB:
8578		case DIF_OP_STH:
8579		case DIF_OP_STW:
8580		case DIF_OP_STX:
8581			if (r1 >= nregs)
8582				err += efunc(pc, "invalid register %u\n", r1);
8583			if (r2 != 0)
8584				err += efunc(pc, "non-zero reserved bits\n");
8585			if (rd >= nregs)
8586				err += efunc(pc, "invalid register %u\n", rd);
8587			if (rd == 0)
8588				err += efunc(pc, "cannot write to 0 address\n");
8589			break;
8590		case DIF_OP_CMP:
8591		case DIF_OP_SCMP:
8592			if (r1 >= nregs)
8593				err += efunc(pc, "invalid register %u\n", r1);
8594			if (r2 >= nregs)
8595				err += efunc(pc, "invalid register %u\n", r2);
8596			if (rd != 0)
8597				err += efunc(pc, "non-zero reserved bits\n");
8598			break;
8599		case DIF_OP_TST:
8600			if (r1 >= nregs)
8601				err += efunc(pc, "invalid register %u\n", r1);
8602			if (r2 != 0 || rd != 0)
8603				err += efunc(pc, "non-zero reserved bits\n");
8604			break;
8605		case DIF_OP_BA:
8606		case DIF_OP_BE:
8607		case DIF_OP_BNE:
8608		case DIF_OP_BG:
8609		case DIF_OP_BGU:
8610		case DIF_OP_BGE:
8611		case DIF_OP_BGEU:
8612		case DIF_OP_BL:
8613		case DIF_OP_BLU:
8614		case DIF_OP_BLE:
8615		case DIF_OP_BLEU:
8616			if (label >= dp->dtdo_len) {
8617				err += efunc(pc, "invalid branch target %u\n",
8618				    label);
8619			}
8620			if (label <= pc) {
8621				err += efunc(pc, "backward branch to %u\n",
8622				    label);
8623			}
8624			break;
8625		case DIF_OP_RET:
8626			if (r1 != 0 || r2 != 0)
8627				err += efunc(pc, "non-zero reserved bits\n");
8628			if (rd >= nregs)
8629				err += efunc(pc, "invalid register %u\n", rd);
8630			break;
8631		case DIF_OP_NOP:
8632		case DIF_OP_POPTS:
8633		case DIF_OP_FLUSHTS:
8634			if (r1 != 0 || r2 != 0 || rd != 0)
8635				err += efunc(pc, "non-zero reserved bits\n");
8636			break;
8637		case DIF_OP_SETX:
8638			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8639				err += efunc(pc, "invalid integer ref %u\n",
8640				    DIF_INSTR_INTEGER(instr));
8641			}
8642			if (rd >= nregs)
8643				err += efunc(pc, "invalid register %u\n", rd);
8644			if (rd == 0)
8645				err += efunc(pc, "cannot write to %r0\n");
8646			break;
8647		case DIF_OP_SETS:
8648			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8649				err += efunc(pc, "invalid string ref %u\n",
8650				    DIF_INSTR_STRING(instr));
8651			}
8652			if (rd >= nregs)
8653				err += efunc(pc, "invalid register %u\n", rd);
8654			if (rd == 0)
8655				err += efunc(pc, "cannot write to %r0\n");
8656			break;
8657		case DIF_OP_LDGA:
8658		case DIF_OP_LDTA:
8659			if (r1 > DIF_VAR_ARRAY_MAX)
8660				err += efunc(pc, "invalid array %u\n", r1);
8661			if (r2 >= nregs)
8662				err += efunc(pc, "invalid register %u\n", r2);
8663			if (rd >= nregs)
8664				err += efunc(pc, "invalid register %u\n", rd);
8665			if (rd == 0)
8666				err += efunc(pc, "cannot write to %r0\n");
8667			break;
8668		case DIF_OP_LDGS:
8669		case DIF_OP_LDTS:
8670		case DIF_OP_LDLS:
8671		case DIF_OP_LDGAA:
8672		case DIF_OP_LDTAA:
8673			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8674				err += efunc(pc, "invalid variable %u\n", v);
8675			if (rd >= nregs)
8676				err += efunc(pc, "invalid register %u\n", rd);
8677			if (rd == 0)
8678				err += efunc(pc, "cannot write to %r0\n");
8679			break;
8680		case DIF_OP_STGS:
8681		case DIF_OP_STTS:
8682		case DIF_OP_STLS:
8683		case DIF_OP_STGAA:
8684		case DIF_OP_STTAA:
8685			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8686				err += efunc(pc, "invalid variable %u\n", v);
8687			if (rs >= nregs)
8688				err += efunc(pc, "invalid register %u\n", rd);
8689			break;
8690		case DIF_OP_CALL:
8691			if (subr > DIF_SUBR_MAX)
8692				err += efunc(pc, "invalid subr %u\n", subr);
8693			if (rd >= nregs)
8694				err += efunc(pc, "invalid register %u\n", rd);
8695			if (rd == 0)
8696				err += efunc(pc, "cannot write to %r0\n");
8697
8698			if (subr == DIF_SUBR_COPYOUT ||
8699			    subr == DIF_SUBR_COPYOUTSTR) {
8700				dp->dtdo_destructive = 1;
8701			}
8702			break;
8703		case DIF_OP_PUSHTR:
8704			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8705				err += efunc(pc, "invalid ref type %u\n", type);
8706			if (r2 >= nregs)
8707				err += efunc(pc, "invalid register %u\n", r2);
8708			if (rs >= nregs)
8709				err += efunc(pc, "invalid register %u\n", rs);
8710			break;
8711		case DIF_OP_PUSHTV:
8712			if (type != DIF_TYPE_CTF)
8713				err += efunc(pc, "invalid val type %u\n", type);
8714			if (r2 >= nregs)
8715				err += efunc(pc, "invalid register %u\n", r2);
8716			if (rs >= nregs)
8717				err += efunc(pc, "invalid register %u\n", rs);
8718			break;
8719		default:
8720			err += efunc(pc, "invalid opcode %u\n",
8721			    DIF_INSTR_OP(instr));
8722		}
8723	}
8724
8725	if (dp->dtdo_len != 0 &&
8726	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8727		err += efunc(dp->dtdo_len - 1,
8728		    "expected 'ret' as last DIF instruction\n");
8729	}
8730
8731	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8732		/*
8733		 * If we're not returning by reference, the size must be either
8734		 * 0 or the size of one of the base types.
8735		 */
8736		switch (dp->dtdo_rtype.dtdt_size) {
8737		case 0:
8738		case sizeof (uint8_t):
8739		case sizeof (uint16_t):
8740		case sizeof (uint32_t):
8741		case sizeof (uint64_t):
8742			break;
8743
8744		default:
8745			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8746		}
8747	}
8748
8749	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8750		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8751		dtrace_diftype_t *vt, *et;
8752		uint_t id, ndx;
8753
8754		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8755		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8756		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8757			err += efunc(i, "unrecognized variable scope %d\n",
8758			    v->dtdv_scope);
8759			break;
8760		}
8761
8762		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8763		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8764			err += efunc(i, "unrecognized variable type %d\n",
8765			    v->dtdv_kind);
8766			break;
8767		}
8768
8769		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8770			err += efunc(i, "%d exceeds variable id limit\n", id);
8771			break;
8772		}
8773
8774		if (id < DIF_VAR_OTHER_UBASE)
8775			continue;
8776
8777		/*
8778		 * For user-defined variables, we need to check that this
8779		 * definition is identical to any previous definition that we
8780		 * encountered.
8781		 */
8782		ndx = id - DIF_VAR_OTHER_UBASE;
8783
8784		switch (v->dtdv_scope) {
8785		case DIFV_SCOPE_GLOBAL:
8786			if (ndx < vstate->dtvs_nglobals) {
8787				dtrace_statvar_t *svar;
8788
8789				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8790					existing = &svar->dtsv_var;
8791			}
8792
8793			break;
8794
8795		case DIFV_SCOPE_THREAD:
8796			if (ndx < vstate->dtvs_ntlocals)
8797				existing = &vstate->dtvs_tlocals[ndx];
8798			break;
8799
8800		case DIFV_SCOPE_LOCAL:
8801			if (ndx < vstate->dtvs_nlocals) {
8802				dtrace_statvar_t *svar;
8803
8804				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8805					existing = &svar->dtsv_var;
8806			}
8807
8808			break;
8809		}
8810
8811		vt = &v->dtdv_type;
8812
8813		if (vt->dtdt_flags & DIF_TF_BYREF) {
8814			if (vt->dtdt_size == 0) {
8815				err += efunc(i, "zero-sized variable\n");
8816				break;
8817			}
8818
8819			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8820			    vt->dtdt_size > dtrace_global_maxsize) {
8821				err += efunc(i, "oversized by-ref global\n");
8822				break;
8823			}
8824		}
8825
8826		if (existing == NULL || existing->dtdv_id == 0)
8827			continue;
8828
8829		ASSERT(existing->dtdv_id == v->dtdv_id);
8830		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8831
8832		if (existing->dtdv_kind != v->dtdv_kind)
8833			err += efunc(i, "%d changed variable kind\n", id);
8834
8835		et = &existing->dtdv_type;
8836
8837		if (vt->dtdt_flags != et->dtdt_flags) {
8838			err += efunc(i, "%d changed variable type flags\n", id);
8839			break;
8840		}
8841
8842		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8843			err += efunc(i, "%d changed variable type size\n", id);
8844			break;
8845		}
8846	}
8847
8848	return (err);
8849}
8850
8851#if defined(sun)
8852/*
8853 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8854 * are much more constrained than normal DIFOs.  Specifically, they may
8855 * not:
8856 *
8857 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8858 *    miscellaneous string routines
8859 * 2. Access DTrace variables other than the args[] array, and the
8860 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8861 * 3. Have thread-local variables.
8862 * 4. Have dynamic variables.
8863 */
8864static int
8865dtrace_difo_validate_helper(dtrace_difo_t *dp)
8866{
8867	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8868	int err = 0;
8869	uint_t pc;
8870
8871	for (pc = 0; pc < dp->dtdo_len; pc++) {
8872		dif_instr_t instr = dp->dtdo_buf[pc];
8873
8874		uint_t v = DIF_INSTR_VAR(instr);
8875		uint_t subr = DIF_INSTR_SUBR(instr);
8876		uint_t op = DIF_INSTR_OP(instr);
8877
8878		switch (op) {
8879		case DIF_OP_OR:
8880		case DIF_OP_XOR:
8881		case DIF_OP_AND:
8882		case DIF_OP_SLL:
8883		case DIF_OP_SRL:
8884		case DIF_OP_SRA:
8885		case DIF_OP_SUB:
8886		case DIF_OP_ADD:
8887		case DIF_OP_MUL:
8888		case DIF_OP_SDIV:
8889		case DIF_OP_UDIV:
8890		case DIF_OP_SREM:
8891		case DIF_OP_UREM:
8892		case DIF_OP_COPYS:
8893		case DIF_OP_NOT:
8894		case DIF_OP_MOV:
8895		case DIF_OP_RLDSB:
8896		case DIF_OP_RLDSH:
8897		case DIF_OP_RLDSW:
8898		case DIF_OP_RLDUB:
8899		case DIF_OP_RLDUH:
8900		case DIF_OP_RLDUW:
8901		case DIF_OP_RLDX:
8902		case DIF_OP_ULDSB:
8903		case DIF_OP_ULDSH:
8904		case DIF_OP_ULDSW:
8905		case DIF_OP_ULDUB:
8906		case DIF_OP_ULDUH:
8907		case DIF_OP_ULDUW:
8908		case DIF_OP_ULDX:
8909		case DIF_OP_STB:
8910		case DIF_OP_STH:
8911		case DIF_OP_STW:
8912		case DIF_OP_STX:
8913		case DIF_OP_ALLOCS:
8914		case DIF_OP_CMP:
8915		case DIF_OP_SCMP:
8916		case DIF_OP_TST:
8917		case DIF_OP_BA:
8918		case DIF_OP_BE:
8919		case DIF_OP_BNE:
8920		case DIF_OP_BG:
8921		case DIF_OP_BGU:
8922		case DIF_OP_BGE:
8923		case DIF_OP_BGEU:
8924		case DIF_OP_BL:
8925		case DIF_OP_BLU:
8926		case DIF_OP_BLE:
8927		case DIF_OP_BLEU:
8928		case DIF_OP_RET:
8929		case DIF_OP_NOP:
8930		case DIF_OP_POPTS:
8931		case DIF_OP_FLUSHTS:
8932		case DIF_OP_SETX:
8933		case DIF_OP_SETS:
8934		case DIF_OP_LDGA:
8935		case DIF_OP_LDLS:
8936		case DIF_OP_STGS:
8937		case DIF_OP_STLS:
8938		case DIF_OP_PUSHTR:
8939		case DIF_OP_PUSHTV:
8940			break;
8941
8942		case DIF_OP_LDGS:
8943			if (v >= DIF_VAR_OTHER_UBASE)
8944				break;
8945
8946			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8947				break;
8948
8949			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8950			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8951			    v == DIF_VAR_EXECARGS ||
8952			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8953			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8954				break;
8955
8956			err += efunc(pc, "illegal variable %u\n", v);
8957			break;
8958
8959		case DIF_OP_LDTA:
8960		case DIF_OP_LDTS:
8961		case DIF_OP_LDGAA:
8962		case DIF_OP_LDTAA:
8963			err += efunc(pc, "illegal dynamic variable load\n");
8964			break;
8965
8966		case DIF_OP_STTS:
8967		case DIF_OP_STGAA:
8968		case DIF_OP_STTAA:
8969			err += efunc(pc, "illegal dynamic variable store\n");
8970			break;
8971
8972		case DIF_OP_CALL:
8973			if (subr == DIF_SUBR_ALLOCA ||
8974			    subr == DIF_SUBR_BCOPY ||
8975			    subr == DIF_SUBR_COPYIN ||
8976			    subr == DIF_SUBR_COPYINTO ||
8977			    subr == DIF_SUBR_COPYINSTR ||
8978			    subr == DIF_SUBR_INDEX ||
8979			    subr == DIF_SUBR_INET_NTOA ||
8980			    subr == DIF_SUBR_INET_NTOA6 ||
8981			    subr == DIF_SUBR_INET_NTOP ||
8982			    subr == DIF_SUBR_LLTOSTR ||
8983			    subr == DIF_SUBR_RINDEX ||
8984			    subr == DIF_SUBR_STRCHR ||
8985			    subr == DIF_SUBR_STRJOIN ||
8986			    subr == DIF_SUBR_STRRCHR ||
8987			    subr == DIF_SUBR_STRSTR ||
8988			    subr == DIF_SUBR_HTONS ||
8989			    subr == DIF_SUBR_HTONL ||
8990			    subr == DIF_SUBR_HTONLL ||
8991			    subr == DIF_SUBR_NTOHS ||
8992			    subr == DIF_SUBR_NTOHL ||
8993			    subr == DIF_SUBR_NTOHLL ||
8994			    subr == DIF_SUBR_MEMREF ||
8995			    subr == DIF_SUBR_TYPEREF)
8996				break;
8997
8998			err += efunc(pc, "invalid subr %u\n", subr);
8999			break;
9000
9001		default:
9002			err += efunc(pc, "invalid opcode %u\n",
9003			    DIF_INSTR_OP(instr));
9004		}
9005	}
9006
9007	return (err);
9008}
9009#endif
9010
9011/*
9012 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9013 * basis; 0 if not.
9014 */
9015static int
9016dtrace_difo_cacheable(dtrace_difo_t *dp)
9017{
9018	int i;
9019
9020	if (dp == NULL)
9021		return (0);
9022
9023	for (i = 0; i < dp->dtdo_varlen; i++) {
9024		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9025
9026		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9027			continue;
9028
9029		switch (v->dtdv_id) {
9030		case DIF_VAR_CURTHREAD:
9031		case DIF_VAR_PID:
9032		case DIF_VAR_TID:
9033		case DIF_VAR_EXECARGS:
9034		case DIF_VAR_EXECNAME:
9035		case DIF_VAR_ZONENAME:
9036			break;
9037
9038		default:
9039			return (0);
9040		}
9041	}
9042
9043	/*
9044	 * This DIF object may be cacheable.  Now we need to look for any
9045	 * array loading instructions, any memory loading instructions, or
9046	 * any stores to thread-local variables.
9047	 */
9048	for (i = 0; i < dp->dtdo_len; i++) {
9049		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9050
9051		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9052		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9053		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9054		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9055			return (0);
9056	}
9057
9058	return (1);
9059}
9060
9061static void
9062dtrace_difo_hold(dtrace_difo_t *dp)
9063{
9064	int i;
9065
9066	ASSERT(MUTEX_HELD(&dtrace_lock));
9067
9068	dp->dtdo_refcnt++;
9069	ASSERT(dp->dtdo_refcnt != 0);
9070
9071	/*
9072	 * We need to check this DIF object for references to the variable
9073	 * DIF_VAR_VTIMESTAMP.
9074	 */
9075	for (i = 0; i < dp->dtdo_varlen; i++) {
9076		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9077
9078		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9079			continue;
9080
9081		if (dtrace_vtime_references++ == 0)
9082			dtrace_vtime_enable();
9083	}
9084}
9085
9086/*
9087 * This routine calculates the dynamic variable chunksize for a given DIF
9088 * object.  The calculation is not fool-proof, and can probably be tricked by
9089 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9090 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9091 * if a dynamic variable size exceeds the chunksize.
9092 */
9093static void
9094dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9095{
9096	uint64_t sval = 0;
9097	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9098	const dif_instr_t *text = dp->dtdo_buf;
9099	uint_t pc, srd = 0;
9100	uint_t ttop = 0;
9101	size_t size, ksize;
9102	uint_t id, i;
9103
9104	for (pc = 0; pc < dp->dtdo_len; pc++) {
9105		dif_instr_t instr = text[pc];
9106		uint_t op = DIF_INSTR_OP(instr);
9107		uint_t rd = DIF_INSTR_RD(instr);
9108		uint_t r1 = DIF_INSTR_R1(instr);
9109		uint_t nkeys = 0;
9110		uchar_t scope = 0;
9111
9112		dtrace_key_t *key = tupregs;
9113
9114		switch (op) {
9115		case DIF_OP_SETX:
9116			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9117			srd = rd;
9118			continue;
9119
9120		case DIF_OP_STTS:
9121			key = &tupregs[DIF_DTR_NREGS];
9122			key[0].dttk_size = 0;
9123			key[1].dttk_size = 0;
9124			nkeys = 2;
9125			scope = DIFV_SCOPE_THREAD;
9126			break;
9127
9128		case DIF_OP_STGAA:
9129		case DIF_OP_STTAA:
9130			nkeys = ttop;
9131
9132			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9133				key[nkeys++].dttk_size = 0;
9134
9135			key[nkeys++].dttk_size = 0;
9136
9137			if (op == DIF_OP_STTAA) {
9138				scope = DIFV_SCOPE_THREAD;
9139			} else {
9140				scope = DIFV_SCOPE_GLOBAL;
9141			}
9142
9143			break;
9144
9145		case DIF_OP_PUSHTR:
9146			if (ttop == DIF_DTR_NREGS)
9147				return;
9148
9149			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9150				/*
9151				 * If the register for the size of the "pushtr"
9152				 * is %r0 (or the value is 0) and the type is
9153				 * a string, we'll use the system-wide default
9154				 * string size.
9155				 */
9156				tupregs[ttop++].dttk_size =
9157				    dtrace_strsize_default;
9158			} else {
9159				if (srd == 0)
9160					return;
9161
9162				tupregs[ttop++].dttk_size = sval;
9163			}
9164
9165			break;
9166
9167		case DIF_OP_PUSHTV:
9168			if (ttop == DIF_DTR_NREGS)
9169				return;
9170
9171			tupregs[ttop++].dttk_size = 0;
9172			break;
9173
9174		case DIF_OP_FLUSHTS:
9175			ttop = 0;
9176			break;
9177
9178		case DIF_OP_POPTS:
9179			if (ttop != 0)
9180				ttop--;
9181			break;
9182		}
9183
9184		sval = 0;
9185		srd = 0;
9186
9187		if (nkeys == 0)
9188			continue;
9189
9190		/*
9191		 * We have a dynamic variable allocation; calculate its size.
9192		 */
9193		for (ksize = 0, i = 0; i < nkeys; i++)
9194			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9195
9196		size = sizeof (dtrace_dynvar_t);
9197		size += sizeof (dtrace_key_t) * (nkeys - 1);
9198		size += ksize;
9199
9200		/*
9201		 * Now we need to determine the size of the stored data.
9202		 */
9203		id = DIF_INSTR_VAR(instr);
9204
9205		for (i = 0; i < dp->dtdo_varlen; i++) {
9206			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9207
9208			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9209				size += v->dtdv_type.dtdt_size;
9210				break;
9211			}
9212		}
9213
9214		if (i == dp->dtdo_varlen)
9215			return;
9216
9217		/*
9218		 * We have the size.  If this is larger than the chunk size
9219		 * for our dynamic variable state, reset the chunk size.
9220		 */
9221		size = P2ROUNDUP(size, sizeof (uint64_t));
9222
9223		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9224			vstate->dtvs_dynvars.dtds_chunksize = size;
9225	}
9226}
9227
9228static void
9229dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9230{
9231	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9232	uint_t id;
9233
9234	ASSERT(MUTEX_HELD(&dtrace_lock));
9235	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9236
9237	for (i = 0; i < dp->dtdo_varlen; i++) {
9238		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9239		dtrace_statvar_t *svar, ***svarp = NULL;
9240		size_t dsize = 0;
9241		uint8_t scope = v->dtdv_scope;
9242		int *np = NULL;
9243
9244		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9245			continue;
9246
9247		id -= DIF_VAR_OTHER_UBASE;
9248
9249		switch (scope) {
9250		case DIFV_SCOPE_THREAD:
9251			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9252				dtrace_difv_t *tlocals;
9253
9254				if ((ntlocals = (otlocals << 1)) == 0)
9255					ntlocals = 1;
9256
9257				osz = otlocals * sizeof (dtrace_difv_t);
9258				nsz = ntlocals * sizeof (dtrace_difv_t);
9259
9260				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9261
9262				if (osz != 0) {
9263					bcopy(vstate->dtvs_tlocals,
9264					    tlocals, osz);
9265					kmem_free(vstate->dtvs_tlocals, osz);
9266				}
9267
9268				vstate->dtvs_tlocals = tlocals;
9269				vstate->dtvs_ntlocals = ntlocals;
9270			}
9271
9272			vstate->dtvs_tlocals[id] = *v;
9273			continue;
9274
9275		case DIFV_SCOPE_LOCAL:
9276			np = &vstate->dtvs_nlocals;
9277			svarp = &vstate->dtvs_locals;
9278
9279			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9280				dsize = NCPU * (v->dtdv_type.dtdt_size +
9281				    sizeof (uint64_t));
9282			else
9283				dsize = NCPU * sizeof (uint64_t);
9284
9285			break;
9286
9287		case DIFV_SCOPE_GLOBAL:
9288			np = &vstate->dtvs_nglobals;
9289			svarp = &vstate->dtvs_globals;
9290
9291			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9292				dsize = v->dtdv_type.dtdt_size +
9293				    sizeof (uint64_t);
9294
9295			break;
9296
9297		default:
9298			ASSERT(0);
9299		}
9300
9301		while (id >= (oldsvars = *np)) {
9302			dtrace_statvar_t **statics;
9303			int newsvars, oldsize, newsize;
9304
9305			if ((newsvars = (oldsvars << 1)) == 0)
9306				newsvars = 1;
9307
9308			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9309			newsize = newsvars * sizeof (dtrace_statvar_t *);
9310
9311			statics = kmem_zalloc(newsize, KM_SLEEP);
9312
9313			if (oldsize != 0) {
9314				bcopy(*svarp, statics, oldsize);
9315				kmem_free(*svarp, oldsize);
9316			}
9317
9318			*svarp = statics;
9319			*np = newsvars;
9320		}
9321
9322		if ((svar = (*svarp)[id]) == NULL) {
9323			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9324			svar->dtsv_var = *v;
9325
9326			if ((svar->dtsv_size = dsize) != 0) {
9327				svar->dtsv_data = (uint64_t)(uintptr_t)
9328				    kmem_zalloc(dsize, KM_SLEEP);
9329			}
9330
9331			(*svarp)[id] = svar;
9332		}
9333
9334		svar->dtsv_refcnt++;
9335	}
9336
9337	dtrace_difo_chunksize(dp, vstate);
9338	dtrace_difo_hold(dp);
9339}
9340
9341#if defined(sun)
9342static dtrace_difo_t *
9343dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9344{
9345	dtrace_difo_t *new;
9346	size_t sz;
9347
9348	ASSERT(dp->dtdo_buf != NULL);
9349	ASSERT(dp->dtdo_refcnt != 0);
9350
9351	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9352
9353	ASSERT(dp->dtdo_buf != NULL);
9354	sz = dp->dtdo_len * sizeof (dif_instr_t);
9355	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9356	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9357	new->dtdo_len = dp->dtdo_len;
9358
9359	if (dp->dtdo_strtab != NULL) {
9360		ASSERT(dp->dtdo_strlen != 0);
9361		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9362		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9363		new->dtdo_strlen = dp->dtdo_strlen;
9364	}
9365
9366	if (dp->dtdo_inttab != NULL) {
9367		ASSERT(dp->dtdo_intlen != 0);
9368		sz = dp->dtdo_intlen * sizeof (uint64_t);
9369		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9370		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9371		new->dtdo_intlen = dp->dtdo_intlen;
9372	}
9373
9374	if (dp->dtdo_vartab != NULL) {
9375		ASSERT(dp->dtdo_varlen != 0);
9376		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9377		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9378		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9379		new->dtdo_varlen = dp->dtdo_varlen;
9380	}
9381
9382	dtrace_difo_init(new, vstate);
9383	return (new);
9384}
9385#endif
9386
9387static void
9388dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9389{
9390	int i;
9391
9392	ASSERT(dp->dtdo_refcnt == 0);
9393
9394	for (i = 0; i < dp->dtdo_varlen; i++) {
9395		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9396		dtrace_statvar_t *svar, **svarp = NULL;
9397		uint_t id;
9398		uint8_t scope = v->dtdv_scope;
9399		int *np = NULL;
9400
9401		switch (scope) {
9402		case DIFV_SCOPE_THREAD:
9403			continue;
9404
9405		case DIFV_SCOPE_LOCAL:
9406			np = &vstate->dtvs_nlocals;
9407			svarp = vstate->dtvs_locals;
9408			break;
9409
9410		case DIFV_SCOPE_GLOBAL:
9411			np = &vstate->dtvs_nglobals;
9412			svarp = vstate->dtvs_globals;
9413			break;
9414
9415		default:
9416			ASSERT(0);
9417		}
9418
9419		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9420			continue;
9421
9422		id -= DIF_VAR_OTHER_UBASE;
9423		ASSERT(id < *np);
9424
9425		svar = svarp[id];
9426		ASSERT(svar != NULL);
9427		ASSERT(svar->dtsv_refcnt > 0);
9428
9429		if (--svar->dtsv_refcnt > 0)
9430			continue;
9431
9432		if (svar->dtsv_size != 0) {
9433			ASSERT(svar->dtsv_data != 0);
9434			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9435			    svar->dtsv_size);
9436		}
9437
9438		kmem_free(svar, sizeof (dtrace_statvar_t));
9439		svarp[id] = NULL;
9440	}
9441
9442	if (dp->dtdo_buf != NULL)
9443		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9444	if (dp->dtdo_inttab != NULL)
9445		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9446	if (dp->dtdo_strtab != NULL)
9447		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9448	if (dp->dtdo_vartab != NULL)
9449		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9450
9451	kmem_free(dp, sizeof (dtrace_difo_t));
9452}
9453
9454static void
9455dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9456{
9457	int i;
9458
9459	ASSERT(MUTEX_HELD(&dtrace_lock));
9460	ASSERT(dp->dtdo_refcnt != 0);
9461
9462	for (i = 0; i < dp->dtdo_varlen; i++) {
9463		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9464
9465		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9466			continue;
9467
9468		ASSERT(dtrace_vtime_references > 0);
9469		if (--dtrace_vtime_references == 0)
9470			dtrace_vtime_disable();
9471	}
9472
9473	if (--dp->dtdo_refcnt == 0)
9474		dtrace_difo_destroy(dp, vstate);
9475}
9476
9477/*
9478 * DTrace Format Functions
9479 */
9480static uint16_t
9481dtrace_format_add(dtrace_state_t *state, char *str)
9482{
9483	char *fmt, **new;
9484	uint16_t ndx, len = strlen(str) + 1;
9485
9486	fmt = kmem_zalloc(len, KM_SLEEP);
9487	bcopy(str, fmt, len);
9488
9489	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9490		if (state->dts_formats[ndx] == NULL) {
9491			state->dts_formats[ndx] = fmt;
9492			return (ndx + 1);
9493		}
9494	}
9495
9496	if (state->dts_nformats == USHRT_MAX) {
9497		/*
9498		 * This is only likely if a denial-of-service attack is being
9499		 * attempted.  As such, it's okay to fail silently here.
9500		 */
9501		kmem_free(fmt, len);
9502		return (0);
9503	}
9504
9505	/*
9506	 * For simplicity, we always resize the formats array to be exactly the
9507	 * number of formats.
