1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#if HAVE_NBTOOL_CONFIG_H
115# include "nbtool_config.h"
116#endif
117
118#include <stdio.h>
119#include <strings.h>
120#include <assert.h>
121#include <pthread.h>
122
123#include "ctf_headers.h"
124#include "ctftools.h"
125#include "list.h"
126#include "alist.h"
127#include "memory.h"
128#include "traverse.h"
129
130typedef struct equiv_data equiv_data_t;
131typedef struct merge_cb_data merge_cb_data_t;
132
133/*
134 * There are two traversals in this file, for equivalency and for tdesc_t
135 * re-creation, that do not fit into the tdtraverse() framework.  We have our
136 * own traversal mechanism and ops vector here for those two cases.
137 */
138typedef struct tdesc_ops {
139	const char *name;
140	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
141	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
142} tdesc_ops_t;
143extern tdesc_ops_t tdesc_ops[];
144
145/*
146 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
147 * processed during various phases of the merge algorithm.
148 */
149struct merge_cb_data {
150	tdata_t *md_parent;
151	tdata_t *md_tgt;
152	alist_t *md_ta;		/* Type Association */
153	alist_t *md_fdida;	/* Forward -> Definition ID Association */
154	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
155	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
156	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
157	int md_flags;
158}; /* merge_cb_data_t */
159
160/*
161 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
162 * Normal merges, however, assume that the child tdata_t is already self-unique,
163 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
164 * the merge algorithm will self-uniquify by avoiding the insertion of
165 * duplicates in the md_tdtdba list.
166 */
167#define	MCD_F_SELFUNIQUIFY	0x1
168
169/*
170 * When we merge the CTF data for the modules, we don't want it to contain any
171 * data that can be found in the reference module (usually genunix).  If this
172 * flag is set, we're doing a merge between the fully merged tdata_t for this
173 * module and the tdata_t for the reference module, with the data unique to this
174 * module ending up in a third tdata_t.  It is this third tdata_t that will end
175 * up in the .SUNW_ctf section for the module.
176 */
177#define	MCD_F_REFMERGE	0x2
178
179/*
180 * Mapping of child type IDs to parent type IDs
181 */
182
183static void
184add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
185{
186	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
187
188	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
189	assert(srcid != 0 && tgtid != 0);
190
191	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
192}
193
194static tid_t
195get_mapping(alist_t *ta, int srcid)
196{
197	void *ltgtid;
198
199	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
200		return ((uintptr_t)ltgtid);
201	else
202		return (0);
203}
204
205/*
206 * Determining equivalence of tdesc_t subgraphs
207 */
208
209struct equiv_data {
210	alist_t *ed_ta;
211	tdesc_t *ed_node;
212	tdesc_t *ed_tgt;
213
214	int ed_clear_mark;
215	int ed_cur_mark;
216	int ed_selfuniquify;
217}; /* equiv_data_t */
218
219static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
220
221/*ARGSUSED2*/
222static int
223equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
224{
225	intr_t *si = stdp->t_intr;
226	intr_t *ti = ttdp->t_intr;
227
228	if (si->intr_type != ti->intr_type ||
229	    si->intr_signed != ti->intr_signed ||
230	    si->intr_offset != ti->intr_offset ||
231	    si->intr_nbits != ti->intr_nbits)
232		return (0);
233
234	if (si->intr_type == INTR_INT &&
235	    si->intr_iformat != ti->intr_iformat)
236		return (0);
237	else if (si->intr_type == INTR_REAL &&
238	    si->intr_fformat != ti->intr_fformat)
239		return (0);
240
241	return (1);
242}
243
244static int
245equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
246{
247	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
248}
249
250static int
251equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
252{
253	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
254	int i;
255
256	if (fn1->fn_nargs != fn2->fn_nargs ||
257	    fn1->fn_vargs != fn2->fn_vargs)
258		return (0);
259
260	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
261		return (0);
262
263	for (i = 0; i < (int) fn1->fn_nargs; i++) {
264		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
265			return (0);
266	}
267
268	return (1);
269}
270
271static int
272equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
273{
274	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
275
276	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
277	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
278		return (0);
279
280	if (ar1->ad_nelems != ar2->ad_nelems)
281		return (0);
282
283	return (1);
284}
285
286static int
287equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
288{
289	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
290	mlist_t *olm1 = NULL;
291
292	while (ml1 && ml2) {
293		if (ml1->ml_offset != ml2->ml_offset ||
294		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
295			return (0);
296
297		/*
298		 * Don't do the recursive equivalency checking more than
299		 * we have to.
