1/*	$NetBSD: refclock_irig.c,v 1.1.1.2 2012/01/31 21:24:51 kardel Exp $	*/
2
3/*
4 * refclock_irig - audio IRIG-B/E demodulator/decoder
5 */
6#ifdef HAVE_CONFIG_H
7#include <config.h>
8#endif
9
10#if defined(REFCLOCK) && defined(CLOCK_IRIG)
11
12#include "ntpd.h"
13#include "ntp_io.h"
14#include "ntp_refclock.h"
15#include "ntp_calendar.h"
16#include "ntp_stdlib.h"
17
18#include <stdio.h>
19#include <ctype.h>
20#include <math.h>
21#ifdef HAVE_SYS_IOCTL_H
22#include <sys/ioctl.h>
23#endif /* HAVE_SYS_IOCTL_H */
24
25#include "audio.h"
26
27/*
28 * Audio IRIG-B/E demodulator/decoder
29 *
30 * This driver synchronizes the computer time using data encoded in
31 * IRIG-B/E signals commonly produced by GPS receivers and other timing
32 * devices. The IRIG signal is an amplitude-modulated carrier with
33 * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
34 * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
35 * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
36 & format is in use.
37 *
38 * The driver requires an audio codec or sound card with sampling rate 8
39 * kHz and mu-law companding. This is the same standard as used by the
40 * telephone industry and is supported by most hardware and operating
41 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
42 * implementation, only one audio driver and codec can be supported on a
43 * single machine.
44 *
45 * The program processes 8000-Hz mu-law companded samples using separate
46 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
47 * detector and automatic threshold corrector. Cycle crossings relative
48 * to the corrected slice level determine the width of each pulse and
49 * its value - zero, one or position identifier.
50 *
51 * The data encode 20 BCD digits which determine the second, minute,
52 * hour and day of the year and sometimes the year and synchronization
53 * condition. The comb filter exponentially averages the corresponding
54 * samples of successive baud intervals in order to reliably identify
55 * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
56 * additional integration and interpolation to accurately determine the
57 * zero crossing of that cycle, which determines the reference
58 * timestamp. A pulse-width discriminator demodulates the data pulses,
59 * which are then encoded as the BCD digits of the timecode.
60 *
61 * The timecode and reference timestamp are updated once each second
62 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
63 * saved for later processing. At poll intervals of 64 s, the saved
64 * samples are processed by a trimmed-mean filter and used to update the
65 * system clock.
66 *
67 * An automatic gain control feature provides protection against
68 * overdriven or underdriven input signal amplitudes. It is designed to
69 * maintain adequate demodulator signal amplitude while avoiding
70 * occasional noise spikes. In order to assure reliable capture, the
71 * decompanded input signal amplitude must be greater than 100 units and
72 * the codec sample frequency error less than 250 PPM (.025 percent).
73 *
74 * Monitor Data
75 *
76 * The timecode format used for debugging and data recording includes
77 * data helpful in diagnosing problems with the IRIG signal and codec
78 * connections. The driver produces one line for each timecode in the
79 * following format:
80 *
81 * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
82 *
83 * If clockstats is enabled, the most recent line is written to the
84 * clockstats file every 64 s. If verbose recording is enabled (fudge
85 * flag 4) each line is written as generated.
86 *
87 * The first field containes the error flags in hex, where the hex bits
88 * are interpreted as below. This is followed by the year of century,
89 * day of year and time of day. Note that the time of day is for the
90 * previous minute, not the current time. The status indicator and year
91 * are not produced by some IRIG devices and appear as zeros. Following
92 * these fields are the carrier amplitude (0-3000), codec gain (0-255),
93 * modulation index (0-1), time constant (4-10), carrier phase error
94 * +-.5) and carrier frequency error (PPM). The last field is the on-
95 * time timestamp in NTP format.
96 *
97 * The error flags are defined as follows in hex:
98 *
99 * x01	Low signal. The carrier amplitude is less than 100 units. This
100 *	is usually the result of no signal or wrong input port.
101 * x02	Frequency error. The codec frequency error is greater than 250
102 *	PPM. This may be due to wrong signal format or (rarely)
103 *	defective codec.
104 * x04	Modulation error. The IRIG modulation index is less than 0.5.
105 *	This is usually the result of an overdriven codec, wrong signal
106 *	format or wrong input port.