9508	 */
9509	ndx = state->dts_nformats++;
9510	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9511
9512	if (state->dts_formats != NULL) {
9513		ASSERT(ndx != 0);
9514		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9515		kmem_free(state->dts_formats, ndx * sizeof (char *));
9516	}
9517
9518	state->dts_formats = new;
9519	state->dts_formats[ndx] = fmt;
9520
9521	return (ndx + 1);
9522}
9523
9524static void
9525dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9526{
9527	char *fmt;
9528
9529	ASSERT(state->dts_formats != NULL);
9530	ASSERT(format <= state->dts_nformats);
9531	ASSERT(state->dts_formats[format - 1] != NULL);
9532
9533	fmt = state->dts_formats[format - 1];
9534	kmem_free(fmt, strlen(fmt) + 1);
9535	state->dts_formats[format - 1] = NULL;
9536}
9537
9538static void
9539dtrace_format_destroy(dtrace_state_t *state)
9540{
9541	int i;
9542
9543	if (state->dts_nformats == 0) {
9544		ASSERT(state->dts_formats == NULL);
9545		return;
9546	}
9547
9548	ASSERT(state->dts_formats != NULL);
9549
9550	for (i = 0; i < state->dts_nformats; i++) {
9551		char *fmt = state->dts_formats[i];
9552
9553		if (fmt == NULL)
9554			continue;
9555
9556		kmem_free(fmt, strlen(fmt) + 1);
9557	}
9558
9559	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9560	state->dts_nformats = 0;
9561	state->dts_formats = NULL;
9562}
9563
9564/*
9565 * DTrace Predicate Functions
9566 */
9567static dtrace_predicate_t *
9568dtrace_predicate_create(dtrace_difo_t *dp)
9569{
9570	dtrace_predicate_t *pred;
9571
9572	ASSERT(MUTEX_HELD(&dtrace_lock));
9573	ASSERT(dp->dtdo_refcnt != 0);
9574
9575	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9576	pred->dtp_difo = dp;
9577	pred->dtp_refcnt = 1;
9578
9579	if (!dtrace_difo_cacheable(dp))
9580		return (pred);
9581
9582	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9583		/*
9584		 * This is only theoretically possible -- we have had 2^32
9585		 * cacheable predicates on this machine.  We cannot allow any
9586		 * more predicates to become cacheable:  as unlikely as it is,
9587		 * there may be a thread caching a (now stale) predicate cache
9588		 * ID. (N.B.: the temptation is being successfully resisted to
9589		 * have this cmn_err() "Holy shit -- we executed this code!")
9590		 */
9591		return (pred);
9592	}
9593
9594	pred->dtp_cacheid = dtrace_predcache_id++;
9595
9596	return (pred);
9597}
9598
9599static void
9600dtrace_predicate_hold(dtrace_predicate_t *pred)
9601{
9602	ASSERT(MUTEX_HELD(&dtrace_lock));
9603	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9604	ASSERT(pred->dtp_refcnt > 0);
9605
9606	pred->dtp_refcnt++;
9607}
9608
9609static void
9610dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9611{
9612	dtrace_difo_t *dp = pred->dtp_difo;
9613
9614	ASSERT(MUTEX_HELD(&dtrace_lock));
9615	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9616	ASSERT(pred->dtp_refcnt > 0);
9617
9618	if (--pred->dtp_refcnt == 0) {
9619		dtrace_difo_release(pred->dtp_difo, vstate);
9620		kmem_free(pred, sizeof (dtrace_predicate_t));
9621	}
9622}
9623
9624/*
9625 * DTrace Action Description Functions
9626 */
9627static dtrace_actdesc_t *
9628dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9629    uint64_t uarg, uint64_t arg)
9630{
9631	dtrace_actdesc_t *act;
9632
9633#if defined(sun)
9634	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9635	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9636#endif
9637
9638	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9639	act->dtad_kind = kind;
9640	act->dtad_ntuple = ntuple;
9641	act->dtad_uarg = uarg;
9642	act->dtad_arg = arg;
9643	act->dtad_refcnt = 1;
9644
9645	return (act);
9646}
9647
9648static void
9649dtrace_actdesc_hold(dtrace_actdesc_t *act)
9650{
9651	ASSERT(act->dtad_refcnt >= 1);
9652	act->dtad_refcnt++;
9653}
9654
9655static void
9656dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9657{
9658	dtrace_actkind_t kind = act->dtad_kind;
9659	dtrace_difo_t *dp;
9660
9661	ASSERT(act->dtad_refcnt >= 1);
9662
9663	if (--act->dtad_refcnt != 0)
9664		return;
9665
9666	if ((dp = act->dtad_difo) != NULL)
9667		dtrace_difo_release(dp, vstate);
9668
9669	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9670		char *str = (char *)(uintptr_t)act->dtad_arg;
9671
9672#if defined(sun)
9673		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9674		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9675#endif
9676
9677		if (str != NULL)
9678			kmem_free(str, strlen(str) + 1);
9679	}
9680
9681	kmem_free(act, sizeof (dtrace_actdesc_t));
9682}
9683
9684/*
9685 * DTrace ECB Functions
9686 */
9687static dtrace_ecb_t *
9688dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9689{
9690	dtrace_ecb_t *ecb;
9691	dtrace_epid_t epid;
9692
9693	ASSERT(MUTEX_HELD(&dtrace_lock));
9694
9695	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9696	ecb->dte_predicate = NULL;
9697	ecb->dte_probe = probe;
9698
9699	/*
9700	 * The default size is the size of the default action: recording
9701	 * the epid.
9702	 */
9703	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9704	ecb->dte_alignment = sizeof (dtrace_epid_t);
9705
9706	epid = state->dts_epid++;
9707
9708	if (epid - 1 >= state->dts_necbs) {
9709		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9710		int necbs = state->dts_necbs << 1;
9711
9712		ASSERT(epid == state->dts_necbs + 1);
9713
9714		if (necbs == 0) {
9715			ASSERT(oecbs == NULL);
9716			necbs = 1;
9717		}
9718
9719		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9720
9721		if (oecbs != NULL)
9722			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9723
9724		dtrace_membar_producer();
9725		state->dts_ecbs = ecbs;
9726
9727		if (oecbs != NULL) {
9728			/*
9729			 * If this state is active, we must dtrace_sync()
9730			 * before we can free the old dts_ecbs array:  we're
9731			 * coming in hot, and there may be active ring
9732			 * buffer processing (which indexes into the dts_ecbs
9733			 * array) on another CPU.
9734			 */
9735			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9736				dtrace_sync();
9737
9738			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9739		}
9740
9741		dtrace_membar_producer();
9742		state->dts_necbs = necbs;
9743	}
9744
9745	ecb->dte_state = state;
9746
9747	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9748	dtrace_membar_producer();
9749	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9750
9751	return (ecb);
9752}
9753
9754static int
9755dtrace_ecb_enable(dtrace_ecb_t *ecb)
9756{
9757	dtrace_probe_t *probe = ecb->dte_probe;
9758
9759	ASSERT(MUTEX_HELD(&cpu_lock));
9760	ASSERT(MUTEX_HELD(&dtrace_lock));
9761	ASSERT(ecb->dte_next == NULL);
9762
9763	if (probe == NULL) {
9764		/*
9765		 * This is the NULL probe -- there's nothing to do.
9766		 */
9767		return (0);
9768	}
9769
9770	if (probe->dtpr_ecb == NULL) {
9771		dtrace_provider_t *prov = probe->dtpr_provider;
9772
9773		/*
9774		 * We're the first ECB on this probe.
9775		 */
9776		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9777
9778		if (ecb->dte_predicate != NULL)
9779			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9780
9781		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9782		    probe->dtpr_id, probe->dtpr_arg));
9783	} else {
9784		/*
9785		 * This probe is already active.  Swing the last pointer to
9786		 * point to the new ECB, and issue a dtrace_sync() to assure
9787		 * that all CPUs have seen the change.
9788		 */
9789		ASSERT(probe->dtpr_ecb_last != NULL);
9790		probe->dtpr_ecb_last->dte_next = ecb;
9791		probe->dtpr_ecb_last = ecb;
9792		probe->dtpr_predcache = 0;
9793
9794		dtrace_sync();
9795		return (0);
9796	}
9797}
9798
9799static void
9800dtrace_ecb_resize(dtrace_ecb_t *ecb)
9801{
9802	uint32_t maxalign = sizeof (dtrace_epid_t);
9803	uint32_t align = sizeof (uint8_t), offs, diff;
9804	dtrace_action_t *act;
9805	int wastuple = 0;
9806	uint32_t aggbase = UINT32_MAX;
9807	dtrace_state_t *state = ecb->dte_state;
9808
9809	/*
9810	 * If we record anything, we always record the epid.  (And we always
9811	 * record it first.)
9812	 */
9813	offs = sizeof (dtrace_epid_t);
9814	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9815
9816	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9817		dtrace_recdesc_t *rec = &act->dta_rec;
9818
9819		if ((align = rec->dtrd_alignment) > maxalign)
9820			maxalign = align;
9821
9822		if (!wastuple && act->dta_intuple) {
9823			/*
9824			 * This is the first record in a tuple.  Align the
9825			 * offset to be at offset 4 in an 8-byte aligned
9826			 * block.
9827			 */
9828			diff = offs + sizeof (dtrace_aggid_t);
9829
9830			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9831				offs += sizeof (uint64_t) - diff;
9832
9833			aggbase = offs - sizeof (dtrace_aggid_t);
9834			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9835		}
9836
9837		/*LINTED*/
9838		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9839			/*
9840			 * The current offset is not properly aligned; align it.
9841			 */
9842			offs += align - diff;
9843		}
9844
9845		rec->dtrd_offset = offs;
9846
9847		if (offs + rec->dtrd_size > ecb->dte_needed) {
9848			ecb->dte_needed = offs + rec->dtrd_size;
9849
9850			if (ecb->dte_needed > state->dts_needed)
9851				state->dts_needed = ecb->dte_needed;
9852		}
9853
9854		if (DTRACEACT_ISAGG(act->dta_kind)) {
9855			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9856			dtrace_action_t *first = agg->dtag_first, *prev;
9857
9858			ASSERT(rec->dtrd_size != 0 && first != NULL);
9859			ASSERT(wastuple);
9860			ASSERT(aggbase != UINT32_MAX);
9861
9862			agg->dtag_base = aggbase;
9863
9864			while ((prev = first->dta_prev) != NULL &&
9865			    DTRACEACT_ISAGG(prev->dta_kind)) {
9866				agg = (dtrace_aggregation_t *)prev;
9867				first = agg->dtag_first;
9868			}
9869
9870			if (prev != NULL) {
9871				offs = prev->dta_rec.dtrd_offset +
9872				    prev->dta_rec.dtrd_size;
9873			} else {
9874				offs = sizeof (dtrace_epid_t);
9875			}
9876			wastuple = 0;
9877		} else {
9878			if (!act->dta_intuple)
9879				ecb->dte_size = offs + rec->dtrd_size;
9880
9881			offs += rec->dtrd_size;
9882		}
9883
9884		wastuple = act->dta_intuple;
9885	}
9886
9887	if ((act = ecb->dte_action) != NULL &&
9888	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9889	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9890		/*
9891		 * If the size is still sizeof (dtrace_epid_t), then all
9892		 * actions store no data; set the size to 0.
9893		 */
9894		ecb->dte_alignment = maxalign;
9895		ecb->dte_size = 0;
9896
9897		/*
9898		 * If the needed space is still sizeof (dtrace_epid_t), then
9899		 * all actions need no additional space; set the needed
9900		 * size to 0.
9901		 */
9902		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9903			ecb->dte_needed = 0;
9904
9905		return;
9906	}
9907
9908	/*
9909	 * Set our alignment, and make sure that the dte_size and dte_needed
9910	 * are aligned to the size of an EPID.
9911	 */
9912	ecb->dte_alignment = maxalign;
9913	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9914	    ~(sizeof (dtrace_epid_t) - 1);
9915	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9916	    ~(sizeof (dtrace_epid_t) - 1);
9917	ASSERT(ecb->dte_size <= ecb->dte_needed);
9918}
9919
9920static dtrace_action_t *
9921dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9922{
9923	dtrace_aggregation_t *agg;
9924	size_t size = sizeof (uint64_t);
9925	int ntuple = desc->dtad_ntuple;
9926	dtrace_action_t *act;
9927	dtrace_recdesc_t *frec;
9928	dtrace_aggid_t aggid;
9929	dtrace_state_t *state = ecb->dte_state;
9930	vmem_addr_t offset;
9931
9932	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9933	agg->dtag_ecb = ecb;
9934
9935	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9936
9937	switch (desc->dtad_kind) {
9938	case DTRACEAGG_MIN:
9939		agg->dtag_initial = INT64_MAX;
9940		agg->dtag_aggregate = dtrace_aggregate_min;
9941		break;
9942
9943	case DTRACEAGG_MAX:
9944		agg->dtag_initial = INT64_MIN;
9945		agg->dtag_aggregate = dtrace_aggregate_max;
9946		break;
9947
9948	case DTRACEAGG_COUNT:
9949		agg->dtag_aggregate = dtrace_aggregate_count;
9950		break;
9951
9952	case DTRACEAGG_QUANTIZE:
9953		agg->dtag_aggregate = dtrace_aggregate_quantize;
9954		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9955		    sizeof (uint64_t);
9956		break;
9957
9958	case DTRACEAGG_LQUANTIZE: {
9959		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9960		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9961
9962		agg->dtag_initial = desc->dtad_arg;
9963		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9964
9965		if (step == 0 || levels == 0)
9966			goto err;
9967
9968		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9969		break;
9970	}
9971
9972	case DTRACEAGG_AVG:
9973		agg->dtag_aggregate = dtrace_aggregate_avg;
9974		size = sizeof (uint64_t) * 2;
9975		break;
9976
9977	case DTRACEAGG_STDDEV:
9978		agg->dtag_aggregate = dtrace_aggregate_stddev;
9979		size = sizeof (uint64_t) * 4;
9980		break;
9981
9982	case DTRACEAGG_SUM:
9983		agg->dtag_aggregate = dtrace_aggregate_sum;
9984		break;
9985
9986	default:
9987		goto err;
9988	}
9989
9990	agg->dtag_action.dta_rec.dtrd_size = size;
9991
9992	if (ntuple == 0)
9993		goto err;
9994
9995	/*
9996	 * We must make sure that we have enough actions for the n-tuple.
9997	 */
9998	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9999		if (DTRACEACT_ISAGG(act->dta_kind))
10000			break;
10001
10002		if (--ntuple == 0) {
10003			/*
10004			 * This is the action with which our n-tuple begins.
10005			 */
10006			agg->dtag_first = act;
10007			goto success;
10008		}
10009	}
10010
10011	/*
10012	 * This n-tuple is short by ntuple elements.  Return failure.
10013	 */
10014	ASSERT(ntuple != 0);
10015err:
10016	kmem_free(agg, sizeof (dtrace_aggregation_t));
10017	return (NULL);
10018
10019success:
10020	/*
10021	 * If the last action in the tuple has a size of zero, it's actually
10022	 * an expression argument for the aggregating action.
10023	 */
10024	ASSERT(ecb->dte_action_last != NULL);
10025	act = ecb->dte_action_last;
10026
10027	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10028		ASSERT(act->dta_difo != NULL);
10029
10030		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10031			agg->dtag_hasarg = 1;
10032	}
10033
10034	/*
10035	 * We need to allocate an id for this aggregation.
10036	 */
10037	if (vmem_alloc(state->dts_aggid_arena, 1, VM_BESTFIT | VM_SLEEP,
10038	    &offset) != 0)
10039		ASSERT(0);
10040	aggid = (dtrace_aggid_t)(uintptr_t)offset;
10041
10042
10043	if (aggid - 1 >= state->dts_naggregations) {
10044		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10045		dtrace_aggregation_t **aggs;
10046		int naggs = state->dts_naggregations << 1;
10047		int onaggs = state->dts_naggregations;
10048
10049		ASSERT(aggid == state->dts_naggregations + 1);
10050
10051		if (naggs == 0) {
10052			ASSERT(oaggs == NULL);
10053			naggs = 1;
10054		}
10055
10056		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10057
10058		if (oaggs != NULL) {
10059			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10060			kmem_free(oaggs, onaggs * sizeof (*aggs));
10061		}
10062
10063		state->dts_aggregations = aggs;
10064		state->dts_naggregations = naggs;
10065	}
10066
10067	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10068	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10069
10070	frec = &agg->dtag_first->dta_rec;
10071	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10072		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10073
10074	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10075		ASSERT(!act->dta_intuple);
10076		act->dta_intuple = 1;
10077	}
10078
10079	return (&agg->dtag_action);
10080}
10081
10082static void
10083dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10084{
10085	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10086	dtrace_state_t *state = ecb->dte_state;
10087	dtrace_aggid_t aggid = agg->dtag_id;
10088
10089	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10090#if defined(sun)
10091	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10092#else
10093	vmem_free(state->dts_aggid_arena, (uintptr_t)aggid, 1);
10094#endif
10095
10096	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10097	state->dts_aggregations[aggid - 1] = NULL;
10098
10099	kmem_free(agg, sizeof (dtrace_aggregation_t));
10100}
10101
10102static int
10103dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10104{
10105	dtrace_action_t *action, *last;
10106	dtrace_difo_t *dp = desc->dtad_difo;
10107	uint32_t size = 0, align = sizeof (uint8_t), mask;
10108	uint16_t format = 0;
10109	dtrace_recdesc_t *rec;
10110	dtrace_state_t *state = ecb->dte_state;
10111	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10112	uint64_t arg = desc->dtad_arg;
10113
10114	ASSERT(MUTEX_HELD(&dtrace_lock));
10115	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10116
10117	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10118		/*
10119		 * If this is an aggregating action, there must be neither
10120		 * a speculate nor a commit on the action chain.
10121		 */
10122		dtrace_action_t *act;
10123
10124		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10125			if (act->dta_kind == DTRACEACT_COMMIT)
10126				return (EINVAL);
10127
10128			if (act->dta_kind == DTRACEACT_SPECULATE)
10129				return (EINVAL);
10130		}
10131
10132		action = dtrace_ecb_aggregation_create(ecb, desc);
10133
10134		if (action == NULL)
10135			return (EINVAL);
10136	} else {
10137		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10138		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10139		    dp != NULL && dp->dtdo_destructive)) {
10140			state->dts_destructive = 1;
10141		}
10142
10143		switch (desc->dtad_kind) {
10144		case DTRACEACT_PRINTF:
10145		case DTRACEACT_PRINTA:
10146		case DTRACEACT_SYSTEM:
10147		case DTRACEACT_FREOPEN:
10148			/*
10149			 * We know that our arg is a string -- turn it into a
10150			 * format.
10151			 */
10152			if (arg == 0) {
10153				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10154				format = 0;
10155			} else {
10156				ASSERT(arg != 0);
10157#if defined(sun)
10158				ASSERT(arg > KERNELBASE);
10159#endif
10160				format = dtrace_format_add(state,
10161				    (char *)(uintptr_t)arg);
10162			}
10163
10164			/*FALLTHROUGH*/
10165		case DTRACEACT_LIBACT:
10166		case DTRACEACT_DIFEXPR:
10167			if (dp == NULL)
10168				return (EINVAL);
10169
10170			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10171				break;
10172
10173			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10174				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10175					return (EINVAL);
10176
10177				size = opt[DTRACEOPT_STRSIZE];
10178			}
10179
10180			break;
10181
10182		case DTRACEACT_STACK:
10183			if ((nframes = arg) == 0) {
10184				nframes = opt[DTRACEOPT_STACKFRAMES];
10185				ASSERT(nframes > 0);
10186				arg = nframes;
10187			}
10188
10189			size = nframes * sizeof (pc_t);
10190			break;
10191
10192		case DTRACEACT_JSTACK:
10193			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10194				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10195
10196			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10197				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10198
10199			arg = DTRACE_USTACK_ARG(nframes, strsize);
10200
10201			/*FALLTHROUGH*/
10202		case DTRACEACT_USTACK:
10203			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10204			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10205				strsize = DTRACE_USTACK_STRSIZE(arg);
10206				nframes = opt[DTRACEOPT_USTACKFRAMES];
10207				ASSERT(nframes > 0);
10208				arg = DTRACE_USTACK_ARG(nframes, strsize);
10209			}
10210
10211			/*
10212			 * Save a slot for the pid.
10213			 */
10214			size = (nframes + 1) * sizeof (uint64_t);
10215			size += DTRACE_USTACK_STRSIZE(arg);
10216			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10217
10218			break;
10219
10220		case DTRACEACT_SYM:
10221		case DTRACEACT_MOD:
10222			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10223			    sizeof (uint64_t)) ||
10224			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10225				return (EINVAL);
10226			break;
10227
10228		case DTRACEACT_USYM:
10229		case DTRACEACT_UMOD:
10230		case DTRACEACT_UADDR:
10231			if (dp == NULL ||
10232			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10233			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10234				return (EINVAL);
10235
10236			/*
10237			 * We have a slot for the pid, plus a slot for the
10238			 * argument.  To keep things simple (aligned with
10239			 * bitness-neutral sizing), we store each as a 64-bit
10240			 * quantity.
10241			 */
10242			size = 2 * sizeof (uint64_t);
10243			break;
10244
10245		case DTRACEACT_STOP:
10246		case DTRACEACT_BREAKPOINT:
10247		case DTRACEACT_PANIC:
10248			break;
10249
10250		case DTRACEACT_CHILL:
10251		case DTRACEACT_DISCARD:
10252		case DTRACEACT_RAISE:
10253			if (dp == NULL)
10254				return (EINVAL);
10255			break;
10256
10257		case DTRACEACT_EXIT:
10258			if (dp == NULL ||
10259			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10260			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10261				return (EINVAL);
10262			break;
10263
10264		case DTRACEACT_SPECULATE:
10265			if (ecb->dte_size > sizeof (dtrace_epid_t))
10266				return (EINVAL);
10267
10268			if (dp == NULL)
10269				return (EINVAL);
10270
10271			state->dts_speculates = 1;
10272			break;
10273
10274		case DTRACEACT_PRINTM:
10275		    	size = dp->dtdo_rtype.dtdt_size;
10276			break;
10277
10278		case DTRACEACT_PRINTT:
10279		    	size = dp->dtdo_rtype.dtdt_size;
10280			break;
10281
10282		case DTRACEACT_COMMIT: {
10283			dtrace_action_t *act = ecb->dte_action;
10284
10285			for (; act != NULL; act = act->dta_next) {
10286				if (act->dta_kind == DTRACEACT_COMMIT)
10287					return (EINVAL);
10288			}
10289
10290			if (dp == NULL)
10291				return (EINVAL);
10292			break;
10293		}
10294
10295		default:
10296			return (EINVAL);
10297		}
10298
10299		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10300			/*
10301			 * If this is a data-storing action or a speculate,
10302			 * we must be sure that there isn't a commit on the
10303			 * action chain.
10304			 */
10305			dtrace_action_t *act = ecb->dte_action;
10306
10307			for (; act != NULL; act = act->dta_next) {
10308				if (act->dta_kind == DTRACEACT_COMMIT)
10309					return (EINVAL);
10310			}
10311		}
10312
10313		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10314		action->dta_rec.dtrd_size = size;
10315	}
10316
10317	action->dta_refcnt = 1;
10318	rec = &action->dta_rec;
10319	size = rec->dtrd_size;
10320
10321	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10322		if (!(size & mask)) {
10323			align = mask + 1;
10324			break;
10325		}
10326	}
10327
10328	action->dta_kind = desc->dtad_kind;
10329
10330	if ((action->dta_difo = dp) != NULL)
10331		dtrace_difo_hold(dp);
10332
10333	rec->dtrd_action = action->dta_kind;
10334	rec->dtrd_arg = arg;
10335	rec->dtrd_uarg = desc->dtad_uarg;
10336	rec->dtrd_alignment = (uint16_t)align;
10337	rec->dtrd_format = format;
10338
10339	if ((last = ecb->dte_action_last) != NULL) {
10340		ASSERT(ecb->dte_action != NULL);
10341		action->dta_prev = last;
10342		last->dta_next = action;
10343	} else {
10344		ASSERT(ecb->dte_action == NULL);
10345		ecb->dte_action = action;
10346	}
10347
10348	ecb->dte_action_last = action;
10349
10350	return (0);
10351}
10352
10353static void
10354dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10355{
10356	dtrace_action_t *act = ecb->dte_action, *next;
10357	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10358	dtrace_difo_t *dp;
10359	uint16_t format;
10360
10361	if (act != NULL && act->dta_refcnt > 1) {
10362		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10363		act->dta_refcnt--;
10364	} else {
10365		for (; act != NULL; act = next) {
10366			next = act->dta_next;
10367			ASSERT(next != NULL || act == ecb->dte_action_last);
10368			ASSERT(act->dta_refcnt == 1);
10369
10370			if ((format = act->dta_rec.dtrd_format) != 0)
10371				dtrace_format_remove(ecb->dte_state, format);
10372
10373			if ((dp = act->dta_difo) != NULL)
10374				dtrace_difo_release(dp, vstate);
10375
10376			if (DTRACEACT_ISAGG(act->dta_kind)) {
10377				dtrace_ecb_aggregation_destroy(ecb, act);
10378			} else {
10379				kmem_free(act, sizeof (dtrace_action_t));
10380			}
10381		}
10382	}
10383
10384	ecb->dte_action = NULL;
10385	ecb->dte_action_last = NULL;
10386	ecb->dte_size = sizeof (dtrace_epid_t);
10387}
10388
10389static void
10390dtrace_ecb_disable(dtrace_ecb_t *ecb)
10391{
10392	/*
10393	 * We disable the ECB by removing it from its probe.
10394	 */
10395	dtrace_ecb_t *pecb, *prev = NULL;
10396	dtrace_probe_t *probe = ecb->dte_probe;
10397
10398	ASSERT(MUTEX_HELD(&dtrace_lock));
10399
10400	if (probe == NULL) {
10401		/*
10402		 * This is the NULL probe; there is nothing to disable.
10403		 */
10404		return;
10405	}
10406
10407	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10408		if (pecb == ecb)
10409			break;
10410		prev = pecb;
10411	}
10412
10413	ASSERT(pecb != NULL);
10414
10415	if (prev == NULL) {
10416		probe->dtpr_ecb = ecb->dte_next;
10417	} else {
10418		prev->dte_next = ecb->dte_next;
10419	}
10420
10421	if (ecb == probe->dtpr_ecb_last) {
10422		ASSERT(ecb->dte_next == NULL);
10423		probe->dtpr_ecb_last = prev;
10424	}
10425
10426	/*
10427	 * The ECB has been disconnected from the probe; now sync to assure
10428	 * that all CPUs have seen the change before returning.
10429	 */
10430	dtrace_sync();
10431
10432	if (probe->dtpr_ecb == NULL) {
10433		/*
10434		 * That was the last ECB on the probe; clear the predicate
10435		 * cache ID for the probe, disable it and sync one more time
10436		 * to assure that we'll never hit it again.
10437		 */
10438		dtrace_provider_t *prov = probe->dtpr_provider;
10439
10440		ASSERT(ecb->dte_next == NULL);
10441		ASSERT(probe->dtpr_ecb_last == NULL);
10442		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10443		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10444		    probe->dtpr_id, probe->dtpr_arg);
10445		dtrace_sync();
10446	} else {
10447		/*
10448		 * There is at least one ECB remaining on the probe.  If there
10449		 * is _exactly_ one, set the probe's predicate cache ID to be
10450		 * the predicate cache ID of the remaining ECB.
10451		 */
10452		ASSERT(probe->dtpr_ecb_last != NULL);
10453		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10454
10455		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10456			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10457
10458			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10459
10460			if (p != NULL)
10461				probe->dtpr_predcache = p->dtp_cacheid;
10462		}
10463
10464		ecb->dte_next = NULL;
10465	}
10466}
10467
10468static void
10469dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10470{
10471	dtrace_state_t *state = ecb->dte_state;
10472	dtrace_vstate_t *vstate = &state->dts_vstate;
10473	dtrace_predicate_t *pred;
10474	dtrace_epid_t epid = ecb->dte_epid;
10475
10476	ASSERT(MUTEX_HELD(&dtrace_lock));
10477	ASSERT(ecb->dte_next == NULL);
10478	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10479
10480	if ((pred = ecb->dte_predicate) != NULL)
10481		dtrace_predicate_release(pred, vstate);
10482
10483	dtrace_ecb_action_remove(ecb);
10484
10485	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10486	state->dts_ecbs[epid - 1] = NULL;
10487
10488	kmem_free(ecb, sizeof (dtrace_ecb_t));
10489}
10490
10491static dtrace_ecb_t *
10492dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10493    dtrace_enabling_t *enab)
10494{
10495	dtrace_ecb_t *ecb;
10496	dtrace_predicate_t *pred;
10497	dtrace_actdesc_t *act;
10498	dtrace_provider_t *prov;
10499	dtrace_ecbdesc_t *desc = enab->dten_current;
10500
10501	ASSERT(MUTEX_HELD(&dtrace_lock));
10502	ASSERT(state != NULL);
10503
10504	ecb = dtrace_ecb_add(state, probe);
10505	ecb->dte_uarg = desc->dted_uarg;
10506
10507	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10508		dtrace_predicate_hold(pred);
10509		ecb->dte_predicate = pred;
10510	}
10511
10512	if (probe != NULL) {
10513		/*
10514		 * If the provider shows more leg than the consumer is old
10515		 * enough to see, we need to enable the appropriate implicit
10516		 * predicate bits to prevent the ecb from activating at
10517		 * revealing times.