300		 */
301		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
302			if (ml1->ml_size != ml2->ml_size ||
303			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
304				return (0);
305		}
306
307		olm1 = ml1;
308		ml1 = ml1->ml_next;
309		ml2 = ml2->ml_next;
310	}
311
312	if (ml1 || ml2)
313		return (0);
314
315	return (1);
316}
317
318/*ARGSUSED2*/
319static int
320equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
321{
322	elist_t *el1 = stdp->t_emem;
323	elist_t *el2 = ttdp->t_emem;
324
325	while (el1 && el2) {
326		if (el1->el_number != el2->el_number ||
327		    strcmp(el1->el_name, el2->el_name) != 0)
328			return (0);
329
330		el1 = el1->el_next;
331		el2 = el2->el_next;
332	}
333
334	if (el1 || el2)
335		return (0);
336
337	return (1);
338}
339
340/*ARGSUSED*/
341static int
342equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
343{
344	/* foul, evil, and very bad - this is a "shouldn't happen" */
345	assert(1 == 0);
346
347	return (0);
348}
349
350static int
351fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
352{
353	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
354
355	return (defn->t_type == STRUCT || defn->t_type == UNION);
356}
357
358static int
359equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
360{
361	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
362	int mapping;
363
364	if (ctdp->t_emark > ed->ed_clear_mark ||
365	    mtdp->t_emark > ed->ed_clear_mark)
366		return (ctdp->t_emark == mtdp->t_emark);
367
368	/*
369	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
370	 * checking on a subgraph that has already been checked.  If a mapping
371	 * has already been established for a given child node, we can simply
372	 * compare the mapping for the child node with the ID of the parent
373	 * node.  If we are in self-uniquify mode, then we're comparing two
374	 * subgraphs within the child graph, and thus need to ignore any
375	 * type mappings that have been created, as they are only valid into the
376	 * parent.
377	 */
378	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
379	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
380		return (1);
381
382	if (!streq(ctdp->t_name, mtdp->t_name))
383		return (0);
384
385	if (ctdp->t_type != mtdp->t_type) {
386		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
387			return (fwd_equiv(ctdp, mtdp));
388		else
389			return (0);
390	}
391
392	ctdp->t_emark = ed->ed_cur_mark;
393	mtdp->t_emark = ed->ed_cur_mark;
394	ed->ed_cur_mark++;
395
396	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
397		return (equiv(ctdp, mtdp, ed));
398
399	return (1);
400}
401
402/*
403 * We perform an equivalency check on two subgraphs by traversing through them
404 * in lockstep.  If a given node is equivalent in both the parent and the child,
405 * we mark it in both subgraphs, using the t_emark field, with a monotonically
406 * increasing number.  If, in the course of the traversal, we reach a node that
407 * we have visited and numbered during this equivalency check, we have a cycle.
408 * If the previously-visited nodes don't have the same emark, then the edges
409 * that brought us to these nodes are not equivalent, and so the check ends.
410 * If the emarks are the same, the edges are equivalent.  We then backtrack and
411 * continue the traversal.  If we have exhausted all edges in the subgraph, and
412 * have not found any inequivalent nodes, then the subgraphs are equivalent.