107 * x08	Frame synch error. The decoder frame does not match the IRIG
108 *	frame. This is usually the result of an overdriven codec, wrong
109 *	signal format or noisy IRIG signal. It may also be the result of
110 *	an IRIG signature check which indicates a failure of the IRIG
111 *	signal synchronization source.
112 * x10	Data bit error. The data bit length is out of tolerance. This is
113 *	usually the result of an overdriven codec, wrong signal format
114 *	or noisy IRIG signal.
115 * x20	Seconds numbering discrepancy. The decoder second does not match
116 *	the IRIG second. This is usually the result of an overdriven
117 *	codec, wrong signal format or noisy IRIG signal.
118 * x40	Codec error (overrun). The machine is not fast enough to keep up
119 *	with the codec.
120 * x80	Device status error (Spectracom).
121 *
122 *
123 * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
124 * within a few tens of microseconds relative to the IRIG-B signal.
125 * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
126 * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
127 * modulation.
128 *
129 * Unlike other drivers, which can have multiple instantiations, this
130 * one supports only one. It does not seem likely that more than one
131 * audio codec would be useful in a single machine. More than one would
132 * probably chew up too much CPU time anyway.
133 *
134 * Fudge factors
135 *
136 * Fudge flag4 causes the dubugging output described above to be
137 * recorded in the clockstats file. Fudge flag2 selects the audio input
138 * port, where 0 is the mike port (default) and 1 is the line-in port.
139 * It does not seem useful to select the compact disc player port. Fudge
140 * flag3 enables audio monitoring of the input signal. For this purpose,
141 * the monitor gain is set t a default value. Fudgetime2 is used as a
142 * frequency vernier for broken codec sample frequency.
143 *
144 * Alarm codes
145 *
146 * CEVNT_BADTIME	invalid date or time
147 * CEVNT_TIMEOUT	no IRIG data since last poll
148 */
149/*
150 * Interface definitions
151 */
152#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
153#define	PRECISION	(-17)	/* precision assumed (about 10 us) */
154#define	REFID		"IRIG"	/* reference ID */
155#define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
156#define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
157#define SECOND		8000	/* nominal sample rate (Hz) */
158#define BAUD		80	/* samples per baud interval */
159#define OFFSET		128	/* companded sample offset */
160#define SIZE		256	/* decompanding table size */
161#define CYCLE		8	/* samples per bit */
162#define SUBFLD		10	/* bits per frame */
163#define FIELD		100	/* bits per second */
164#define MINTC		2	/* min PLL time constant */
165#define MAXTC		10	/* max PLL time constant max */
166#define	MAXAMP		3000.	/* maximum signal amplitude */
167#define	MINAMP		2000.	/* minimum signal amplitude */
168#define DRPOUT		100.	/* dropout signal amplitude */
169#define MODMIN		0.5	/* minimum modulation index */
170#define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
171
172/*
173 * The on-time synchronization point is the positive-going zero crossing
174 * of the first cycle of the second. The IIR baseband filter phase delay
175 * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
176 * due to the codec and other causes was determined by calibrating to a
177 * PPS signal from a GPS receiver.
178 *
179 * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
180 * within .02 ms short-term with .02 ms jitter. The processor load due
181 * to the driver is 0.51 percent.