10518		 *
10519		 * Providers specifying DTRACE_PRIV_USER at register time
10520		 * are stating that they need the /proc-style privilege
10521		 * model to be enforced, and this is what DTRACE_COND_OWNER
10522		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10523		 */
10524		prov = probe->dtpr_provider;
10525		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10526		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10527			ecb->dte_cond |= DTRACE_COND_OWNER;
10528
10529		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10530		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10531			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10532
10533		/*
10534		 * If the provider shows us kernel innards and the user
10535		 * is lacking sufficient privilege, enable the
10536		 * DTRACE_COND_USERMODE implicit predicate.
10537		 */
10538		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10539		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10540			ecb->dte_cond |= DTRACE_COND_USERMODE;
10541	}
10542
10543	if (dtrace_ecb_create_cache != NULL) {
10544		/*
10545		 * If we have a cached ecb, we'll use its action list instead
10546		 * of creating our own (saving both time and space).
10547		 */
10548		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10549		dtrace_action_t *xact = cached->dte_action;
10550
10551		if (xact != NULL) {
10552			ASSERT(xact->dta_refcnt > 0);
10553			xact->dta_refcnt++;
10554			ecb->dte_action = xact;
10555			ecb->dte_action_last = cached->dte_action_last;
10556			ecb->dte_needed = cached->dte_needed;
10557			ecb->dte_size = cached->dte_size;
10558			ecb->dte_alignment = cached->dte_alignment;
10559		}
10560
10561		return (ecb);
10562	}
10563
10564	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10565		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10566			dtrace_ecb_destroy(ecb);
10567			return (NULL);
10568		}
10569	}
10570
10571	dtrace_ecb_resize(ecb);
10572
10573	return (dtrace_ecb_create_cache = ecb);
10574}
10575
10576static int
10577dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10578{
10579	dtrace_ecb_t *ecb;
10580	dtrace_enabling_t *enab = arg;
10581	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10582
10583	ASSERT(state != NULL);
10584
10585	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10586		/*
10587		 * This probe was created in a generation for which this
10588		 * enabling has previously created ECBs; we don't want to
10589		 * enable it again, so just kick out.
10590		 */
10591		return (DTRACE_MATCH_NEXT);
10592	}
10593
10594	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10595		return (DTRACE_MATCH_DONE);
10596
10597	if (dtrace_ecb_enable(ecb) < 0)
10598		return (DTRACE_MATCH_FAIL);
10599
10600	return (DTRACE_MATCH_NEXT);
10601}
10602
10603static dtrace_ecb_t *
10604dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10605{
10606	dtrace_ecb_t *ecb;
10607
10608	ASSERT(MUTEX_HELD(&dtrace_lock));
10609
10610	if (id == 0 || id > state->dts_necbs)
10611		return (NULL);
10612
10613	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10614	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10615
10616	return (state->dts_ecbs[id - 1]);
10617}
10618
10619static dtrace_aggregation_t *
10620dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10621{
10622	dtrace_aggregation_t *agg;
10623
10624	ASSERT(MUTEX_HELD(&dtrace_lock));
10625
10626	if (id == 0 || id > state->dts_naggregations)
10627		return (NULL);
10628
10629	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10630	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10631	    agg->dtag_id == id);
10632
10633	return (state->dts_aggregations[id - 1]);
10634}
10635
10636/*
10637 * DTrace Buffer Functions
10638 *
10639 * The following functions manipulate DTrace buffers.  Most of these functions
10640 * are called in the context of establishing or processing consumer state;
10641 * exceptions are explicitly noted.
10642 */
10643
10644/*
10645 * Note:  called from cross call context.  This function switches the two
10646 * buffers on a given CPU.  The atomicity of this operation is assured by
10647 * disabling interrupts while the actual switch takes place; the disabling of
10648 * interrupts serializes the execution with any execution of dtrace_probe() on
10649 * the same CPU.
10650 */
10651static void
10652dtrace_buffer_switch(dtrace_buffer_t *buf)
10653{
10654	caddr_t tomax = buf->dtb_tomax;
10655	caddr_t xamot = buf->dtb_xamot;
10656	dtrace_icookie_t cookie;
10657
10658	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10659	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10660
10661	cookie = dtrace_interrupt_disable();
10662	buf->dtb_tomax = xamot;
10663	buf->dtb_xamot = tomax;
10664	buf->dtb_xamot_drops = buf->dtb_drops;
10665	buf->dtb_xamot_offset = buf->dtb_offset;
10666	buf->dtb_xamot_errors = buf->dtb_errors;
10667	buf->dtb_xamot_flags = buf->dtb_flags;
10668	buf->dtb_offset = 0;
10669	buf->dtb_drops = 0;
10670	buf->dtb_errors = 0;
10671	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10672	dtrace_interrupt_enable(cookie);
10673}
10674
10675/*
10676 * Note:  called from cross call context.  This function activates a buffer
10677 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10678 * is guaranteed by the disabling of interrupts.
10679 */
10680static void
10681dtrace_buffer_activate(dtrace_state_t *state)
10682{
10683	dtrace_buffer_t *buf;
10684	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10685
10686	buf = &state->dts_buffer[curcpu_id];
10687
10688	if (buf->dtb_tomax != NULL) {
10689		/*
10690		 * We might like to assert that the buffer is marked inactive,
10691		 * but this isn't necessarily true:  the buffer for the CPU
10692		 * that processes the BEGIN probe has its buffer activated
10693		 * manually.  In this case, we take the (harmless) action
10694		 * re-clearing the bit INACTIVE bit.
10695		 */
10696		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10697	}
10698
10699	dtrace_interrupt_enable(cookie);
10700}
10701
10702static int
10703dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10704    processorid_t xcpu)
10705{
10706#if defined(sun)
10707	cpu_t *cp;
10708#else
10709	CPU_INFO_ITERATOR cpuind;
10710	struct cpu_info *cinfo;
10711#endif
10712	dtrace_buffer_t *buf;
10713
10714#if defined(sun)
10715	ASSERT(MUTEX_HELD(&cpu_lock));
10716	ASSERT(MUTEX_HELD(&dtrace_lock));
10717
10718	if (size > dtrace_nonroot_maxsize &&
10719	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10720		return (EFBIG);
10721
10722	cp = cpu_list;
10723
10724	do {
10725		if (xcpu != DTRACE_CPUALL && xcpu != cp->cpu_id)
10726			continue;
10727
10728		buf = &bufs[cp->cpu_id];
10729
10730		/*
10731		 * If there is already a buffer allocated for this CPU, it
10732		 * is only possible that this is a DR event.  In this case,
10733		 */
10734		if (buf->dtb_tomax != NULL) {
10735			ASSERT(buf->dtb_size == size);
10736			continue;
10737		}
10738
10739		ASSERT(buf->dtb_xamot == NULL);
10740
10741		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10742			goto err;
10743
10744		buf->dtb_size = size;
10745		buf->dtb_flags = flags;
10746		buf->dtb_offset = 0;
10747		buf->dtb_drops = 0;
10748
10749		if (flags & DTRACEBUF_NOSWITCH)
10750			continue;
10751
10752		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10753			goto err;
10754	} while ((cp = cp->cpu_next) != cpu_list);
10755
10756	return (0);
10757
10758err:
10759	cp = cpu_list;
10760
10761	do {
10762		if (xcpu != DTRACE_CPUALL && xcpu != cp->cpu_id)
10763			continue;
10764
10765		buf = &bufs[cp->cpu_id];
10766
10767		if (buf->dtb_xamot != NULL) {
10768			ASSERT(buf->dtb_tomax != NULL);
10769			ASSERT(buf->dtb_size == size);
10770			kmem_free(buf->dtb_xamot, size);
10771		}
10772
10773		if (buf->dtb_tomax != NULL) {
10774			ASSERT(buf->dtb_size == size);
10775			kmem_free(buf->dtb_tomax, size);
10776		}
10777
10778		buf->dtb_tomax = NULL;
10779		buf->dtb_xamot = NULL;
10780		buf->dtb_size = 0;
10781	} while ((cp = cp->cpu_next) != cpu_list);
10782
10783	return (ENOMEM);
10784#else
10785
10786#if defined(__amd64__)
10787	/*
10788	 * FreeBSD isn't good at limiting the amount of memory we
10789	 * ask to malloc, so let's place a limit here before trying
10790	 * to do something that might well end in tears at bedtime.
10791	 */
10792	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10793		return(ENOMEM);
10794#endif
10795
10796	ASSERT(MUTEX_HELD(&dtrace_lock));
10797	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10798		if (xcpu != DTRACE_CPUALL && xcpu != cpu_index(cinfo))
10799			continue;
10800
10801		buf = &bufs[cpu_index(cinfo)];
10802
10803		/*
10804		 * If there is already a buffer allocated for this CPU, it
10805		 * is only possible that this is a DR event.  In this case,
10806		 * the buffer size must match our specified size.
10807		 */
10808		if (buf->dtb_tomax != NULL) {
10809			ASSERT(buf->dtb_size == size);
10810			continue;
10811		}
10812
10813		ASSERT(buf->dtb_xamot == NULL);
10814
10815		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10816			goto err;
10817
10818		buf->dtb_size = size;
10819		buf->dtb_flags = flags;
10820		buf->dtb_offset = 0;
10821		buf->dtb_drops = 0;
10822
10823		if (flags & DTRACEBUF_NOSWITCH)
10824			continue;
10825
10826		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10827			goto err;
10828	}
10829
10830	return (0);
10831
10832err:
10833	/*
10834	 * Error allocating memory, so free the buffers that were
10835	 * allocated before the failed allocation.
10836	 */
10837	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10838		if (xcpu != DTRACE_CPUALL && xcpu != cpu_index(cinfo))
10839			continue;
10840
10841		buf = &bufs[cpu_index(cinfo)];
10842
10843		if (buf->dtb_xamot != NULL) {
10844			ASSERT(buf->dtb_tomax != NULL);
10845			ASSERT(buf->dtb_size == size);
10846			kmem_free(buf->dtb_xamot, size);
10847		}
10848
10849		if (buf->dtb_tomax != NULL) {
10850			ASSERT(buf->dtb_size == size);
10851			kmem_free(buf->dtb_tomax, size);
10852		}
10853
10854		buf->dtb_tomax = NULL;
10855		buf->dtb_xamot = NULL;
10856		buf->dtb_size = 0;
10857
10858	}
10859
10860	return (ENOMEM);
10861#endif
10862}
10863
10864/*
10865 * Note:  called from probe context.  This function just increments the drop
10866 * count on a buffer.  It has been made a function to allow for the
10867 * possibility of understanding the source of mysterious drop counts.  (A
10868 * problem for which one may be particularly disappointed that DTrace cannot
10869 * be used to understand DTrace.)
10870 */
10871static void
10872dtrace_buffer_drop(dtrace_buffer_t *buf)
10873{
10874	buf->dtb_drops++;
10875}
10876
10877/*
10878 * Note:  called from probe context.  This function is called to reserve space
10879 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10880 * mstate.  Returns the new offset in the buffer, or a negative value if an
10881 * error has occurred.
10882 */
10883static intptr_t
10884dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10885    dtrace_state_t *state, dtrace_mstate_t *mstate)
10886{
10887	intptr_t offs = buf->dtb_offset, soffs;
10888	intptr_t woffs;
10889	caddr_t tomax;
10890	size_t total;
10891
10892	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10893		return (-1);
10894
10895	if ((tomax = buf->dtb_tomax) == NULL) {
10896		dtrace_buffer_drop(buf);
10897		return (-1);
10898	}
10899
10900	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10901		while (offs & (align - 1)) {
10902			/*
10903			 * Assert that our alignment is off by a number which
10904			 * is itself sizeof (uint32_t) aligned.
10905			 */
10906			ASSERT(!((align - (offs & (align - 1))) &
10907			    (sizeof (uint32_t) - 1)));
10908			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10909			offs += sizeof (uint32_t);
10910		}
10911
10912		if ((soffs = offs + needed) > buf->dtb_size) {
10913			dtrace_buffer_drop(buf);
10914			return (-1);
10915		}
10916
10917		if (mstate == NULL)
10918			return (offs);
10919
10920		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10921		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10922		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10923
10924		return (offs);
10925	}
10926
10927	if (buf->dtb_flags & DTRACEBUF_FILL) {
10928		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10929		    (buf->dtb_flags & DTRACEBUF_FULL))
10930			return (-1);
10931		goto out;
10932	}
10933
10934	total = needed + (offs & (align - 1));
10935
10936	/*
10937	 * For a ring buffer, life is quite a bit more complicated.  Before
10938	 * we can store any padding, we need to adjust our wrapping offset.
10939	 * (If we've never before wrapped or we're not about to, no adjustment
10940	 * is required.)
10941	 */
10942	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10943	    offs + total > buf->dtb_size) {
10944		woffs = buf->dtb_xamot_offset;
10945
10946		if (offs + total > buf->dtb_size) {
10947			/*
10948			 * We can't fit in the end of the buffer.  First, a
10949			 * sanity check that we can fit in the buffer at all.
10950			 */
10951			if (total > buf->dtb_size) {
10952				dtrace_buffer_drop(buf);
10953				return (-1);
10954			}
10955
10956			/*
10957			 * We're going to be storing at the top of the buffer,
10958			 * so now we need to deal with the wrapped offset.  We
10959			 * only reset our wrapped offset to 0 if it is
10960			 * currently greater than the current offset.  If it
10961			 * is less than the current offset, it is because a
10962			 * previous allocation induced a wrap -- but the
10963			 * allocation didn't subsequently take the space due
10964			 * to an error or false predicate evaluation.  In this
10965			 * case, we'll just leave the wrapped offset alone: if
10966			 * the wrapped offset hasn't been advanced far enough
10967			 * for this allocation, it will be adjusted in the
10968			 * lower loop.
10969			 */
10970			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10971				if (woffs >= offs)
10972					woffs = 0;
10973			} else {
10974				woffs = 0;
10975			}
10976
10977			/*
10978			 * Now we know that we're going to be storing to the
10979			 * top of the buffer and that there is room for us
10980			 * there.  We need to clear the buffer from the current
10981			 * offset to the end (there may be old gunk there).
10982			 */
10983			while (offs < buf->dtb_size)
10984				tomax[offs++] = 0;
10985
10986			/*
10987			 * We need to set our offset to zero.  And because we
10988			 * are wrapping, we need to set the bit indicating as
10989			 * much.  We can also adjust our needed space back
10990			 * down to the space required by the ECB -- we know
10991			 * that the top of the buffer is aligned.
10992			 */
10993			offs = 0;
10994			total = needed;
10995			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10996		} else {
10997			/*
10998			 * There is room for us in the buffer, so we simply
10999			 * need to check the wrapped offset.
11000			 */
11001			if (woffs < offs) {
11002				/*
11003				 * The wrapped offset is less than the offset.
11004				 * This can happen if we allocated buffer space
11005				 * that induced a wrap, but then we didn't
11006				 * subsequently take the space due to an error
11007				 * or false predicate evaluation.  This is
11008				 * okay; we know that _this_ allocation isn't
11009				 * going to induce a wrap.  We still can't
11010				 * reset the wrapped offset to be zero,
11011				 * however: the space may have been trashed in
11012				 * the previous failed probe attempt.  But at
11013				 * least the wrapped offset doesn't need to
11014				 * be adjusted at all...
11015				 */
11016				goto out;
11017			}
11018		}
11019
11020		while (offs + total > woffs) {
11021			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11022			size_t size;
11023
11024			if (epid == DTRACE_EPIDNONE) {
11025				size = sizeof (uint32_t);
11026			} else {
11027				ASSERT(epid <= state->dts_necbs);
11028				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11029
11030				size = state->dts_ecbs[epid - 1]->dte_size;
11031			}
11032
11033			ASSERT(woffs + size <= buf->dtb_size);
11034			ASSERT(size != 0);
11035
11036			if (woffs + size == buf->dtb_size) {
11037				/*
11038				 * We've reached the end of the buffer; we want
11039				 * to set the wrapped offset to 0 and break
11040				 * out.  However, if the offs is 0, then we're
11041				 * in a strange edge-condition:  the amount of
11042				 * space that we want to reserve plus the size
11043				 * of the record that we're overwriting is
11044				 * greater than the size of the buffer.  This
11045				 * is problematic because if we reserve the
11046				 * space but subsequently don't consume it (due
11047				 * to a failed predicate or error) the wrapped
11048				 * offset will be 0 -- yet the EPID at offset 0
11049				 * will not be committed.  This situation is
11050				 * relatively easy to deal with:  if we're in
11051				 * this case, the buffer is indistinguishable
11052				 * from one that hasn't wrapped; we need only
11053				 * finish the job by clearing the wrapped bit,
11054				 * explicitly setting the offset to be 0, and
11055				 * zero'ing out the old data in the buffer.
11056				 */
11057				if (offs == 0) {
11058					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11059					buf->dtb_offset = 0;
11060					woffs = total;
11061
11062					while (woffs < buf->dtb_size)
11063						tomax[woffs++] = 0;
11064				}
11065
11066				woffs = 0;
11067				break;
11068			}
11069
11070			woffs += size;
11071		}
11072
11073		/*
11074		 * We have a wrapped offset.  It may be that the wrapped offset
11075		 * has become zero -- that's okay.
11076		 */
11077		buf->dtb_xamot_offset = woffs;
11078	}
11079
11080out:
11081	/*
11082	 * Now we can plow the buffer with any necessary padding.
11083	 */
11084	while (offs & (align - 1)) {
11085		/*
11086		 * Assert that our alignment is off by a number which
11087		 * is itself sizeof (uint32_t) aligned.
11088		 */
11089		ASSERT(!((align - (offs & (align - 1))) &
11090		    (sizeof (uint32_t) - 1)));
11091		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11092		offs += sizeof (uint32_t);
11093	}
11094
11095	if (buf->dtb_flags & DTRACEBUF_FILL) {
11096		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11097			buf->dtb_flags |= DTRACEBUF_FULL;
11098			return (-1);
11099		}
11100	}
11101
11102	if (mstate == NULL)
11103		return (offs);
11104
11105	/*
11106	 * For ring buffers and fill buffers, the scratch space is always
11107	 * the inactive buffer.
11108	 */
11109	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11110	mstate->dtms_scratch_size = buf->dtb_size;
11111	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11112
11113	return (offs);
11114}
11115
11116static void
11117dtrace_buffer_polish(dtrace_buffer_t *buf)
11118{
11119	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11120	ASSERT(MUTEX_HELD(&dtrace_lock));
11121
11122	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11123		return;
11124
11125	/*
11126	 * We need to polish the ring buffer.  There are three cases:
11127	 *
11128	 * - The first (and presumably most common) is that there is no gap
11129	 *   between the buffer offset and the wrapped offset.  In this case,
11130	 *   there is nothing in the buffer that isn't valid data; we can
11131	 *   mark the buffer as polished and return.
11132	 *
11133	 * - The second (less common than the first but still more common
11134	 *   than the third) is that there is a gap between the buffer offset
11135	 *   and the wrapped offset, and the wrapped offset is larger than the
11136	 *   buffer offset.  This can happen because of an alignment issue, or
11137	 *   can happen because of a call to dtrace_buffer_reserve() that
11138	 *   didn't subsequently consume the buffer space.  In this case,
11139	 *   we need to zero the data from the buffer offset to the wrapped
11140	 *   offset.
11141	 *
11142	 * - The third (and least common) is that there is a gap between the
11143	 *   buffer offset and the wrapped offset, but the wrapped offset is
11144	 *   _less_ than the buffer offset.  This can only happen because a
11145	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11146	 *   was not subsequently consumed.  In this case, we need to zero the
11147	 *   space from the offset to the end of the buffer _and_ from the
11148	 *   top of the buffer to the wrapped offset.
11149	 */
11150	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11151		bzero(buf->dtb_tomax + buf->dtb_offset,
11152		    buf->dtb_xamot_offset - buf->dtb_offset);
11153	}
11154
11155	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11156		bzero(buf->dtb_tomax + buf->dtb_offset,
11157		    buf->dtb_size - buf->dtb_offset);
11158		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11159	}
11160}
11161
11162static void
11163dtrace_buffer_free(dtrace_buffer_t *bufs)
11164{
11165	int i;
11166
11167	for (i = 0; i < NCPU; i++) {
11168		dtrace_buffer_t *buf = &bufs[i];
11169
11170		if (buf->dtb_tomax == NULL) {
11171			ASSERT(buf->dtb_xamot == NULL);
11172			ASSERT(buf->dtb_size == 0);
11173			continue;
11174		}
11175
11176		if (buf->dtb_xamot != NULL) {
11177			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11178			kmem_free(buf->dtb_xamot, buf->dtb_size);
11179		}
11180
11181		kmem_free(buf->dtb_tomax, buf->dtb_size);
11182		buf->dtb_size = 0;
11183		buf->dtb_tomax = NULL;
11184		buf->dtb_xamot = NULL;
11185	}
11186}
11187
11188/*
11189 * DTrace Enabling Functions
11190 */
11191static dtrace_enabling_t *
11192dtrace_enabling_create(dtrace_vstate_t *vstate)
11193{
11194	dtrace_enabling_t *enab;
11195
11196	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11197	enab->dten_vstate = vstate;
11198
11199	return (enab);
11200}
11201
11202static void
11203dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11204{
11205	dtrace_ecbdesc_t **ndesc;
11206	size_t osize, nsize;
11207
11208	/*
11209	 * We can't add to enablings after we've enabled them, or after we've
11210	 * retained them.
11211	 */
11212	ASSERT(enab->dten_probegen == 0);
11213	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11214
11215	if (enab->dten_ndesc < enab->dten_maxdesc) {
11216		enab->dten_desc[enab->dten_ndesc++] = ecb;
11217		return;
11218	}
11219
11220	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11221
11222	if (enab->dten_maxdesc == 0) {
11223		enab->dten_maxdesc = 1;
11224	} else {
11225		enab->dten_maxdesc <<= 1;
11226	}
11227
11228	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11229
11230	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11231	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11232	bcopy(enab->dten_desc, ndesc, osize);
11233	if (enab->dten_desc != NULL)
11234		kmem_free(enab->dten_desc, osize);
11235
11236	enab->dten_desc = ndesc;
11237	enab->dten_desc[enab->dten_ndesc++] = ecb;
11238}
11239
11240static void
11241dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11242    dtrace_probedesc_t *pd)
11243{
11244	dtrace_ecbdesc_t *new;
11245	dtrace_predicate_t *pred;
11246	dtrace_actdesc_t *act;
11247
11248	/*
11249	 * We're going to create a new ECB description that matches the
11250	 * specified ECB in every way, but has the specified probe description.
11251	 */
11252	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11253
11254	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11255		dtrace_predicate_hold(pred);
11256
11257	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11258		dtrace_actdesc_hold(act);
11259
11260	new->dted_action = ecb->dted_action;
11261	new->dted_pred = ecb->dted_pred;
11262	new->dted_probe = *pd;
11263	new->dted_uarg = ecb->dted_uarg;
11264
11265	dtrace_enabling_add(enab, new);
11266}
11267
11268static void
11269dtrace_enabling_dump(dtrace_enabling_t *enab)
11270{
11271	int i;
11272
11273	for (i = 0; i < enab->dten_ndesc; i++) {
11274		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11275
11276		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11277		    desc->dtpd_provider, desc->dtpd_mod,
11278		    desc->dtpd_func, desc->dtpd_name);
11279	}
11280}
11281
11282static void
11283dtrace_enabling_destroy(dtrace_enabling_t *enab)
11284{
11285	int i;
11286	dtrace_ecbdesc_t *ep;
11287	dtrace_vstate_t *vstate = enab->dten_vstate;
11288
11289	ASSERT(MUTEX_HELD(&dtrace_lock));
11290
11291	for (i = 0; i < enab->dten_ndesc; i++) {
11292		dtrace_actdesc_t *act, *next;
11293		dtrace_predicate_t *pred;
11294
11295		ep = enab->dten_desc[i];
11296
11297		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11298			dtrace_predicate_release(pred, vstate);
11299
11300		for (act = ep->dted_action; act != NULL; act = next) {
11301			next = act->dtad_next;
11302			dtrace_actdesc_release(act, vstate);
11303		}
11304
11305		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11306	}
11307
11308	if (enab->dten_desc != NULL)
11309		kmem_free(enab->dten_desc,
11310		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11311
11312	/*
11313	 * If this was a retained enabling, decrement the dts_nretained count
11314	 * and take it off of the dtrace_retained list.
11315	 */
11316	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11317	    dtrace_retained == enab) {
11318		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11319		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11320		enab->dten_vstate->dtvs_state->dts_nretained--;
11321	}
11322
11323	if (enab->dten_prev == NULL) {
11324		if (dtrace_retained == enab) {
11325			dtrace_retained = enab->dten_next;
11326
11327			if (dtrace_retained != NULL)
11328				dtrace_retained->dten_prev = NULL;
11329		}
11330	} else {
11331		ASSERT(enab != dtrace_retained);
11332		ASSERT(dtrace_retained != NULL);
11333		enab->dten_prev->dten_next = enab->dten_next;
11334	}
11335
11336	if (enab->dten_next != NULL) {
11337		ASSERT(dtrace_retained != NULL);
11338		enab->dten_next->dten_prev = enab->dten_prev;
11339	}
11340
11341	kmem_free(enab, sizeof (dtrace_enabling_t));
11342}
11343
11344static int
11345dtrace_enabling_retain(dtrace_enabling_t *enab)
11346{
11347	dtrace_state_t *state;
11348
11349	ASSERT(MUTEX_HELD(&dtrace_lock));
11350	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11351	ASSERT(enab->dten_vstate != NULL);
11352
11353	state = enab->dten_vstate->dtvs_state;
11354	ASSERT(state != NULL);
11355
11356	/*
11357	 * We only allow each state to retain dtrace_retain_max enablings.
11358	 */
11359	if (state->dts_nretained >= dtrace_retain_max)
11360		return (ENOSPC);
11361
11362	state->dts_nretained++;
11363
11364	if (dtrace_retained == NULL) {
11365		dtrace_retained = enab;
11366		return (0);
11367	}
11368
11369	enab->dten_next = dtrace_retained;
11370	dtrace_retained->dten_prev = enab;
11371	dtrace_retained = enab;
11372
11373	return (0);
11374}
11375
11376static int
11377dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11378    dtrace_probedesc_t *create)
11379{
11380	dtrace_enabling_t *new, *enab;
11381	int found = 0, err = ENOENT;
11382
11383	ASSERT(MUTEX_HELD(&dtrace_lock));
11384	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11385	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11386	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11387	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11388
11389	new = dtrace_enabling_create(&state->dts_vstate);
11390
11391	/*
11392	 * Iterate over all retained enablings, looking for enablings that
11393	 * match the specified state.
11394	 */
11395	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11396		int i;
11397
11398		/*
11399		 * dtvs_state can only be NULL for helper enablings -- and
11400		 * helper enablings can't be retained.
11401		 */
11402		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11403
11404		if (enab->dten_vstate->dtvs_state != state)
11405			continue;
11406
11407		/*
11408		 * Now iterate over each probe description; we're looking for
11409		 * an exact match to the specified probe description.
11410		 */
11411		for (i = 0; i < enab->dten_ndesc; i++) {
11412			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11413			dtrace_probedesc_t *pd = &ep->dted_probe;
11414
11415			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11416				continue;
11417
11418			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11419				continue;
11420
11421			if (strcmp(pd->dtpd_func, match->dtpd_func))
11422				continue;
11423
11424			if (strcmp(pd->dtpd_name, match->dtpd_name))
11425				continue;
11426
11427			/*
11428			 * We have a winning probe!  Add it to our growing
11429			 * enabling.
11430			 */
11431			found = 1;
11432			dtrace_enabling_addlike(new, ep, create);
11433		}
11434	}
11435
11436	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11437		dtrace_enabling_destroy(new);
11438		return (err);
11439	}
11440
11441	return (0);
11442}
11443
11444static void
11445dtrace_enabling_retract(dtrace_state_t *state)
11446{
11447	dtrace_enabling_t *enab, *next;
11448
11449	ASSERT(MUTEX_HELD(&dtrace_lock));
11450
11451	/*
11452	 * Iterate over all retained enablings, destroy the enablings retained
11453	 * for the specified state.
11454	 */
11455	for (enab = dtrace_retained; enab != NULL; enab = next) {
11456		next = enab->dten_next;
11457
11458		/*
11459		 * dtvs_state can only be NULL for helper enablings -- and
11460		 * helper enablings can't be retained.
11461		 */
11462		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11463
11464		if (enab->dten_vstate->dtvs_state == state) {
11465			ASSERT(state->dts_nretained > 0);
11466			dtrace_enabling_destroy(enab);
11467		}
11468	}
11469
11470	ASSERT(state->dts_nretained == 0);
11471}
11472
11473static int
11474dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11475{
11476	int i = 0;
11477	int total_matched = 0, matched = 0;
11478
11479	ASSERT(MUTEX_HELD(&cpu_lock));
11480	ASSERT(MUTEX_HELD(&dtrace_lock));
11481
11482	for (i = 0; i < enab->dten_ndesc; i++) {
11483		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11484
11485		enab->dten_current = ep;
11486		enab->dten_error = 0;
11487
11488		/*
11489		 * If a provider failed to enable a probe then get out and
11490		 * let the consumer know we failed.