413 */
414static int
415equiv_cb(void *bucket, void *arg)
416{
417	equiv_data_t *ed = arg;
418	tdesc_t *mtdp = bucket;
419	tdesc_t *ctdp = ed->ed_node;
420
421	ed->ed_clear_mark = ed->ed_cur_mark + 1;
422	ed->ed_cur_mark = ed->ed_clear_mark + 1;
423
424	if (equiv_node(ctdp, mtdp, ed)) {
425		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
426		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
427		ed->ed_tgt = mtdp;
428		/* matched.  stop looking */
429		return (-1);
430	}
431
432	return (0);
433}
434
435/*ARGSUSED1*/
436static int
437map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
438{
439	merge_cb_data_t *mcd = private;
440
441	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
442		return (0);
443
444	return (1);
445}
446
447/*ARGSUSED1*/
448static int
449map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
450{
451	merge_cb_data_t *mcd = private;
452	equiv_data_t ed;
453
454	ed.ed_ta = mcd->md_ta;
455	ed.ed_clear_mark = mcd->md_parent->td_curemark;
456	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
457	ed.ed_node = ctdp;
458	ed.ed_selfuniquify = 0;
459
460	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
461
462	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
463	    equiv_cb, &ed) < 0) {
464		/* We found an equivalent node */
465		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
466			int id = mcd->md_tgt->td_nextid++;
467
468			debug(3, "Creating new defn type %d <%x>\n", id, id);
469			add_mapping(mcd->md_ta, ctdp->t_id, id);
470			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
471			    (void *)(ulong_t)id);
472			hash_add(mcd->md_tdtba, ctdp);
473		} else
474			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
475
476	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
477	    equiv_cb, &ed) < 0) {
478		/*
479		 * We didn't find an equivalent node by looking through the
480		 * layout hash, but we somehow found it by performing an
481		 * exhaustive search through the entire graph.  This usually
482		 * means that the "name" hash function is broken.
483		 */
484		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
485		    tdesc_name(ctdp), ed.ed_tgt->t_id);
486	} else {
487		int id = mcd->md_tgt->td_nextid++;
488
489		debug(3, "Creating new type %d <%x>\n", id, id);
490		add_mapping(mcd->md_ta, ctdp->t_id, id);
491		hash_add(mcd->md_tdtba, ctdp);
492	}
493
494	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
495
496	return (1);
497}
498
499/*ARGSUSED1*/
500static int
501map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
502{
503	merge_cb_data_t *mcd = private;
504	equiv_data_t ed;
505
506	ed.ed_ta = mcd->md_ta;
507	ed.ed_clear_mark = mcd->md_parent->td_curemark;
508	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
509	ed.ed_node = ctdp;
510	ed.ed_selfuniquify = 1;
511	ed.ed_tgt = NULL;
512
513	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
514		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
515		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
516		add_mapping(mcd->md_ta, ctdp->t_id,
517		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
518	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
519	    equiv_cb, &ed) < 0) {
520		/*
521		 * We didn't find an equivalent node using the quick way (going
522		 * through the hash normally), but we did find it by iterating
523		 * through the entire hash.  This usually means that the hash
524		 * function is broken.