182 */
183#define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
184#define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */
185
186/*
187 * Data bit definitions
188 */
189#define BIT0		0	/* zero */
190#define BIT1		1	/* one */
191#define BITP		2	/* position identifier */
192
193/*
194 * Error flags
195 */
196#define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
197#define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
198#define IRIG_ERR_MOD	0x04	/* low modulation index */
199#define IRIG_ERR_SYNCH	0x08	/* frame synch error */
200#define IRIG_ERR_DECODE	0x10	/* frame decoding error */
201#define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
202#define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
203#define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
204
205static	char	hexchar[] = "0123456789abcdef";
206
207/*
208 * IRIG unit control structure
209 */
210struct irigunit {
211	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
212	l_fp	timestamp;	/* audio sample timestamp */
213	l_fp	tick;		/* audio sample increment */
214	l_fp	refstamp;	/* reference timestamp */
215	l_fp	chrstamp;	/* baud timestamp */
216	l_fp	prvstamp;	/* previous baud timestamp */
217	double	integ[BAUD];	/* baud integrator */
218	double	phase, freq;	/* logical clock phase and frequency */
219	double	zxing;		/* phase detector integrator */
220	double	yxing;		/* cycle phase */
221	double	exing;		/* envelope phase */
222	double	modndx;		/* modulation index */
223	double	irig_b;		/* IRIG-B signal amplitude */
224	double	irig_e;		/* IRIG-E signal amplitude */
225	int	errflg;		/* error flags */
226	/*
227	 * Audio codec variables
228	 */
229	double	comp[SIZE];	/* decompanding table */
230	double	signal;		/* peak signal for AGC */
231	int	port;		/* codec port */
232	int	gain;		/* codec gain */
233	int	mongain;	/* codec monitor gain */
234	int	seccnt;		/* second interval counter */
235
236	/*
237	 * RF variables
238	 */
239	double	bpf[9];		/* IRIG-B filter shift register */
240	double	lpf[5];		/* IRIG-E filter shift register */
241	double	envmin, envmax;	/* envelope min and max */
242	double	slice;		/* envelope slice level */
243	double	intmin, intmax;	/* integrated envelope min and max */
244	double	maxsignal;	/* integrated peak amplitude */
245	double	noise;		/* integrated noise amplitude */
246	double	lastenv[CYCLE];	/* last cycle amplitudes */
247	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
248	double	lastsig;	/* last carrier sample */
249	double	fdelay;		/* filter delay */
250	int	decim;		/* sample decimation factor */
251	int	envphase;	/* envelope phase */
252	int	envptr;		/* envelope phase pointer */
253	int	envsw;		/* envelope state */
254	int	envxing;	/* envelope slice crossing */
255	int	tc;		/* time constant */
256	int	tcount;		/* time constant counter */
257	int	badcnt;		/* decimation interval counter */
258
259	/*
260	 * Decoder variables
261	 */
262	int	pulse;		/* cycle counter */
263	int	cycles;		/* carrier cycles */
264	int	dcycles;	/* data cycles */
265	int	lastbit;	/* last code element */
266	int	second;		/* previous second */
267	int	bitcnt;		/* bit count in frame */
268	int	frmcnt;		/* bit count in second */
269	int	xptr;		/* timecode pointer */
270	int	bits;		/* demodulated bits */
271};
272
273/*
274 * Function prototypes
275 */
276static	int	irig_start	(int, struct peer *);
277static	void	irig_shutdown	(int, struct peer *);
278static	void	irig_receive	(struct recvbuf *);
279static	void	irig_poll	(int, struct peer *);
280
281/*
282 * More function prototypes
283 */
284static	void	irig_base	(struct peer *, double);
285static	void	irig_rf		(struct peer *, double);
286static	void	irig_baud	(struct peer *, int);
287static	void	irig_decode	(struct peer *, int);
288static	void	irig_gain	(struct peer *);
289
290/*
291 * Transfer vector
292 */
293struct	refclock refclock_irig = {
294	irig_start,		/* start up driver */
295	irig_shutdown,		/* shut down driver */
296	irig_poll,		/* transmit poll message */
297	noentry,		/* not used (old irig_control) */
298	noentry,		/* initialize driver (not used) */
299	noentry,		/* not used (old irig_buginfo) */
300	NOFLAGS			/* not used */
301};
302
303
304/*
305 * irig_start - open the devices and initialize data for processing
306 */
307static int
308irig_start(
309	int	unit,		/* instance number (used for PCM) */
310	struct peer *peer	/* peer structure pointer */
311	)
312{
313	struct refclockproc *pp;
314	struct irigunit *up;
315
316	/*
317	 * Local variables
318	 */
319	int	fd;		/* file descriptor */
320	int	i;		/* index */
321	double	step;		/* codec adjustment */
322
323	/*
324	 * Open audio device
325	 */
326	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
327	if (fd < 0)
328		return (0);
329#ifdef DEBUG
330	if (debug)
331		audio_show();
332#endif
333
334	/*
335	 * Allocate and initialize unit structure
336	 */
337	up = emalloc(sizeof(*up));
338	memset(up, 0, sizeof(*up));
339	pp = peer->procptr;
340	pp->unitptr = (caddr_t)up;
341	pp->io.clock_recv = irig_receive;
342	pp->io.srcclock = (caddr_t)peer;
343	pp->io.datalen = 0;
344	pp->io.fd = fd;
345	if (!io_addclock(&pp->io)) {
346		close(fd);
347		pp->io.fd = -1;
348		free(up);
349		pp->unitptr = NULL;
350		return (0);
351	}
352
353	/*
354	 * Initialize miscellaneous variables
355	 */
356	peer->precision = PRECISION;
357	pp->clockdesc = DESCRIPTION;
358	memcpy((char *)&pp->refid, REFID, 4);
359	up->tc = MINTC;
360	up->decim = 1;
361	up->gain = 127;
362
363	/*
364	 * The companded samples are encoded sign-magnitude. The table
365	 * contains all the 256 values in the interest of speed.