11491		 */
11492		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11493			return (EBUSY);
11494
11495		total_matched += matched;
11496
11497		if (enab->dten_error != 0) {
11498			/*
11499			 * If we get an error half-way through enabling the
11500			 * probes, we kick out -- perhaps with some number of
11501			 * them enabled.  Leaving enabled probes enabled may
11502			 * be slightly confusing for user-level, but we expect
11503			 * that no one will attempt to actually drive on in
11504			 * the face of such errors.  If this is an anonymous
11505			 * enabling (indicated with a NULL nmatched pointer),
11506			 * we cmn_err() a message.  We aren't expecting to
11507			 * get such an error -- such as it can exist at all,
11508			 * it would be a result of corrupted DOF in the driver
11509			 * properties.
11510			 */
11511			if (nmatched == NULL) {
11512				cmn_err(CE_WARN, "dtrace_enabling_match() "
11513				    "error on %p: %d", (void *)ep,
11514				    enab->dten_error);
11515			}
11516
11517			return (enab->dten_error);
11518		}
11519	}
11520
11521	enab->dten_probegen = dtrace_probegen;
11522	if (nmatched != NULL)
11523		*nmatched = total_matched;
11524
11525	return (0);
11526}
11527
11528static void
11529dtrace_enabling_matchall(void)
11530{
11531	dtrace_enabling_t *enab;
11532
11533	mutex_enter(&cpu_lock);
11534	mutex_enter(&dtrace_lock);
11535
11536	/*
11537	 * Iterate over all retained enablings to see if any probes match
11538	 * against them.  We only perform this operation on enablings for which
11539	 * we have sufficient permissions by virtue of being in the global zone
11540	 * or in the same zone as the DTrace client.  Because we can be called
11541	 * after dtrace_detach() has been called, we cannot assert that there
11542	 * are retained enablings.  We can safely load from dtrace_retained,
11543	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11544	 * block pending our completion.
11545	 */
11546	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11547#if defined(sun)
11548		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11549
11550		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11551#endif
11552			(void) dtrace_enabling_match(enab, NULL);
11553	}
11554
11555	mutex_exit(&dtrace_lock);
11556	mutex_exit(&cpu_lock);
11557}
11558
11559/*
11560 * If an enabling is to be enabled without having matched probes (that is, if
11561 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11562 * enabling must be _primed_ by creating an ECB for every ECB description.
11563 * This must be done to assure that we know the number of speculations, the
11564 * number of aggregations, the minimum buffer size needed, etc. before we
11565 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11566 * enabling any probes, we create ECBs for every ECB decription, but with a
11567 * NULL probe -- which is exactly what this function does.
11568 */
11569static void
11570dtrace_enabling_prime(dtrace_state_t *state)
11571{
11572	dtrace_enabling_t *enab;
11573	int i;
11574
11575	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11576		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11577
11578		if (enab->dten_vstate->dtvs_state != state)
11579			continue;
11580
11581		/*
11582		 * We don't want to prime an enabling more than once, lest
11583		 * we allow a malicious user to induce resource exhaustion.
11584		 * (The ECBs that result from priming an enabling aren't
11585		 * leaked -- but they also aren't deallocated until the
11586		 * consumer state is destroyed.)
11587		 */
11588		if (enab->dten_primed)
11589			continue;
11590
11591		for (i = 0; i < enab->dten_ndesc; i++) {
11592			enab->dten_current = enab->dten_desc[i];
11593			(void) dtrace_probe_enable(NULL, enab);
11594		}
11595
11596		enab->dten_primed = 1;
11597	}
11598}
11599
11600/*
11601 * Called to indicate that probes should be provided due to retained
11602 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11603 * must take an initial lap through the enabling calling the dtps_provide()
11604 * entry point explicitly to allow for autocreated probes.
11605 */
11606static void
11607dtrace_enabling_provide(dtrace_provider_t *prv)
11608{
11609	int i, all = 0;
11610	dtrace_probedesc_t desc;
11611
11612	ASSERT(MUTEX_HELD(&dtrace_lock));
11613	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11614
11615	if (prv == NULL) {
11616		all = 1;
11617		prv = dtrace_provider;
11618	}
11619
11620	do {
11621		dtrace_enabling_t *enab = dtrace_retained;
11622		void *parg = prv->dtpv_arg;
11623
11624		for (; enab != NULL; enab = enab->dten_next) {
11625			for (i = 0; i < enab->dten_ndesc; i++) {
11626				desc = enab->dten_desc[i]->dted_probe;
11627				mutex_exit(&dtrace_lock);
11628				prv->dtpv_pops.dtps_provide(parg, &desc);
11629				mutex_enter(&dtrace_lock);
11630			}
11631		}
11632	} while (all && (prv = prv->dtpv_next) != NULL);
11633
11634	mutex_exit(&dtrace_lock);
11635	dtrace_probe_provide(NULL, all ? NULL : prv);
11636	mutex_enter(&dtrace_lock);
11637}
11638
11639/*
11640 * DTrace DOF Functions
11641 */
11642/*ARGSUSED*/
11643static void
11644dtrace_dof_error(dof_hdr_t *dof, const char *str)
11645{
11646	if (dtrace_err_verbose)
11647		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11648
11649#ifdef DTRACE_ERRDEBUG
11650	dtrace_errdebug(str);
11651#endif
11652}
11653
11654/*
11655 * Create DOF out of a currently enabled state.  Right now, we only create
11656 * DOF containing the run-time options -- but this could be expanded to create
11657 * complete DOF representing the enabled state.
11658 */
11659static dof_hdr_t *
11660dtrace_dof_create(dtrace_state_t *state)
11661{
11662	dof_hdr_t *dof;
11663	dof_sec_t *sec;
11664	dof_optdesc_t *opt;
11665	int i, len = sizeof (dof_hdr_t) +
11666	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11667	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11668
11669	ASSERT(MUTEX_HELD(&dtrace_lock));
11670
11671	dof = kmem_zalloc(len, KM_SLEEP);
11672	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11673	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11674	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11675	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11676
11677	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11678	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11679	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11680	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11681	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11682	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11683
11684	dof->dofh_flags = 0;
11685	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11686	dof->dofh_secsize = sizeof (dof_sec_t);
11687	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11688	dof->dofh_secoff = sizeof (dof_hdr_t);
11689	dof->dofh_loadsz = len;
11690	dof->dofh_filesz = len;
11691	dof->dofh_pad = 0;
11692
11693	/*
11694	 * Fill in the option section header...
11695	 */
11696	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11697	sec->dofs_type = DOF_SECT_OPTDESC;
11698	sec->dofs_align = sizeof (uint64_t);
11699	sec->dofs_flags = DOF_SECF_LOAD;
11700	sec->dofs_entsize = sizeof (dof_optdesc_t);
11701
11702	opt = (dof_optdesc_t *)((uintptr_t)sec +
11703	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11704
11705	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11706	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11707
11708	for (i = 0; i < DTRACEOPT_MAX; i++) {
11709		opt[i].dofo_option = i;
11710		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11711		opt[i].dofo_value = state->dts_options[i];
11712	}
11713
11714	return (dof);
11715}
11716
11717static dof_hdr_t *
11718dtrace_dof_copyin(uintptr_t uarg, int *errp)
11719{
11720	dof_hdr_t hdr, *dof;
11721
11722	ASSERT(!MUTEX_HELD(&dtrace_lock));
11723
11724	/*
11725	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11726	 */
11727	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11728		dtrace_dof_error(NULL, "failed to copyin DOF header");
11729		*errp = EFAULT;
11730		return (NULL);
11731	}
11732
11733	/*
11734	 * Now we'll allocate the entire DOF and copy it in -- provided
11735	 * that the length isn't outrageous.
11736	 */
11737	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11738		dtrace_dof_error(&hdr, "load size exceeds maximum");
11739		*errp = E2BIG;
11740		return (NULL);
11741	}
11742
11743	if (hdr.dofh_loadsz < sizeof (hdr)) {
11744		dtrace_dof_error(&hdr, "invalid load size");
11745		*errp = EINVAL;
11746		return (NULL);
11747	}
11748
11749	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11750
11751	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11752	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11753		kmem_free(dof, hdr.dofh_loadsz);
11754		*errp = EFAULT;
11755		return (NULL);
11756	}
11757
11758	return (dof);
11759}
11760
11761#if !defined(sun)
11762static __inline uchar_t
11763dtrace_dof_char(char c) {
11764	switch (c) {
11765	case '0':
11766	case '1':
11767	case '2':
11768	case '3':
11769	case '4':
11770	case '5':
11771	case '6':
11772	case '7':
11773	case '8':
11774	case '9':
11775		return (c - '0');
11776	case 'A':
11777	case 'B':
11778	case 'C':
11779	case 'D':
11780	case 'E':
11781	case 'F':
11782		return (c - 'A' + 10);
11783	case 'a':
11784	case 'b':
11785	case 'c':
11786	case 'd':
11787	case 'e':
11788	case 'f':
11789		return (c - 'a' + 10);
11790	}
11791	/* Should not reach here. */
11792	return (0);
11793}
11794#endif
11795
11796static dof_hdr_t *
11797dtrace_dof_property(const char *name)
11798{
11799	dof_hdr_t *dof = NULL;
11800#if defined(sun)
11801	uchar_t *buf;
11802	uint64_t loadsz;
11803	unsigned int len, i;
11804
11805	/*
11806	 * Unfortunately, array of values in .conf files are always (and
11807	 * only) interpreted to be integer arrays.  We must read our DOF
11808	 * as an integer array, and then squeeze it into a byte array.
11809	 */
11810	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11811	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11812		return (NULL);
11813
11814	for (i = 0; i < len; i++)
11815		buf[i] = (uchar_t)(((int *)buf)[i]);
11816
11817	if (len < sizeof (dof_hdr_t)) {
11818		ddi_prop_free(buf);
11819		dtrace_dof_error(NULL, "truncated header");
11820		return (NULL);
11821	}
11822
11823	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11824		ddi_prop_free(buf);
11825		dtrace_dof_error(NULL, "truncated DOF");
11826		return (NULL);
11827	}
11828
11829	if (loadsz >= dtrace_dof_maxsize) {
11830		ddi_prop_free(buf);
11831		dtrace_dof_error(NULL, "oversized DOF");
11832		return (NULL);
11833	}
11834
11835	dof = kmem_alloc(loadsz, KM_SLEEP);
11836	bcopy(buf, dof, loadsz);
11837	ddi_prop_free(buf);
11838#else
11839	printf("dtrace: XXX %s not implemented (name=%s)\n", __func__, name);
11840#if 0	/* XXX TBD dtrace_dof_provide */
11841	char *p;
11842	char *p_env;
11843
11844	if ((p_env = getenv(name)) == NULL)
11845		return (NULL);
11846
11847	len = strlen(p_env) / 2;
11848
11849	buf = kmem_alloc(len, KM_SLEEP);
11850
11851	dof = (dof_hdr_t *) buf;
11852
11853	p = p_env;
11854
11855	for (i = 0; i < len; i++) {
11856		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11857		     dtrace_dof_char(p[1]);
11858		p += 2;
11859	}
11860
11861	freeenv(p_env);
11862
11863	if (len < sizeof (dof_hdr_t)) {
11864		kmem_free(buf, len);
11865		dtrace_dof_error(NULL, "truncated header");
11866		return (NULL);
11867	}
11868
11869	if (len < (loadsz = dof->dofh_loadsz)) {
11870		kmem_free(buf, len);
11871		dtrace_dof_error(NULL, "truncated DOF");
11872		return (NULL);
11873	}
11874
11875	if (loadsz >= dtrace_dof_maxsize) {
11876		kmem_free(buf, len);
11877		dtrace_dof_error(NULL, "oversized DOF");
11878		return (NULL);
11879	}
11880#endif
11881#endif
11882
11883	return (dof);
11884}
11885
11886static void
11887dtrace_dof_destroy(dof_hdr_t *dof)
11888{
11889	kmem_free(dof, dof->dofh_loadsz);
11890}
11891
11892/*
11893 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11894 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11895 * a type other than DOF_SECT_NONE is specified, the header is checked against
11896 * this type and NULL is returned if the types do not match.
11897 */
11898static dof_sec_t *
11899dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11900{
11901	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11902	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11903
11904	if (i >= dof->dofh_secnum) {
11905		dtrace_dof_error(dof, "referenced section index is invalid");
11906		return (NULL);
11907	}
11908
11909	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11910		dtrace_dof_error(dof, "referenced section is not loadable");
11911		return (NULL);
11912	}
11913
11914	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11915		dtrace_dof_error(dof, "referenced section is the wrong type");
11916		return (NULL);
11917	}
11918
11919	return (sec);
11920}
11921
11922static dtrace_probedesc_t *
11923dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11924{
11925	dof_probedesc_t *probe;
11926	dof_sec_t *strtab;
11927	uintptr_t daddr = (uintptr_t)dof;
11928	uintptr_t str;
11929	size_t size;
11930
11931	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11932		dtrace_dof_error(dof, "invalid probe section");
11933		return (NULL);
11934	}
11935
11936	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11937		dtrace_dof_error(dof, "bad alignment in probe description");
11938		return (NULL);
11939	}
11940
11941	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11942		dtrace_dof_error(dof, "truncated probe description");
11943		return (NULL);
11944	}
11945
11946	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11947	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11948
11949	if (strtab == NULL)
11950		return (NULL);
11951
11952	str = daddr + strtab->dofs_offset;
11953	size = strtab->dofs_size;
11954
11955	if (probe->dofp_provider >= strtab->dofs_size) {
11956		dtrace_dof_error(dof, "corrupt probe provider");
11957		return (NULL);
11958	}
11959
11960	(void) strncpy(desc->dtpd_provider,
11961	    (char *)(str + probe->dofp_provider),
11962	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11963
11964	if (probe->dofp_mod >= strtab->dofs_size) {
11965		dtrace_dof_error(dof, "corrupt probe module");
11966		return (NULL);
11967	}
11968
11969	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11970	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11971
11972	if (probe->dofp_func >= strtab->dofs_size) {
11973		dtrace_dof_error(dof, "corrupt probe function");
11974		return (NULL);
11975	}
11976
11977	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11978	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11979
11980	if (probe->dofp_name >= strtab->dofs_size) {
11981		dtrace_dof_error(dof, "corrupt probe name");
11982		return (NULL);
11983	}
11984
11985	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11986	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11987
11988	return (desc);
11989}
11990
11991static dtrace_difo_t *
11992dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11993    cred_t *cr)
11994{
11995	dtrace_difo_t *dp;
11996	size_t ttl = 0;
11997	dof_difohdr_t *dofd;
11998	uintptr_t daddr = (uintptr_t)dof;
11999	size_t maxx = dtrace_difo_maxsize;
12000	int i, l, n;
12001
12002	static const struct {
12003		int section;
12004		int bufoffs;
12005		int lenoffs;
12006		int entsize;
12007		int align;
12008		const char *msg;
12009	} difo[] = {
12010		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12011		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12012		sizeof (dif_instr_t), "multiple DIF sections" },
12013
12014		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12015		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12016		sizeof (uint64_t), "multiple integer tables" },
12017
12018		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12019		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12020		sizeof (char), "multiple string tables" },
12021
12022		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12023		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12024		sizeof (uint_t), "multiple variable tables" },
12025
12026		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12027	};
12028
12029	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12030		dtrace_dof_error(dof, "invalid DIFO header section");
12031		return (NULL);
12032	}
12033
12034	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12035		dtrace_dof_error(dof, "bad alignment in DIFO header");
12036		return (NULL);
12037	}
12038
12039	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12040	    sec->dofs_size % sizeof (dof_secidx_t)) {
12041		dtrace_dof_error(dof, "bad size in DIFO header");
12042		return (NULL);
12043	}
12044
12045	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12046	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12047
12048	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12049	dp->dtdo_rtype = dofd->dofd_rtype;
12050
12051	for (l = 0; l < n; l++) {
12052		dof_sec_t *subsec;
12053		void **bufp;
12054		uint32_t *lenp;
12055
12056		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12057		    dofd->dofd_links[l])) == NULL)
12058			goto err; /* invalid section link */
12059
12060		if (ttl + subsec->dofs_size > maxx) {
12061			dtrace_dof_error(dof, "exceeds maximum size");
12062			goto err;
12063		}
12064
12065		ttl += subsec->dofs_size;
12066
12067		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12068			if (subsec->dofs_type != difo[i].section)
12069				continue;
12070
12071			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12072				dtrace_dof_error(dof, "section not loaded");
12073				goto err;
12074			}
12075
12076			if (subsec->dofs_align != difo[i].align) {
12077				dtrace_dof_error(dof, "bad alignment");
12078				goto err;
12079			}
12080
12081			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12082			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12083
12084			if (*bufp != NULL) {
12085				dtrace_dof_error(dof, difo[i].msg);
12086				goto err;
12087			}
12088
12089			if (difo[i].entsize != subsec->dofs_entsize) {
12090				dtrace_dof_error(dof, "entry size mismatch");
12091				goto err;
12092			}
12093
12094			if (subsec->dofs_entsize != 0 &&
12095			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12096				dtrace_dof_error(dof, "corrupt entry size");
12097				goto err;
12098			}
12099
12100			*lenp = subsec->dofs_size;
12101			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12102			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12103			    *bufp, subsec->dofs_size);
12104
12105			if (subsec->dofs_entsize != 0)
12106				*lenp /= subsec->dofs_entsize;
12107
12108			break;
12109		}
12110
12111		/*
12112		 * If we encounter a loadable DIFO sub-section that is not
12113		 * known to us, assume this is a broken program and fail.
12114		 */
12115		if (difo[i].section == DOF_SECT_NONE &&
12116		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12117			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12118			goto err;
12119		}
12120	}
12121
12122	if (dp->dtdo_buf == NULL) {
12123		/*
12124		 * We can't have a DIF object without DIF text.
12125		 */
12126		dtrace_dof_error(dof, "missing DIF text");
12127		goto err;
12128	}
12129
12130	/*
12131	 * Before we validate the DIF object, run through the variable table
12132	 * looking for the strings -- if any of their size are under, we'll set
12133	 * their size to be the system-wide default string size.  Note that
12134	 * this should _not_ happen if the "strsize" option has been set --
12135	 * in this case, the compiler should have set the size to reflect the
12136	 * setting of the option.
12137	 */
12138	for (i = 0; i < dp->dtdo_varlen; i++) {
12139		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12140		dtrace_diftype_t *t = &v->dtdv_type;
12141
12142		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12143			continue;
12144
12145		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12146			t->dtdt_size = dtrace_strsize_default;
12147	}
12148
12149	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12150		goto err;
12151
12152	dtrace_difo_init(dp, vstate);
12153	return (dp);
12154
12155err:
12156	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12157	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12158	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12159	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12160
12161	kmem_free(dp, sizeof (dtrace_difo_t));
12162	return (NULL);
12163}
12164
12165static dtrace_predicate_t *
12166dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12167    cred_t *cr)
12168{
12169	dtrace_difo_t *dp;
12170
12171	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12172		return (NULL);
12173
12174	return (dtrace_predicate_create(dp));
12175}
12176
12177static dtrace_actdesc_t *
12178dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12179    cred_t *cr)
12180{
12181	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12182	dof_actdesc_t *desc;
12183	dof_sec_t *difosec;
12184	size_t offs;
12185	uintptr_t daddr = (uintptr_t)dof;
12186	uint64_t arg;
12187	dtrace_actkind_t kind;
12188
12189	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12190		dtrace_dof_error(dof, "invalid action section");
12191		return (NULL);
12192	}
12193
12194	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12195		dtrace_dof_error(dof, "truncated action description");
12196		return (NULL);
12197	}
12198
12199	if (sec->dofs_align != sizeof (uint64_t)) {
12200		dtrace_dof_error(dof, "bad alignment in action description");
12201		return (NULL);
12202	}
12203
12204	if (sec->dofs_size < sec->dofs_entsize) {
12205		dtrace_dof_error(dof, "section entry size exceeds total size");
12206		return (NULL);
12207	}
12208
12209	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12210		dtrace_dof_error(dof, "bad entry size in action description");
12211		return (NULL);
12212	}
12213
12214	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12215		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12216		return (NULL);
12217	}
12218
12219	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12220		desc = (dof_actdesc_t *)(daddr +
12221		    (uintptr_t)sec->dofs_offset + offs);
12222		kind = (dtrace_actkind_t)desc->dofa_kind;
12223
12224		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12225		    (kind != DTRACEACT_PRINTA ||
12226		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12227			dof_sec_t *strtab;
12228			char *str, *fmt;
12229			uint64_t i;
12230
12231			/*
12232			 * printf()-like actions must have a format string.
12233			 */
12234			if ((strtab = dtrace_dof_sect(dof,
12235			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12236				goto err;
12237
12238			str = (char *)((uintptr_t)dof +
12239			    (uintptr_t)strtab->dofs_offset);
12240
12241			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12242				if (str[i] == '\0')
12243					break;
12244			}
12245
12246			if (i >= strtab->dofs_size) {
12247				dtrace_dof_error(dof, "bogus format string");
12248				goto err;
12249			}
12250
12251			if (i == desc->dofa_arg) {
12252				dtrace_dof_error(dof, "empty format string");
12253				goto err;
12254			}
12255
12256			i -= desc->dofa_arg;
12257			fmt = kmem_alloc(i + 1, KM_SLEEP);
12258			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12259			arg = (uint64_t)(uintptr_t)fmt;
12260		} else {
12261			if (kind == DTRACEACT_PRINTA) {
12262				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12263				arg = 0;
12264			} else {
12265				arg = desc->dofa_arg;
12266			}
12267		}
12268
12269		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12270		    desc->dofa_uarg, arg);
12271
12272		if (last != NULL) {
12273			last->dtad_next = act;
12274		} else {
12275			first = act;
12276		}
12277
12278		last = act;
12279
12280		if (desc->dofa_difo == DOF_SECIDX_NONE)
12281			continue;
12282
12283		if ((difosec = dtrace_dof_sect(dof,
12284		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12285			goto err;
12286
12287		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12288
12289		if (act->dtad_difo == NULL)
12290			goto err;
12291	}
12292
12293	ASSERT(first != NULL);
12294	return (first);
12295
12296err:
12297	for (act = first; act != NULL; act = next) {
12298		next = act->dtad_next;
12299		dtrace_actdesc_release(act, vstate);
12300	}
12301
12302	return (NULL);
12303}
12304
12305static dtrace_ecbdesc_t *
12306dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12307    cred_t *cr)
12308{
12309	dtrace_ecbdesc_t *ep;
12310	dof_ecbdesc_t *ecb;
12311	dtrace_probedesc_t *desc;
12312	dtrace_predicate_t *pred = NULL;
12313
12314	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12315		dtrace_dof_error(dof, "truncated ECB description");
12316		return (NULL);
12317	}
12318
12319	if (sec->dofs_align != sizeof (uint64_t)) {
12320		dtrace_dof_error(dof, "bad alignment in ECB description");
12321		return (NULL);
12322	}
12323
12324	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12325	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12326
12327	if (sec == NULL)
12328		return (NULL);
12329
12330	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12331	ep->dted_uarg = ecb->dofe_uarg;
12332	desc = &ep->dted_probe;
12333
12334	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12335		goto err;
12336
12337	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12338		if ((sec = dtrace_dof_sect(dof,
12339		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12340			goto err;
12341
12342		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12343			goto err;
12344
12345		ep->dted_pred.dtpdd_predicate = pred;
12346	}
12347
12348	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12349		if ((sec = dtrace_dof_sect(dof,
12350		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12351			goto err;
12352
12353		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12354
12355		if (ep->dted_action == NULL)
12356			goto err;
12357	}
12358
12359	return (ep);
12360
12361err:
12362	if (pred != NULL)
12363		dtrace_predicate_release(pred, vstate);
12364	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12365	return (NULL);
12366}
12367
12368/*
12369 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12370 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12371 * site of any user SETX relocations to account for load object base address.
12372 * In the future, if we need other relocations, this function can be extended.
12373 */
12374static int
12375dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12376{
12377	uintptr_t daddr = (uintptr_t)dof;
12378	dof_relohdr_t *dofr =
12379	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12380	dof_sec_t *ss, *rs, *ts;
12381	dof_relodesc_t *r;
12382	uint_t i, n;
12383
12384	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12385	    sec->dofs_align != sizeof (dof_secidx_t)) {
12386		dtrace_dof_error(dof, "invalid relocation header");
12387		return (-1);
12388	}
12389
12390	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12391	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12392	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12393
12394	if (ss == NULL || rs == NULL || ts == NULL)
12395		return (-1); /* dtrace_dof_error() has been called already */
12396
12397	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12398	    rs->dofs_align != sizeof (uint64_t)) {
12399		dtrace_dof_error(dof, "invalid relocation section");
12400		return (-1);
12401	}
12402
12403	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12404	n = rs->dofs_size / rs->dofs_entsize;
12405
12406	for (i = 0; i < n; i++) {
12407		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12408
12409		switch (r->dofr_type) {
12410		case DOF_RELO_NONE:
12411			break;
12412		case DOF_RELO_SETX:
12413			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12414			    sizeof (uint64_t) > ts->dofs_size) {
12415				dtrace_dof_error(dof, "bad relocation offset");
12416				return (-1);
12417			}
12418
12419			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12420				dtrace_dof_error(dof, "misaligned setx relo");
12421				return (-1);
12422			}
12423
12424			*(uint64_t *)taddr += ubase;
12425			break;
12426		default:
12427			dtrace_dof_error(dof, "invalid relocation type");
12428			return (-1);
12429		}
12430
12431		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12432	}
12433
12434	return (0);
12435}
12436
12437/*
12438 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12439 * header:  it should be at the front of a memory region that is at least
12440 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12441 * size.  It need not be validated in any other way.
12442 */
12443static int
12444dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12445    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12446{
12447	uint64_t len = dof->dofh_loadsz, seclen;
12448	uintptr_t daddr = (uintptr_t)dof;
12449	dtrace_ecbdesc_t *ep;
12450	dtrace_enabling_t *enab;
12451	uint_t i;
12452
12453	ASSERT(MUTEX_HELD(&dtrace_lock));
12454	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12455
12456	/*
12457	 * Check the DOF header identification bytes.  In addition to checking
12458	 * valid settings, we also verify that unused bits/bytes are zeroed so
12459	 * we can use them later without fear of regressing existing binaries.
12460	 */
12461	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12462	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12463		dtrace_dof_error(dof, "DOF magic string mismatch");
12464		return (-1);
12465	}
12466
12467	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12468	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12469		dtrace_dof_error(dof, "DOF has invalid data model");
12470		return (-1);
12471	}
12472
12473	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12474		dtrace_dof_error(dof, "DOF encoding mismatch");
12475		return (-1);
12476	}
12477
12478	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12479	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12480		dtrace_dof_error(dof, "DOF version mismatch");
12481		return (-1);
12482	}
12483
12484	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12485		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12486		return (-1);
12487	}
12488
12489	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12490		dtrace_dof_error(dof, "DOF uses too many integer registers");
12491		return (-1);
12492	}
12493
12494	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12495		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12496		return (-1);
12497	}
12498
12499	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12500		if (dof->dofh_ident[i] != 0) {
12501			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12502			return (-1);
12503		}
12504	}
12505
12506	if (dof->dofh_flags & ~DOF_FL_VALID) {
12507		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12508		return (-1);
12509	}
12510
12511	if (dof->dofh_secsize == 0) {
12512		dtrace_dof_error(dof, "zero section header size");
12513		return (-1);
12514	}
12515
12516	/*
12517	 * Check that the section headers don't exceed the amount of DOF
12518	 * data.  Note that we cast the section size and number of sections
12519	 * to uint64_t's to prevent possible overflow in the multiplication.
12520	 */
12521	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12522
12523	if (dof->dofh_secoff > len || seclen > len ||
12524	    dof->dofh_secoff + seclen > len) {
12525		dtrace_dof_error(dof, "truncated section headers");
12526		return (-1);
12527	}
12528
12529	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12530		dtrace_dof_error(dof, "misaligned section headers");
12531		return (-1);
12532	}
12533
12534	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12535		dtrace_dof_error(dof, "misaligned section size");
12536		return (-1);
12537	}
12538
12539	/*
12540	 * Take an initial pass through the section headers to be sure that
12541	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12542	 * set, do not permit sections relating to providers, probes, or args.
12543	 */
12544	for (i = 0; i < dof->dofh_secnum; i++) {
12545		dof_sec_t *sec = (dof_sec_t *)(daddr +
12546		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12547
12548		if (noprobes) {
12549			switch (sec->dofs_type) {
12550			case DOF_SECT_PROVIDER:
12551			case DOF_SECT_PROBES:
12552			case DOF_SECT_PRARGS:
12553			case DOF_SECT_PROFFS:
12554				dtrace_dof_error(dof, "illegal sections "
12555				    "for enabling");
12556				return (-1);
12557			}
12558		}
12559
12560		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12561		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12562			dtrace_dof_error(dof, "loadable section with load "
12563			    "flag unset");
12564			return (-1);
12565		}
12566
12567		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12568			continue; /* just ignore non-loadable sections */
12569
12570		if (sec->dofs_align & (sec->dofs_align - 1)) {
12571			dtrace_dof_error(dof, "bad section alignment");
12572			return (-1);
12573		}
12574
12575		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12576			dtrace_dof_error(dof, "misaligned section");
12577			return (-1);
12578		}
12579
12580		if (sec->dofs_offset > len || sec->dofs_size > len ||
12581		    sec->dofs_offset + sec->dofs_size > len) {
12582			dtrace_dof_error(dof, "corrupt section header");
12583			return (-1);
12584		}
12585
12586		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12587		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12588			dtrace_dof_error(dof, "non-terminating string table");
12589			return (-1);
12590		}
12591	}
12592
12593	/*
12594	 * Take a second pass through the sections and locate and perform any
12595	 * relocations that are present.  We do this after the first pass to
12596	 * be sure that all sections have had their headers validated.