525		 */
526		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
527		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
528		    ed.ed_tgt->t_id);
529	} else {
530		int id = mcd->md_tgt->td_nextid++;
531
532		debug(3, "Creating new type %d <%x>\n", id, id);
533		add_mapping(mcd->md_ta, ctdp->t_id, id);
534		hash_add(mcd->md_tdtba, ctdp);
535	}
536
537	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
538
539	return (1);
540}
541
542static tdtrav_cb_f map_pre[] = {
543	NULL,
544	map_td_tree_pre,	/* intrinsic */
545	map_td_tree_pre,	/* pointer */
546	map_td_tree_pre,	/* array */
547	map_td_tree_pre,	/* function */
548	map_td_tree_pre,	/* struct */
549	map_td_tree_pre,	/* union */
550	map_td_tree_pre,	/* enum */
551	map_td_tree_pre,	/* forward */
552	map_td_tree_pre,	/* typedef */
553	tdtrav_assert,		/* typedef_unres */
554	map_td_tree_pre,	/* volatile */
555	map_td_tree_pre,	/* const */
556	map_td_tree_pre		/* restrict */
557};
558
559static tdtrav_cb_f map_post[] = {
560	NULL,
561	map_td_tree_post,	/* intrinsic */
562	map_td_tree_post,	/* pointer */
563	map_td_tree_post,	/* array */
564	map_td_tree_post,	/* function */
565	map_td_tree_post,	/* struct */
566	map_td_tree_post,	/* union */
567	map_td_tree_post,	/* enum */
568	map_td_tree_post,	/* forward */
569	map_td_tree_post,	/* typedef */
570	tdtrav_assert,		/* typedef_unres */
571	map_td_tree_post,	/* volatile */
572	map_td_tree_post,	/* const */
573	map_td_tree_post	/* restrict */
574};
575
576static tdtrav_cb_f map_self_post[] = {
577	NULL,
578	map_td_tree_self_post,	/* intrinsic */
579	map_td_tree_self_post,	/* pointer */
580	map_td_tree_self_post,	/* array */
581	map_td_tree_self_post,	/* function */
582	map_td_tree_self_post,	/* struct */
583	map_td_tree_self_post,	/* union */
584	map_td_tree_self_post,	/* enum */
585	map_td_tree_self_post,	/* forward */
586	map_td_tree_self_post,	/* typedef */
587	tdtrav_assert,		/* typedef_unres */
588	map_td_tree_self_post,	/* volatile */
589	map_td_tree_self_post,	/* const */
590	map_td_tree_self_post	/* restrict */
591};
592
593/*
594 * Determining equivalence of iidesc_t nodes
595 */
596
597typedef struct iifind_data {
598	iidesc_t *iif_template;
599	alist_t *iif_ta;
600	int iif_newidx;
601	int iif_refmerge;
602} iifind_data_t;
603
604/*
605 * Check to see if this iidesc_t (node) - the current one on the list we're
606 * iterating through - matches the target one (iif->iif_template).  Return -1
607 * if it matches, to stop the iteration.
608 */
609static int
610iidesc_match(void *data, void *arg)
611{
612	iidesc_t *node = data;
613	iifind_data_t *iif = arg;
614	int i;
615
616	if (node->ii_type != iif->iif_template->ii_type ||
617	    !streq(node->ii_name, iif->iif_template->ii_name) ||
618	    node->ii_dtype->t_id != iif->iif_newidx)
619		return (0);
620
621	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
622	    !streq(node->ii_owner, iif->iif_template->ii_owner))
623		return (0);
624
625	if (node->ii_nargs != iif->iif_template->ii_nargs)
626		return (0);
627
628	for (i = 0; i < node->ii_nargs; i++) {
629		if (get_mapping(iif->iif_ta,
630		    iif->iif_template->ii_args[i]->t_id) !=
631		    node->ii_args[i]->t_id)
632			return (0);
633	}
634
635	if (iif->iif_refmerge) {
636		switch (iif->iif_template->ii_type) {
637		case II_GFUN:
638		case II_SFUN:
639		case II_GVAR:
640		case II_SVAR:
641			debug(3, "suppressing duping of %d %s from %s\n",
642			    iif->iif_template->ii_type,
643			    iif->iif_template->ii_name,
644			    (iif->iif_template->ii_owner ?