366	 */
367	up->comp[0] = up->comp[OFFSET] = 0.;
368	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
369	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
370	step = 2.;
371	for (i = 3; i < OFFSET; i++) {
372		up->comp[i] = up->comp[i - 1] + step;
373		up->comp[OFFSET + i] = -up->comp[i];
374		if (i % 16 == 0)
375			step *= 2.;
376	}
377	DTOLFP(1. / SECOND, &up->tick);
378	return (1);
379}
380
381
382/*
383 * irig_shutdown - shut down the clock
384 */
385static void
386irig_shutdown(
387	int	unit,		/* instance number (not used) */
388	struct peer *peer	/* peer structure pointer */
389	)
390{
391	struct refclockproc *pp;
392	struct irigunit *up;
393
394	pp = peer->procptr;
395	up = (struct irigunit *)pp->unitptr;
396	if (-1 != pp->io.fd)
397		io_closeclock(&pp->io);
398	if (NULL != up)
399		free(up);
400}
401
402
403/*
404 * irig_receive - receive data from the audio device
405 *
406 * This routine reads input samples and adjusts the logical clock to
407 * track the irig clock by dropping or duplicating codec samples.
408 */
409static void
410irig_receive(
411	struct recvbuf *rbufp	/* receive buffer structure pointer */
412	)
413{
414	struct peer *peer;
415	struct refclockproc *pp;
416	struct irigunit *up;
417
418	/*
419	 * Local variables
420	 */
421	double	sample;		/* codec sample */
422	u_char	*dpt;		/* buffer pointer */
423	int	bufcnt;		/* buffer counter */
424	l_fp	ltemp;		/* l_fp temp */
425
426	peer = (struct peer *)rbufp->recv_srcclock;
427	pp = peer->procptr;
428	up = (struct irigunit *)pp->unitptr;
429
430	/*
431	 * Main loop - read until there ain't no more. Note codec
432	 * samples are bit-inverted.
433	 */
434	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
435	L_SUB(&rbufp->recv_time, &ltemp);
436	up->timestamp = rbufp->recv_time;
437	dpt = rbufp->recv_buffer;
438	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
439		sample = up->comp[~*dpt++ & 0xff];
440
441		/*
442		 * Variable frequency oscillator. The codec oscillator
443		 * runs at the nominal rate of 8000 samples per second,
444		 * or 125 us per sample. A frequency change of one unit
445		 * results in either duplicating or deleting one sample
446		 * per second, which results in a frequency change of
447		 * 125 PPM.
448		 */
449		up->phase += (up->freq + clock_codec) / SECOND;
450		up->phase += pp->fudgetime2 / 1e6;
451		if (up->phase >= .5) {
452			up->phase -= 1.;
453		} else if (up->phase < -.5) {
454			up->phase += 1.;
455			irig_rf(peer, sample);
456			irig_rf(peer, sample);
457		} else {
458			irig_rf(peer, sample);
459		}
460		L_ADD(&up->timestamp, &up->tick);
461		sample = fabs(sample);
462		if (sample > up->signal)
463			up->signal = sample;
464			up->signal += (sample - up->signal) /
465			    1000;
466
467		/*
468		 * Once each second, determine the IRIG format and gain.
469		 */
470		up->seccnt = (up->seccnt + 1) % SECOND;
471		if (up->seccnt == 0) {
472			if (up->irig_b > up->irig_e) {
473				up->decim = 1;
474				up->fdelay = IRIG_B;
475			} else {
476				up->decim = 10;
477				up->fdelay = IRIG_E;
478			}
479			up->irig_b = up->irig_e = 0;
480			irig_gain(peer);
481
482		}
483	}
484
485	/*
486	 * Set the input port and monitor gain for the next buffer.
487	 */
488	if (pp->sloppyclockflag & CLK_FLAG2)
489		up->port = 2;
490	else
491		up->port = 1;
492	if (pp->sloppyclockflag & CLK_FLAG3)
493		up->mongain = MONGAIN;
494	else
495		up->mongain = 0;
496}
497
498
499/*
500 * irig_rf - RF processing
501 *
502 * This routine filters the RF signal using a bandass filter for IRIG-B
503 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
504 * decimated by a factor of ten. Note that the codec filters function as
505 * roofing filters to attenuate both the high and low ends of the
506 * passband. IIR filter coefficients were determined using Matlab Signal
507 * Processing Toolkit.