12597	 */
12598	for (i = 0; i < dof->dofh_secnum; i++) {
12599		dof_sec_t *sec = (dof_sec_t *)(daddr +
12600		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12601
12602		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12603			continue; /* skip sections that are not loadable */
12604
12605		switch (sec->dofs_type) {
12606		case DOF_SECT_URELHDR:
12607			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12608				return (-1);
12609			break;
12610		}
12611	}
12612
12613	if ((enab = *enabp) == NULL)
12614		enab = *enabp = dtrace_enabling_create(vstate);
12615
12616	for (i = 0; i < dof->dofh_secnum; i++) {
12617		dof_sec_t *sec = (dof_sec_t *)(daddr +
12618		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12619
12620		if (sec->dofs_type != DOF_SECT_ECBDESC)
12621			continue;
12622
12623		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12624			dtrace_enabling_destroy(enab);
12625			*enabp = NULL;
12626			return (-1);
12627		}
12628
12629		dtrace_enabling_add(enab, ep);
12630	}
12631
12632	return (0);
12633}
12634
12635/*
12636 * Process DOF for any options.  This routine assumes that the DOF has been
12637 * at least processed by dtrace_dof_slurp().
12638 */
12639static int
12640dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12641{
12642	int i, rval;
12643	uint32_t entsize;
12644	size_t offs;
12645	dof_optdesc_t *desc;
12646
12647	for (i = 0; i < dof->dofh_secnum; i++) {
12648		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12649		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12650
12651		if (sec->dofs_type != DOF_SECT_OPTDESC)
12652			continue;
12653
12654		if (sec->dofs_align != sizeof (uint64_t)) {
12655			dtrace_dof_error(dof, "bad alignment in "
12656			    "option description");
12657			return (EINVAL);
12658		}
12659
12660		if ((entsize = sec->dofs_entsize) == 0) {
12661			dtrace_dof_error(dof, "zeroed option entry size");
12662			return (EINVAL);
12663		}
12664
12665		if (entsize < sizeof (dof_optdesc_t)) {
12666			dtrace_dof_error(dof, "bad option entry size");
12667			return (EINVAL);
12668		}
12669
12670		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12671			desc = (dof_optdesc_t *)((uintptr_t)dof +
12672			    (uintptr_t)sec->dofs_offset + offs);
12673
12674			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12675				dtrace_dof_error(dof, "non-zero option string");
12676				return (EINVAL);
12677			}
12678
12679			if (desc->dofo_value == DTRACEOPT_UNSET) {
12680				dtrace_dof_error(dof, "unset option");
12681				return (EINVAL);
12682			}
12683
12684			if ((rval = dtrace_state_option(state,
12685			    desc->dofo_option, desc->dofo_value)) != 0) {
12686				dtrace_dof_error(dof, "rejected option");
12687				return (rval);
12688			}
12689		}
12690	}
12691
12692	return (0);
12693}
12694
12695/*
12696 * DTrace Consumer State Functions
12697 */
12698static int
12699dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12700{
12701	size_t hashsize, maxper, minn, chunksize = dstate->dtds_chunksize;
12702	void *base;
12703	uintptr_t limit;
12704	dtrace_dynvar_t *dvar, *next, *start;
12705	int i;
12706
12707	ASSERT(MUTEX_HELD(&dtrace_lock));
12708	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12709
12710	bzero(dstate, sizeof (dtrace_dstate_t));
12711
12712	if ((dstate->dtds_chunksize = chunksize) == 0)
12713		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12714
12715	if (size < (minn = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12716		size = minn;
12717
12718	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12719		return (ENOMEM);
12720
12721	dstate->dtds_size = size;
12722	dstate->dtds_base = base;
12723	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12724	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12725
12726	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12727
12728	if (hashsize != 1 && (hashsize & 1))
12729		hashsize--;
12730
12731	dstate->dtds_hashsize = hashsize;
12732	dstate->dtds_hash = dstate->dtds_base;
12733
12734	/*
12735	 * Set all of our hash buckets to point to the single sink, and (if
12736	 * it hasn't already been set), set the sink's hash value to be the
12737	 * sink sentinel value.  The sink is needed for dynamic variable
12738	 * lookups to know that they have iterated over an entire, valid hash
12739	 * chain.
12740	 */
12741	for (i = 0; i < hashsize; i++)
12742		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12743
12744	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12745		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12746
12747	/*
12748	 * Determine number of active CPUs.  Divide free list evenly among
12749	 * active CPUs.
12750	 */
12751	start = (dtrace_dynvar_t *)
12752	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12753	limit = (uintptr_t)base + size;
12754
12755	maxper = (limit - (uintptr_t)start) / NCPU;
12756	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12757
12758	for (i = 0; i < NCPU; i++) {
12759		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12760
12761		/*
12762		 * If we don't even have enough chunks to make it once through
12763		 * NCPUs, we're just going to allocate everything to the first
12764		 * CPU.  And if we're on the last CPU, we're going to allocate
12765		 * whatever is left over.  In either case, we set the limit to
12766		 * be the limit of the dynamic variable space.
12767		 */
12768		if (maxper == 0 || i == NCPU - 1) {
12769			limit = (uintptr_t)base + size;
12770			start = NULL;
12771		} else {
12772			limit = (uintptr_t)start + maxper;
12773			start = (dtrace_dynvar_t *)limit;
12774		}
12775
12776		ASSERT(limit <= (uintptr_t)base + size);
12777
12778		for (;;) {
12779			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12780			    dstate->dtds_chunksize);
12781
12782			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12783				break;
12784
12785			dvar->dtdv_next = next;
12786			dvar = next;
12787		}
12788
12789		if (maxper == 0)
12790			break;
12791	}
12792
12793	return (0);
12794}
12795
12796static void
12797dtrace_dstate_fini(dtrace_dstate_t *dstate)
12798{
12799	ASSERT(MUTEX_HELD(&cpu_lock));
12800
12801	if (dstate->dtds_base == NULL)
12802		return;
12803
12804	kmem_free(dstate->dtds_base, dstate->dtds_size);
12805	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12806}
12807
12808static void
12809dtrace_vstate_fini(dtrace_vstate_t *vstate)
12810{
12811	/*
12812	 * Logical XOR, where are you?
12813	 */
12814	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12815
12816	if (vstate->dtvs_nglobals > 0) {
12817		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12818		    sizeof (dtrace_statvar_t *));
12819	}
12820
12821	if (vstate->dtvs_ntlocals > 0) {
12822		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12823		    sizeof (dtrace_difv_t));
12824	}
12825
12826	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12827
12828	if (vstate->dtvs_nlocals > 0) {
12829		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12830		    sizeof (dtrace_statvar_t *));
12831	}
12832}
12833
12834static void
12835dtrace_state_clean(dtrace_state_t *state)
12836{
12837	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12838		return;
12839
12840	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12841	dtrace_speculation_clean(state);
12842}
12843
12844static void
12845dtrace_state_deadman(dtrace_state_t *state)
12846{
12847	hrtime_t now;
12848
12849	dtrace_sync();
12850
12851	now = dtrace_gethrtime();
12852
12853	if (state != dtrace_anon.dta_state &&
12854	    now - state->dts_laststatus >= dtrace_deadman_user)
12855		return;
12856
12857	/*
12858	 * We must be sure that dts_alive never appears to be less than the
12859	 * value upon entry to dtrace_state_deadman(), and because we lack a
12860	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12861	 * store INT64_MAX to it, followed by a memory barrier, followed by
12862	 * the new value.  This assures that dts_alive never appears to be
12863	 * less than its true value, regardless of the order in which the
12864	 * stores to the underlying storage are issued.
12865	 */
12866	state->dts_alive = INT64_MAX;
12867	dtrace_membar_producer();
12868	state->dts_alive = now;
12869}
12870
12871#if !defined(sun)
12872struct dtrace_state_worker *dtrace_state_worker_add(void (*)(dtrace_state_t *),
12873    dtrace_state_t *, hrtime_t);
12874void dtrace_state_worker_remove(struct dtrace_state_worker *);
12875#endif
12876
12877static dtrace_state_t *
12878#if defined(sun)
12879dtrace_state_create(dev_t *devp, cred_t *cr)
12880#else
12881dtrace_state_create(dev_t dev, cred_t *cr)
12882#endif
12883{
12884#if defined(sun)
12885	minor_t minor;
12886	major_t major;
12887#else
12888	int m = 0;
12889#endif
12890	char c[30];
12891	dtrace_state_t *state;
12892	dtrace_optval_t *opt;
12893	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12894
12895	ASSERT(MUTEX_HELD(&dtrace_lock));
12896	ASSERT(MUTEX_HELD(&cpu_lock));
12897
12898#if defined(sun)
12899	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12900	    VM_BESTFIT | VM_SLEEP);
12901
12902	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12903		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12904		return (NULL);
12905	}
12906
12907	state = ddi_get_soft_state(dtrace_softstate, minor);
12908#else
12909	m = minor(dev) & 0x0F;
12910
12911	/* Allocate memory for the state. */
12912	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12913#endif
12914
12915	state->dts_epid = DTRACE_EPIDNONE + 1;
12916
12917	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12918#if defined(sun)
12919	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12920	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12921
12922	if (devp != NULL) {
12923		major = getemajor(*devp);
12924	} else {
12925		major = ddi_driver_major(dtrace_devi);
12926	}
12927
12928	state->dts_dev = makedevice(major, minor);
12929
12930	if (devp != NULL)
12931		*devp = state->dts_dev;
12932#else
12933	state->dts_aggid_arena = vmem_create(c, 1, INT_MAX, 1,
12934	    NULL, NULL, NULL, 0, VM_SLEEP, IPL_NONE);
12935	state->dts_dev = dev;
12936#endif
12937
12938	/*
12939	 * We allocate NCPU buffers.  On the one hand, this can be quite
12940	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12941	 * other hand, it saves an additional memory reference in the probe
12942	 * path.
12943	 */
12944	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12945	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12946
12947#if defined(sun)
12948	state->dts_cleaner = CYCLIC_NONE;
12949	state->dts_deadman = CYCLIC_NONE;
12950#else
12951	state->dts_cleaner = NULL;
12952	state->dts_deadman = NULL;
12953#endif
12954	state->dts_vstate.dtvs_state = state;
12955
12956	for (i = 0; i < DTRACEOPT_MAX; i++)
12957		state->dts_options[i] = DTRACEOPT_UNSET;
12958
12959	/*
12960	 * Set the default options.
12961	 */
12962	opt = state->dts_options;
12963	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12964	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12965	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12966	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12967	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12968	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12969	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12970	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12971	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12972	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12973	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12974	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12975	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12976	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12977
12978	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12979
12980	/*
12981	 * Depending on the user credentials, we set flag bits which alter probe
12982	 * visibility or the amount of destructiveness allowed.  In the case of
12983	 * actual anonymous tracing, or the possession of all privileges, all of
12984	 * the normal checks are bypassed.
12985	 */
12986	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12987		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12988		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12989	} else {
12990		/*
12991		 * Set up the credentials for this instantiation.  We take a
12992		 * hold on the credential to prevent it from disappearing on
12993		 * us; this in turn prevents the zone_t referenced by this
12994		 * credential from disappearing.  This means that we can
12995		 * examine the credential and the zone from probe context.
12996		 */
12997#if defined(sun)
12998		crhold(cr);
12999#else
13000		kauth_cred_hold(cr);
13001#endif
13002		state->dts_cred.dcr_cred = cr;
13003
13004		/*
13005		 * CRA_PROC means "we have *some* privilege for dtrace" and
13006		 * unlocks the use of variables like pid, zonename, etc.
13007		 */
13008		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13009		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13010			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13011		}
13012
13013		/*
13014		 * dtrace_user allows use of syscall and profile providers.
13015		 * If the user also has proc_owner and/or proc_zone, we
13016		 * extend the scope to include additional visibility and
13017		 * destructive power.
13018		 */
13019		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13020			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13021				state->dts_cred.dcr_visible |=
13022				    DTRACE_CRV_ALLPROC;
13023
13024				state->dts_cred.dcr_action |=
13025				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13026			}
13027
13028			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13029				state->dts_cred.dcr_visible |=
13030				    DTRACE_CRV_ALLZONE;
13031
13032				state->dts_cred.dcr_action |=
13033				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13034			}
13035
13036			/*
13037			 * If we have all privs in whatever zone this is,
13038			 * we can do destructive things to processes which
13039			 * have altered credentials.
13040			 */
13041#if defined(sun)
13042			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13043			    cr->cr_zone->zone_privset)) {
13044				state->dts_cred.dcr_action |=
13045				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13046			}
13047#endif
13048		}
13049
13050		/*
13051		 * Holding the dtrace_kernel privilege also implies that
13052		 * the user has the dtrace_user privilege from a visibility
13053		 * perspective.  But without further privileges, some
13054		 * destructive actions are not available.
13055		 */
13056		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13057			/*
13058			 * Make all probes in all zones visible.  However,
13059			 * this doesn't mean that all actions become available
13060			 * to all zones.
13061			 */
13062			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13063			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13064
13065			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13066			    DTRACE_CRA_PROC;
13067			/*
13068			 * Holding proc_owner means that destructive actions
13069			 * for *this* zone are allowed.
13070			 */
13071			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13072				state->dts_cred.dcr_action |=
13073				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13074
13075			/*
13076			 * Holding proc_zone means that destructive actions
13077			 * for this user/group ID in all zones is allowed.
13078			 */
13079			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13080				state->dts_cred.dcr_action |=
13081				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13082
13083#if defined(sun)
13084			/*
13085			 * If we have all privs in whatever zone this is,
13086			 * we can do destructive things to processes which
13087			 * have altered credentials.
13088			 */
13089			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13090			    cr->cr_zone->zone_privset)) {
13091				state->dts_cred.dcr_action |=
13092				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13093			}
13094#endif
13095		}
13096
13097		/*
13098		 * Holding the dtrace_proc privilege gives control over fasttrap
13099		 * and pid providers.  We need to grant wider destructive
13100		 * privileges in the event that the user has proc_owner and/or
13101		 * proc_zone.
13102		 */
13103		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13104			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13105				state->dts_cred.dcr_action |=
13106				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13107
13108			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13109				state->dts_cred.dcr_action |=
13110				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13111		}
13112	}
13113
13114	return (state);
13115}
13116
13117static int
13118dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13119{
13120	dtrace_optval_t *opt = state->dts_options, size;
13121	processorid_t xcpu = 0;;
13122	int flags = 0, rval;
13123
13124	ASSERT(MUTEX_HELD(&dtrace_lock));
13125	ASSERT(MUTEX_HELD(&cpu_lock));
13126	ASSERT(which < DTRACEOPT_MAX);
13127	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13128	    (state == dtrace_anon.dta_state &&
13129	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13130
13131	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13132		return (0);
13133
13134	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13135		xcpu = opt[DTRACEOPT_CPU];
13136
13137	if (which == DTRACEOPT_SPECSIZE)
13138		flags |= DTRACEBUF_NOSWITCH;
13139
13140	if (which == DTRACEOPT_BUFSIZE) {
13141		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13142			flags |= DTRACEBUF_RING;
13143
13144		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13145			flags |= DTRACEBUF_FILL;
13146
13147		if (state != dtrace_anon.dta_state ||
13148		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13149			flags |= DTRACEBUF_INACTIVE;
13150	}
13151
13152	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13153		/*
13154		 * The size must be 8-byte aligned.  If the size is not 8-byte
13155		 * aligned, drop it down by the difference.
13156		 */
13157		if (size & (sizeof (uint64_t) - 1))
13158			size -= size & (sizeof (uint64_t) - 1);
13159
13160		if (size < state->dts_reserve) {
13161			/*
13162			 * Buffers always must be large enough to accommodate
13163			 * their prereserved space.  We return E2BIG instead
13164			 * of ENOMEM in this case to allow for user-level
13165			 * software to differentiate the cases.
13166			 */
13167			return (E2BIG);
13168		}
13169
13170		rval = dtrace_buffer_alloc(buf, size, flags, xcpu);
13171
13172		if (rval != ENOMEM) {
13173			opt[which] = size;
13174			return (rval);
13175		}
13176
13177		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13178			return (rval);
13179	}
13180
13181	return (ENOMEM);
13182}
13183
13184static int
13185dtrace_state_buffers(dtrace_state_t *state)
13186{
13187	dtrace_speculation_t *spec = state->dts_speculations;
13188	int rval, i;
13189
13190	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13191	    DTRACEOPT_BUFSIZE)) != 0)
13192		return (rval);
13193
13194	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13195	    DTRACEOPT_AGGSIZE)) != 0)
13196		return (rval);
13197
13198	for (i = 0; i < state->dts_nspeculations; i++) {
13199		if ((rval = dtrace_state_buffer(state,
13200		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13201			return (rval);
13202	}
13203
13204	return (0);
13205}
13206
13207static void
13208dtrace_state_prereserve(dtrace_state_t *state)
13209{
13210	dtrace_ecb_t *ecb;
13211	dtrace_probe_t *probe;
13212
13213	state->dts_reserve = 0;
13214
13215	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13216		return;
13217
13218	/*
13219	 * If our buffer policy is a "fill" buffer policy, we need to set the
13220	 * prereserved space to be the space required by the END probes.
13221	 */
13222	probe = dtrace_probes[dtrace_probeid_end - 1];
13223	ASSERT(probe != NULL);
13224
13225	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13226		if (ecb->dte_state != state)
13227			continue;
13228
13229		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13230	}
13231}
13232
13233static int
13234dtrace_state_go(dtrace_state_t *state, processorid_t *xcpu)
13235{
13236	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13237	dtrace_speculation_t *spec;
13238	dtrace_buffer_t *buf;
13239#if defined(sun)
13240	cyc_handler_t hdlr;
13241	cyc_time_t when;
13242#endif
13243	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13244	dtrace_icookie_t cookie;
13245
13246	mutex_enter(&cpu_lock);
13247	mutex_enter(&dtrace_lock);
13248
13249	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13250		rval = EBUSY;
13251		goto out;
13252	}
13253
13254	/*
13255	 * Before we can perform any checks, we must prime all of the
13256	 * retained enablings that correspond to this state.
13257	 */
13258	dtrace_enabling_prime(state);
13259
13260	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13261		rval = EACCES;
13262		goto out;
13263	}
13264
13265	dtrace_state_prereserve(state);
13266
13267	/*
13268	 * Now we want to do is try to allocate our speculations.
13269	 * We do not automatically resize the number of speculations; if
13270	 * this fails, we will fail the operation.
13271	 */
13272	nspec = opt[DTRACEOPT_NSPEC];
13273	ASSERT(nspec != DTRACEOPT_UNSET);
13274
13275	if (nspec > INT_MAX) {
13276		rval = ENOMEM;
13277		goto out;
13278	}
13279
13280	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13281
13282	if (spec == NULL) {
13283		rval = ENOMEM;
13284		goto out;
13285	}
13286
13287	state->dts_speculations = spec;
13288	state->dts_nspeculations = (int)nspec;
13289
13290	for (i = 0; i < nspec; i++) {
13291		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13292			rval = ENOMEM;
13293			goto err;
13294		}
13295
13296		spec[i].dtsp_buffer = buf;
13297	}
13298
13299	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13300		if (dtrace_anon.dta_state == NULL) {
13301			rval = ENOENT;
13302			goto out;
13303		}
13304
13305		if (state->dts_necbs != 0) {
13306			rval = EALREADY;
13307			goto out;
13308		}
13309
13310		state->dts_anon = dtrace_anon_grab();
13311		ASSERT(state->dts_anon != NULL);
13312		state = state->dts_anon;
13313
13314		/*
13315		 * We want "grabanon" to be set in the grabbed state, so we'll
13316		 * copy that option value from the grabbing state into the
13317		 * grabbed state.
13318		 */
13319		state->dts_options[DTRACEOPT_GRABANON] =
13320		    opt[DTRACEOPT_GRABANON];
13321
13322		*xcpu = dtrace_anon.dta_beganon;
13323
13324		/*
13325		 * If the anonymous state is active (as it almost certainly
13326		 * is if the anonymous enabling ultimately matched anything),
13327		 * we don't allow any further option processing -- but we
13328		 * don't return failure.
13329		 */
13330		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13331			goto out;
13332	}
13333
13334	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13335	    opt[DTRACEOPT_AGGSIZE] != 0) {
13336		if (state->dts_aggregations == NULL) {
13337			/*
13338			 * We're not going to create an aggregation buffer
13339			 * because we don't have any ECBs that contain
13340			 * aggregations -- set this option to 0.
13341			 */
13342			opt[DTRACEOPT_AGGSIZE] = 0;
13343		} else {
13344			/*
13345			 * If we have an aggregation buffer, we must also have
13346			 * a buffer to use as scratch.
13347			 */
13348			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13349			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13350				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13351			}
13352		}
13353	}
13354
13355	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13356	    opt[DTRACEOPT_SPECSIZE] != 0) {
13357		if (!state->dts_speculates) {
13358			/*
13359			 * We're not going to create speculation buffers
13360			 * because we don't have any ECBs that actually
13361			 * speculate -- set the speculation size to 0.
13362			 */
13363			opt[DTRACEOPT_SPECSIZE] = 0;
13364		}
13365	}
13366
13367	/*
13368	 * The bare minimum size for any buffer that we're actually going to
13369	 * do anything to is sizeof (uint64_t).
13370	 */
13371	sz = sizeof (uint64_t);
13372
13373	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13374	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13375	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13376		/*
13377		 * A buffer size has been explicitly set to 0 (or to a size
13378		 * that will be adjusted to 0) and we need the space -- we
13379		 * need to return failure.  We return ENOSPC to differentiate
13380		 * it from failing to allocate a buffer due to failure to meet
13381		 * the reserve (for which we return E2BIG).
13382		 */
13383		rval = ENOSPC;
13384		goto out;
13385	}
13386
13387	if ((rval = dtrace_state_buffers(state)) != 0)
13388		goto err;
13389
13390	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13391		sz = dtrace_dstate_defsize;
13392
13393	do {
13394		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13395
13396		if (rval == 0)
13397			break;
13398
13399		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13400			goto err;
13401	} while (sz >>= 1);
13402
13403	opt[DTRACEOPT_DYNVARSIZE] = sz;
13404
13405	if (rval != 0)
13406		goto err;
13407
13408	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13409		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13410
13411	if (opt[DTRACEOPT_CLEANRATE] == 0)
13412		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13413
13414	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13415		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13416
13417	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13418		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13419
13420	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13421#if defined(sun)
13422	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13423	hdlr.cyh_arg = state;
13424	hdlr.cyh_level = CY_LOW_LEVEL;
13425
13426	when.cyt_when = 0;
13427	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13428
13429	state->dts_cleaner = cyclic_add(&hdlr, &when);
13430
13431	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13432	hdlr.cyh_arg = state;
13433	hdlr.cyh_level = CY_LOW_LEVEL;
13434
13435	when.cyt_when = 0;
13436	when.cyt_interval = dtrace_deadman_interval;
13437
13438	state->dts_deadman = cyclic_add(&hdlr, &when);
13439#else
13440	state->dts_cleaner = dtrace_state_worker_add(
13441	    dtrace_state_clean, state, opt[DTRACEOPT_CLEANRATE]);
13442	state->dts_deadman = dtrace_state_worker_add(
13443	    dtrace_state_deadman, state, dtrace_deadman_interval);
13444#endif
13445
13446	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13447
13448	/*
13449	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13450	 * interrupts here both to record the CPU on which we fired the BEGIN
13451	 * probe (the data from this CPU will be processed first at user
13452	 * level) and to manually activate the buffer for this CPU.
13453	 */
13454	cookie = dtrace_interrupt_disable();
13455	*xcpu = curcpu_id;
13456	ASSERT(state->dts_buffer[*xcpu].dtb_flags & DTRACEBUF_INACTIVE);
13457	state->dts_buffer[*xcpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13458
13459	dtrace_probe(dtrace_probeid_begin,
13460	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13461	dtrace_interrupt_enable(cookie);
13462	/*
13463	 * We may have had an exit action from a BEGIN probe; only change our
13464	 * state to ACTIVE if we're still in WARMUP.
13465	 */
13466	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13467	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13468
13469	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13470		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13471
13472	/*
13473	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13474	 * want each CPU to transition its principal buffer out of the
13475	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13476	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13477	 * atomically transition from processing none of a state's ECBs to
13478	 * processing all of them.
13479	 */
13480	dtrace_xcall(DTRACE_CPUALL,
13481	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13482	goto out;
13483
13484err:
13485	dtrace_buffer_free(state->dts_buffer);
13486	dtrace_buffer_free(state->dts_aggbuffer);
13487
13488	if ((nspec = state->dts_nspeculations) == 0) {
13489		ASSERT(state->dts_speculations == NULL);
13490		goto out;
13491	}
13492
13493	spec = state->dts_speculations;
13494	ASSERT(spec != NULL);
13495
13496	for (i = 0; i < state->dts_nspeculations; i++) {
13497		if ((buf = spec[i].dtsp_buffer) == NULL)
13498			break;
13499
13500		dtrace_buffer_free(buf);
13501		kmem_free(buf, bufsize);
13502	}
13503
13504	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13505	state->dts_nspeculations = 0;
13506	state->dts_speculations = NULL;
13507
13508out:
13509	mutex_exit(&dtrace_lock);
13510	mutex_exit(&cpu_lock);
13511
13512	return (rval);
13513}
13514
13515static int
13516dtrace_state_stop(dtrace_state_t *state, processorid_t *xcpu)
13517{
13518	dtrace_icookie_t cookie;
13519
13520	ASSERT(MUTEX_HELD(&dtrace_lock));
13521
13522	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13523	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13524		return (EINVAL);
13525
13526	/*
13527	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13528	 * to be sure that every CPU has seen it.  See below for the details
13529	 * on why this is done.
13530	 */
13531	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13532	dtrace_sync();
13533
13534	/*
13535	 * By this point, it is impossible for any CPU to be still processing
13536	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13537	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13538	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13539	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13540	 * iff we're in the END probe.
13541	 */
13542	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13543	dtrace_sync();
13544	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13545
13546	/*
13547	 * Finally, we can release the reserve and call the END probe.  We
13548	 * disable interrupts across calling the END probe to allow us to
13549	 * return the CPU on which we actually called the END probe.  This
13550	 * allows user-land to be sure that this CPU's principal buffer is
13551	 * processed last.
13552	 */
13553	state->dts_reserve = 0;
13554
13555	cookie = dtrace_interrupt_disable();
13556	*xcpu = curcpu_id;
13557	dtrace_probe(dtrace_probeid_end,
13558	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13559	dtrace_interrupt_enable(cookie);
13560
13561	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13562	dtrace_sync();
13563
13564	return (0);
13565}
13566
13567static int
13568dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13569    dtrace_optval_t val)
13570{
13571	ASSERT(MUTEX_HELD(&dtrace_lock));
13572
13573	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13574		return (EBUSY);
13575
13576	if (option >= DTRACEOPT_MAX)
13577		return (EINVAL);
13578
13579	if (option != DTRACEOPT_CPU && val < 0)
13580		return (EINVAL);
13581
13582	switch (option) {
13583	case DTRACEOPT_DESTRUCTIVE:
13584		if (dtrace_destructive_disallow)
13585			return (EACCES);
13586
13587		state->dts_cred.dcr_destructive = 1;
13588		break;
13589
13590	case DTRACEOPT_BUFSIZE:
13591	case DTRACEOPT_DYNVARSIZE:
13592	case DTRACEOPT_AGGSIZE:
13593	case DTRACEOPT_SPECSIZE:
13594	case DTRACEOPT_STRSIZE:
13595		if (val < 0)
13596			return (EINVAL);
13597
13598		if (val >= LONG_MAX) {
13599			/*
13600			 * If this is an otherwise negative value, set it to
13601			 * the highest multiple of 128m less than LONG_MAX.
13602			 * Technically, we're adjusting the size without
13603			 * regard to the buffer resizing policy, but in fact,
13604			 * this has no effect -- if we set the buffer size to
13605			 * ~LONG_MAX and the buffer policy is ultimately set to
13606			 * be "manual", the buffer allocation is guaranteed to
13607			 * fail, if only because the allocation requires two
13608			 * buffers.  (We set the the size to the highest
13609			 * multiple of 128m because it ensures that the size
13610			 * will remain a multiple of a megabyte when
13611			 * repeatedly halved -- all the way down to 15m.)
13612			 */
13613			val = LONG_MAX - (1 << 27) + 1;
13614		}
13615	}
13616
13617	state->dts_options[option] = val;
13618
13619	return (0);
13620}
13621
13622static void
13623dtrace_state_destroy(dtrace_state_t *state)
13624{
13625	dtrace_ecb_t *ecb;
13626	dtrace_vstate_t *vstate = &state->dts_vstate;
13627#if defined(sun)
13628	minor_t minor = getminor(state->dts_dev);
13629#endif
13630	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13631	dtrace_speculation_t *spec = state->dts_speculations;
13632	int nspec = state->dts_nspeculations;
13633	uint32_t match;
13634
13635	ASSERT(MUTEX_HELD(&dtrace_lock));
13636	ASSERT(MUTEX_HELD(&cpu_lock));
13637
13638	/*
13639	 * First, retract any retained enablings for this state.