645			    iif->iif_template->ii_owner : "NULL"));
646			return (0);
647		case II_NOT:
648		case II_PSYM:
649		case II_SOU:
650		case II_TYPE:
651			break;
652		}
653	}
654
655	return (-1);
656}
657
658static int
659merge_type_cb(void *data, void *arg)
660{
661	iidesc_t *sii = data;
662	merge_cb_data_t *mcd = arg;
663	iifind_data_t iif;
664	tdtrav_cb_f *post;
665
666	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
667
668	/* Map the tdesc nodes */
669	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
670	    mcd);
671
672	/* Map the iidesc nodes */
673	iif.iif_template = sii;
674	iif.iif_ta = mcd->md_ta;
675	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
676	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
677
678	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
679	    &iif) == 1)
680		/* successfully mapped */
681		return (1);
682
683	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
684	    sii->ii_type);
685
686	list_add(mcd->md_iitba, sii);
687
688	return (0);
689}
690
691static int
692remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
693    merge_cb_data_t *mcd)
694{
695	tdesc_t *tgt = NULL;
696	tdesc_t template;
697	int oldid = oldtgt->t_id;
698
699	if (oldid == selftid) {
700		*tgtp = newself;
701		return (1);
702	}
703
704	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
705		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
706
707	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
708	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
709	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
710	    (void *)&tgt))) {
711		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
712		    template.t_id, oldid, oldid);
713		*tgtp = oldtgt;
714		list_add(mcd->md_tdtbr, tgtp);
715		return (0);
716	}
717
718	*tgtp = tgt;
719	return (1);
720}
721
722static tdesc_t *
723conjure_template(tdesc_t *old, int newselfid)
724{
725	tdesc_t *new = xcalloc(sizeof (tdesc_t));
726
727	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
728	new->t_type = old->t_type;
729	new->t_size = old->t_size;
730	new->t_id = newselfid;
731	new->t_flags = old->t_flags;
732
733	return (new);
734}
735
736/*ARGSUSED2*/
737static tdesc_t *
738conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
739{
740	tdesc_t *new = conjure_template(old, newselfid);
741
742	new->t_intr = xmalloc(sizeof (intr_t));
743	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
744
745	return (new);
746}
747
748static tdesc_t *
749conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
750{
751	tdesc_t *new = conjure_template(old, newselfid);
752
753	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
754
755	return (new);
756}
757
758static tdesc_t *
759conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
760{
761	tdesc_t *new = conjure_template(old, newselfid);
762	fndef_t *nfn = xmalloc(sizeof (fndef_t));
763	fndef_t *ofn = old->t_fndef;
764	int i;
765
766	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
767
768	nfn->fn_nargs = ofn->fn_nargs;
769	nfn->fn_vargs = ofn->fn_vargs;
770
771	if (nfn->fn_nargs > 0)
772		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
773
774	for (i = 0; i < (int) ofn->fn_nargs; i++) {
775		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
776		    new, mcd);
777	}
778
779	new->t_fndef = nfn;
780
781	return (new);
782}
783
784static tdesc_t *
785conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
786{
787	tdesc_t *new = conjure_template(old, newselfid);
788	ardef_t *nar = xmalloc(sizeof (ardef_t));
789	ardef_t *oar = old->t_ardef;
790
791	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
792	    mcd);
793	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
794	    mcd);
795
796	nar->ad_nelems = oar->ad_nelems;
797
798	new->t_ardef = nar;
799
800	return (new);
801}
802
803static tdesc_t *
804conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
805{
806	tdesc_t *new = conjure_template(old, newselfid);
807	mlist_t *omem, **nmemp;
808
809	for (omem = old->t_members, nmemp = &new->t_members;
810	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
811		*nmemp = xmalloc(sizeof (mlist_t));
812		(*nmemp)->ml_offset = omem->ml_offset;
813		(*nmemp)->ml_size = omem->ml_size;
814		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
815		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