508 */
509static void
510irig_rf(
511	struct peer *peer,	/* peer structure pointer */
512	double	sample		/* current signal sample */
513	)
514{
515	struct refclockproc *pp;
516	struct irigunit *up;
517
518	/*
519	 * Local variables
520	 */
521	double	irig_b, irig_e;	/* irig filter outputs */
522
523	pp = peer->procptr;
524	up = (struct irigunit *)pp->unitptr;
525
526	/*
527	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
528	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
529	 * phase delay 1.03 ms.
530	 */
531	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
532	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
533	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
534	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
535	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
536	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
537	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
538	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
539	up->bpf[0] = sample - irig_b;
540	irig_b = up->bpf[0] * 4.952157e-003
541	    + up->bpf[1] * -2.055878e-002
542	    + up->bpf[2] * 4.401413e-002
543	    + up->bpf[3] * -6.558851e-002
544	    + up->bpf[4] * 7.462108e-002
545	    + up->bpf[5] * -6.558851e-002
546	    + up->bpf[6] * 4.401413e-002
547	    + up->bpf[7] * -2.055878e-002
548	    + up->bpf[8] * 4.952157e-003;
549	up->irig_b += irig_b * irig_b;
550
551	/*
552	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
553	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
554	 * 3.47 ms.
555	 */
556	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
557	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
558	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
559	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
560	up->lpf[0] = sample - irig_e;
561	irig_e = up->lpf[0] * 3.215696e-003
562	    + up->lpf[1] * -1.174951e-002
563	    + up->lpf[2] * 1.712074e-002
564	    + up->lpf[3] * -1.174951e-002
565	    + up->lpf[4] * 3.215696e-003;
566	up->irig_e += irig_e * irig_e;
567
568	/*
569	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
570	 */
571	up->badcnt = (up->badcnt + 1) % up->decim;
572	if (up->badcnt == 0) {
573		if (up->decim == 1)
574			irig_base(peer, irig_b);
575		else
576			irig_base(peer, irig_e);
577	}
578}
579
580/*
581 * irig_base - baseband processing
582 *
583 * This routine processes the baseband signal and demodulates the AM
584 * carrier using a synchronous detector. It then synchronizes to the
585 * data frame at the baud rate and decodes the width-modulated data
586 * pulses.
587 */
588static void
589irig_base(
590	struct peer *peer,	/* peer structure pointer */
591	double	sample		/* current signal sample */
592	)
593{
594	struct refclockproc *pp;
595	struct irigunit *up;
596
597	/*
598	 * Local variables
599	 */
600	double	lope;		/* integrator output */
601	double	env;		/* envelope detector output */
602	double	dtemp;
603	int	carphase;	/* carrier phase */
604
605	pp = peer->procptr;
606	up = (struct irigunit *)pp->unitptr;
607
608	/*
609	 * Synchronous baud integrator. Corresponding samples of current
610	 * and past baud intervals are integrated to refine the envelope
611	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
612	 * raw data and one baud (10 ms) of the integrated data.
613	 */
614	up->envphase = (up->envphase + 1) % BAUD;
615	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
616	    (5 * up->tc);
617	lope = up->integ[up->envphase];
618	carphase = up->envphase % CYCLE;
619	up->lastenv[carphase] = sample;
620	up->lastint[carphase] = lope;
621
622	/*
623	 * Phase detector. Find the negative-going zero crossing
624	 * relative to sample 4 in the 8-sample sycle. A phase change of
625	 * 360 degrees produces an output change of one unit.
626	 */
627	if (up->lastsig > 0 && lope <= 0)
628		up->zxing += (double)(carphase - 4) / CYCLE;
629	up->lastsig = lope;
630
631	/*
632	 * End of the baud. Update signal/noise estimates and PLL
633	 * phase, frequency and time constant.