13640	 */
13641	dtrace_enabling_retract(state);
13642	ASSERT(state->dts_nretained == 0);
13643
13644	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13645	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13646		/*
13647		 * We have managed to come into dtrace_state_destroy() on a
13648		 * hot enabling -- almost certainly because of a disorderly
13649		 * shutdown of a consumer.  (That is, a consumer that is
13650		 * exiting without having called dtrace_stop().) In this case,
13651		 * we're going to set our activity to be KILLED, and then
13652		 * issue a sync to be sure that everyone is out of probe
13653		 * context before we start blowing away ECBs.
13654		 */
13655		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13656		dtrace_sync();
13657	}
13658
13659	/*
13660	 * Release the credential hold we took in dtrace_state_create().
13661	 */
13662	if (state->dts_cred.dcr_cred != NULL) {
13663#if defined(sun)
13664		crfree(state->dts_cred.dcr_cred);
13665#else
13666		kauth_cred_free(state->dts_cred.dcr_cred);
13667#endif
13668	}
13669
13670	/*
13671	 * Now we can safely disable and destroy any enabled probes.  Because
13672	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13673	 * (especially if they're all enabled), we take two passes through the
13674	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13675	 * in the second we disable whatever is left over.
13676	 */
13677	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13678		for (i = 0; i < state->dts_necbs; i++) {
13679			if ((ecb = state->dts_ecbs[i]) == NULL)
13680				continue;
13681
13682			if (match && ecb->dte_probe != NULL) {
13683				dtrace_probe_t *probe = ecb->dte_probe;
13684				dtrace_provider_t *prov = probe->dtpr_provider;
13685
13686				if (!(prov->dtpv_priv.dtpp_flags & match))
13687					continue;
13688			}
13689
13690			dtrace_ecb_disable(ecb);
13691			dtrace_ecb_destroy(ecb);
13692		}
13693
13694		if (!match)
13695			break;
13696	}
13697
13698	/*
13699	 * Before we free the buffers, perform one more sync to assure that
13700	 * every CPU is out of probe context.
13701	 */
13702	dtrace_sync();
13703
13704	dtrace_buffer_free(state->dts_buffer);
13705	dtrace_buffer_free(state->dts_aggbuffer);
13706
13707	for (i = 0; i < nspec; i++)
13708		dtrace_buffer_free(spec[i].dtsp_buffer);
13709
13710#if defined(sun)
13711	if (state->dts_cleaner != CYCLIC_NONE)
13712		cyclic_remove(state->dts_cleaner);
13713
13714	if (state->dts_deadman != CYCLIC_NONE)
13715		cyclic_remove(state->dts_deadman);
13716#else
13717	if (state->dts_cleaner != NULL)
13718		dtrace_state_worker_remove(state->dts_cleaner);
13719
13720	if (state->dts_deadman != NULL)
13721		dtrace_state_worker_remove(state->dts_deadman);
13722#endif
13723
13724	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13725	dtrace_vstate_fini(vstate);
13726	if (state->dts_ecbs != NULL)
13727		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13728
13729	if (state->dts_aggregations != NULL) {
13730#ifdef DEBUG
13731		for (i = 0; i < state->dts_naggregations; i++)
13732			ASSERT(state->dts_aggregations[i] == NULL);
13733#endif
13734		ASSERT(state->dts_naggregations > 0);
13735		kmem_free(state->dts_aggregations,
13736		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13737	}
13738
13739	kmem_free(state->dts_buffer, bufsize);
13740	kmem_free(state->dts_aggbuffer, bufsize);
13741
13742	for (i = 0; i < nspec; i++)
13743		kmem_free(spec[i].dtsp_buffer, bufsize);
13744
13745	if (spec != NULL)
13746		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13747
13748	dtrace_format_destroy(state);
13749
13750	if (state->dts_aggid_arena != NULL) {
13751		vmem_destroy(state->dts_aggid_arena);
13752		state->dts_aggid_arena = NULL;
13753	}
13754#if defined(sun)
13755	ddi_soft_state_free(dtrace_softstate, minor);
13756	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13757#else
13758	kmem_free(state, sizeof(dtrace_state_t));
13759#endif
13760}
13761
13762/*
13763 * DTrace Anonymous Enabling Functions
13764 */
13765static dtrace_state_t *
13766dtrace_anon_grab(void)
13767{
13768	dtrace_state_t *state;
13769
13770	ASSERT(MUTEX_HELD(&dtrace_lock));
13771
13772	if ((state = dtrace_anon.dta_state) == NULL) {
13773		ASSERT(dtrace_anon.dta_enabling == NULL);
13774		return (NULL);
13775	}
13776
13777	ASSERT(dtrace_anon.dta_enabling != NULL);
13778	ASSERT(dtrace_retained != NULL);
13779
13780	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13781	dtrace_anon.dta_enabling = NULL;
13782	dtrace_anon.dta_state = NULL;
13783
13784	return (state);
13785}
13786
13787static void
13788dtrace_anon_property(void)
13789{
13790	int i, rv;
13791	dtrace_state_t *state;
13792	dof_hdr_t *dof;
13793	char c[32];		/* enough for "dof-data-" + digits */
13794
13795	ASSERT(MUTEX_HELD(&dtrace_lock));
13796	ASSERT(MUTEX_HELD(&cpu_lock));
13797
13798	for (i = 0; ; i++) {
13799		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13800
13801		dtrace_err_verbose = 1;
13802
13803		if ((dof = dtrace_dof_property(c)) == NULL) {
13804			dtrace_err_verbose = 0;
13805			break;
13806		}
13807
13808#if defined(sun)
13809		/*
13810		 * We want to create anonymous state, so we need to transition
13811		 * the kernel debugger to indicate that DTrace is active.  If
13812		 * this fails (e.g. because the debugger has modified text in
13813		 * some way), we won't continue with the processing.
13814		 */
13815		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13816			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13817			    "enabling ignored.");
13818			dtrace_dof_destroy(dof);
13819			break;
13820		}
13821#endif
13822
13823		/*
13824		 * If we haven't allocated an anonymous state, we'll do so now.
13825		 */
13826		if ((state = dtrace_anon.dta_state) == NULL) {
13827#if defined(sun)
13828			state = dtrace_state_create(NULL, NULL);
13829#endif
13830			dtrace_anon.dta_state = state;
13831
13832			if (state == NULL) {
13833				/*
13834				 * This basically shouldn't happen:  the only
13835				 * failure mode from dtrace_state_create() is a
13836				 * failure of ddi_soft_state_zalloc() that
13837				 * itself should never happen.  Still, the
13838				 * interface allows for a failure mode, and
13839				 * we want to fail as gracefully as possible:
13840				 * we'll emit an error message and cease
13841				 * processing anonymous state in this case.
13842				 */
13843				cmn_err(CE_WARN, "failed to create "
13844				    "anonymous state");
13845				dtrace_dof_destroy(dof);
13846				break;
13847			}
13848		}
13849
13850		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13851		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13852
13853		if (rv == 0)
13854			rv = dtrace_dof_options(dof, state);
13855
13856		dtrace_err_verbose = 0;
13857		dtrace_dof_destroy(dof);
13858
13859		if (rv != 0) {
13860			/*
13861			 * This is malformed DOF; chuck any anonymous state
13862			 * that we created.
13863			 */
13864			ASSERT(dtrace_anon.dta_enabling == NULL);
13865			dtrace_state_destroy(state);
13866			dtrace_anon.dta_state = NULL;
13867			break;
13868		}
13869
13870		ASSERT(dtrace_anon.dta_enabling != NULL);
13871	}
13872
13873	if (dtrace_anon.dta_enabling != NULL) {
13874		int rval;
13875
13876		/*
13877		 * dtrace_enabling_retain() can only fail because we are
13878		 * trying to retain more enablings than are allowed -- but
13879		 * we only have one anonymous enabling, and we are guaranteed
13880		 * to be allowed at least one retained enabling; we assert
13881		 * that dtrace_enabling_retain() returns success.
13882		 */
13883		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13884		ASSERT(rval == 0);
13885
13886		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13887	}
13888}
13889
13890#if defined(sun)
13891/*
13892 * DTrace Helper Functions
13893 */
13894static void
13895dtrace_helper_trace(dtrace_helper_action_t *helper,
13896    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13897{
13898	uint32_t size, next, nnext, i;
13899	dtrace_helptrace_t *ent;
13900	uint16_t flags = cpu_core[curcpu_id].cpuc_dtrace_flags;
13901
13902	if (!dtrace_helptrace_enabled)
13903		return;
13904
13905	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13906
13907	/*
13908	 * What would a tracing framework be without its own tracing
13909	 * framework?  (Well, a hell of a lot simpler, for starters...)
13910	 */
13911	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13912	    sizeof (uint64_t) - sizeof (uint64_t);
13913
13914	/*
13915	 * Iterate until we can allocate a slot in the trace buffer.
13916	 */
13917	do {
13918		next = dtrace_helptrace_next;
13919
13920		if (next + size < dtrace_helptrace_bufsize) {
13921			nnext = next + size;
13922		} else {
13923			nnext = size;
13924		}
13925	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13926
13927	/*
13928	 * We have our slot; fill it in.
13929	 */
13930	if (nnext == size)
13931		next = 0;
13932
13933	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13934	ent->dtht_helper = helper;
13935	ent->dtht_where = where;
13936	ent->dtht_nlocals = vstate->dtvs_nlocals;
13937
13938	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13939	    mstate->dtms_fltoffs : -1;
13940	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13941	ent->dtht_illval = cpu_core[curcpu_id].cpuc_dtrace_illval;
13942
13943	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13944		dtrace_statvar_t *svar;
13945
13946		if ((svar = vstate->dtvs_locals[i]) == NULL)
13947			continue;
13948
13949		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13950		ent->dtht_locals[i] =
13951		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu_id];
13952	}
13953}
13954#endif
13955
13956#if defined(sun)
13957static uint64_t
13958dtrace_helper(int which, dtrace_mstate_t *mstate,
13959    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13960{
13961	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
13962	uint64_t sarg0 = mstate->dtms_arg[0];
13963	uint64_t sarg1 = mstate->dtms_arg[1];
13964	uint64_t rval;
13965	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13966	dtrace_helper_action_t *helper;
13967	dtrace_vstate_t *vstate;
13968	dtrace_difo_t *pred;
13969	int i, trace = dtrace_helptrace_enabled;
13970
13971	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13972
13973	if (helpers == NULL)
13974		return (0);
13975
13976	if ((helper = helpers->dthps_actions[which]) == NULL)
13977		return (0);
13978
13979	vstate = &helpers->dthps_vstate;
13980	mstate->dtms_arg[0] = arg0;
13981	mstate->dtms_arg[1] = arg1;
13982
13983	/*
13984	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13985	 * we'll call the corresponding actions.  Note that the below calls
13986	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13987	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13988	 * the stored DIF offset with its own (which is the desired behavior).
13989	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13990	 * from machine state; this is okay, too.
13991	 */
13992	for (; helper != NULL; helper = helper->dtha_next) {
13993		if ((pred = helper->dtha_predicate) != NULL) {
13994			if (trace)
13995				dtrace_helper_trace(helper, mstate, vstate, 0);
13996
13997			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13998				goto next;
13999
14000			if (*flags & CPU_DTRACE_FAULT)
14001				goto err;
14002		}
14003
14004		for (i = 0; i < helper->dtha_nactions; i++) {
14005			if (trace)
14006				dtrace_helper_trace(helper,
14007				    mstate, vstate, i + 1);
14008
14009			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14010			    mstate, vstate, state);
14011
14012			if (*flags & CPU_DTRACE_FAULT)
14013				goto err;
14014		}
14015
14016next:
14017		if (trace)
14018			dtrace_helper_trace(helper, mstate, vstate,
14019			    DTRACE_HELPTRACE_NEXT);
14020	}
14021
14022	if (trace)
14023		dtrace_helper_trace(helper, mstate, vstate,
14024		    DTRACE_HELPTRACE_DONE);
14025
14026	/*
14027	 * Restore the arg0 that we saved upon entry.
14028	 */
14029	mstate->dtms_arg[0] = sarg0;
14030	mstate->dtms_arg[1] = sarg1;
14031
14032	return (rval);
14033
14034err:
14035	if (trace)
14036		dtrace_helper_trace(helper, mstate, vstate,
14037		    DTRACE_HELPTRACE_ERR);
14038
14039	/*
14040	 * Restore the arg0 that we saved upon entry.
14041	 */
14042	mstate->dtms_arg[0] = sarg0;
14043	mstate->dtms_arg[1] = sarg1;
14044
14045	return (0);
14046}
14047
14048static void
14049dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14050    dtrace_vstate_t *vstate)
14051{
14052	int i;
14053
14054	if (helper->dtha_predicate != NULL)
14055		dtrace_difo_release(helper->dtha_predicate, vstate);
14056
14057	for (i = 0; i < helper->dtha_nactions; i++) {
14058		ASSERT(helper->dtha_actions[i] != NULL);
14059		dtrace_difo_release(helper->dtha_actions[i], vstate);
14060	}
14061
14062	kmem_free(helper->dtha_actions,
14063	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14064	kmem_free(helper, sizeof (dtrace_helper_action_t));
14065}
14066
14067static int
14068dtrace_helper_destroygen(int gen)
14069{
14070	proc_t *p = curproc;
14071	dtrace_helpers_t *help = p->p_dtrace_helpers;
14072	dtrace_vstate_t *vstate;
14073	int i;
14074
14075	ASSERT(MUTEX_HELD(&dtrace_lock));
14076
14077	if (help == NULL || gen > help->dthps_generation)
14078		return (EINVAL);
14079
14080	vstate = &help->dthps_vstate;
14081
14082	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14083		dtrace_helper_action_t *last = NULL, *h, *next;
14084
14085		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14086			next = h->dtha_next;
14087
14088			if (h->dtha_generation == gen) {
14089				if (last != NULL) {
14090					last->dtha_next = next;
14091				} else {
14092					help->dthps_actions[i] = next;
14093				}
14094
14095				dtrace_helper_action_destroy(h, vstate);
14096			} else {
14097				last = h;
14098			}
14099		}
14100	}
14101
14102	/*
14103	 * Interate until we've cleared out all helper providers with the
14104	 * given generation number.
14105	 */
14106	for (;;) {
14107		dtrace_helper_provider_t *prov;
14108
14109		/*
14110		 * Look for a helper provider with the right generation. We
14111		 * have to start back at the beginning of the list each time
14112		 * because we drop dtrace_lock. It's unlikely that we'll make
14113		 * more than two passes.
14114		 */
14115		for (i = 0; i < help->dthps_nprovs; i++) {
14116			prov = help->dthps_provs[i];
14117
14118			if (prov->dthp_generation == gen)
14119				break;
14120		}
14121
14122		/*
14123		 * If there were no matches, we're done.
14124		 */
14125		if (i == help->dthps_nprovs)
14126			break;
14127
14128		/*
14129		 * Move the last helper provider into this slot.
14130		 */
14131		help->dthps_nprovs--;
14132		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14133		help->dthps_provs[help->dthps_nprovs] = NULL;
14134
14135		mutex_exit(&dtrace_lock);
14136
14137		/*
14138		 * If we have a meta provider, remove this helper provider.
14139		 */
14140		mutex_enter(&dtrace_meta_lock);
14141		if (dtrace_meta_pid != NULL) {
14142			ASSERT(dtrace_deferred_pid == NULL);
14143			dtrace_helper_provider_remove(&prov->dthp_prov,
14144			    p->p_pid);
14145		}
14146		mutex_exit(&dtrace_meta_lock);
14147
14148		dtrace_helper_provider_destroy(prov);
14149
14150		mutex_enter(&dtrace_lock);
14151	}
14152
14153	return (0);
14154}
14155#endif
14156
14157#if defined(sun)
14158static int
14159dtrace_helper_validate(dtrace_helper_action_t *helper)
14160{
14161	int err = 0, i;
14162	dtrace_difo_t *dp;
14163
14164	if ((dp = helper->dtha_predicate) != NULL)
14165		err += dtrace_difo_validate_helper(dp);
14166
14167	for (i = 0; i < helper->dtha_nactions; i++)
14168		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14169
14170	return (err == 0);
14171}
14172#endif
14173
14174#if defined(sun)
14175static int
14176dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14177{
14178	dtrace_helpers_t *help;
14179	dtrace_helper_action_t *helper, *last;
14180	dtrace_actdesc_t *act;
14181	dtrace_vstate_t *vstate;
14182	dtrace_predicate_t *pred;
14183	int count = 0, nactions = 0, i;
14184
14185	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14186		return (EINVAL);
14187
14188	help = curproc->p_dtrace_helpers;
14189	last = help->dthps_actions[which];
14190	vstate = &help->dthps_vstate;
14191
14192	for (count = 0; last != NULL; last = last->dtha_next) {
14193		count++;
14194		if (last->dtha_next == NULL)
14195			break;
14196	}
14197
14198	/*
14199	 * If we already have dtrace_helper_actions_max helper actions for this
14200	 * helper action type, we'll refuse to add a new one.
14201	 */
14202	if (count >= dtrace_helper_actions_max)
14203		return (ENOSPC);
14204
14205	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14206	helper->dtha_generation = help->dthps_generation;
14207
14208	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14209		ASSERT(pred->dtp_difo != NULL);
14210		dtrace_difo_hold(pred->dtp_difo);
14211		helper->dtha_predicate = pred->dtp_difo;
14212	}
14213
14214	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14215		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14216			goto err;
14217
14218		if (act->dtad_difo == NULL)
14219			goto err;
14220
14221		nactions++;
14222	}
14223
14224	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14225	    (helper->dtha_nactions = nactions), KM_SLEEP);
14226
14227	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14228		dtrace_difo_hold(act->dtad_difo);
14229		helper->dtha_actions[i++] = act->dtad_difo;
14230	}
14231
14232	if (!dtrace_helper_validate(helper))
14233		goto err;
14234
14235	if (last == NULL) {
14236		help->dthps_actions[which] = helper;
14237	} else {
14238		last->dtha_next = helper;
14239	}
14240
14241	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14242		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14243		dtrace_helptrace_next = 0;
14244	}
14245
14246	return (0);
14247err:
14248	dtrace_helper_action_destroy(helper, vstate);
14249	return (EINVAL);
14250}
14251
14252static void
14253dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14254    dof_helper_t *dofhp)
14255{
14256	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14257
14258	mutex_enter(&dtrace_meta_lock);
14259	mutex_enter(&dtrace_lock);
14260
14261	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14262		/*
14263		 * If the dtrace module is loaded but not attached, or if
14264		 * there aren't isn't a meta provider registered to deal with
14265		 * these provider descriptions, we need to postpone creating
14266		 * the actual providers until later.
14267		 */
14268
14269		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14270		    dtrace_deferred_pid != help) {
14271			help->dthps_deferred = 1;
14272			help->dthps_pid = p->p_pid;
14273			help->dthps_next = dtrace_deferred_pid;
14274			help->dthps_prev = NULL;
14275			if (dtrace_deferred_pid != NULL)
14276				dtrace_deferred_pid->dthps_prev = help;
14277			dtrace_deferred_pid = help;
14278		}
14279
14280		mutex_exit(&dtrace_lock);
14281
14282	} else if (dofhp != NULL) {
14283		/*
14284		 * If the dtrace module is loaded and we have a particular
14285		 * helper provider description, pass that off to the
14286		 * meta provider.
14287		 */
14288
14289		mutex_exit(&dtrace_lock);
14290
14291		dtrace_helper_provide(dofhp, p->p_pid);
14292
14293	} else {
14294		/*
14295		 * Otherwise, just pass all the helper provider descriptions
14296		 * off to the meta provider.
14297		 */
14298
14299		int i;
14300		mutex_exit(&dtrace_lock);
14301
14302		for (i = 0; i < help->dthps_nprovs; i++) {
14303			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14304			    p->p_pid);
14305		}
14306	}
14307
14308	mutex_exit(&dtrace_meta_lock);
14309}
14310
14311static int
14312dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14313{
14314	dtrace_helpers_t *help;
14315	dtrace_helper_provider_t *hprov, **tmp_provs;
14316	uint_t tmp_maxprovs, i;
14317
14318	ASSERT(MUTEX_HELD(&dtrace_lock));
14319
14320	help = curproc->p_dtrace_helpers;
14321	ASSERT(help != NULL);
14322
14323	/*
14324	 * If we already have dtrace_helper_providers_max helper providers,
14325	 * we're refuse to add a new one.
14326	 */
14327	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14328		return (ENOSPC);
14329
14330	/*
14331	 * Check to make sure this isn't a duplicate.
14332	 */
14333	for (i = 0; i < help->dthps_nprovs; i++) {
14334		if (dofhp->dofhp_addr ==
14335		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14336			return (EALREADY);
14337	}
14338
14339	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14340	hprov->dthp_prov = *dofhp;
14341	hprov->dthp_ref = 1;
14342	hprov->dthp_generation = gen;
14343
14344	/*
14345	 * Allocate a bigger table for helper providers if it's already full.
14346	 */
14347	if (help->dthps_maxprovs == help->dthps_nprovs) {
14348		tmp_maxprovs = help->dthps_maxprovs;
14349		tmp_provs = help->dthps_provs;
14350
14351		if (help->dthps_maxprovs == 0)
14352			help->dthps_maxprovs = 2;
14353		else
14354			help->dthps_maxprovs *= 2;
14355		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14356			help->dthps_maxprovs = dtrace_helper_providers_max;
14357
14358		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14359
14360		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14361		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14362
14363		if (tmp_provs != NULL) {
14364			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14365			    sizeof (dtrace_helper_provider_t *));
14366			kmem_free(tmp_provs, tmp_maxprovs *
14367			    sizeof (dtrace_helper_provider_t *));
14368		}
14369	}
14370
14371	help->dthps_provs[help->dthps_nprovs] = hprov;
14372	help->dthps_nprovs++;
14373
14374	return (0);
14375}
14376
14377static void
14378dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14379{
14380	mutex_enter(&dtrace_lock);
14381
14382	if (--hprov->dthp_ref == 0) {
14383		dof_hdr_t *dof;
14384		mutex_exit(&dtrace_lock);
14385		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14386		dtrace_dof_destroy(dof);
14387		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14388	} else {
14389		mutex_exit(&dtrace_lock);
14390	}
14391}
14392
14393static int
14394dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14395{
14396	uintptr_t daddr = (uintptr_t)dof;
14397	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14398	dof_provider_t *provider;
14399	dof_probe_t *probe;
14400	uint8_t *arg;
14401	char *strtab, *typestr;
14402	dof_stridx_t typeidx;
14403	size_t typesz;
14404	uint_t nprobes, j, k;
14405
14406	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14407
14408	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14409		dtrace_dof_error(dof, "misaligned section offset");
14410		return (-1);
14411	}
14412
14413	/*
14414	 * The section needs to be large enough to contain the DOF provider
14415	 * structure appropriate for the given version.
14416	 */
14417	if (sec->dofs_size <
14418	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14419	    offsetof(dof_provider_t, dofpv_prenoffs) :
14420	    sizeof (dof_provider_t))) {
14421		dtrace_dof_error(dof, "provider section too small");
14422		return (-1);
14423	}
14424
14425	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14426	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14427	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14428	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14429	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14430
14431	if (str_sec == NULL || prb_sec == NULL ||
14432	    arg_sec == NULL || off_sec == NULL)
14433		return (-1);
14434
14435	enoff_sec = NULL;
14436
14437	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14438	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14439	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14440	    provider->dofpv_prenoffs)) == NULL)
14441		return (-1);
14442
14443	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14444
14445	if (provider->dofpv_name >= str_sec->dofs_size ||
14446	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14447		dtrace_dof_error(dof, "invalid provider name");
14448		return (-1);
14449	}
14450
14451	if (prb_sec->dofs_entsize == 0 ||
14452	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14453		dtrace_dof_error(dof, "invalid entry size");
14454		return (-1);
14455	}
14456
14457	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14458		dtrace_dof_error(dof, "misaligned entry size");
14459		return (-1);
14460	}
14461
14462	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14463		dtrace_dof_error(dof, "invalid entry size");
14464		return (-1);
14465	}
14466
14467	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14468		dtrace_dof_error(dof, "misaligned section offset");
14469		return (-1);
14470	}
14471
14472	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14473		dtrace_dof_error(dof, "invalid entry size");
14474		return (-1);
14475	}
14476
14477	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14478
14479	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14480
14481	/*
14482	 * Take a pass through the probes to check for errors.
14483	 */
14484	for (j = 0; j < nprobes; j++) {
14485		probe = (dof_probe_t *)(uintptr_t)(daddr +
14486		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14487
14488		if (probe->dofpr_func >= str_sec->dofs_size) {
14489			dtrace_dof_error(dof, "invalid function name");
14490			return (-1);
14491		}
14492
14493		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14494			dtrace_dof_error(dof, "function name too long");
14495			return (-1);
14496		}
14497
14498		if (probe->dofpr_name >= str_sec->dofs_size ||
14499		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14500			dtrace_dof_error(dof, "invalid probe name");
14501			return (-1);
14502		}
14503
14504		/*
14505		 * The offset count must not wrap the index, and the offsets
14506		 * must also not overflow the section's data.
14507		 */
14508		if (probe->dofpr_offidx + probe->dofpr_noffs <
14509		    probe->dofpr_offidx ||
14510		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14511		    off_sec->dofs_entsize > off_sec->dofs_size) {
14512			dtrace_dof_error(dof, "invalid probe offset");
14513			return (-1);
14514		}
14515
14516		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14517			/*
14518			 * If there's no is-enabled offset section, make sure
14519			 * there aren't any is-enabled offsets. Otherwise
14520			 * perform the same checks as for probe offsets
14521			 * (immediately above).
14522			 */
14523			if (enoff_sec == NULL) {
14524				if (probe->dofpr_enoffidx != 0 ||
14525				    probe->dofpr_nenoffs != 0) {
14526					dtrace_dof_error(dof, "is-enabled "
14527					    "offsets with null section");
14528					return (-1);
14529				}
14530			} else if (probe->dofpr_enoffidx +
14531			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14532			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14533			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14534				dtrace_dof_error(dof, "invalid is-enabled "
14535				    "offset");
14536				return (-1);
14537			}
14538
14539			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14540				dtrace_dof_error(dof, "zero probe and "
14541				    "is-enabled offsets");
14542				return (-1);
14543			}
14544		} else if (probe->dofpr_noffs == 0) {
14545			dtrace_dof_error(dof, "zero probe offsets");
14546			return (-1);
14547		}
14548
14549		if (probe->dofpr_argidx + probe->dofpr_xargc <
14550		    probe->dofpr_argidx ||
14551		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14552		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14553			dtrace_dof_error(dof, "invalid args");
14554			return (-1);
14555		}
14556
14557		typeidx = probe->dofpr_nargv;
14558		typestr = strtab + probe->dofpr_nargv;
14559		for (k = 0; k < probe->dofpr_nargc; k++) {
14560			if (typeidx >= str_sec->dofs_size) {
14561				dtrace_dof_error(dof, "bad "
14562				    "native argument type");
14563				return (-1);
14564			}
14565
14566			typesz = strlen(typestr) + 1;
14567			if (typesz > DTRACE_ARGTYPELEN) {
14568				dtrace_dof_error(dof, "native "
14569				    "argument type too long");
14570				return (-1);
14571			}
14572			typeidx += typesz;
14573			typestr += typesz;
14574		}
14575
14576		typeidx = probe->dofpr_xargv;
14577		typestr = strtab + probe->dofpr_xargv;
14578		for (k = 0; k < probe->dofpr_xargc; k++) {
14579			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14580				dtrace_dof_error(dof, "bad "
14581				    "native argument index");
14582				return (-1);
14583			}
14584
14585			if (typeidx >= str_sec->dofs_size) {
14586				dtrace_dof_error(dof, "bad "
14587				    "translated argument type");
14588				return (-1);
14589			}
14590
14591			typesz = strlen(typestr) + 1;
14592			if (typesz > DTRACE_ARGTYPELEN) {
14593				dtrace_dof_error(dof, "translated argument "
14594				    "type too long");
14595				return (-1);
14596			}
14597
14598			typeidx += typesz;
14599			typestr += typesz;
14600		}
14601	}
14602
14603	return (0);
14604}
14605
14606static int
14607dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14608{
14609	dtrace_helpers_t *help;
14610	dtrace_vstate_t *vstate;
14611	dtrace_enabling_t *enab = NULL;
14612	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14613	uintptr_t daddr = (uintptr_t)dof;
14614
14615	ASSERT(MUTEX_HELD(&dtrace_lock));
14616
14617	if ((help = curproc->p_dtrace_helpers) == NULL)
14618		help = dtrace_helpers_create(curproc);
14619
14620	vstate = &help->dthps_vstate;
14621
14622	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14623	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14624		dtrace_dof_destroy(dof);
14625		return (rv);
14626	}
14627
14628	/*
14629	 * Look for helper providers and validate their descriptions.
14630	 */
14631	if (dhp != NULL) {
14632		for (i = 0; i < dof->dofh_secnum; i++) {
14633			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14634			    dof->dofh_secoff + i * dof->dofh_secsize);
14635
14636			if (sec->dofs_type != DOF_SECT_PROVIDER)
14637				continue;
14638
14639			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14640				dtrace_enabling_destroy(enab);
14641				dtrace_dof_destroy(dof);
14642				return (-1);
14643			}
14644
14645			nprovs++;
14646		}
14647	}
14648
14649	/*
14650	 * Now we need to walk through the ECB descriptions in the enabling.
14651	 */
14652	for (i = 0; i < enab->dten_ndesc; i++) {
14653		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14654		dtrace_probedesc_t *desc = &ep->dted_probe;
14655
14656		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14657			continue;
14658
14659		if (strcmp(desc->dtpd_mod, "helper") != 0)
14660			continue;
14661
14662		if (strcmp(desc->dtpd_func, "ustack") != 0)
14663			continue;
14664
14665		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14666		    ep)) != 0) {
14667			/*
14668			 * Adding this helper action failed -- we are now going
14669			 * to rip out the entire generation and return failure.