816		    old->t_id, new, mcd);
817	}
818	*nmemp = NULL;
819
820	return (new);
821}
822
823/*ARGSUSED2*/
824static tdesc_t *
825conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
826{
827	tdesc_t *new = conjure_template(old, newselfid);
828	elist_t *oel, **nelp;
829
830	for (oel = old->t_emem, nelp = &new->t_emem;
831	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
832		*nelp = xmalloc(sizeof (elist_t));
833		(*nelp)->el_name = xstrdup(oel->el_name);
834		(*nelp)->el_number = oel->el_number;
835	}
836	*nelp = NULL;
837
838	return (new);
839}
840
841/*ARGSUSED2*/
842static tdesc_t *
843conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
844{
845	tdesc_t *new = conjure_template(old, newselfid);
846
847	list_add(&mcd->md_tgt->td_fwdlist, new);
848
849	return (new);
850}
851
852/*ARGSUSED*/
853static tdesc_t *
854conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
855{
856	assert(1 == 0);
857	return (NULL);
858}
859
860static iidesc_t *
861conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
862{
863	iidesc_t *new = iidesc_dup(old);
864	int i;
865
866	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
867	for (i = 0; i < new->ii_nargs; i++) {
868		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
869		    mcd);
870	}
871
872	return (new);
873}
874
875static int
876fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
877{
878	alist_t *map = private;
879	void *defn;
880
881	if (!alist_find(map, (void *)fwd, (void **)&defn))
882		return (0);
883
884	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
885
886	*fwdp = defn;
887
888	return (1);
889}
890
891static tdtrav_cb_f fwd_redir_cbs[] = {
892	NULL,
893	NULL,			/* intrinsic */
894	NULL,			/* pointer */
895	NULL,			/* array */
896	NULL,			/* function */
897	NULL,			/* struct */
898	NULL,			/* union */
899	NULL,			/* enum */
900	fwd_redir,		/* forward */
901	NULL,			/* typedef */
902	tdtrav_assert,		/* typedef_unres */
903	NULL,			/* volatile */
904	NULL,			/* const */
905	NULL			/* restrict */
906};
907
908typedef struct redir_mstr_data {
909	tdata_t *rmd_tgt;
910	alist_t *rmd_map;
911} redir_mstr_data_t;
912
913static int
914redir_mstr_fwd_cb(void *name, void *value, void *arg)
915{
916	tdesc_t *fwd = name;
917	int defnid = (uintptr_t)value;
918	redir_mstr_data_t *rmd = arg;
919	tdesc_t template;
920	tdesc_t *defn;
921
922	template.t_id = defnid;
923
924	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
925	    (void *)&defn)) {
926		aborterr("Couldn't unforward %d (%s)\n", defnid,
927		    tdesc_name(defn));
928	}
929
930	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
931
932	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
933
934	return (1);
935}
936
937static void
938redir_mstr_fwds(merge_cb_data_t *mcd)
939{
940	redir_mstr_data_t rmd;
941	alist_t *map = alist_new(NULL, NULL);
942
943	rmd.rmd_tgt = mcd->md_tgt;
944	rmd.rmd_map = map;
945
946	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
947		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
948		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
949	}
950
951	alist_free(map);
952}
953
954static int
955add_iitba_cb(void *data, void *private)
956{
957	merge_cb_data_t *mcd = private;
958	iidesc_t *tba = data;
959	iidesc_t *new;
960	iifind_data_t iif;
961	int newidx;
962
963	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
964	assert(newidx != -1);
965
966	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
967
968	iif.iif_template = tba;
969	iif.iif_ta = mcd->md_ta;
970	iif.iif_newidx = newidx;
971	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
972
973	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
974	    &iif) == 1) {
975		debug(3, "iidesc_t %s already exists\n",
976		    (tba->ii_name ? tba->ii_name : "(anon)"));
977		return (1);
978	}
979
980	new = conjure_iidesc(tba, mcd);
981	hash_add(mcd->md_tgt->td_iihash, new);
982
983	return (1);
984}
985
986static int
987add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
988{
989	tdesc_t *newtdp;
990	tdesc_t template;
991
992	template.t_id = newid;
993	assert(hash_find(mcd->md_parent->td_idhash,
994	    (void *)&template, NULL) == 0);
995
996	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
997	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
998	    oldtdp->t_id, newid, newid);
999