634	 */
635	if (up->envphase == 0) {
636		up->maxsignal = up->intmax; up->noise = up->intmin;
637		up->intmin = 1e6; up->intmax = -1e6;
638		if (up->maxsignal < DRPOUT)
639			up->errflg |= IRIG_ERR_AMP;
640		if (up->maxsignal > 0)
641			up->modndx = (up->maxsignal - up->noise) /
642			    up->maxsignal;
643 		else
644			up->modndx = 0;
645		if (up->modndx < MODMIN)
646			up->errflg |= IRIG_ERR_MOD;
647		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
648		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
649			up->tc = MINTC;
650			up->tcount = 0;
651		}
652
653		/*
654		 * Update PLL phase and frequency. The PLL time constant
655		 * is set initially to stabilize the frequency within a
656		 * minute or two, then increases to the maximum. The
657		 * frequency is clamped so that the PLL capture range
658		 * cannot be exceeded.
659		 */
660		dtemp = up->zxing * up->decim / BAUD;
661		up->yxing = dtemp;
662		up->zxing = 0.;
663		up->phase += dtemp / up->tc;
664		up->freq += dtemp / (4. * up->tc * up->tc);
665		if (up->freq > MAXFREQ) {
666			up->freq = MAXFREQ;
667			up->errflg |= IRIG_ERR_FREQ;
668		} else if (up->freq < -MAXFREQ) {
669			up->freq = -MAXFREQ;
670			up->errflg |= IRIG_ERR_FREQ;
671		}
672	}
673
674	/*
675	 * Synchronous demodulator. There are eight samples in the cycle
676	 * and ten cycles in the baud. Since the PLL has aligned the
677	 * negative-going zero crossing at sample 4, the maximum
678	 * amplitude is at sample 2 and minimum at sample 6. The
679	 * beginning of the data pulse is determined from the integrated
680	 * samples, while the end of the pulse is determined from the
681	 * raw samples. The raw data bits are demodulated relative to
682	 * the slice level and left-shifted in the decoding register.
683	 */
684	if (carphase != 7)
685		return;
686
687	lope = (up->lastint[2] - up->lastint[6]) / 2.;
688	if (lope > up->intmax)
689		up->intmax = lope;
690	if (lope < up->intmin)
691		up->intmin = lope;
692
693	/*
694	 * Pulse code demodulator and reference timestamp. The decoder
695	 * looks for a sequence of ten bits; the first two bits must be
696	 * one, the last two bits must be zero. Frame synch is asserted
697	 * when three correct frames have been found.
698	 */
699	up->pulse = (up->pulse + 1) % 10;
700	up->cycles <<= 1;
701	if (lope >= (up->maxsignal + up->noise) / 2.)
702		up->cycles |= 1;
703	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
704		if (up->pulse != 0)
705			up->errflg |= IRIG_ERR_SYNCH;
706		up->pulse = 0;
707	}
708
709	/*
710	 * Assemble the baud and max/min to get the slice level for the
711	 * next baud. The slice level is based on the maximum over the
712	 * first two bits and the minimum over the last two bits, with
713	 * the slice level halfway between the maximum and minimum.
714	 */
715	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
716	up->dcycles <<= 1;
717	if (env >= up->slice)
718		up->dcycles |= 1;
719	switch(up->pulse) {
720
721	case 0:
722		irig_baud(peer, up->dcycles);
723		if (env < up->envmin)
724			up->envmin = env;
725		up->slice = (up->envmax + up->envmin) / 2;
726		up->envmin = 1e6; up->envmax = -1e6;
727		break;
728
729	case 1:
730		up->envmax = env;
731		break;
732
733	case 2:
734		if (env > up->envmax)
735			up->envmax = env;
736		break;
737
738	case 9:
739		up->envmin = env;
740		break;
741	}
742}
743
744/*
745 * irig_baud - update the PLL and decode the pulse-width signal
746 */
747static void
748irig_baud(
749	struct peer *peer,	/* peer structure pointer */
750	int	bits		/* decoded bits */
751	)
752{
753	struct refclockproc *pp;
754	struct irigunit *up;
755	double	dtemp;
756	l_fp	ltemp;
757
758        pp = peer->procptr;
759	up = (struct irigunit *)pp->unitptr;
760
761	/*
762	 * The PLL time constant starts out small, in order to
763	 * sustain a frequency tolerance of 250 PPM. It
764	 * gradually increases as the loop settles down. Note
765	 * that small wiggles are not believed, unless they
766	 * persist for lots of samples.