14670			 */
14671			(void) dtrace_helper_destroygen(help->dthps_generation);
14672			dtrace_enabling_destroy(enab);
14673			dtrace_dof_destroy(dof);
14674			return (-1);
14675		}
14676
14677		nhelpers++;
14678	}
14679
14680	if (nhelpers < enab->dten_ndesc)
14681		dtrace_dof_error(dof, "unmatched helpers");
14682
14683	gen = help->dthps_generation++;
14684	dtrace_enabling_destroy(enab);
14685
14686	if (dhp != NULL && nprovs > 0) {
14687		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14688		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14689			mutex_exit(&dtrace_lock);
14690			dtrace_helper_provider_register(curproc, help, dhp);
14691			mutex_enter(&dtrace_lock);
14692
14693			destroy = 0;
14694		}
14695	}
14696
14697	if (destroy)
14698		dtrace_dof_destroy(dof);
14699
14700	return (gen);
14701}
14702
14703static dtrace_helpers_t *
14704dtrace_helpers_create(proc_t *p)
14705{
14706	dtrace_helpers_t *help;
14707
14708	ASSERT(MUTEX_HELD(&dtrace_lock));
14709	ASSERT(p->p_dtrace_helpers == NULL);
14710
14711	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14712	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14713	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14714
14715	p->p_dtrace_helpers = help;
14716	dtrace_helpers++;
14717
14718	return (help);
14719}
14720
14721static void
14722dtrace_helpers_destroy(void)
14723{
14724	dtrace_helpers_t *help;
14725	dtrace_vstate_t *vstate;
14726	proc_t *p = curproc;
14727	int i;
14728
14729	mutex_enter(&dtrace_lock);
14730
14731	ASSERT(p->p_dtrace_helpers != NULL);
14732	ASSERT(dtrace_helpers > 0);
14733
14734	help = p->p_dtrace_helpers;
14735	vstate = &help->dthps_vstate;
14736
14737	/*
14738	 * We're now going to lose the help from this process.
14739	 */
14740	p->p_dtrace_helpers = NULL;
14741	dtrace_sync();
14742
14743	/*
14744	 * Destory the helper actions.
14745	 */
14746	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14747		dtrace_helper_action_t *h, *next;
14748
14749		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14750			next = h->dtha_next;
14751			dtrace_helper_action_destroy(h, vstate);
14752			h = next;
14753		}
14754	}
14755
14756	mutex_exit(&dtrace_lock);
14757
14758	/*
14759	 * Destroy the helper providers.
14760	 */
14761	if (help->dthps_maxprovs > 0) {
14762		mutex_enter(&dtrace_meta_lock);
14763		if (dtrace_meta_pid != NULL) {
14764			ASSERT(dtrace_deferred_pid == NULL);
14765
14766			for (i = 0; i < help->dthps_nprovs; i++) {
14767				dtrace_helper_provider_remove(
14768				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14769			}
14770		} else {
14771			mutex_enter(&dtrace_lock);
14772			ASSERT(help->dthps_deferred == 0 ||
14773			    help->dthps_next != NULL ||
14774			    help->dthps_prev != NULL ||
14775			    help == dtrace_deferred_pid);
14776
14777			/*
14778			 * Remove the helper from the deferred list.
14779			 */
14780			if (help->dthps_next != NULL)
14781				help->dthps_next->dthps_prev = help->dthps_prev;
14782			if (help->dthps_prev != NULL)
14783				help->dthps_prev->dthps_next = help->dthps_next;
14784			if (dtrace_deferred_pid == help) {
14785				dtrace_deferred_pid = help->dthps_next;
14786				ASSERT(help->dthps_prev == NULL);
14787			}
14788
14789			mutex_exit(&dtrace_lock);
14790		}
14791
14792		mutex_exit(&dtrace_meta_lock);
14793
14794		for (i = 0; i < help->dthps_nprovs; i++) {
14795			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14796		}
14797
14798		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14799		    sizeof (dtrace_helper_provider_t *));
14800	}
14801
14802	mutex_enter(&dtrace_lock);
14803
14804	dtrace_vstate_fini(&help->dthps_vstate);
14805	kmem_free(help->dthps_actions,
14806	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14807	kmem_free(help, sizeof (dtrace_helpers_t));
14808
14809	--dtrace_helpers;
14810	mutex_exit(&dtrace_lock);
14811}
14812
14813static void
14814dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14815{
14816	dtrace_helpers_t *help, *newhelp;
14817	dtrace_helper_action_t *helper, *new, *last;
14818	dtrace_difo_t *dp;
14819	dtrace_vstate_t *vstate;
14820	int i, j, sz, hasprovs = 0;
14821
14822	mutex_enter(&dtrace_lock);
14823	ASSERT(from->p_dtrace_helpers != NULL);
14824	ASSERT(dtrace_helpers > 0);
14825
14826	help = from->p_dtrace_helpers;
14827	newhelp = dtrace_helpers_create(to);
14828	ASSERT(to->p_dtrace_helpers != NULL);
14829
14830	newhelp->dthps_generation = help->dthps_generation;
14831	vstate = &newhelp->dthps_vstate;
14832
14833	/*
14834	 * Duplicate the helper actions.
14835	 */
14836	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14837		if ((helper = help->dthps_actions[i]) == NULL)
14838			continue;
14839
14840		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14841			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14842			    KM_SLEEP);
14843			new->dtha_generation = helper->dtha_generation;
14844
14845			if ((dp = helper->dtha_predicate) != NULL) {
14846				dp = dtrace_difo_duplicate(dp, vstate);
14847				new->dtha_predicate = dp;
14848			}
14849
14850			new->dtha_nactions = helper->dtha_nactions;
14851			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14852			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14853
14854			for (j = 0; j < new->dtha_nactions; j++) {
14855				dtrace_difo_t *dp = helper->dtha_actions[j];
14856
14857				ASSERT(dp != NULL);
14858				dp = dtrace_difo_duplicate(dp, vstate);
14859				new->dtha_actions[j] = dp;
14860			}
14861
14862			if (last != NULL) {
14863				last->dtha_next = new;
14864			} else {
14865				newhelp->dthps_actions[i] = new;
14866			}
14867
14868			last = new;
14869		}
14870	}
14871
14872	/*
14873	 * Duplicate the helper providers and register them with the
14874	 * DTrace framework.
14875	 */
14876	if (help->dthps_nprovs > 0) {
14877		newhelp->dthps_nprovs = help->dthps_nprovs;
14878		newhelp->dthps_maxprovs = help->dthps_nprovs;
14879		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14880		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14881		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14882			newhelp->dthps_provs[i] = help->dthps_provs[i];
14883			newhelp->dthps_provs[i]->dthp_ref++;
14884		}
14885
14886		hasprovs = 1;
14887	}
14888
14889	mutex_exit(&dtrace_lock);
14890
14891	if (hasprovs)
14892		dtrace_helper_provider_register(to, newhelp, NULL);
14893}
14894#endif
14895
14896#if defined(sun)
14897/*
14898 * DTrace Hook Functions
14899 */
14900static void
14901dtrace_module_loaded(modctl_t *ctl)
14902{
14903	dtrace_provider_t *prv;
14904
14905	mutex_enter(&dtrace_provider_lock);
14906	mutex_enter(&mod_lock);
14907
14908	ASSERT(ctl->mod_busy);
14909
14910	/*
14911	 * We're going to call each providers per-module provide operation
14912	 * specifying only this module.
14913	 */
14914	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14915		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14916
14917	mutex_exit(&mod_lock);
14918	mutex_exit(&dtrace_provider_lock);
14919
14920	/*
14921	 * If we have any retained enablings, we need to match against them.
14922	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14923	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14924	 * module.  (In particular, this happens when loading scheduling
14925	 * classes.)  So if we have any retained enablings, we need to dispatch
14926	 * our task queue to do the match for us.
14927	 */
14928	mutex_enter(&dtrace_lock);
14929
14930	if (dtrace_retained == NULL) {
14931		mutex_exit(&dtrace_lock);
14932		return;
14933	}
14934
14935	(void) taskq_dispatch(dtrace_taskq,
14936	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14937
14938	mutex_exit(&dtrace_lock);
14939
14940	/*
14941	 * And now, for a little heuristic sleaze:  in general, we want to
14942	 * match modules as soon as they load.  However, we cannot guarantee
14943	 * this, because it would lead us to the lock ordering violation
14944	 * outlined above.  The common case, of course, is that cpu_lock is
14945	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14946	 * long enough for the task queue to do its work.  If it's not, it's
14947	 * not a serious problem -- it just means that the module that we
14948	 * just loaded may not be immediately instrumentable.
14949	 */
14950	delay(1);
14951}
14952
14953static void
14954dtrace_module_unloaded(modctl_t *ctl)
14955{
14956	dtrace_probe_t template, *probe, *first, *next;
14957	dtrace_provider_t *prov;
14958
14959	template.dtpr_mod = ctl->mod_modname;
14960
14961	mutex_enter(&dtrace_provider_lock);
14962	mutex_enter(&mod_lock);
14963	mutex_enter(&dtrace_lock);
14964
14965	if (dtrace_bymod == NULL) {
14966		/*
14967		 * The DTrace module is loaded (obviously) but not attached;
14968		 * we don't have any work to do.
14969		 */
14970		mutex_exit(&dtrace_provider_lock);
14971		mutex_exit(&mod_lock);
14972		mutex_exit(&dtrace_lock);
14973		return;
14974	}
14975
14976	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14977	    probe != NULL; probe = probe->dtpr_nextmod) {
14978		if (probe->dtpr_ecb != NULL) {
14979			mutex_exit(&dtrace_provider_lock);
14980			mutex_exit(&mod_lock);
14981			mutex_exit(&dtrace_lock);
14982
14983			/*
14984			 * This shouldn't _actually_ be possible -- we're
14985			 * unloading a module that has an enabled probe in it.
14986			 * (It's normally up to the provider to make sure that
14987			 * this can't happen.)  However, because dtps_enable()
14988			 * doesn't have a failure mode, there can be an
14989			 * enable/unload race.  Upshot:  we don't want to
14990			 * assert, but we're not going to disable the
14991			 * probe, either.
14992			 */
14993			if (dtrace_err_verbose) {
14994				cmn_err(CE_WARN, "unloaded module '%s' had "
14995				    "enabled probes", ctl->mod_modname);
14996			}
14997
14998			return;
14999		}
15000	}
15001
15002	probe = first;
15003
15004	for (first = NULL; probe != NULL; probe = next) {
15005		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15006
15007		dtrace_probes[probe->dtpr_id - 1] = NULL;
15008
15009		next = probe->dtpr_nextmod;
15010		dtrace_hash_remove(dtrace_bymod, probe);
15011		dtrace_hash_remove(dtrace_byfunc, probe);
15012		dtrace_hash_remove(dtrace_byname, probe);
15013
15014		if (first == NULL) {
15015			first = probe;
15016			probe->dtpr_nextmod = NULL;
15017		} else {
15018			probe->dtpr_nextmod = first;
15019			first = probe;
15020		}
15021	}
15022
15023	/*
15024	 * We've removed all of the module's probes from the hash chains and
15025	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15026	 * everyone has cleared out from any probe array processing.
15027	 */
15028	dtrace_sync();
15029
15030	for (probe = first; probe != NULL; probe = first) {
15031		first = probe->dtpr_nextmod;
15032		prov = probe->dtpr_provider;
15033		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15034		    probe->dtpr_arg);
15035		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15036		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15037		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15038		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15039		kmem_free(probe, sizeof (dtrace_probe_t));
15040	}
15041
15042	mutex_exit(&dtrace_lock);
15043	mutex_exit(&mod_lock);
15044	mutex_exit(&dtrace_provider_lock);
15045}
15046
15047static void
15048dtrace_suspend(void)
15049{
15050	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15051}
15052
15053static void
15054dtrace_resume(void)
15055{
15056	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15057}
15058#endif
15059
15060static int
15061dtrace_cpu_setup(cpu_setup_t what, processorid_t xcpu)
15062{
15063	ASSERT(MUTEX_HELD(&cpu_lock));
15064	mutex_enter(&dtrace_lock);
15065
15066	switch (what) {
15067	case CPU_CONFIG: {
15068		dtrace_state_t *state;
15069		dtrace_optval_t *opt, rs, c;
15070
15071		/*
15072		 * For now, we only allocate a new buffer for anonymous state.
15073		 */
15074		if ((state = dtrace_anon.dta_state) == NULL)
15075			break;
15076
15077		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15078			break;
15079
15080		opt = state->dts_options;
15081		c = opt[DTRACEOPT_CPU];
15082
15083		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15084			break;
15085
15086		/*
15087		 * Regardless of what the actual policy is, we're going to
15088		 * temporarily set our resize policy to be manual.  We're
15089		 * also going to temporarily set our CPU option to denote
15090		 * the newly configured CPU.
15091		 */
15092		rs = opt[DTRACEOPT_BUFRESIZE];
15093		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15094		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15095
15096		(void) dtrace_state_buffers(state);
15097
15098		opt[DTRACEOPT_BUFRESIZE] = rs;
15099		opt[DTRACEOPT_CPU] = c;
15100
15101		break;
15102	}
15103
15104	case CPU_UNCONFIG:
15105		/*
15106		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15107		 * buffer will be freed when the consumer exits.)
15108		 */
15109		break;
15110
15111	default:
15112		break;
15113	}
15114
15115	mutex_exit(&dtrace_lock);
15116	return (0);
15117}
15118
15119#if defined(sun)
15120static void
15121dtrace_cpu_setup_initial(processorid_t cpu)
15122{
15123	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15124}
15125#endif
15126
15127static void
15128dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15129{
15130	if (dtrace_toxranges >= dtrace_toxranges_max) {
15131		int osize, nsize;
15132		dtrace_toxrange_t *range;
15133
15134		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15135
15136		if (osize == 0) {
15137			ASSERT(dtrace_toxrange == NULL);
15138			ASSERT(dtrace_toxranges_max == 0);
15139			dtrace_toxranges_max = 1;
15140		} else {
15141			dtrace_toxranges_max <<= 1;
15142		}
15143
15144		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15145		range = kmem_zalloc(nsize, KM_SLEEP);
15146
15147		if (dtrace_toxrange != NULL) {
15148			ASSERT(osize != 0);
15149			bcopy(dtrace_toxrange, range, osize);
15150			kmem_free(dtrace_toxrange, osize);
15151		}
15152
15153		dtrace_toxrange = range;
15154	}
15155
15156	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15157	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15158
15159	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15160	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15161	dtrace_toxranges++;
15162}
15163
15164/*
15165 * DTrace Driver Cookbook Functions
15166 */
15167#if defined(sun)
15168/*ARGSUSED*/
15169static int
15170dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15171{
15172	dtrace_provider_id_t id;
15173	dtrace_state_t *state = NULL;
15174	dtrace_enabling_t *enab;
15175
15176	mutex_enter(&cpu_lock);
15177	mutex_enter(&dtrace_provider_lock);
15178	mutex_enter(&dtrace_lock);
15179
15180	if (ddi_soft_state_init(&dtrace_softstate,
15181	    sizeof (dtrace_state_t), 0) != 0) {
15182		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15183		mutex_exit(&cpu_lock);
15184		mutex_exit(&dtrace_provider_lock);
15185		mutex_exit(&dtrace_lock);
15186		return (DDI_FAILURE);
15187	}
15188
15189	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15190	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15191	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15192	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15193		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15194		ddi_remove_minor_node(devi, NULL);
15195		ddi_soft_state_fini(&dtrace_softstate);
15196		mutex_exit(&cpu_lock);
15197		mutex_exit(&dtrace_provider_lock);
15198		mutex_exit(&dtrace_lock);
15199		return (DDI_FAILURE);
15200	}
15201
15202	ddi_report_dev(devi);
15203	dtrace_devi = devi;
15204
15205	dtrace_modload = dtrace_module_loaded;
15206	dtrace_modunload = dtrace_module_unloaded;
15207	dtrace_cpu_init = dtrace_cpu_setup_initial;
15208	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15209	dtrace_helpers_fork = dtrace_helpers_duplicate;
15210	dtrace_cpustart_init = dtrace_suspend;
15211	dtrace_cpustart_fini = dtrace_resume;
15212	dtrace_debugger_init = dtrace_suspend;
15213	dtrace_debugger_fini = dtrace_resume;
15214
15215	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15216
15217	ASSERT(MUTEX_HELD(&cpu_lock));
15218
15219	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15220	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15221	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15222	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15223	    VM_SLEEP | VMC_IDENTIFIER);
15224	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15225	    1, INT_MAX, 0);
15226
15227	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15228	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15229	    NULL, NULL, NULL, NULL, NULL, 0);
15230
15231	ASSERT(MUTEX_HELD(&cpu_lock));
15232	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15233	    offsetof(dtrace_probe_t, dtpr_nextmod),
15234	    offsetof(dtrace_probe_t, dtpr_prevmod));
15235
15236	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15237	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15238	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15239
15240	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15241	    offsetof(dtrace_probe_t, dtpr_nextname),
15242	    offsetof(dtrace_probe_t, dtpr_prevname));
15243
15244	if (dtrace_retain_max < 1) {
15245		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15246		    "setting to 1", dtrace_retain_max);
15247		dtrace_retain_max = 1;
15248	}
15249
15250	/*
15251	 * Now discover our toxic ranges.
15252	 */
15253	dtrace_toxic_ranges(dtrace_toxrange_add);
15254
15255	/*
15256	 * Before we register ourselves as a provider to our own framework,
15257	 * we would like to assert that dtrace_provider is NULL -- but that's
15258	 * not true if we were loaded as a dependency of a DTrace provider.
15259	 * Once we've registered, we can assert that dtrace_provider is our
15260	 * pseudo provider.
15261	 */
15262	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15263	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15264
15265	ASSERT(dtrace_provider != NULL);
15266	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15267
15268	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15269	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15270	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15271	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15272	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15273	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15274
15275	dtrace_anon_property();
15276	mutex_exit(&cpu_lock);
15277
15278	/*
15279	 * If DTrace helper tracing is enabled, we need to allocate the
15280	 * trace buffer and initialize the values.
15281	 */
15282	if (dtrace_helptrace_enabled) {
15283		ASSERT(dtrace_helptrace_buffer == NULL);
15284		dtrace_helptrace_buffer =
15285		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15286		dtrace_helptrace_next = 0;
15287	}
15288
15289	/*
15290	 * If there are already providers, we must ask them to provide their
15291	 * probes, and then match any anonymous enabling against them.  Note
15292	 * that there should be no other retained enablings at this time:
15293	 * the only retained enablings at this time should be the anonymous
15294	 * enabling.
15295	 */
15296	if (dtrace_anon.dta_enabling != NULL) {
15297		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15298
15299		dtrace_enabling_provide(NULL);
15300		state = dtrace_anon.dta_state;
15301
15302		/*
15303		 * We couldn't hold cpu_lock across the above call to
15304		 * dtrace_enabling_provide(), but we must hold it to actually
15305		 * enable the probes.  We have to drop all of our locks, pick
15306		 * up cpu_lock, and regain our locks before matching the
15307		 * retained anonymous enabling.
15308		 */
15309		mutex_exit(&dtrace_lock);
15310		mutex_exit(&dtrace_provider_lock);
15311
15312		mutex_enter(&cpu_lock);
15313		mutex_enter(&dtrace_provider_lock);
15314		mutex_enter(&dtrace_lock);
15315
15316		if ((enab = dtrace_anon.dta_enabling) != NULL)
15317			(void) dtrace_enabling_match(enab, NULL);
15318
15319		mutex_exit(&cpu_lock);
15320	}
15321
15322	mutex_exit(&dtrace_lock);
15323	mutex_exit(&dtrace_provider_lock);
15324
15325	if (state != NULL) {
15326		/*
15327		 * If we created any anonymous state, set it going now.
15328		 */
15329		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15330	}
15331
15332	return (DDI_SUCCESS);
15333}
15334#endif
15335
15336#if !defined(sun)
15337#if __FreeBSD_version >= 800039
15338static void
15339dtrace_dtr(void *data __unused)
15340{
15341}
15342#endif
15343#endif
15344
15345#if !defined(sun)
15346static dev_type_open(dtrace_open);
15347
15348/* Pseudo Device Entry points */
15349/* Just opens, clones to the fileops below */
15350const struct cdevsw dtrace_cdevsw = {
15351	dtrace_open, noclose, noread, nowrite, noioctl,
15352	nostop, notty, nopoll, nommap, nokqfilter,
15353	D_OTHER | D_MPSAFE
15354};
15355
15356static int dtrace_ioctl(struct file *fp, u_long cmd, void *data);
15357static int dtrace_close(struct file *fp);
15358
15359static const struct fileops dtrace_fileops = {
15360	.fo_read = fbadop_read,
15361	.fo_write = fbadop_write,
15362	.fo_ioctl = dtrace_ioctl,
15363	.fo_fcntl = fnullop_fcntl,
15364	.fo_poll = fnullop_poll,
15365	.fo_stat = fbadop_stat,
15366	.fo_close = dtrace_close,
15367	.fo_kqfilter = fnullop_kqfilter,
15368};
15369#endif
15370
15371/*ARGSUSED*/
15372static int
15373#if defined(sun)
15374dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15375#else
15376dtrace_open(dev_t dev, int flags, int mode, struct lwp *l)
15377#endif
15378{
15379	dtrace_state_t *state;
15380	uint32_t priv;
15381	uid_t uid;
15382	zoneid_t zoneid;
15383
15384#if defined(sun)
15385	if (getminor(*devp) == DTRACEMNRN_HELPER)
15386		return (0);
15387
15388	/*
15389	 * If this wasn't an open with the "helper" minor, then it must be
15390	 * the "dtrace" minor.
15391	 */
15392	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15393#else
15394	cred_t *cred_p = NULL;
15395	struct file *fp;
15396	int fd;
15397	int res;
15398
15399	if ((res = fd_allocfile(&fp, &fd)) != 0)
15400		return res;
15401#if 0
15402#if __FreeBSD_version < 800039
15403	/*
15404	 * The first minor device is the one that is cloned so there is
15405	 * nothing more to do here.
15406	 */
15407	if (dev2unit(dev) == 0)
15408		return 0;
15409
15410	/*
15411	 * Devices are cloned, so if the DTrace state has already
15412	 * been allocated, that means this device belongs to a
15413	 * different client. Each client should open '/dev/dtrace'
15414	 * to get a cloned device.
15415	 */
15416	if (dev->si_drv1 != NULL)
15417		return (EBUSY);
15418#endif
15419
15420	cred_p = dev->si_cred;
15421#endif
15422	cred_p = l->l_cred;
15423#endif
15424
15425	/*
15426	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15427	 * caller lacks sufficient permission to do anything with DTrace.
15428	 */
15429	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15430	if (priv == DTRACE_PRIV_NONE) {
15431		return (EACCES);
15432	}
15433
15434	/*
15435	 * Ask all providers to provide all their probes.
15436	 */
15437	mutex_enter(&dtrace_provider_lock);
15438	dtrace_probe_provide(NULL, NULL);
15439	mutex_exit(&dtrace_provider_lock);
15440
15441	mutex_enter(&cpu_lock);
15442	mutex_enter(&dtrace_lock);
15443	dtrace_opens++;
15444	dtrace_membar_producer();
15445
15446#if defined(sun)
15447	/*
15448	 * If the kernel debugger is active (that is, if the kernel debugger
15449	 * modified text in some way), we won't allow the open.
15450	 */
15451	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15452		dtrace_opens--;
15453		mutex_exit(&cpu_lock);
15454		mutex_exit(&dtrace_lock);
15455		return (EBUSY);
15456	}
15457
15458	state = dtrace_state_create(devp, cred_p);
15459#else
15460	state = dtrace_state_create(dev, cred_p);
15461#endif
15462
15463	mutex_exit(&cpu_lock);
15464
15465	if (state == NULL) {
15466#if defined(sun)
15467		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15468			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15469#else
15470		--dtrace_opens;
15471#endif
15472		mutex_exit(&dtrace_lock);
15473		return (EAGAIN);
15474	}
15475
15476	mutex_exit(&dtrace_lock);
15477
15478#if defined(sun)
15479	return (0);
15480#else
15481	return fd_clone(fp, fd, flags, &dtrace_fileops, state);
15482#endif
15483}
15484
15485/*ARGSUSED*/
15486static int
15487#if defined(sun)
15488dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15489#else
15490dtrace_close(struct file *fp)
15491#endif
15492{
15493#if defined(sun)
15494	minor_t minor = getminor(dev);
15495	dtrace_state_t *state;
15496
15497	if (minor == DTRACEMNRN_HELPER)
15498		return (0);
15499
15500	state = ddi_get_soft_state(dtrace_softstate, minor);
15501#else
15502	dtrace_state_t *state = (dtrace_state_t *)fp->f_data;
15503#endif
15504
15505	mutex_enter(&cpu_lock);
15506	mutex_enter(&dtrace_lock);
15507
15508	if (state != NULL) {
15509		if (state->dts_anon) {
15510			/*
15511			 * There is anonymous state. Destroy that first.
15512			 */
15513			ASSERT(dtrace_anon.dta_state == NULL);
15514			dtrace_state_destroy(state->dts_anon);
15515		}
15516
15517		dtrace_state_destroy(state);
15518
15519#if !defined(sun)
15520		fp->f_data = NULL;
15521#endif
15522	}
15523
15524	ASSERT(dtrace_opens > 0);
15525#if defined(sun)
15526	/*
15527	 * Only relinquish control of the kernel debugger interface when there
15528	 * are no consumers and no anonymous enablings.
15529	 */
15530	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15531		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15532#else
15533	--dtrace_opens;
15534#endif
15535
15536	mutex_exit(&dtrace_lock);
15537	mutex_exit(&cpu_lock);
15538
15539	return (0);
15540}
15541
15542#if defined(sun)
15543/*ARGSUSED*/
15544static int
15545dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15546{
15547	int rval;
15548	dof_helper_t help, *dhp = NULL;
15549
15550	switch (cmd) {
15551	case DTRACEHIOC_ADDDOF:
15552		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15553			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15554			return (EFAULT);
15555		}
15556
15557		dhp = &help;
15558		arg = (intptr_t)help.dofhp_dof;
15559		/*FALLTHROUGH*/
15560
15561	case DTRACEHIOC_ADD: {
15562		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15563
15564		if (dof == NULL)
15565			return (rval);
15566
15567		mutex_enter(&dtrace_lock);
15568
15569		/*
15570		 * dtrace_helper_slurp() takes responsibility for the dof --
15571		 * it may free it now or it may save it and free it later.
15572		 */
15573		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15574			*rv = rval;
15575			rval = 0;
15576		} else {
15577			rval = EINVAL;
15578		}
15579
15580		mutex_exit(&dtrace_lock);
15581		return (rval);
15582	}
15583
15584	case DTRACEHIOC_REMOVE: {
15585		mutex_enter(&dtrace_lock);
15586		rval = dtrace_helper_destroygen(arg);
15587		mutex_exit(&dtrace_lock);
15588
15589		return (rval);
15590	}
15591
15592	default:
15593		break;
15594	}
15595
15596	return (ENOTTY);
15597}
15598
15599/*ARGSUSED*/
15600static int
15601dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15602{
15603	minor_t minor = getminor(dev);
15604	dtrace_state_t *state;
15605	int rval;
15606
15607	if (minor == DTRACEMNRN_HELPER)
15608		return (dtrace_ioctl_helper(cmd, arg, rv));
15609
15610	state = ddi_get_soft_state(dtrace_softstate, minor);
15611
15612	if (state->dts_anon) {
15613		ASSERT(dtrace_anon.dta_state == NULL);
15614		state = state->dts_anon;
15615	}
15616
15617	switch (cmd) {
15618	case DTRACEIOC_PROVIDER: {
15619		dtrace_providerdesc_t pvd;
15620		dtrace_provider_t *pvp;
15621
15622		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15623			return (EFAULT);
15624
15625		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15626		mutex_enter(&dtrace_provider_lock);
15627
15628		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15629			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15630				break;
15631		}
15632
15633		mutex_exit(&dtrace_provider_lock);
15634
15635		if (pvp == NULL)
15636			return (ESRCH);
15637
15638		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15639		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15640
15641		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15642			return (EFAULT);
15643
15644		return (0);
15645	}
15646
15647	case DTRACEIOC_EPROBE: {
15648		dtrace_eprobedesc_t epdesc;
15649		dtrace_ecb_t *ecb;
15650		dtrace_action_t *act;
15651		void *buf;
15652		size_t size;
15653		uintptr_t dest;
15654		int nrecs;
15655
15656		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15657			return (EFAULT);
15658
15659		mutex_enter(&dtrace_lock);
15660
15661		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15662			mutex_exit(&dtrace_lock);
15663			return (EINVAL);
15664		}
15665
15666		if (ecb->dte_probe == NULL) {
15667			mutex_exit(&dtrace_lock);
15668			return (EINVAL);
15669		}
15670
15671		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15672		epdesc.dtepd_uarg = ecb->dte_uarg;
15673		epdesc.dtepd_size = ecb->dte_size;
15674
15675		nrecs = epdesc.dtepd_nrecs;
15676		epdesc.dtepd_nrecs = 0;
15677		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15678			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15679				continue;
15680
15681			epdesc.dtepd_nrecs++;
15682		}
15683
15684		/*
15685		 * Now that we have the size, we need to allocate a temporary
15686		 * buffer in which to store the complete description.  We need
15687		 * the temporary buffer to be able to drop dtrace_lock()
15688		 * across the copyout(), below.