1000	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
1001	    mcd)) == NULL)
1002		/* couldn't map everything */
1003		return (0);
1004
1005	debug(3, "succeeded\n");
1006
1007	hash_add(mcd->md_tgt->td_idhash, newtdp);
1008	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1009
1010	return (1);
1011}
1012
1013static int
1014add_tdtba_cb(void *data, void *arg)
1015{
1016	tdesc_t *tdp = data;
1017	merge_cb_data_t *mcd = arg;
1018	int newid;
1019	int rc;
1020
1021	newid = get_mapping(mcd->md_ta, tdp->t_id);
1022	assert(newid != -1);
1023
1024	if ((rc = add_tdesc(tdp, newid, mcd)))
1025		hash_remove(mcd->md_tdtba, (void *)tdp);
1026
1027	return (rc);
1028}
1029
1030static int
1031add_tdtbr_cb(void *data, void *arg)
1032{
1033	tdesc_t **tdpp = data;
1034	merge_cb_data_t *mcd = arg;
1035
1036	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1037
1038	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1039		return (0);
1040
1041	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1042	return (1);
1043}
1044
1045static void
1046merge_types(hash_t *src, merge_cb_data_t *mcd)
1047{
1048	list_t *iitba = NULL;
1049	list_t *tdtbr = NULL;
1050	int iirc, tdrc;
1051
1052	mcd->md_iitba = &iitba;
1053	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1054	    tdesc_layoutcmp);
1055	mcd->md_tdtbr = &tdtbr;
1056
1057	(void) hash_iter(src, merge_type_cb, mcd);
1058
1059	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1060	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1061
1062	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1063	debug(3, "add_iitba_cb added %d items\n", iirc);
1064
1065	assert(list_count(*mcd->md_iitba) == 0 &&
1066	    hash_count(mcd->md_tdtba) == 0);
1067
1068	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1069	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1070
1071	if (list_count(*mcd->md_tdtbr) != 0)
1072		aborterr("Couldn't remap all nodes\n");
1073
1074	/*
1075	 * We now have an alist of master forwards and the ids of the new master
1076	 * definitions for those forwards in mcd->md_fdida.  By this point,
1077	 * we're guaranteed that all of the master definitions referenced in
1078	 * fdida have been added to the master tree.  We now traverse through
1079	 * the master tree, redirecting all edges inbound to forwards that have
1080	 * definitions to those definitions.
1081	 */
1082	if (mcd->md_parent == mcd->md_tgt) {
1083		redir_mstr_fwds(mcd);
1084	}
1085}
1086
1087void
1088merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1089{
1090	merge_cb_data_t mcd;
1091
1092	cur->td_ref++;
1093	mstr->td_ref++;
1094	if (tgt)
1095		tgt->td_ref++;
1096
1097	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1098	    (tgt == NULL || tgt->td_ref == 1));
1099
1100	mcd.md_parent = mstr;
1101	mcd.md_tgt = (tgt ? tgt : mstr);
1102	mcd.md_ta = alist_new(NULL, NULL);
1103	mcd.md_fdida = alist_new(NULL, NULL);
1104	mcd.md_flags = 0;
1105
1106	if (selfuniquify)
1107		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1108	if (tgt)
1109		mcd.md_flags |= MCD_F_REFMERGE;
1110
1111	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1112	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1113
1114	merge_types(cur->td_iihash, &mcd);
1115
1116	if (debug_level >= 3) {
1117		debug(3, "Type association stats\n");
1118		alist_stats(mcd.md_ta, 0);
1119		debug(3, "Layout hash stats\n");
1120		hash_stats(mcd.md_tgt->td_layouthash, 1);
1121	}
1122
1123	alist_free(mcd.md_fdida);
1124	alist_free(mcd.md_ta);
1125
1126	cur->td_ref--;
1127	mstr->td_ref--;
1128	if (tgt)
1129		tgt->td_ref--;
1130}
1131
1132tdesc_ops_t tdesc_ops[] = {
1133	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1134	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1135	{ "pointer", 		equiv_plain,		conjure_plain },
1136	{ "array", 		equiv_array,		conjure_array },
1137	{ "function", 		equiv_function,		conjure_function },
1138	{ "struct",		equiv_su,		conjure_su },
1139	{ "union",		equiv_su,		conjure_su },
1140	{ "enum",		equiv_enum,		conjure_enum },
1141	{ "forward",		NULL,			conjure_forward },
1142	{ "typedef",		equiv_plain,		conjure_plain },
1143	{ "typedef_unres",	equiv_assert,		conjure_assert },
1144	{ "volatile",		equiv_plain,		conjure_plain },
1145	{ "const", 		equiv_plain,		conjure_plain },
1146	{ "restrict",		equiv_plain,		conjure_plain }
1147};
1148