767	 */
768	up->exing = -up->yxing;
769	if (fabs(up->envxing - up->envphase) <= 1) {
770		up->tcount++;
771		if (up->tcount > 20 * up->tc) {
772			up->tc++;
773			if (up->tc > MAXTC)
774				up->tc = MAXTC;
775			up->tcount = 0;
776			up->envxing = up->envphase;
777		} else {
778			up->exing -= up->envxing - up->envphase;
779		}
780	} else {
781		up->tcount = 0;
782		up->envxing = up->envphase;
783	}
784
785	/*
786	 * Strike the baud timestamp as the positive zero crossing of
787	 * the first bit, accounting for the codec delay and filter
788	 * delay.
789	 */
790	up->prvstamp = up->chrstamp;
791	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
792	DTOLFP(dtemp, &ltemp);
793	up->chrstamp = up->timestamp;
794	L_SUB(&up->chrstamp, &ltemp);
795
796	/*
797	 * The data bits are collected in ten-bit bauds. The first two
798	 * bits are not used. The resulting patterns represent runs of
799	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
800	 * 8-bit run represents a soft error and is treated as 0.
801	 */
802	switch (up->dcycles & 0xff) {
803
804	case 0x00:		/* 0-1 bits (0) */
805	case 0x80:
806		irig_decode(peer, BIT0);
807		break;
808
809	case 0xc0:		/* 2-4 bits (1) */
810	case 0xe0:
811	case 0xf0:
812		irig_decode(peer, BIT1);
813		break;
814
815	case 0xf8:		/* (5-7 bits (PI) */
816	case 0xfc:
817	case 0xfe:
818		irig_decode(peer, BITP);
819		break;
820
821	default:		/* 8 bits (error) */
822		irig_decode(peer, BIT0);
823		up->errflg |= IRIG_ERR_DECODE;
824	}
825}
826
827
828/*
829 * irig_decode - decode the data
830 *
831 * This routine assembles bauds into digits, digits into frames and
832 * frames into the timecode fields. Bits can have values of zero, one
833 * or position identifier. There are four bits per digit, ten digits per
834 * frame and ten frames per second.
835 */
836static void
837irig_decode(
838	struct	peer *peer,	/* peer structure pointer */
839	int	bit		/* data bit (0, 1 or 2) */
840	)
841{
842	struct refclockproc *pp;
843	struct irigunit *up;
844
845	/*
846	 * Local variables
847	 */
848	int	syncdig;	/* sync digit (Spectracom) */
849	char	sbs[6 + 1];	/* binary seconds since 0h */
850	char	spare[2 + 1];	/* mulligan digits */
851	int	temp;
852
853	pp = peer->procptr;
854	up = (struct irigunit *)pp->unitptr;
855
856	/*
857	 * Assemble frame bits.
858	 */
859	up->bits >>= 1;
860	if (bit == BIT1) {
861		up->bits |= 0x200;
862	} else if (bit == BITP && up->lastbit == BITP) {
863
864		/*
865		 * Frame sync - two adjacent position identifiers, which
866		 * mark the beginning of the second. The reference time
867		 * is the beginning of the second position identifier,
868		 * so copy the character timestamp to the reference
869		 * timestamp.
870		 */
871		if (up->frmcnt != 1)
872			up->errflg |= IRIG_ERR_SYNCH;
873		up->frmcnt = 1;
874		up->refstamp = up->prvstamp;
875	}
876	up->lastbit = bit;
877	if (up->frmcnt % SUBFLD == 0) {
878
879		/*
880		 * End of frame. Encode two hexadecimal digits in
881		 * little-endian timecode field. Note frame 1 is shifted
882		 * right one bit to account for the marker PI.
883		 */
884		temp = up->bits;
885		if (up->frmcnt == 10)
886			temp >>= 1;
887		if (up->xptr >= 2) {
888			up->timecode[--up->xptr] = hexchar[temp & 0xf];
889			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
890			    0xf];
891		}
892		if (up->frmcnt == 0) {
893
894			/*
895			 * End of second. Decode the timecode and wind
896			 * the clock. Not all IRIG generators have the
897			 * year; if so, it is nonzero after year 2000.
898			 * Not all have the hardware status bit; if so,
899			 * it is lit when the source is okay and dim
900			 * when bad. We watch this only if the year is
901			 * nonzero. Not all are configured for signature
902			 * control. If so, all BCD digits are set to
903			 * zero if the source is bad. In this case the
904			 * refclock_process() will reject the timecode
905			 * as invalid.