15689		 */
15690		size = sizeof (dtrace_eprobedesc_t) +
15691		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15692
15693		buf = kmem_alloc(size, KM_SLEEP);
15694		dest = (uintptr_t)buf;
15695
15696		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15697		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15698
15699		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15700			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15701				continue;
15702
15703			if (nrecs-- == 0)
15704				break;
15705
15706			bcopy(&act->dta_rec, (void *)dest,
15707			    sizeof (dtrace_recdesc_t));
15708			dest += sizeof (dtrace_recdesc_t);
15709		}
15710
15711		mutex_exit(&dtrace_lock);
15712
15713		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15714			kmem_free(buf, size);
15715			return (EFAULT);
15716		}
15717
15718		kmem_free(buf, size);
15719		return (0);
15720	}
15721
15722	case DTRACEIOC_AGGDESC: {
15723		dtrace_aggdesc_t aggdesc;
15724		dtrace_action_t *act;
15725		dtrace_aggregation_t *agg;
15726		int nrecs;
15727		uint32_t offs;
15728		dtrace_recdesc_t *lrec;
15729		void *buf;
15730		size_t size;
15731		uintptr_t dest;
15732
15733		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15734			return (EFAULT);
15735
15736		mutex_enter(&dtrace_lock);
15737
15738		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15739			mutex_exit(&dtrace_lock);
15740			return (EINVAL);
15741		}
15742
15743		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15744
15745		nrecs = aggdesc.dtagd_nrecs;
15746		aggdesc.dtagd_nrecs = 0;
15747
15748		offs = agg->dtag_base;
15749		lrec = &agg->dtag_action.dta_rec;
15750		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15751
15752		for (act = agg->dtag_first; ; act = act->dta_next) {
15753			ASSERT(act->dta_intuple ||
15754			    DTRACEACT_ISAGG(act->dta_kind));
15755
15756			/*
15757			 * If this action has a record size of zero, it
15758			 * denotes an argument to the aggregating action.
15759			 * Because the presence of this record doesn't (or
15760			 * shouldn't) affect the way the data is interpreted,
15761			 * we don't copy it out to save user-level the
15762			 * confusion of dealing with a zero-length record.
15763			 */
15764			if (act->dta_rec.dtrd_size == 0) {
15765				ASSERT(agg->dtag_hasarg);
15766				continue;
15767			}
15768
15769			aggdesc.dtagd_nrecs++;
15770
15771			if (act == &agg->dtag_action)
15772				break;
15773		}
15774
15775		/*
15776		 * Now that we have the size, we need to allocate a temporary
15777		 * buffer in which to store the complete description.  We need
15778		 * the temporary buffer to be able to drop dtrace_lock()
15779		 * across the copyout(), below.
15780		 */
15781		size = sizeof (dtrace_aggdesc_t) +
15782		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15783
15784		buf = kmem_alloc(size, KM_SLEEP);
15785		dest = (uintptr_t)buf;
15786
15787		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15788		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15789
15790		for (act = agg->dtag_first; ; act = act->dta_next) {
15791			dtrace_recdesc_t rec = act->dta_rec;
15792
15793			/*
15794			 * See the comment in the above loop for why we pass
15795			 * over zero-length records.
15796			 */
15797			if (rec.dtrd_size == 0) {
15798				ASSERT(agg->dtag_hasarg);
15799				continue;
15800			}
15801
15802			if (nrecs-- == 0)
15803				break;
15804
15805			rec.dtrd_offset -= offs;
15806			bcopy(&rec, (void *)dest, sizeof (rec));
15807			dest += sizeof (dtrace_recdesc_t);
15808
15809			if (act == &agg->dtag_action)
15810				break;
15811		}
15812
15813		mutex_exit(&dtrace_lock);
15814
15815		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15816			kmem_free(buf, size);
15817			return (EFAULT);
15818		}
15819
15820		kmem_free(buf, size);
15821		return (0);
15822	}
15823
15824	case DTRACEIOC_ENABLE: {
15825		dof_hdr_t *dof;
15826		dtrace_enabling_t *enab = NULL;
15827		dtrace_vstate_t *vstate;
15828		int err = 0;
15829
15830		*rv = 0;
15831
15832		/*
15833		 * If a NULL argument has been passed, we take this as our
15834		 * cue to reevaluate our enablings.
15835		 */
15836		if (arg == NULL) {
15837			dtrace_enabling_matchall();
15838
15839			return (0);
15840		}
15841
15842		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15843			return (rval);
15844
15845		mutex_enter(&cpu_lock);
15846		mutex_enter(&dtrace_lock);
15847		vstate = &state->dts_vstate;
15848
15849		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15850			mutex_exit(&dtrace_lock);
15851			mutex_exit(&cpu_lock);
15852			dtrace_dof_destroy(dof);
15853			return (EBUSY);
15854		}
15855
15856		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15857			mutex_exit(&dtrace_lock);
15858			mutex_exit(&cpu_lock);
15859			dtrace_dof_destroy(dof);
15860			return (EINVAL);
15861		}
15862
15863		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15864			dtrace_enabling_destroy(enab);
15865			mutex_exit(&dtrace_lock);
15866			mutex_exit(&cpu_lock);
15867			dtrace_dof_destroy(dof);
15868			return (rval);
15869		}
15870
15871		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15872			err = dtrace_enabling_retain(enab);
15873		} else {
15874			dtrace_enabling_destroy(enab);
15875		}
15876
15877		mutex_exit(&cpu_lock);
15878		mutex_exit(&dtrace_lock);
15879		dtrace_dof_destroy(dof);
15880
15881		return (err);
15882	}
15883
15884	case DTRACEIOC_REPLICATE: {
15885		dtrace_repldesc_t desc;
15886		dtrace_probedesc_t *match = &desc.dtrpd_match;
15887		dtrace_probedesc_t *create = &desc.dtrpd_create;
15888		int err;
15889
15890		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15891			return (EFAULT);
15892
15893		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15894		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15895		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15896		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15897
15898		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15899		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15900		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15901		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15902
15903		mutex_enter(&dtrace_lock);
15904		err = dtrace_enabling_replicate(state, match, create);
15905		mutex_exit(&dtrace_lock);
15906
15907		return (err);
15908	}
15909
15910	case DTRACEIOC_PROBEMATCH:
15911	case DTRACEIOC_PROBES: {
15912		dtrace_probe_t *probe = NULL;
15913		dtrace_probedesc_t desc;
15914		dtrace_probekey_t pkey;
15915		dtrace_id_t i;
15916		int m = 0;
15917		uint32_t priv;
15918		uid_t uid;
15919		zoneid_t zoneid;
15920
15921		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15922			return (EFAULT);
15923
15924		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15925		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15926		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15927		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15928
15929		/*
15930		 * Before we attempt to match this probe, we want to give
15931		 * all providers the opportunity to provide it.
15932		 */
15933		if (desc.dtpd_id == DTRACE_IDNONE) {
15934			mutex_enter(&dtrace_provider_lock);
15935			dtrace_probe_provide(&desc, NULL);
15936			mutex_exit(&dtrace_provider_lock);
15937			desc.dtpd_id++;
15938		}
15939
15940		if (cmd == DTRACEIOC_PROBEMATCH)  {
15941			dtrace_probekey(&desc, &pkey);
15942			pkey.dtpk_id = DTRACE_IDNONE;
15943		}
15944
15945		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15946
15947		mutex_enter(&dtrace_lock);
15948
15949		if (cmd == DTRACEIOC_PROBEMATCH) {
15950			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15951				if ((probe = dtrace_probes[i - 1]) != NULL &&
15952				    (m = dtrace_match_probe(probe, &pkey,
15953				    priv, uid, zoneid)) != 0)
15954					break;
15955			}
15956
15957			if (m < 0) {
15958				mutex_exit(&dtrace_lock);
15959				return (EINVAL);
15960			}
15961
15962		} else {
15963			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15964				if ((probe = dtrace_probes[i - 1]) != NULL &&
15965				    dtrace_match_priv(probe, priv, uid, zoneid))
15966					break;
15967			}
15968		}
15969
15970		if (probe == NULL) {
15971			mutex_exit(&dtrace_lock);
15972			return (ESRCH);
15973		}
15974
15975		dtrace_probe_description(probe, &desc);
15976		mutex_exit(&dtrace_lock);
15977
15978		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15979			return (EFAULT);
15980
15981		return (0);
15982	}
15983
15984	case DTRACEIOC_PROBEARG: {
15985		dtrace_argdesc_t desc;
15986		dtrace_probe_t *probe;
15987		dtrace_provider_t *prov;
15988
15989		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15990			return (EFAULT);
15991
15992		if (desc.dtargd_id == DTRACE_IDNONE)
15993			return (EINVAL);
15994
15995		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15996			return (EINVAL);
15997
15998		mutex_enter(&dtrace_provider_lock);
15999		mutex_enter(&mod_lock);
16000		mutex_enter(&dtrace_lock);
16001
16002		if (desc.dtargd_id > dtrace_nprobes) {
16003			mutex_exit(&dtrace_lock);
16004			mutex_exit(&mod_lock);
16005			mutex_exit(&dtrace_provider_lock);
16006			return (EINVAL);
16007		}
16008
16009		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16010			mutex_exit(&dtrace_lock);
16011			mutex_exit(&mod_lock);
16012			mutex_exit(&dtrace_provider_lock);
16013			return (EINVAL);
16014		}
16015
16016		mutex_exit(&dtrace_lock);
16017
16018		prov = probe->dtpr_provider;
16019
16020		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16021			/*
16022			 * There isn't any typed information for this probe.
16023			 * Set the argument number to DTRACE_ARGNONE.
16024			 */
16025			desc.dtargd_ndx = DTRACE_ARGNONE;
16026		} else {
16027			desc.dtargd_native[0] = '\0';
16028			desc.dtargd_xlate[0] = '\0';
16029			desc.dtargd_mapping = desc.dtargd_ndx;
16030
16031			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16032			    probe->dtpr_id, probe->dtpr_arg, &desc);
16033		}
16034
16035		mutex_exit(&mod_lock);
16036		mutex_exit(&dtrace_provider_lock);
16037
16038		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16039			return (EFAULT);
16040
16041		return (0);
16042	}
16043
16044	case DTRACEIOC_GO: {
16045		processorid_t cpuid;
16046		rval = dtrace_state_go(state, &cpuid);
16047
16048		if (rval != 0)
16049			return (rval);
16050
16051		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16052			return (EFAULT);
16053
16054		return (0);
16055	}
16056
16057	case DTRACEIOC_STOP: {
16058		processorid_t cpuid;
16059
16060		mutex_enter(&dtrace_lock);
16061		rval = dtrace_state_stop(state, &cpuid);
16062		mutex_exit(&dtrace_lock);
16063
16064		if (rval != 0)
16065			return (rval);
16066
16067		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16068			return (EFAULT);
16069
16070		return (0);
16071	}
16072
16073	case DTRACEIOC_DOFGET: {
16074		dof_hdr_t hdr, *dof;
16075		uint64_t len;
16076
16077		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16078			return (EFAULT);
16079
16080		mutex_enter(&dtrace_lock);
16081		dof = dtrace_dof_create(state);
16082		mutex_exit(&dtrace_lock);
16083
16084		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16085		rval = copyout(dof, (void *)arg, len);
16086		dtrace_dof_destroy(dof);
16087
16088		return (rval == 0 ? 0 : EFAULT);
16089	}
16090
16091	case DTRACEIOC_AGGSNAP:
16092	case DTRACEIOC_BUFSNAP: {
16093		dtrace_bufdesc_t desc;
16094		caddr_t cached;
16095		dtrace_buffer_t *buf;
16096
16097		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16098			return (EFAULT);
16099
16100		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16101			return (EINVAL);
16102
16103		mutex_enter(&dtrace_lock);
16104
16105		if (cmd == DTRACEIOC_BUFSNAP) {
16106			buf = &state->dts_buffer[desc.dtbd_cpu];
16107		} else {
16108			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16109		}
16110
16111		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16112			size_t sz = buf->dtb_offset;
16113
16114			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16115				mutex_exit(&dtrace_lock);
16116				return (EBUSY);
16117			}
16118
16119			/*
16120			 * If this buffer has already been consumed, we're
16121			 * going to indicate that there's nothing left here
16122			 * to consume.
16123			 */
16124			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16125				mutex_exit(&dtrace_lock);
16126
16127				desc.dtbd_size = 0;
16128				desc.dtbd_drops = 0;
16129				desc.dtbd_errors = 0;
16130				desc.dtbd_oldest = 0;
16131				sz = sizeof (desc);
16132
16133				if (copyout(&desc, (void *)arg, sz) != 0)
16134					return (EFAULT);
16135
16136				return (0);
16137			}
16138
16139			/*
16140			 * If this is a ring buffer that has wrapped, we want
16141			 * to copy the whole thing out.
16142			 */
16143			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16144				dtrace_buffer_polish(buf);
16145				sz = buf->dtb_size;
16146			}
16147
16148			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16149				mutex_exit(&dtrace_lock);
16150				return (EFAULT);
16151			}
16152
16153			desc.dtbd_size = sz;
16154			desc.dtbd_drops = buf->dtb_drops;
16155			desc.dtbd_errors = buf->dtb_errors;
16156			desc.dtbd_oldest = buf->dtb_xamot_offset;
16157
16158			mutex_exit(&dtrace_lock);
16159
16160			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16161				return (EFAULT);
16162
16163			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16164
16165			return (0);
16166		}
16167
16168		if (buf->dtb_tomax == NULL) {
16169			ASSERT(buf->dtb_xamot == NULL);
16170			mutex_exit(&dtrace_lock);
16171			return (ENOENT);
16172		}
16173
16174		cached = buf->dtb_tomax;
16175		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16176
16177		dtrace_xcall(desc.dtbd_cpu,
16178		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16179
16180		state->dts_errors += buf->dtb_xamot_errors;
16181
16182		/*
16183		 * If the buffers did not actually switch, then the cross call
16184		 * did not take place -- presumably because the given CPU is
16185		 * not in the ready set.  If this is the case, we'll return
16186		 * ENOENT.
16187		 */
16188		if (buf->dtb_tomax == cached) {
16189			ASSERT(buf->dtb_xamot != cached);
16190			mutex_exit(&dtrace_lock);
16191			return (ENOENT);
16192		}
16193
16194		ASSERT(cached == buf->dtb_xamot);
16195
16196		/*
16197		 * We have our snapshot; now copy it out.
16198		 */
16199		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16200		    buf->dtb_xamot_offset) != 0) {
16201			mutex_exit(&dtrace_lock);
16202			return (EFAULT);
16203		}
16204
16205		desc.dtbd_size = buf->dtb_xamot_offset;
16206		desc.dtbd_drops = buf->dtb_xamot_drops;
16207		desc.dtbd_errors = buf->dtb_xamot_errors;
16208		desc.dtbd_oldest = 0;
16209
16210		mutex_exit(&dtrace_lock);
16211
16212		/*
16213		 * Finally, copy out the buffer description.
16214		 */
16215		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16216			return (EFAULT);
16217
16218		return (0);
16219	}
16220
16221	case DTRACEIOC_CONF: {
16222		dtrace_conf_t conf;
16223
16224		bzero(&conf, sizeof (conf));
16225		conf.dtc_difversion = DIF_VERSION;
16226		conf.dtc_difintregs = DIF_DIR_NREGS;
16227		conf.dtc_diftupregs = DIF_DTR_NREGS;
16228		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16229
16230		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16231			return (EFAULT);
16232
16233		return (0);
16234	}
16235
16236	case DTRACEIOC_STATUS: {
16237		dtrace_status_t stat;
16238		dtrace_dstate_t *dstate;
16239		int i, j;
16240		uint64_t nerrs;
16241
16242		/*
16243		 * See the comment in dtrace_state_deadman() for the reason
16244		 * for setting dts_laststatus to INT64_MAX before setting
16245		 * it to the correct value.
16246		 */
16247		state->dts_laststatus = INT64_MAX;
16248		dtrace_membar_producer();
16249		state->dts_laststatus = dtrace_gethrtime();
16250
16251		bzero(&stat, sizeof (stat));
16252
16253		mutex_enter(&dtrace_lock);
16254
16255		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16256			mutex_exit(&dtrace_lock);
16257			return (ENOENT);
16258		}
16259
16260		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16261			stat.dtst_exiting = 1;
16262
16263		nerrs = state->dts_errors;
16264		dstate = &state->dts_vstate.dtvs_dynvars;
16265
16266		for (i = 0; i < NCPU; i++) {
16267			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16268
16269			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16270			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16271			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16272
16273			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16274				stat.dtst_filled++;
16275
16276			nerrs += state->dts_buffer[i].dtb_errors;
16277
16278			for (j = 0; j < state->dts_nspeculations; j++) {
16279				dtrace_speculation_t *spec;
16280				dtrace_buffer_t *buf;
16281
16282				spec = &state->dts_speculations[j];
16283				buf = &spec->dtsp_buffer[i];
16284				stat.dtst_specdrops += buf->dtb_xamot_drops;
16285			}
16286		}
16287
16288		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16289		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16290		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16291		stat.dtst_dblerrors = state->dts_dblerrors;
16292		stat.dtst_killed =
16293		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16294		stat.dtst_errors = nerrs;
16295
16296		mutex_exit(&dtrace_lock);
16297
16298		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16299			return (EFAULT);
16300
16301		return (0);
16302	}
16303
16304	case DTRACEIOC_FORMAT: {
16305		dtrace_fmtdesc_t fmt;
16306		char *str;
16307		int len;
16308
16309		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16310			return (EFAULT);
16311
16312		mutex_enter(&dtrace_lock);
16313
16314		if (fmt.dtfd_format == 0 ||
16315		    fmt.dtfd_format > state->dts_nformats) {
16316			mutex_exit(&dtrace_lock);
16317			return (EINVAL);
16318		}
16319
16320		/*
16321		 * Format strings are allocated contiguously and they are
16322		 * never freed; if a format index is less than the number
16323		 * of formats, we can assert that the format map is non-NULL
16324		 * and that the format for the specified index is non-NULL.
16325		 */
16326		ASSERT(state->dts_formats != NULL);
16327		str = state->dts_formats[fmt.dtfd_format - 1];
16328		ASSERT(str != NULL);
16329
16330		len = strlen(str) + 1;
16331
16332		if (len > fmt.dtfd_length) {
16333			fmt.dtfd_length = len;
16334
16335			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16336				mutex_exit(&dtrace_lock);
16337				return (EINVAL);
16338			}
16339		} else {
16340			if (copyout(str, fmt.dtfd_string, len) != 0) {
16341				mutex_exit(&dtrace_lock);
16342				return (EINVAL);
16343			}
16344		}
16345
16346		mutex_exit(&dtrace_lock);
16347		return (0);
16348	}
16349
16350	default:
16351		break;
16352	}
16353
16354	return (ENOTTY);
16355}
16356
16357/*ARGSUSED*/
16358static int
16359dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16360{
16361	dtrace_state_t *state;
16362
16363	switch (cmd) {
16364	case DDI_DETACH:
16365		break;
16366
16367	case DDI_SUSPEND:
16368		return (DDI_SUCCESS);
16369
16370	default:
16371		return (DDI_FAILURE);
16372	}
16373
16374	mutex_enter(&cpu_lock);
16375	mutex_enter(&dtrace_provider_lock);
16376	mutex_enter(&dtrace_lock);
16377
16378	ASSERT(dtrace_opens == 0);
16379
16380	if (dtrace_helpers > 0) {
16381		mutex_exit(&dtrace_provider_lock);
16382		mutex_exit(&dtrace_lock);
16383		mutex_exit(&cpu_lock);
16384		return (DDI_FAILURE);
16385	}
16386
16387	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16388		mutex_exit(&dtrace_provider_lock);
16389		mutex_exit(&dtrace_lock);
16390		mutex_exit(&cpu_lock);
16391		return (DDI_FAILURE);
16392	}
16393
16394	dtrace_provider = NULL;
16395
16396	if ((state = dtrace_anon_grab()) != NULL) {
16397		/*
16398		 * If there were ECBs on this state, the provider should
16399		 * have not been allowed to detach; assert that there is
16400		 * none.
16401		 */
16402		ASSERT(state->dts_necbs == 0);
16403		dtrace_state_destroy(state);
16404
16405		/*
16406		 * If we're being detached with anonymous state, we need to
16407		 * indicate to the kernel debugger that DTrace is now inactive.
16408		 */
16409		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16410	}
16411
16412	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16413	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16414	dtrace_cpu_init = NULL;
16415	dtrace_helpers_cleanup = NULL;
16416	dtrace_helpers_fork = NULL;
16417	dtrace_cpustart_init = NULL;
16418	dtrace_cpustart_fini = NULL;
16419	dtrace_debugger_init = NULL;
16420	dtrace_debugger_fini = NULL;
16421	dtrace_modload = NULL;
16422	dtrace_modunload = NULL;
16423
16424	mutex_exit(&cpu_lock);
16425
16426	if (dtrace_helptrace_enabled) {
16427		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16428		dtrace_helptrace_buffer = NULL;
16429	}
16430
16431	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16432	dtrace_probes = NULL;
16433	dtrace_nprobes = 0;
16434
16435	dtrace_hash_destroy(dtrace_bymod);
16436	dtrace_hash_destroy(dtrace_byfunc);
16437	dtrace_hash_destroy(dtrace_byname);
16438	dtrace_bymod = NULL;
16439	dtrace_byfunc = NULL;
16440	dtrace_byname = NULL;
16441
16442	kmem_cache_destroy(dtrace_state_cache);
16443	vmem_destroy(dtrace_minor);
16444	vmem_destroy(dtrace_arena);
16445
16446	if (dtrace_toxrange != NULL) {
16447		kmem_free(dtrace_toxrange,
16448		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16449		dtrace_toxrange = NULL;
16450		dtrace_toxranges = 0;
16451		dtrace_toxranges_max = 0;
16452	}
16453
16454	ddi_remove_minor_node(dtrace_devi, NULL);
16455	dtrace_devi = NULL;
16456
16457	ddi_soft_state_fini(&dtrace_softstate);
16458
16459	ASSERT(dtrace_vtime_references == 0);
16460	ASSERT(dtrace_opens == 0);
16461	ASSERT(dtrace_retained == NULL);
16462
16463	mutex_exit(&dtrace_lock);
16464	mutex_exit(&dtrace_provider_lock);
16465
16466	/*
16467	 * We don't destroy the task queue until after we have dropped our
16468	 * locks (taskq_destroy() may block on running tasks).  To prevent
16469	 * attempting to do work after we have effectively detached but before
16470	 * the task queue has been destroyed, all tasks dispatched via the
16471	 * task queue must check that DTrace is still attached before
16472	 * performing any operation.
16473	 */
16474	taskq_destroy(dtrace_taskq);
16475	dtrace_taskq = NULL;
16476
16477	return (DDI_SUCCESS);
16478}
16479#endif
16480
16481#if defined(sun)
16482/*ARGSUSED*/
16483static int
16484dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16485{
16486	int error;
16487
16488	switch (infocmd) {
16489	case DDI_INFO_DEVT2DEVINFO:
16490		*result = (void *)dtrace_devi;
16491		error = DDI_SUCCESS;
16492		break;
16493	case DDI_INFO_DEVT2INSTANCE:
16494		*result = (void *)0;
16495		error = DDI_SUCCESS;
16496		break;
16497	default:
16498		error = DDI_FAILURE;
16499	}
16500	return (error);
16501}
16502#endif
16503
16504#if defined(sun)
16505static struct cb_ops dtrace_cb_ops = {
16506	dtrace_open,		/* open */
16507	dtrace_close,		/* close */
16508	nulldev,		/* strategy */
16509	nulldev,		/* print */
16510	nodev,			/* dump */
16511	nodev,			/* read */
16512	nodev,			/* write */
16513	dtrace_ioctl,		/* ioctl */
16514	nodev,			/* devmap */
16515	nodev,			/* mmap */
16516	nodev,			/* segmap */
16517	nochpoll,		/* poll */
16518	ddi_prop_op,		/* cb_prop_op */
16519	0,			/* streamtab  */
16520	D_NEW | D_MP		/* Driver compatibility flag */
16521};
16522
16523static struct dev_ops dtrace_ops = {
16524	DEVO_REV,		/* devo_rev */
16525	0,			/* refcnt */
16526	dtrace_info,		/* get_dev_info */
16527	nulldev,		/* identify */
16528	nulldev,		/* probe */
16529	dtrace_attach,		/* attach */
16530	dtrace_detach,		/* detach */
16531	nodev,			/* reset */
16532	&dtrace_cb_ops,		/* driver operations */
16533	NULL,			/* bus operations */
16534	nodev			/* dev power */
16535};
16536
16537static struct modldrv modldrv = {
16538	&mod_driverops,		/* module type (this is a pseudo driver) */
16539	"Dynamic Tracing",	/* name of module */
16540	&dtrace_ops,		/* driver ops */
16541};
16542
16543static struct modlinkage modlinkage = {
16544	MODREV_1,
16545	(void *)&modldrv,
16546	NULL
16547};
16548
16549int
16550_init(void)
16551{
16552	return (mod_install(&modlinkage));
16553}
16554
16555int
16556_info(struct modinfo *modinfop)
16557{
16558	return (mod_info(&modlinkage, modinfop));
16559}
16560
16561int
16562_fini(void)
16563{
16564	return (mod_remove(&modlinkage));
16565}
16566#else
16567
16568#if 0
16569static d_ioctl_t	dtrace_ioctl;
16570static void		dtrace_load(void *);
16571static int		dtrace_unload(void);
16572#if __FreeBSD_version < 800039
16573static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16574static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16575static eventhandler_tag	eh_tag;			/* Event handler tag. */
16576#else
16577static struct cdev	*dtrace_dev;
16578#endif
16579
16580void dtrace_invop_init(void);
16581void dtrace_invop_uninit(void);
16582
16583static struct cdevsw dtrace_cdevsw = {
16584	.d_version	= D_VERSION,
16585	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16586	.d_close	= dtrace_close,
16587	.d_ioctl	= dtrace_ioctl,
16588	.d_open		= dtrace_open,
16589	.d_name		= "dtrace",
16590};
16591#endif
16592void dtrace_invop_init(void);
16593void dtrace_invop_uninit(void);
16594
16595static void		dtrace_load(void *);
16596static int		dtrace_unload(void);
16597
16598#include <dtrace_anon.c>
16599#include <dtrace_ioctl.c>
16600#include <dtrace_load.c>
16601#include <dtrace_modevent.c>
16602#include <dtrace_sysctl.c>
16603#include <dtrace_unload.c>
16604#include <dtrace_vtime.c>
16605#include <dtrace_hacks.c>
16606#include <dtrace_isa.c>
16607
16608MODULE(MODULE_CLASS_MISC, dtrace, "solaris");
16609
16610#if 0
16611DEV_MODULE(dtrace, dtrace_modevent, NULL);
16612MODULE_VERSION(dtrace, 1);
16613MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16614MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16615#endif
16616#endif
16617
16618#if !defined(sun)
16619#undef mutex_init
16620
16621struct dtrace_state_worker {
16622	kmutex_t lock;
16623	kcondvar_t cv;
16624	void (*fn)(dtrace_state_t *);
16625	dtrace_state_t *state;
16626	int interval;
16627	lwp_t *lwp;
16628	bool exiting;
16629};
16630
16631static void
16632dtrace_state_worker_thread(void *vp)
16633{
16634	struct dtrace_state_worker *w = vp;
16635
16636	mutex_enter(&w->lock);
16637	while (!w->exiting) {
16638		int error;
16639
16640		error = cv_timedwait(&w->cv, &w->lock, w->interval);
16641		if (error == EWOULDBLOCK) {
16642			mutex_exit(&w->lock);
16643			w->fn(w->state);
16644			mutex_enter(&w->lock);
16645		}
16646	}
16647	mutex_exit(&w->lock);
16648	kthread_exit(0);
16649}
16650
16651struct dtrace_state_worker *
16652dtrace_state_worker_add(void (*fn)(dtrace_state_t *), dtrace_state_t *state,
16653    hrtime_t interval)
16654{
16655	struct dtrace_state_worker *w;
16656	int error;
16657
16658	w = kmem_alloc(sizeof(*w), KM_SLEEP);
16659	mutex_init(&w->lock, MUTEX_DEFAULT, IPL_NONE);
16660	cv_init(&w->cv, "dtrace");
16661	w->interval = ((uintmax_t)hz * interval) / NANOSEC,
16662	w->fn = fn;
16663	w->state = state;
16664	w->exiting = false;
16665	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_MUSTJOIN, NULL,
16666	    dtrace_state_worker_thread, w, &w->lwp, "dtrace-state-worker");
16667	KASSERT(error == 0); /* XXX */
16668	return w;
16669}
16670
16671void
16672dtrace_state_worker_remove(struct dtrace_state_worker *w)
16673{
16674	int error;
16675
16676	KASSERT(!w->exiting);
16677	mutex_enter(&w->lock);
16678	w->exiting = true;
16679	cv_signal(&w->cv);
16680	mutex_exit(&w->lock);
16681	error = kthread_join(w->lwp);
16682	KASSERT(error == 0);
16683	cv_destroy(&w->cv);
16684	mutex_destroy(&w->lock);
16685	kmem_free(w, sizeof(*w));
16686}
16687#endif
16688