906			 */
907			up->xptr = 2 * SUBFLD;
908			if (sscanf((char *)up->timecode,
909			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
910			    &syncdig, spare, &pp->day, &pp->hour,
911			    &pp->minute, &pp->second) != 8)
912				pp->leap = LEAP_NOTINSYNC;
913			else
914				pp->leap = LEAP_NOWARNING;
915			up->second = (up->second + up->decim) % 60;
916
917			/*
918			 * Raise an alarm if the day field is zero,
919			 * which happens when signature control is
920			 * enabled and the device has lost
921			 * synchronization. Raise an alarm if the year
922			 * field is nonzero and the sync indicator is
923			 * zero, which happens when a Spectracom radio
924			 * has lost synchronization. Raise an alarm if
925			 * the expected second does not agree with the
926			 * decoded second, which happens with a garbled
927			 * IRIG signal. We are very particular.
928			 */
929			if (pp->day == 0 || (pp->year != 0 && syncdig ==
930			    0))
931				up->errflg |= IRIG_ERR_SIGERR;
932			if (pp->second != up->second)
933				up->errflg |= IRIG_ERR_CHECK;
934			up->second = pp->second;
935
936			/*
937			 * Wind the clock only if there are no errors
938			 * and the time constant has reached the
939			 * maximum.
940			 */
941			if (up->errflg == 0 && up->tc == MAXTC) {
942				pp->lastref = pp->lastrec;
943				pp->lastrec = up->refstamp;
944				if (!refclock_process(pp))
945					refclock_report(peer,
946					    CEVNT_BADTIME);
947			}
948			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
949			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
950			    up->errflg, pp->year, pp->day,
951			    pp->hour, pp->minute, pp->second,
952			    up->maxsignal, up->gain, up->modndx,
953			    up->tc, up->exing * 1e6 / SECOND, up->freq *
954			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
955			pp->lencode = strlen(pp->a_lastcode);
956			up->errflg = 0;
957			if (pp->sloppyclockflag & CLK_FLAG4) {
958				record_clock_stats(&peer->srcadr,
959				    pp->a_lastcode);
960#ifdef DEBUG
961				if (debug)
962					printf("irig %s\n",
963					    pp->a_lastcode);
964#endif /* DEBUG */
965			}
966		}
967	}
968	up->frmcnt = (up->frmcnt + 1) % FIELD;
969}
970
971
972/*
973 * irig_poll - called by the transmit procedure
974 *
975 * This routine sweeps up the timecode updates since the last poll. For
976 * IRIG-B there should be at least 60 updates; for IRIG-E there should
977 * be at least 6. If nothing is heard, a timeout event is declared.
978 */
979static void
980irig_poll(
981	int	unit,		/* instance number (not used) */
982	struct peer *peer	/* peer structure pointer */
983	)
984{
985	struct refclockproc *pp;
986	struct irigunit *up;
987
988	pp = peer->procptr;
989	up = (struct irigunit *)pp->unitptr;
990
991	if (pp->coderecv == pp->codeproc) {
992		refclock_report(peer, CEVNT_TIMEOUT);
993		return;
994
995	}
996	refclock_receive(peer);
997	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
998		record_clock_stats(&peer->srcadr, pp->a_lastcode);
999#ifdef DEBUG
1000		if (debug)
1001			printf("irig %s\n", pp->a_lastcode);
1002#endif /* DEBUG */
1003	}
1004	pp->polls++;
1005
1006}
1007
1008
1009/*
1010 * irig_gain - adjust codec gain
1011 *
1012 * This routine is called at the end of each second. It uses the AGC to
1013 * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1014 * hunting. The routine also jiggles the input port and selectively
1015 * mutes the monitor.
1016 */
1017static void
1018irig_gain(
1019	struct peer *peer	/* peer structure pointer */
1020	)
1021{
1022	struct refclockproc *pp;
1023	struct irigunit *up;
1024
1025	pp = peer->procptr;
1026	up = (struct irigunit *)pp->unitptr;
1027
1028	/*
1029	 * Apparently, the codec uses only the high order bits of the
1030	 * gain control field. Thus, it may take awhile for changes to
1031	 * wiggle the hardware bits.
1032	 */
1033	if (up->maxsignal < MINAMP) {
1034		up->gain += 4;
1035		if (up->gain > MAXGAIN)
1036			up->gain = MAXGAIN;
1037	} else if (up->maxsignal > MAXAMP) {
1038		up->gain -= 4;
1039		if (up->gain < 0)
1040			up->gain = 0;
1041	}
1042	audio_gain(up->gain, up->mongain, up->port);
1043}
1044
1045
1046#else
1047int refclock_irig_bs;
1048#endif /* REFCLOCK */
1049